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ABSTRACT: This paper presents a flexible graphene/polyvinylidene difluoride 

(PVDF)/graphene sandwich for three-dimensional touch interactivity. Here, x-y plane touch is 

sensed using graphene capacitive elements, while force sensing in the z-direction is by a 

piezoelectric PVDF/graphene sandwich. By employing different frequency bands for the 

capacitive- and force-induced electrical signals, the two stimuli are detected simultaneously, 

achieving three-dimensional touch sensing. Static force sensing and elimination of propagated 

stress are achieved by augmenting the transient piezo output with the capacitive touch, thus 

overcoming the intrinsic inability of the piezoelectric material in detecting non-transient force 

signals and avoiding force touch mis-registration by propagated stress. 
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Traditional touch screen panels (TSPs) employ resistive, capacitive, optical and acoustic wave 

related architectures
1-5

, to detect 2D (x-y) touch events by sensing a certain type of physical 

signals. For example, finger touch induced capacitance change is picked up by a capacitive TSP 

to recognize the presence of a touch event. Besides the limited sensing capability, Indium tin 

oxide (ITO) is widely used in electrodes in TSPs, in which its brittleness limits the flexibility of 

the touch panel
6
. Therefore, n-dimensional touch detection and high flexibility are desired 

attributes for future TSPs, to bring user-experience to new and advanced levels
5
. Achieving this 

by conventional techniques requires additional sensors and complex circuitry, resulting in extra 

costs and higher power consumption. Thus, it is expected that multi-functional, simple-structured 

devices will be used in future designs to reduce circuit complexity and power consumption, 

while providing multiple functions to customers. 

    Recent progress on piezoelectric materials provides a promising solution to achieve multi-

dimensional sensing. As a non-centrosymmetric structured material, polarization is induced 

when subject to stress, resulting in charge generation on electrodes
7-10

. The concentration of 

induced charge is linear with the strength of the applied force. This enables sensing in multi-

dimensions (x-y-z)
 8

, with high sensitivity in the z-direction because of the relatively high 

piezoelectric coefficient (d33 = 33 pC/N)
10

. In terms of flexible electrodes, materials such as 

metal nanowires
11-12

/nanogrids
13

, Poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS)
14

, carbon nanotube (CNT)
15

 and graphene
 
have been reported. In this work, we 

address the use of mono-layered graphene
6,16-29

, as it potentially offers possibilities of low 

manufacturing cost
17

 due to the roll-to-roll production method
17

. Graphene also possesses strong 

mechanical strength (Young’s modulus of 1 TPa and intrinsic strength of 130 GPa)
27

. The 

fracture strain of graphene can be one order higher than that of the ITO
6
. Furthermore, graphene 
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provides the best optical transparency (97.7%)
19

 among others, indicating it is a strong candidate 

to function as electrodes for display related applications. 

    In previous work
4,26,28-29

, piezoelectric materials and graphene have been employed for force 

sensing in touch panels. However, previous studies focused on the use of the piezoelectric 

property of the piezoelectric materials without considering the other properties such as the 

electric conductivity. Furthermore, there are two critical issues associated with the nature of the 

piezoelectric materials in force sensing in touch panels that haven’t been addressed till now. 

First, only detections of dynamic force signals have been reported. Second, fake force touch 

signals can be generated due to stress propagation from the actual force touch location(s). Thus it 

is necessary to distinguish the fake from real signals. This has been one of the big limitations in 

successful use of piezoelectric based touch interactivity. 

