1 Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

2

Christopher Abbosh^{1*}, Nicolai J. Birkbak^{1,2*}, Gareth A. Wilson^{1,2*}, Mariam Jamal-Hanjani^{1*}, 3 Tudor Constantin^{3*}, Raheleh Salari^{3*}, John Le Quesne^{4*}, David A Moore⁴⁺, Selvaraju 4 Veeriah¹⁺, Rachel Rosenthal¹⁺, Teresa Marafioti^{1,5}, Eser Kirkizlar³, Thomas B K Watkins^{1,2}, 5 Nicholas McGranahan^{1,2}, Sophia Ward^{1,2,6}, Luke Martinson⁴, Joan Riley⁴, Francesco Fraioli⁷, 6 Maise Al Bakir², Eva Gronroos², Francisco Zambrana¹, Raymondo Endozo⁷, Wenya Linda 7 Bi^{8,9}, Fiona M. Fennessy^{8,9}, Nicole Sponer³, Diana Johnson¹, Joanne Laycock¹, Seema Shafi¹, 8 Justyna Czyzewska-Khan¹, Andrew Rowan², Tim Chambers^{2,6}, Nik Matthews^{6,10}, Samra 9 Turajlic^{2,11}, Crispin Hiley1², Siow Ming Lee^{12,1}, Martin Forster^{1,12}, Tanya Ahmad¹², Mary 10 Falzon⁵, Elaine Borg⁵, David Lawrence¹³, Martin Hayward¹³, Shyam Kolvekar¹³, Nikolaos 11 Panagiotopoulos¹³, Sam M Janes^{1,14,15}, Ricky Thakrar¹⁴, Asia Ahmed¹⁶, Fiona Blackhall^{17,18}, 12 Yvonne Summers¹⁸, Dina Hafez³, Ashwini Naik³, Apratim Ganguly³, Stephanie Kareht³, 13 Rajesh Shah¹⁹, Leena Joseph²⁰, Anne Marie Quinn²⁰, Phil Crosbie²¹, Babu Naidu²², Gary 14 Middleton²³, Gerald Langman²⁴, Simon Trotter²⁴, Marianne Nicolson²⁵, Hardy Remmen²⁶, 15 Keith Kerr²⁷, Mahendran Chetty²⁸, Lesley Gomersall²⁹, Dean Fennell⁴, Apostolos Nakas³⁰, 16 Sridhar Rathinam³⁰, Girija Anand³¹, Sajid Khan^{32,33}, Peter Russell³⁴, Veni Ezhil³⁵, Babikir 17 Melanie Irvin-sellers³⁷, Vineet Prakash³⁸, Jason Lester³⁹, Malgorzata Ismail³⁶. 18 Kornaszewska⁴⁰, Richard Attanoos⁴¹, Haydn Adams⁴², Helen Davies⁴³, Dahmane Oukrif¹, 19 Ayse U Akarca¹, John A Hartley⁴⁴, Helen L Lowe⁴⁴, Sara Lock⁴⁵, Natasha Iles⁴⁶, Harriet Bell⁴⁶, 20 Yenting Ngai⁴⁶, Greg Elgar^{2,6}, Zoltan Szallasi^{47,48,49}, Roland F Schwarz⁵⁰, Javier Herrero⁵¹, 21 Aengus Stewart⁵², Sergio A Quezada⁵³, Peter Van Loo^{54,55}, Caroline Dive⁵⁶, Jimmy Lin³, 22 Matthew Rabinowitz³, Hugo JWL Aerts^{8,9,57}, Allan Hackshaw⁴⁵, Jacqui A Shaw⁴, Bernhard G. 23 Zimmermann³, and Charles Swanton^{1,2} on behalf of the TRACERx and PEACE consortia. 24 *These authors contributed equally to this work ⁺These authors contributed equally to this work 25

26	1.	Cancer Research UK Lung Cancer Centre of Excellence, University College London
27		Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT
28	2.	Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland
29		Rd, London NW1 1AT
30	3.	Natera Inc., 201 Industrial Rd., San Carlos, United States, CA 94070
31	4.	Cancer Studies, University of Leicester, Leicester, United Kingdom, LE2 7LX
32	5.	Department of Pathology, University College London Hospitals, 235 Euston Rd,
33		Fitzrovia, London, United Kingdom, NW1 2BU
34	6.	Advanced Sequencing Facility, The Francis Crick Institute, 1 Midland Rd, London
35		NW1 1AT
36	7.	Department of Nuclear Medicine, University College London Hospitals, 235 Euston
37		Rd, Fitzrovia, London, United Kingdom, NW1 2BU
38	8.	Brigham and Women's Hospital, Boston, MA 02115, USA
39	9.	Harvard Medical School, Boston, MA 02115, USA
40	10	Tumour Profiling Unit Genomics Facility, The Institute of Cancer Research, 237
41		Fulham Road, London, SW3 6JB
42	11	Renal and Skin Units, The Royal Marsden Hospital, London, SW3 6JJ
43	12	Department of Oncology, University College London Hospitals, 235 Euston Rd,
44		Fitzrovia, London, United Kingdom, NW1 2BU
45	13	Department of Cardiothoracic Surgery, University College London Hospitals, 235
46		Euston Rd, Fitzrovia, London, United Kingdom, NW1 2BU
47	14	Department of Respiratory Medicine, University College London Hospitals, 235
48		Euston Rd, Fitzrovia, London, United Kingdom, NW1 2BU
49	15	Lungs for Living Research Centre. Division of Medicine, Rayne Building. University
50		College London, 5 University Street. London. WC1E 6JF

