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Abstract  27 

Aims Epigenetics may mediate the effects of environmental risk factors on disease, including 28 

heart disease. Thus, measuring the DNA methylome offers the opportunity to identify novel 29 

disease biomarkers and novel insights into disease mechanisms. The DNA methylation 30 

landscape of ascending aortic dissection (AD) and bicuspid aortic valve (BAV) with aortic 31 

aneurysmal dilatation remain uncharacterized. The present study aimed to explore the genome-32 

wide DNA methylation landscape underpinning these two diseases. 33 

Methods and results We used Illumina 450k DNA methylation beadarrays to analyze 21 34 

ascending aorta samples, including 10 cases with AD, 5 with BAV and 6 healthy controls. We 35 

adjusted for intra-sample cellular heterogeneity, providing the first unbiased genome-wide 36 

exploration of the DNA methylation landscape underpinning these two diseases. We discover that 37 

both diseases are characterized by loss of DNA methylation at non-CpG sites. We validate this 38 

non-CpG hypomethylation signature with pyrosequencing. In contrast to non-CpGs, AD and BAV 39 

exhibit distinct DNA methylation landscapes at CpG sites, with BAV characterized mainly by 40 

hypermethylation of EZH2 targets. In the case of AD, integrative DNA methylation gene 41 

expression analysis reveals that AD is characterized by a dedifferentiated smooth muscle cell 42 

phenotype. Our integrative analysis further reveals hypomethylation associated overexpression 43 

of RARA in AD, a pattern which is also seen in cells exposed to smoke toxins.  44 

Conclusion Our data supports a model in which increased cellular proliferation in AD and BAV 45 

underpins loss of methylation at non-CpG sites. Our data further supports a model, in which AD  46 

is associated with an inflammatory vascular remodeling process, possibly mediated by the 47 

epigenome and linked to environmental risk factors such as smoking. 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 
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1. Introduction 56 

Aortic dissection (AD) is the most frequently diagnosed lethal condition of the aorta, and is 57 

classified as Stanford type A if the ascending aorta is involved. Bicuspid aortic valve (BAV) is the 58 

most common congenital cardiac malformation and is frequently associated with an aortopathy 59 

manifested by aneurysmal dilatation of the ascending aorta. Aortic diseases are only diagnosed 60 

after a long period of subclinical development, at which point they present with a dissection or 61 

rupture, with an extremely poor prognosis. Furthermore, the overall global death rate from AD 62 

and aortic aneurysms has increased from 2.49 per 100 000 in 1999 to 2.78 per 100 000 63 

inhabitants in 20104, representing an increased global health burden. Underlying this increased 64 

burden is also the increased worldwide exposure to major risk factors, including notably smoking 65 

and hypertension. Thus, while risk prediction and early detection of aortic diseases remains the 66 

outstanding challenge, there is an equally urgent need to elucidate the molecular mechanisms 67 

linking the major risk factors to AD and BAV. 68 

The epigenome, and DNA methylation in particular, is a highly malleable entity, with DNAm 69 

alterations having been associated with all major disease risk factors including diet, smoking and 70 

age [Petronis A et al 2010, Teschendorff et al JAMA Onco 2015, Teschendorff et al Genome Res 71 

2010]. For instance, recent studies have identified DNAm changes in the blood of smokers which 72 

may mediate the causal link to lung cancer and which are able to predict the future risk of lung 73 

cancer [BMJ paper + Fasanelli F et al Nat Comm.2015]. While the role of DNAm alterations in 74 

cardiovascular disease is also rapidly increasing 5,6, its role (if any) in the pathogenesis of AD and 75 

BAV is unclear. 76 

Here, we decided to perform an explorative study of the DNAm landscapes underpinning AD and 77 

BAV. The comparison of AD to BAV is also of interest, as it has been proposed that BAV is not 78 

only a disorder of valvulogenesis, but also represents the co-existent abnormalities of aortic 79 

media2,3. Indeed, patients with BAV, including those with a haemodynamically normal valve, may 80 

have dilated aortic roots and ascending aortas. In addition, for AD we perform an integrative 81 

DNAm – mRNA expression analysis, using previous gene expression data of the ascending aorta 82 

of Stanford type A acute aortic dissection cases 1 83 

 84 

2. Methods 85 

2.1 Ethics statement and samples 86 
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This study was approved by the Ethics Committee of Zhongshan Hospital, Fudan University 87 

(Approval No. B2012-001) and all patients gave written informed consent. The study conforms to 88 

the principles outlined in the Declaration of Helsinki. A total of 24 ascending aortic tissue samples 89 

were collected. The 24 samples were collected from the individuals including 12 patients with 90 

acute ascending aortic dissection, 6 patients with bicuspid aortic valve associated with 91 

aneurysmal dilatation of the ascending aorta (aortic diameter >4.5 cm) and 6 organ donors. 92 

Enrollment criteria of patients with aortic dissection and method of samples harvest were 93 

previously described1. Ascending aortic tissue samples from patients with bicuspid aortic valve 94 

were similarly harvested at the time of aortic valve surgery and ascending aortic replacement. 95 

The tissue specimens used for DNA isolation were free of macroscopic thrombus or blood. Normal 96 

control samples were treated in the same manner as the test samples. Detailed clinical 97 

information of the individuals enrolled in the study is shown in table S1. 98 

 99 

2.2 DNA isolation and bisulfite modification of DNA   100 

DNA was isolated from aorta tissue using DNeasy Blood and Tissue Kit (Qiagen, Hilden, 101 

Germany) and genomic DNA was treated with sodium bisulfite using the EZ DNA Methylation kit 102 