    In this article, we demonstrate a touch screen system using a graphene and polyvinylidene 

difluoride (PVDF) based ultra-thin film (~40 µm) for concurrently sensing two different external 

physical stimuli, by employing both the piezoelectric and the electrical conductive properties of 

the materials in the stack-up, which paves a new pathway to detect multiple stimuli. The film is 

structured in a graphene/PVDF/graphene sandwiched architecture. Large area monolayer 

graphene is used as a flexible and transparent electrode. It is prepared using the previously 

reported chemical vapor deposition (CVD) recipe
18

. Remarkably, the average graphene domain 

size reaches as large as ~1 mm
18

. The domain boundary is thereby suppressed so that the 

conductivity is homogeneously high over practical device scales
18

. Commercial PVDF is 

employed as an insulating layer for the graphene capacitor, and as a force sensing layer due to its 

piezoelectric property
7
 to detect applied force. Hence, this extremely simple device architecture 

can simultaneously achieve both capacitive and force sensing, as conceptually depicted in Fig. 1 
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(a). Experimental results have shown that the device provides high sensitivity in both capacitive 

and force touch detection modalities, together with good mechanical durability.  

    A touch panel system integrated with the ultra-thin multi-functional film is also demonstrated, 

in which multi-dimensional (x-y-z) touch sensing is successfully achieved. By utilizing 

frequency properties of capacitive and force touch induced electric signals, these two external 

combined stimuli can be smoothly separated. By employing the capacitive signals, both static 

force touch detection and elimination of propagated stress are achieved. The presented work 

      

                                          (a)                                                                 (b) 

      

                            (c)                                                                  (d) 

 

Figure 1. Stack-up of the proposed (a) multi-functional film and (b) touch panel. (c) 

Photograph of the graphene/PVDF ultra-thin multi-functional touch panel. (d) Structure 

representation and working principle of β-phase PVDF.  
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showcases a smart material and nano-technology combined multi-functional film, and its 

application as a touch panel for multi-dimensional touch sensing for smart surfaces.  

    Two large pieces of CVD grown mono-layer graphene
18

 (5×5 cm
2
) were transferred onto the 

surfaces of polyethylene terephthalate (PET) films (~20 µm). The relevant characterizations of 

the mono-layer grapheme and comparison with other works are provided in the Supporting 

Information. One of them is etched into four small squares (2×2 cm
2
), which are used as sensing 

layer. The other is left intact to serve as a ground layer. The two graphene/PET samples were 

arranged to face each other sandwiching a piece of PVDF film (~40 µm) to form a 

PET/graphene/PVDF/graphene/PET multi-layer device. The graphene and PVDF form a multi-

functional ultra-thin film for capacitive and force touch sensing, as conceptually shown in Figure 

1 (a). The multi-layer device is then laminated to create a transparent ultra-thin multi-functional 

film based touch panel. The touch panel’ structure and photograph are shown in Figure 1 (b) and 

(c), respectively.  

    The two graphene layers constitute a capacitor for sensing capacitive based touch events, 

while the PVDF layer works to detect force touch events, expanding touch detection from 2D to 

3D. A conventional projected capacitance technique
5, 30

 is used to measure the change of 

capacitance at the graphene electrodes to detect any capacitive touch event. When a conducting 

object (human finger or stylus) touches the screen, the electric field lines are disturbed, thus 

modulating the charge distribution and hence the capacitance
3
. This achieves 2D detection. Force 

detection in the z-direction relies on the piezoelectric output of the PVDF, which comes from its 

non-centrosymmetric structure
9
. When a force is applied to a PVDF film, the force induced stress 

gives rise to electric dipole moments, so that the polarization moves positive or negative 

according to the direction of the applied force
9
. The change in polarization alters the electric field 
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 6

inducing charge, which is then collected by a readout circuit. Since the amount of charge 

generated has a linear relationship with the magnitude of the applied force assuming the PVDF 

behaves within the elastic limit, we can calculate the magnitude of the force by measuring the 

amount of generated charge
8
. The generalised form relation between the mechanical and 

electrical domains, based on a linear approximation, can be expressed as
8
: 

                       ;                                                                                                                               (1) 

where σ and d denote the applied stress and the piezoelectric coefficient, respectively, E and D 

are the respective electric field strength and dielectric displacement, and ԑr indicates the 

permittivity. When the direction of the applied force is parallel to the poling direction of the 

PVDF film, the piezoelectric d33 coefficient comes into play. The scalar expressions for force 

touch interpretation can be expressed as: 

             ;                                                                                                                                     (2) 

            ;                                                                                                                                      (3) 

                     ;                                                                                                                             (4) 

                                     ;                                                                                                             (5) 

where F and A are the applied force and the contact area, respectively, P and Q are the respective 

stress induced polarization and charge, d33 indicates the piezoelectric coefficient of the PVDF 

film, t is the thickness of the PVDF, and ԑ0 and ԑr denote the vacuum permittivity and the relative 

permittivity of the PVDF material, respectively. As the high ԑr of PVDF leads to current leakage, 

PVDF cannot measure a static force
9
. 

/F Aσ =

33P d= σ

33Q AP d F= =

33 0/ / rV Q C d Ft A= = ε ε

rD E dσ
= ε + σ
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 7

    PVDF has four crystalline polymorphs: α, β, δ and γ phases
9
. Of these, the all-trans β phase 

was used in this work, as it has the highest piezoelectric d33 coefficient for forces perpendicular 

to the in-plane axes
9
. Its structural representation and piezoelectric principle are depicted in Fig. 

1 d. As explained above, when a finger taps on the graphene/PVDF/graphene based touch panel, 

the generated charge can be used to interpret the force level, and the changed capacitance 

indicates the presence of capacitive touch, as shown in Fig. 1 a.  

    The experimental results below demonstrate the performance of the fabricated touch panel, in 

terms of sensitivity and the stability of capacitive touch and force touch detection. Gloved finger 

touches were carried out on the touch panel and output signal measured using a parameter 

analyser (Keithley 4200 SCS). The results are depicted in Fig. 2 a. Each spike indicates a touch 

event. The amplitude of the spikes represents the strength of the capacitive touch events. Here, 

strength means the amplitude of the change in capacitance, which depends on the overlapping 

area and the distance between the finger and the touch panel. It was observed that even a small 

capacitance change at 0.2 pF was successfully detected, indicating high capacitive touch 

sensitivity. Dynamic force touch experiments were carried out using a shaker, which outputs 

stable force signals at a desired amplitude and frequency. The force touch induced electric signal 

was sensed by a charge amplifier, and then sent to an oscilloscope. In the force touch 

experiment, the applied force was controlled at 1N. The results shown in Fig. 2 b show that 

stable force induced voltage signals of around 1.5 V (10× amplified) were obtained. The 

minimum detectable force strength is 0.07 N. (The comparison with relevant work is provided in 

Supporting Information, Table II). The mechanical stress test is performed to examine both the 

electrical and mechanical robustness of the sandwiched film after bending and releasing. The 

touch panel was bended (30 degree) up to 100 times. Quantitative capacitive and force touches 
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 8

were performed after the panel had been bended every ten times. The results shown in Fig. 2 c-d 

confirm that the fabricated touch panel offers good electrical robustness and mechanical 

integrity.  

    To demonstrate how the simply structured multi-functional film can be used in a practical 

system, a touch screen panel prototype was assembled. In the system, a mutual capacitance based 

           

                                    (a)                                                                           (b) 

                 

                                   (c)                                                                           (d) 

 

Figure 2. (a) Capacitive touches with the graphene/PVDF based multi-functional film. (b) 

Force touches with the graphene/PVDF based multi-functional film. (c) Stability test in terms 

of capacitive touch signals under different times of folding. (d) Stability test in terms of force 

touch signals under different times of folding. In b) and d), in each number of capacitive or 

force touch experiment, 10 experiments are performed and the average value is shown.  
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 9

technique was used to detect capacitive touch events. The mutual capacitance between two 

graphene electrodes was measured using a high frequency electric signal (normally at 100 kHz 

due to the small capacitance change
3
. The equivalent circuits of the touch panel and readout 

circuit are depicted in Fig. 3 a and Fig. 3 b). In contrast, force detection occupies a low frequency 

band, as shown in Fig. 3 c. When a finger force touch is applied, the low-frequency force touch 

signal modulates the relatively high frequency capacitive signal, as demonstrated in Fig. 3 d. 