(ZymoResearch, Irvine, CA, USA) following the protocol supplied by the manufacturer. 103 

 104 

2.3 Methylation analysis using the 450k array 105 

DNA methylation analysis using the Infinium Human-Methylation450k BeadChip (Illumina, San 106 

Diego, CA, USA) was performed according the manufactures' instruction. Raw Illumina data files 107 

were generated for further analysis. 108 

 109 

2.4 Methylation analysis using pyrosequencing 110 

Aliquots of the same genomic DNA as for microarray experiment were converted by bisulfite as 111 

previously mentioned. PCR reactions amplifying bisulfite-treated DNA for subsequent 112 

pyrosequencing analysis are performed using PyroMark PCR Kit (Qiagen, Hilden, Germany). 113 

Pyrosequencing reactions were performed using PyroMark Gold Q96 Reagent Kit (Qiagen) in 114 

PyroMark Q96 ID System (Qiagen, Hilden, Germany). PCR primers and Pyrosequencing primers 115 

were designed for 10 non-CpG loci using PyroMark Assay Design Software 2.0 (Qiagen, Hilden, 116 
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Germany). The sequence of primers are shown in table S2. All experimental processes were 117 

carried out according to the manufacturer's protocol. 118 

 119 

2.5 Preprocessing, quality control and normalization 120 

We used the “preprocessRaw” function in the R package “minfi”7 to convert raw Red/Green 121 

channel signals (idat files) into methylation signals. The “detectionP” function from the same 122 

package was used to determine coverage per probe and sample using a detection P-value 123 

threshold of 0.05. We then ran BMIQ8 to correct for type-2 probe bias.  124 

 125 

2.6 Reference DNA methylation centroid construction and cell-type deconvolution  126 

In order to obtain approximate estimates of the cellular proportions in our samples, we used 127 

Illumina 450k data from the ENCODE project9. The ENCODE 450k data was normalized with 128 

BMIQ. To identify the most relevant ENCODE cell-lines we estimated partial correlation 129 

coefficients between the DNAm profiles of our 21 aorta samples and each of the 63 ENCODE 130 

cell-lines. Partial correlations assess the similarity of each of our 21 aorta samples to each of the 131 

63 ENCODE cell-lines taking into account the correlation to all other ENCODE cell-lines. Thus a 132 

significant positive partial correlation between a sample and a given cell-line means that the cell-133 

line’s DNAm profile is highly similar to that of the sample, and that this similarity can’t be explained 134 

by the correlation to another ENCODE cell-line. ENCODE cell-lines were then ranked according 135 

to the average partial correlation over the 21 samples. In line with the expectation that aorta 136 

samples are made up primarily of aortic smooth muscle cells, fibroblasts and endothelial cells, 137 

the top 3 ranked cell-lines represented these cell-types. Specifically, the top-ranked cell-lines 138 

represent models for progenitor fibroblasts, aortic smooth muscle cells and human umbilical vein 139 

endothelial cells. Other highly ranked cell-lines represent other types of fibroblasts but were 140 

excluded due to highly similar profiles with progenitor fibroblasts. In order to construct the 141 

reference DNAm profiles (the “centroid”), we identified high-confidence differentially methylated 142 

CpGs between each pair of cell-types (6 pairwise comparisons) by ranking probes according to 143 

their difference in methylation and picking the n top-ranked probes, where n=min(50, #probes 144 

with |Δβ|>0.7). Thus, for each comparison we picked the number of probes where the difference 145 

in methylation was larger than 0.7 in absolute terms, or the top-ranked 50, whichever number was 146 

the smallest. This resulted in a centroid DNAm data matrix of 131 unique probes and 3-cell types. 147 
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With this reference centroid, and for an independent sample with a 450k DNAm profile, the 148 

proportions of the underlying cell-types was estimated using Houseman’s CP algorithm10. 149 

 150 

2.7 Unsupervised analysis using SVD  151 

Random Matrix Theory (RMT)11 and Singular Value Decomposition (SVD) was used to assess 152 

the number and nature of the significant components of variation in the data. Significant 153 

components of variation were then correlated with biological phenotypes, including age, disease 154 

status, and the cell type proportions estimated using the Houseman CP algorithm. Age and cell-155 

type proportions were treated as continuous variables and linear regression was used, whereas 156 

disease status (H, AD, BAV) was treated as categorical and so a Kruskal-Wallis test was used. 157 

This unsupervised analysis was performed in both the beta and M-value (M=log2(β/(1-β)) basis.  158 

 159 

2.8 Differential DNA methylation analysis 160 

Due to the small sample size of our study, and therefore the need to use empirical Bayes methods 161 

for calling differential methylation12, beta values were converted to M-values, since M-values are 162 

less heteroscedastic and therefore conform better to the Gaussian assumption underlying the 163 

empirical Bayes model. Differential methylation was called at the probe-level on the M-valued 164 

PC1-adjusted data using an empirical Bayesian framework as implemented in the R package 165 

“Limma”13. This allowed us to detect differentially methylated CpGs (DMCs) between every pair 166 

of phenotypic comparisons. False Discovery Rate (FDR) was used to correct P-values for multiple 167 

testing and a threshold of FDR<0.15 was used to declare statistical significance. We note that we 168 

relaxed the threshold of significance since in some cases no DMC passed a threshold of 0.05. 169 

This is still acceptable since in our experience FDR thresholds of even <0.3 can lead to molecular 170 

signatures that can be validated in external data14. In our case, an FDR<0.15 means that a DMC 171 

has an approximately 15% change of being a false positive, so an 85% change of being a true 172 

positive. 173 

 174 

2.10 Integration of DNA methylation and mRNA expression  175 

Our previous study reported 1152 differentially expressed genes (DEGs) between AD cases and 176 

healthy controls1. For each of these DEGs, we selected all differentially methylated probes 177 

between AD and H (at FDR < 0.3) that mapped to this gene. 178 
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 179 

2.11 Enrichment of ChIP-Seq histone signals and transcription factor binding site analysis  180 

Fully processed Roadmap epigenomics histone mark data were downloaded 181 

from http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak. We used 182 

bedtools15 to evaluate overlap with 450k array probes. For each probe overlap with a given 183 

genomic element was coded as one, and no overlap was coded as zero. Extended documentation 184 

on how to rebuild the database from scratch, as well as the code used, is available 185 

in https://github.com/charlesbreeze/eFORGE/tree/master/database. 186 

For the transcription factor binding site analysis, we followed the same procedure as in our 187 

previous publication16. For a given list of DMCs, these were split into hypermethylated and 188 

hypomethylated subsets, and enrichment  for transcription factor  binding sites or for  histone 189 

marks determined using a  one-tailed Fisher exact test. 190 

2.12 Enrichment analysis against age-DMCs 191 

To test for enrichment of AD and BAV associated DMCs for sites undergoing differential 192 

methylation with age, we identified age-DMCs from a large (n>560 samples) Illumina 450k EWAS 193 

for aging conducted in whole blood [Hannum et al Mol.Cell.2014]. The age-DMCs were derived 194 

using a very stringent procedure which adjusted for sex, ethnicity, plate effects and changes in 195 

blood-cell type composition [Yuan T , Teschendorff AE PLoS Genetics 2015]. A total of 70,249 196 

CpGs passed an FDR<0.05, of which 31,217 were hypermethyated with age, and 39,032 were 197 

hypomethylated with age. For the given set of AD-DMCs (or BAV-DMCs) we asked how many of 198 

these were significantly associated with age in Hannum et al, taking into account directionality of 199 

methylation change, which is important to consider since AD (or BAV) cases are older than 200 

controls. Thus, for AD (and separately for BAV) we obtain a  2 x 2 matrix of counts, representing 201 

the number of hypermethylated and hypomethylated AD-DMCs (or BAV-DMCs) which are 202 

hypermethylated or hypomethylated with age. Odds ratio and P-value of enrichment was then 203 

computed using a one-tailed Fisher’s exact test. 204 

 205 

 206 

3. Results 207 

3.1 Unsupervised analysis captures DNAm variation associated with AD and BAV 208 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak
https://github.com/charlesbreeze/eFORGE/tree/master/database
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We performed Illumina 450k DNAm profiling on a total of 6 ascending aorta samples from healthy 209 

individuals, 12 samples from ascending aortic dissection (AD) cases and another 6 samples from 210 

patients with bicuspid aortic valve (BAV) associated with ascending aortic aneurysmal dilatation. 211 

Data underwent a stringent quality control (QC) procedure, including normalization for type-2 212 

probe design bias, as performed by us in previous studies17, resulting in 484,724 usable probes. 213 

All 6 healthy samples were from males, with the 12 AD cases coming from 10 males and 2 214 

females, whereas 5 out of 6 BAV cases were from males (Table S1). Hence, in order to avoid 215 

confounding by sex, we only retained the 21 male samples for further analysis. Singular Value 216 

Decomposition of the 484,724 x 21 data matrix, and using permutations to estimate the number 217 

of significant components, revealed 4 significantly variable singular vectors (SVs) (or principal 218 

components-PCs) (Figure 1A).The top PC accounted for over 35% of the total data variation, with 219 

PC-2 and PC-3 accounting for approximately 7-8% of total data variation (Figure 1A). PC-1 did 220 

not correlate with disease status or age (Figure 1C), but we hypothesized that it might correlate 221 

with intra-sample cellular heterogeneity18. Since aorta samples are expected to be made up 222 

mainly of smooth muscle cells, fibroblasts and endothelial cells, we used Illumina 450k data of 223 

representative cell-lines from ENCODE9 to construct a reference DNA methylation centroid from 224 

which we then estimated cell-type fractions in individual samples using the Houseman CP 225 

algorithm10. To identify the most relevant ENCODE cell-lines, we computed partial correlations of 226 

each sample’s DNAm profile to the corresponding DNAm profile of each of 63 ENCODE cell-lines 227 

(Methods). This showed that a progenitor fibroblast (ProgFib), an aortic smooth muscle cell 228 

(AoSMC), and human umbilical vein endothelial cells (HUVEC) were the most representative cell-229 

lines for modelling aortic smooth muscle cells, fibroblasts and endothelial cells present in our 230 

samples (Figure 1B). Confirming our expectation, estimated fractions for these 3 cell-types 231 

correlated strongly with PC-1 (and only with PC-1) (Figure 1C). Specifically, we observed that the 232 

proportion of AoSMC-like cells decreased in AD cases, whereas the endothelial cell-like 233 

proportion increased (Figure S1). PC-2 correlated marginally with disease status and age (Figure 234 

1C). Since AD and BAV cases were significantly older (Figure S2) than the healthy controls, we 235 

interpret PC-2 mainly as an age-driven component. Attesting to the quality of our data, Horvath’s 236 