Hence, by using low-pass and band-pass filtering techniques, force touch and conventional 

capacitive touch events were independently retrieved.  

    The touch panel system is depicted in Fig. 3 e, in which a readout circuit is connected to the 

touch panel for signal acquisition. The readout circuit consists of a charge amplifier and an 

analogue to digital converter (ADC). After the ADC, the digitalized signal conveying touch 

information is sent to a processor. In the processor, digital low-pass and band-pass filters are 

applied to the retrieved touch signal, to separate capacitive and force touch events. Algorithms 

for different outcomes (e.g. interpreting the force level and location of the touch) computed in 

the processor. In this work, a laptop was used to further process the data sent from the touch 

panel processor. A photograph of the touch panel system is shown in Fig. 3 f.  

    As mentioned above, one piece of graphene was etched into four small square areas, which 

represent four touch pads. The main drawback of using PVDF, or any other piezoelectric 

material, for force sensing is its inability to detect static force
9
. Furthermore, when a force touch 

occurs at one location, the mechanical stress can propagate to adjacent areas, depending on the 

mechanical properties of the touch panel and the character of the force touch. Although the 

propagated stress and induced charges are small, it can become difficult to distinguish whether 

the signals were generated by a light touch or an adjacent heavy touch. To solve this, capacitive 
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                                     (a)                                                                       (b) 

  

                                    (c)                                                                       (d) 

 

                                        (e)                                                                       (f) 

 

Figure 3. (a) Equivalent circuits of the piezoelectric touch panel and (b) readout circuit. 

Characteristics of force and capacitive touch signals in (c) frequency and (d) time domain. (e) 

System diagram of the touch panel system. (f) Photo of the touch panel system with the main 

components highlighted. White, black, yellow and orange blocks indicate charge amplifiers, 

touch panel interface, ADC/MCU and connection port with the laptop, respectively. 
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                                     (a)                                                                       (b) 

        

                                     (c)                                                                       (d) 

        

                                     (e)                                                                       (f) 

 

Figure 4. (a) - (b) Static force touch issue and force touch interference issue. (c) - (d) Force and 

capacitive signal outputs from one channel of the system. (e) - (f) Force and capacitive signal 

outputs from two adjacent channels of the system. It can be observed that the capacitive 

interference is much smaller than that of the force interference, indicating the capacitive touch 

signal can be used as to remove the fake force touch signals. 
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signals are used. The capacitive signal indicates a static force signal, as both capacitive and force   

signals are concurrently generated by the touch action. The corresponding experimental result is 

shown in Fig. 4 (a) and (b). Thus a location that experiences an adjacent force touch induced 

charge does not experience a change in capacitance, indicating that no touch event has occurred 

(as shown in Fig. 4 (c) and (d)). After applying the algorithm, the propagated stress is eliminated, 

which is shown in supplementary materials (ST.avi and PSE.avi).  

    This paper presents an ultra-thin flexible multi-functional interactive touch screen integrated 

with graphene and PVDF. Here, force sensing is achieved using the piezoelectric property of the 

PVDF thin film, thus expanding the conventional 2D (x-y) touch sensing in capacitive touch 

panels to 3D in which sensitivity in the z-direction provides additional functionality. Using 

capacitive touch signals solves the issues of static touch detection and force touch interference. 

The work reported in this paper not only demonstrates the integration of functional materials for 

advancing interactivity, but also provides insight into how the performance of piezoelectric 

materials is affected at the system level.  

 

ASSOCIATED CONTENT 

Supporting Information 

1. Movie of multi-functional film based touch panel for static force touch sensing. (ST, avi). 

2. Movie of multi-functional film based touch panel for propagated stress elimination. brief 

description (PSE, avi). 
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3. Characteristics of Graphene and compare with relevant work (Supporting 

Information.pdf). 
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