DNAm-Age19 correlated significantly with chronological age (PCC=0.62, P=0.003), despite the 237 

relatively small sample size (Figure S3). Interestingly, all samples except one normal sample, 238 

exhibited age-acceleration, but with AD and BAV cases however exhibiting less age-acceleration 239 

than the healthy samples (Figure S3).  PC-3 correlated only with disease status, and was specially 240 

prominent discriminating AD from BAV cases, although interestingly it also discriminated both 241 

types of disease from healthy controls (Figure 1D). Given that PC-1 captures variation associated 242 
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with cellular heterogeneity, and that age is an important predictor of outcome in AD and BAV2,20, 243 

we decided to adjust the data for PC-1 only, by regressing this component out of the data prior to 244 

the supervised analysis.  245 

 246 

3.2 Supervised analysis reveals a non-CpG hypomethylation signature associated with AD 247 

and BAV 248 

Applying an empirical Bayesian framework, which works optimally in a small sample size setting12, 249 

to the PC1-adjusted data matrix, we inferred a total of 706 differentially methylated cytosines 250 

(DMCs) between AD and H, 3775 between BAV and H, and a total of 12817 DMCs between BAV 251 

and AD (Figure 2A, table S3). Although AD cases were notably older than controls (table S1), 252 

among the corresponding DMCs we did not observe an enrichment for age-associated DMCs 253 

(Methods, [Hannum et al Mol Cell 2014]), in contrast to BAV-associated DMCs which did exhibit 254 

such an enrichment (Figure S4). Of the 706 DMCs between AD and H, 396 (56%) were 255 

hypermethylated in AD compared to H. Among the 3775 DMCs between BAV and H, 1979 (52%) 256 

were hypermethylated in BAV compared to H (Figure 2B). Over 75% of the 12817 DMCs between 257 

BAV and AD were hypomethylated in BAV compared to AD. Intriguingly, in the AD-H comparison, 258 

we observed a 34-fold enrichment of non-CpGs (n=122, Fisher-test, P<1e-100) among the 706 259 

DMCs, with this non-CpG overenrichment being less significant in the case of BAV-H and non-260 

existent between BAV and AD (Figure 2C). A heatmap of relative methylation values over the 122 261 

non-CpG DMCs between AD and H revealed that effectively all of these sites lost methylation in 262 

AD cases compared to healthy controls (Figure 2D). Of note, these sites also lost methylation in 263 

BAV cases (Figure 2D).  264 

In order to shed light on the nature of this non-CpG hypomethylation signature, we asked if there 265 

was a specific bias in terms of the sequence context of the non-CpGs21. Comparing the relative 266 

occurrence of [CA]C vs [CA]G sequence among our 122 non-CpGs, we observed a striking 267 

enrichment for the [CA]C context (Table 1).  268 

Table 1 Sequence context enrichment table of significantly hypomethylated non-CpGs for each of the 269 

three comparisons: AD vs Healthy, BAV vs Healthy and BAV vs AD. 270 

 [CA]C  [CA]G 

 Count Exp. Count OR P-value  Count Exp. Count OR P-value 

AD vs. Healthy 39 6.79 9.99(6.39,15.44) <2E-16  76 102.88 0.29(0.19,0.43) 1.79E-009 

BAV vs. Healthy 21 6.9 3.8(2.19,6.32) 2.73E-006  98 104.57 0.69(0.44,1.12) 0.1 



10 
 

BAV vs. AD 0 1.45 0(0.00,2.59) 0.4  21 21.92 0.78(0.28,2.66) 0.59 

OR and P-value estimated by Fisher's Exact Test. 271 

 272 

3.3 Technical validation of the non-CpG hypomethylation signature using pyrosequencing 273 

In order to further test the reliability of the data, we decided to validate the non-CpG 274 

hypomethylation signature in AD cases using the gold-standard procedure of pyrosequencing. 275 

We randomly picked 10 of the top ranked non-CpG probes exhibiting hypomethylation in AD 276 

cases vs healthy controls (H) according to the Illumina 450k assay, and for these loci we assessed 277 

DNA methylation using pyrosequencing in a subset of 6 H and 6 AD cases (a subset of the original 278 

samples used in the discovery). All 10 non-CpG loci exhibited significant hypomethylation in AD 279 

cases, thus validating the Illumina results (Figure 3A). Further attesting to the quality of the data, 280 

we observed very strong correlations between the DNAm values obtained using Illumina 450k 281 

and pyrosequencing when assessed in the 6 healthy controls (Figure 3B, Figure S5) 282 

 283 

3.4 Different chromatin enrichment patterns for AD and BAV 284 

In order to gain further insight into putative epigenetic mechanisms underlying BAV or AD disease, 285 

we asked if probes hypermethylated or hypomethylated in AD/BAV are enriched for specific 286 

histone marks. We obtained ChIP-Seq histone mark profiles for 5 major marks (H3K27me3, 287 

H3K4me3, H3K4me1, H3K36me3 and H3K9me3) in a surrogate cell-type (fetal heart) from the 288 

NIH Epigenomics Roadmap. For the enrichment analysis, we selected the top 5000 289 

hypermethylated and 5000 hypomethylated CpGs for each of the 3 pairwise comparisons (AD vs 290 

H, BAV vs H and BAV vs AD), which all passed a FDR threshold of 0.3. Among hypermethylated 291 

probes we observed a massive enrichment of the repressive H3K27me3 mark, which was 292 

specially prominent in BAV disease compared to either healthy controls or AD cases (Figure 4A). 293 

In contrast, the most striking enrichment when comparing AD cases to controls was seen for the 294 

H3K4me1 and H3K36me3 marks among probes hypomethylated in AD cases. Since the histone 295 

methyltransferase EZH2 catalyzes H3K27me3 and also acts as a recruitment platform for DNA 296 

methyltransferases (DNMTs), these results suggest that BAV disease may be characterized by 297 

increased activity of EZH2. To check this we used ChIP-Seq from ENCODE for a total of 58 TFs, 298 

albeit in a different cell-type (hESCs). Confirming our hypothesis, we observed strong enrichment 299 

(Fisher test P<1e-50) of EZH2, SUZ12 (another member of the PRC2 complex) and CtBP2 among 300 

CpGs hypermethylated in BAV disease compared to controls, but no such enrichment among 301 
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hypomethylated CpGs (Figure 4B). Comparing AD to H, we only observed enrichment (Fisher 302 

test P<1e-6) for two TFs (BCL11A and POU5F1) among hypermethylated CpGs (Figure 4B), with 303 

no enrichment among hypomethylated sites, suggesting that binding of BCL11A and POU5F1 304 

may be disrupted in AD.  305 

 306 

3.5 Integration of DNA methylation and mRNA expression reveals downregulation of 307 

smooth muscle genes and targets of smooth muscle differentiation factors in AD 308 

We previously performed mRNA expression profiling of 5 healthy individuals and 7 AD cases1. 309 

Thus, we aimed to identify genes showing both significant differential methylation and differential 310 

gene expression between AD and H. Anchoring the analysis on 1152 differentially expressed 311 

genes (DEGs) at FDR < 0.05, we identified a total of 254 unique DEGs with at least 1 probe 312 

exhibiting significant differential methylation (at FDR < 0.3) (Table S4). Of these 254 unique 313 

DEGs, 138 were overexpressed in AD compared to H, and 116 underexpressed. We performed 314 

GSEA separately on these over and underexpressed genes. While genes overexpressed in AD 315 

were enriched for cellular proliferation, genes underexpressed in AD were enriched for many 316 

biological terms highly relevant to AD disease (Table S5). For instance, we observed many genes 317 

(e.g. CALD1, MRVI1, ADCY9, PLCB4, ACTG2, RAMP1, ADRA1B) implicated in vascular smooth 318 

muscle contraction. Also, many of these genes, as well as other genes (e.g. MBNL1, DACT3, 319 

LDB3, DMPK, LPP) are targets of SRF, a well-known differentiation factor for smooth muscle 320 

cells22. Downregulated SRF targets (e.g. CALD1 or DACT3) had probes near their TSS which 321 

exhibited hypermethylation, although this pattern was not evident for all (Figure S6). Likewise, we 322 

observed enrichment of many targets of a MYOD TF binding motif, implicating downregulation of 323 

MYOD1 targets (e.g. MEF2D, GRK5, FAM107B) in AD. In addition, we observed enrichment of 4 324 

genes (ADCY9, HRK5, FAM129A and CRIM1) which have been reported to be also 325 

downregulated in unstable atherosclerotic plaque23, 3 additional smooth muscle genes (MYOZ2, 326 

DES and MYOM1) and enrichment of 8 genes (LDB3, KANK1, FAM129A, SORBS2, LATS2, 327 

ZBTB20, FOXN3, ZNF295) which have been previously shown to be underexpressed in samples 328 

with systolic heart failure24. Furthermore, we observed that MYH11, MYOCD and SRF, all 329 

implicated in specifying a differentiated contractile SMC phenotype25, were all significantly 330 

downregulated in AD cases compared to healthy controls (Figure 5A). Confirming this, we 331 

observed a concomitant increase of signaling entropy26, a molecular correlate of dedifferentiation 332 

and cellular plasticity, in AD cases (Figure 5B). 333 
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To further test whether AD represents a departure from a normal differentiated SMC phenotype, 334 

we compared the DNAm profile of our samples to those of normal AoSMCs, as profiled by 335 

ENCODE and the NIH Epigenomics Roadmap. This confirmed that AD cases deviated more from 336 

AoSMCs than the normal samples (Figure 5C). Interestingly, however, BAV cases did not show 337 

significant DNAm deviations from AoSMCs (Figure 5C). Thus, even though there were 338 

significantly more DMCs between BAV and H than between AD and H (Figure 2A), when 339 

comparing AD and BAV to AoSMCs, only AD showed significant DNAm deviations (Figure 5C).  340 

 341 

3.6 Hypomethylation of RARA in AD and smoking 342 

Smoking is a major risk factor for AD and a recent meta-EWAS has identified a number of gene 343 

loci reproducibly associated with smoking exposure in blood [Gao X, Jia M, Zhang Y, Breitling LP 344 

and Brenner H. Clin Epigenetics 2015 Oct 16;7:113]. Thus, we asked if any of our AD-associated 345 

DMCs for which the linked gene also exhibits differential expression, were among gene loci where 346 

DNAm has been associated with smoking. Notably, this revealed two specific probes which map 347 

to the retinoic acid receptor alpha (RARA) gene (Table S4), which has been shown to undergo 348 

differential methylation in response to smoking in several EWAS conducted in blood.  Specifically, 349 

we identified two probes hypomethylated in AD cases (Table S4) which also exhibit 350 

hypomethylation in cells exposed to smoke toxins [Gao X, Jia M, Zhang Y, Breitling LP and 351 

Brenner H. Clin Epigenetics 2015 Oct 16;7:113] . One probe mapped to within 200bp of the TSS 352 

of RARA, while the other probe mapped to the 5’UTR. Although none of the 2 probes correlated 353 

with smoking status in our AD cases and controls (Figure S7), when we tested these 2 probes in 354 

3 large EWAS studies of smoking, one conducted in buccal epithelium17 and two conducted in 355 

blood27,28, we did observe that the probe mapping to the 5’UTR exhibited significant 356 

hypomethylation in smokers compared to non-smokers in all 3 studies (Figure S8). Thus, this 357 

constitutes the first report of a common molecular alteration (DNA hypomethylation) which is seen 358 

in relation to both smoking and AD. 359 

 360 

3.7 Genes implicated in BAV exhibit more frequent differential methylation in BAV 361 

Genes found mutated in BAV have previously been reported29. We asked if differential 362 

methylation around these sites is more frequently observed in BAV compared to a random set of 363 

sites. For the 9 genes (NOTCH1, AXIN1, EGFR, ENG, GATA5, NKX2-5, NOS3, PDIA2, and 364 
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TGFBR2) implicated in BAV, we identified a total of 333 CpGs mapping to them. We observed 365 

that these 333 CpGs exhibited significantly larger absolute t-statistics of differential methylation 366 

as compared to CpGs mapping to a randomly selected set of 500 genes (excluding BAV-related 367 

genes) (P< 0.0001 from a Wilcoxon-rank sum test, Figure S9). In fact, we observed almost twice 368 

as many DMCs mapping to BAV-related genes than what would have been expected by random 369 

chance (Binomial test P<1e-5, Figure S9).  370 

 371 

4. Discussion 372 

4.1 Significant non-CpG methylation in the ascending aorta 373 

The first important finding of our study is the significant non-CpG methylation within the ascending 374 

aorta and the subsequent loss of methylation at these sites in AD and BAV. The first observation 375 

is consistent with a recent study reporting detectable levels of non-CpG methylation in 2 donor 376 

aorta samples31.  Interestingly, among non-CpGs with high methylation levels in normal aorta, we 377 

observed an enrichment for a [CA]C context, which is similar to that seen in adult brain tissues32,33 378 

.This is noteworthy given that previous studies have revealed non-CpG methylation to be 379 

abundant only in pluripotent cells and brain cells 30. Importantly, it has been demonstrated that 380 

during development of the mammalian cardiovascular system, the smooth muscle of the 381 

ascending aorta derives from the cardiac neural crest34. This contribution of the neural crest to 382 

the ascending aortic smooth muscle is unusual as most smooth muscle is derived from the 383 

mesoderm, yet it clearly indicates a developmental link between this specific area of the aorta 384 

and the neural system, which may explain the observed non-CpG methylation in our aorta 385 

samples. Furthermore, for non-CpG methylation to be maintained, it would need to be re-386 

established de novo after each cell division, yet there is no known maintenance mechanism for 387 

DNAm at non-CpG sites. Thus, in most cell types non-CpG methylation is rapidly lost following 388 

cell division, except in infrequently dividing cells such as neurons21. Like neurons, differentiated 389 

SMCs in adult blood vessels proliferate at an extremely low rate. Thus, the loss of methylation at 390 

non-CpGs observed in AD and BAV could be due to abnormally proliferating SMCs, consistent 391 

with the observed higher expression of cell-proliferation genes. Some reports have also provided 392 

evidence that non-CpG methylation could have a functional role in biological and pathological 393 

processes, such as genomic imprinting32, somatic cell reprogramming35, brain development36, 394 

Rett syndrome37, diabetes38 and obesity39. Although we don’t have any data to support that the 395 

observed hypomethylation at non-CpGs is of functional consequence, it will be interesting for 396 
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future studies to investigate if the non-CpG methylation in the ascending aorta has a direct 397 

functional consequence in aortopathy. Regardless of a functional effect or not, our finding of a 398 

strong non-CpG hypomethylation signature in ascending aortic dissection and aortic aneurysmal 399 

dilatation with BAV hints at a potential future application of non-CpG methylation as an epigenetic 400 

biomarker. 401 

4.2 AD is characterized by a dedifferentiated smooth muscle cell phenotype  402 

Our second important finding is that of a dedifferentiated smooth muscle cell phenotype, as a key 403 

feature of AD. Smooth muscle cells are thought to be the major cell type in the aorta and display 404 

a remarkable plasticity undergoing phenotype changes in response to environmental cues. 405 

Differentiated SMCs express contractile marker genes such as MYH11, MYOCD and SRF. In our 406 

study, the integration of DNA methylation and mRNA expression in AD revealed downregulation 407 

of smooth muscle genes and targets of smooth muscle differentiation factors (e.g. SRF), while 408 

genes overexpressed in AD were enriched for cellular proliferation, suggesting that SMCs in AD 409 

underwent dedifferentiation. We note that all of these results were obtained after correction for 410 

cell-type composition changes, strongly supporting the view of a dedifferentiated SMC phenotype 411 

as the most likely mechanism underlying the observed DNAm changes in AD. That is, even 412 

though the proportion of AoSMC-like cells decreased in AD, this by itself does not seem to explain 413 

all observed patterns of DNAm alteration in AD. Although the phenotypic plasticity exhibited by 414 

mature SMCs confers an advantage during repair of vascular injury, this plasticity can also induce 415 

adverse phenotypic switching and contribute to the development and progression of vascular 416 

diseases40-42. Our integrated data is indicative of such a kind of adverse phenotypic switching of 417 

SMCs affecting the contractile function in AD. In advanced atherosclerotic plaques, SMCs may 418 

play either a beneficial role or a detrimental role in determining plaque stability, depending on the 419 

phenotypic state43. The downregulation of genes in AD which are also downregulated in unstable 420 

atherosclerotic plaque further suggests that phenotypic changes in AD may be contributing to the 421 

instability of the aortic wall and the end-stage disease event of dissection. Other studies have 422 

associated vascular inflammatory response with vascular dysfunction and disease, with 423 

inflammatory cytokines interacting with SMCs through specific receptors to promote cell growth 424 

and migration, which impacts on vascular smooth muscle reactivity44,45. Given that our previous 425 

mRNA expression study revealed a vascular inflammatory process characterized by 426 

overexpressed cytokines and receptors in AD, this supports a model of interaction between 427 

inflammatory response and vascular function in the disease. 428 
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4.3 Epigenome mediates phenotypic alteration linking to environmental risk factors such 429 

as smoking in AD 430 

Smoking has been identified to be a critical risk factor for acute aortic dissection20 and has been 431 

associated with durable alterations in vascular smooth muscle cell and inflammatory cell 432 

function46,47. Interestingly, RARA has previously been associated with smoking-associated 433 

differential methylation in blood27,28 and was also among the genes exhibiting significant 434 

differential methylation and differential expression in AD. We further demonstrated that a specific 435 

probe undergoing hypomethylation in AD also undergoes smoking-associated hypomethylation 436 

in blood and buccal tissue, suggesting that this smoking-associated hypomethylation may be valid 437 

in any cell which comes into direct exposure with smoke toxins. Of note, the observed 438 

hypomethylation in our AD cases could not be attributed to their increased smoking exposure, as 439 

smokers and non-smokers exhibited similar levels of RARA methylation in both AD cases and 440 

controls. Thus, our study demonstrates a common molecular alteration in smoking and AD. In 441 

summary, our integrative DNAm-mRNA expression based approach suggests that AD is defined 442 

by a dedifferentiated phenotypic alteration in SMCs, probably associated with an impaired 443 

contractile function of SMCs and weakening of the aortic wall, itself suggestive of a vascular 444 

pathological process that occurs in response to environmental cues such as smoking (Figure 6). 445 

4.4 AD and BAV with aortic aneurysmal dilatation exhibit distinct DNA methylomes 446 

Our study has further demonstrated that BAV and AD exhibit different epigenetic profiles, 447 

supporting the view that these represent two very different pathological conditions. Indeed, there 448 

is ample evidence that BAV associated with aortic insufficiency has a genetic origin and a higher 449 

risk of adverse aortic complications irrespective of the extent of valvular disease48. However, the 450 

underlying genetic origins and epigenetic pathways predisposing to aortopathy remain to be 451 

demonstrated. Our results revealed that while BAV with aortic aneurysmal dilatation had more 452 

DMCs than AD, that its global DNAm profile did not deviate appreciably from normal AoSMCs. 453 

Interestingly, we observed that many of the hypermethylated DMCs characterizing BAV appear 454 

to occur at PRC2/EZH2 binding sites suggesting increased DNMT and repressor activity. Of note, 455 

we observed that CpGs mapping to genes previously found mutated in BAV, were almost twice 456 

as likely to be differentially methylated in BAV than a random set of CpGs. Although we did not 457 

assess here whether these DNAm changes were functional, it will be exciting to explore this 458 

further and assess whether epigenetically mediated dysfunction of these genes provides an 459 

alternative pathway to BAV pathogenesis. In summary, our data points towards widely different 460 
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altered epigenetic landscapes underlying BAV and AD, although the diseases themselves may 461 

exhibit similar complications such as aortic rupture.  462 

4.5 Limitations 463 

It is important to emphasize the main limitations of our study. First, the small sample size of our 464 

study and the lack of an independent validation set, means that our results must be interpreted 465 

with caution. Nevertheless, many of our results (e.g. the hypomethylation at non-CpGs in AD) are 466 

strongly consistent with known biology and were validated with an independent platform (i.e. 467 

pyrosequencing), indicating that the DNAm changes seen in this study are not artifacts. Second, 468 

cases and controls were not age-matched, and even though they were matched for smoking 469 

status, the differences in age means that cases and controls may have had different lifetime 470 

exposures to smoking. Nevertheless, we did not observe any evidence of confounding by age or 471 

smoking in AD, as AD-associated DMCs were not enriched for age-associated or smoking-472 

associated DMCs. Moreover, the observed hypomethylation at non-CpGs is clearly not an age-473 

associated or smoking-associated signature as no study has reported such a signature in relation 474 

to age [Teschendorff AE et al Hum Mol Genet 2013] or smoking [Gao X, Jia M, Zhang Y, Breitling 475 

LP and Brenner H. Clin Epigenetics 2015 Oct 16;7:113]. In contrast, for BAV we did observe an 476 

enrichment for age-associated DMCs, which may partly explain the larger number of DMCs 477 

between cases and controls, and the observed enrichment for hypermethylated at repressive 478 

chromatin marks including H3K27me3, EZH2 and SUZ12. 479 

It could be argued that a third limitation of our study is the use of (ENCODE) cell-lines to adjust 480 

for cell-type composition.  Although it is clear that cell-lines are limited as models of representative 481 

cell-types in-vivo, it is worth pointing out that DNAm profiles of such cell-lines have already been 482 

successfully used for performing cell-type deconvolution in other complex tissues such as 483 

breast49,50. The reason why cell-lines may indeed be appropriate for cell-type deconvolution is that 484 

the deconvolution itself is only performed using sites which exhibit large differences in DNAm 485 

between the underlying cell-types (typically over 80% changes in DNAm). Thus, although cell-486 

lines are subject to cell-culture in-vitro effects, which undoubtedly change the DNAm landscape, 487 

it is unlikely however that these in-vitro effects would cause massive i.e. over 80% changes in 488 

DNAm. Thus, reference DNAm profiles derived from cell-line models provides a reasonable 489 

approach to estimate cell-type fractions in complex tissues. A key priority for future studies 490 

however, will be the generation of DNAm profiles of purified primary cell populations representing 491 

the relevant cell-types in aorta samples. 492 
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 493 

4.6 Conclusions and perspectives 494 

To conclude, we have performed the first explorative study of the DNAm landscape underpinning 495 

AD and BAV. Both AD and BAV are characterized by a non-CpG hypomethylation signature, 496 

which we posit reflects the increased cellular proliferation seen in both diseases. However, in 497 

general, both diseases exhibit widely different DNAm landscapes, with BAV characterized mainly 498 

by hypermethylation at sites marked by repressive chromatin, while AD is characterized by a 499 

dedifferentiated smooth muscle cell phenotype. Future studies will need to determine the causes 500 

of this phenotype switch in AD and whether DNAm alterations contribute to it. Of particular interest 501 

will be to investigate the role of DNA methylation alterations as a causal link between smoking 502 

and AD.   503 
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 638 

Figure Legends 639 

Figure 1 DNA methylation variation correlates with AD and BAV. (A) Plot of the fraction of 640 

variation (fVAR, y-axis) explained by the 21 PCs from a SVD on the DNAm data matrix (red-641 

points). The corresponding fraction of variation explained by PCs inferred from a scrambled-up 642 

DNAm data matrix, representing the null distribution, is shown in green. There are 4 components 643 

with more observed variation than expected by random chance. (B) Heatmap of partial 644 

correlations of DNAm profiles between the 21 samples (y-axis) and each of 63 ENCODE cell-645 

lines (x-axis) with cell-lines sorted according to their average partial correlation (pCor). Absolute 646 

partial correlation values larger than 0.05 are statistically significant. (C) Heatmap of P-values of 647 

association between the 4 significant PCs and biological factors, including Age, Disease (BAV, 648 

AD and H) Status (Status) and estimates of cell-type proportions using aortic smooth muscle cell 649 

(AoSMC), progenitor fibroblast (ProgFib) and human umbilical vein endothelial cell (HUVEC). All 650 

P-values are estimated with an ANOVA linear model. (D) Boxplot of the weight in PC3 versus 651 

Disease Status. P-value is from a Kruskal-Wallis test. 652 

  653 

Figure 2 Supervised analysis reveals DNAm signatures associated with AD and BAV. (A) 654 

Histograms of P-values (from moderated t-tests) for the 3 comparisons (AD - H, BAV - H, BAV-655 

AD). Number of DMCs passing a FDR < 0.15 are given. (B) Fraction of DMCs identified in A) 656 

which exhibit hypermethylation and hypomethylation, for each of the 3 comparisons. For instance, 657 

there are almost 60% DMCs hypermethylated in AD compared to H. (C) Fraction of DMCs 658 

mapping to non-CpG sites for each comparison. Observed (ObsF) versus expected (ExpF) 659 

fractions are shown, together with the odds ratio (OR) and Fisher-test P-value. (D) Heatmap of 660 

relative, standardized methylation values for the 122 non-CpG DMCs between AD and H, across 661 

the 21 samples, grouped according to their disease status. 662 

 663 

Figure 3 Technical validation of hypomethylated non-CpGs in AD cases. (A) Plots of selected top 664 

10 non-CpGs DNA methylation values obtained using pyrosequencing between 6 AD cases and 665 

6 healthy controls (H). P-values are from a one-tailed Wilcoxon rank sum test. (B) Scatterplot of 666 

the DNA methylation value obtained using pyrosequencing against the Illumina 450K value for all 667 

10 selected non-CpGs, indicated in different colors. For each non-CpG we show the 6 values in 668 

the healthy controls. Average R-squared value for each non-CpG from Pearson's Correlation is 669 

provided. P-value is from a combined Fisher-test meta-analysis over all 10 non-CpGs. 670 

 671 

Figure 4 Enrichment analysis of histone marks and transcription factor binding sites. (A) Odds 672 

Ratios (OR) of enrichment of histone marks among the top 5000 hypermethylated and 5000 673 

hypomethylated CpGs (FDR < 0.3) for each of the 3 comparisons: AD vs H, BAV vs H, and BAV 674 

vs AD. For instance, for AD-H comparison, hypermethylated DMCs have higher methylation in 675 

AD vs H. Those ORs which were highly statistically significant are indicated with Fisher-test P-676 
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values. (B) As A), but now for ChIP-Seq TF binding sites for TFs which were strongly enriched in 677 

any of 3 comparisons, as indicated. Enrichment P-values < 1e-6 are indicated. 678 

 679 

Figure 5 AD associates with a loss of smooth muscle cell phenotype. (A) Boxplots comparing 680 

mRNA expression levels of 3 key genes specifying a differentiated contractile SMC phenotype, 681 

between AD cases and healthy controls. P-values are from a one-tailed Wilcoxon rank sum test. 682 

(B) Boxplot of the signaling entropy rate (SR/maxSR) between AD cases and healthy controls 683 

(H). P-value is from a one-tailed Wilcoxon rank sum test. (C) Genome-wide similarity of the DNAm 684 

profile of the samples with the DNAm profile of AoSMCs, with samples grouped according to 685 

disease status. P-value is from a one-tailed Wilcoxon rank sum test between H and AD (red), and 686 

between H and BAV (blue). Left panel is for a similarity measure derived using the Manhattan 687 

Distance between the DNAm profiles of the samples and the profile of AoSMCs. Right panel is 688 

for the Pearson Correlation Coefficient (PCC) between the DNAm profiles of the samples and that 689 

of AoSMCs. 690 

 691 

Figure 6 Epigenome mediates dedifferentiated SMC phenotype alteration in AD in response to 692 

environmental risk factors such as smoking. Environmental risk factors such as smoking links to 693 

inflammatory vascular remodeling process with increased pathological cell proliferation 694 

underpinning the loss of non-CpG methylation and a dedifferentiated SMC phenotype associated 695 

with impaired contractile function. Genes hypermethylated/downregulated are enriched in 696 

Vascular Smooth Muscle Contraction Pathway in AD.  697 