51	16. Department of Radiology, University College London Hospitals, 235 Euston Rd,
52	Fitzrovia, London, United Kingdom, NW1 2BU
53	17. Institute of Cancer Studies, University of Manchester, Oxford Road, Manchester, M13
54	9PL
55	18. The Christie Hospital, Manchester, United Kingdom, M20 4BX
56	19. Department of Cardiothoracic Surgery, University Hospitals of South Manchester,
57	Manchester, M23 9LT
58	20. Department of Pathology, University Hospitals of South Manchester, Manchester, M23
59	9LT
60	21. North West Lung Centre, University Hospital of South Manchester, Manchester,
61	United Kingdom, M23 9LT
62	22. Department of Thoracic Surgery, Birmingham Heartlands Hospital, Birmingham,
63	United Kingdom, B9 5SS
64	23. Department of Medical Oncology, Birmingham Heartlands Hospital, Birmingham,
65	United Kingdom, B9 5SS
66	24. Department of Cellular Pathology, Birmingham Heartlands Hospital, Birmingham,
67	United Kingdom, B9 5SS
68	25. Department of Medical Oncology, Aberdeen University Medical School & Aberdeen
69	Royal Infirmary, Aberdeen, Scotland, United Kingdom, AB25 2ZN
70	26. Department of Cardiothoracic Surgery, Aberdeen University Medical School &
71	Aberdeen Royal Infirmary, Aberdeen, United Kingdom, AB25 2ZD
72	27. Department of Pathology, Aberdeen University Medical School & Aberdeen Royal
73	Infirmary, Aberdeen, Scotland, United Kingdom, AB25 2ZD
74	28. Department of Respiratory Medicine, Aberdeen University Medical School &
75	Aberdeen Royal Infirmary, Aberdeen, United Kingdom, AB25 2ZN

76	29. Department of Radiology, Aberdeen University Medical School & Aberdeen Royal
77	Infirmary, Aberdeen, Scotland, United Kingdom, AB25 2ZN
78	30. Department of Thoracic Surgery, Glenfield Hospital, Leicester, LE3 9QP
79	31. Department of Radiotherapy, North Middlesex University Hospital, London N18 1QX
80	32. Department of Respiratory Medicine, Royal Free Hospital, Pond Street, London, NW3
81	2QG
82	33. Department of Respiratory Medicine, Barnet and Chase Farm Hospitals, Wellhouse
83	Lane, Barnet, United Kingdom, EN5 3DJ
84	34. Department of Respiratory Medicine, The Princess Alexandra Hospital, Hamstel Rd,
85	Harlow CM20 1QX
86	35. Department of Clinical Oncology, St.Luke's Cancer Centre, Royal Surrey County
87	Hospital, Guildford, GU2 7XX
88	36. Department of Pathology, Ashford and St. Peters' Hospital, Guildford Road, Chertsey,
89	Surrey, KT16 0PZ
90	37. Department of Respiratory Medicine, Ashford and St. Peters' Hospital, Guildford Road,
91	Chertsey, Surrey, KT16 0PZ
92	38. Department of Radiology, Ashford and St. Peters' Hospital, Guildford Road, Chertsey,
93	Surrey, KT16 0PZ
94	39. Department of Clinical Oncology, Velindre Hospital, Cardiff, Wales, United Kingdom,
95	CF14 2TL
96	40. Department of Cardiothoracic Surgery, University Hospital Llandough, Cardiff, Wales,
97	United Kingdom, CF64 2XX
98	41. Department of Pathology, University Hospital Llandough, Cardiff, Wales, United
99	Kingdom, CF64 2XX

100	42. Department of Radiology,	University	Hospital	Llandough,	Cardiff,	Wales,	United
101	Kingdom, CF64 2XX						

- 43. Department of Respiratory Medicine, University Hospital Llandough, Cardiff, Wales,
 United Kingdom, CF64 2XX
- 44. UCL ECMC GCLP Facility, University College London Cancer Institute, Paul
 O'Gorman Building, 72 Huntley Street, London, WC1E 6BT
- 45. Department of Respiratory Medicine, The Whittington Hospital NHS Trust, United
 Kingdom, N19 5NF
- 46. University College London, Cancer Research UK & UCL Cancer Trials Centre,
 London, United Kingdom, W1T 4TJ
- 47. Centre for Biological Sequence Analysis, Department of Systems Biology, Technical
 University of Denmark, 2800 Lyngby, Denmark.
- 48. Computational Health Informatics Program (CHIP), Boston Children's Hospital,
 Harvard Medical School, Boston, MA, USA.
- 49. MTA-SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology,
 Semmelweis University, 1091 Budapest, Hungary.
- 50. Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular
 Medicine, Berlin, Germany
- 51. Bill Lyons Informatics Centre, University College London Cancer Institute, Paul
 O'Gorman Building, 72 Huntley Street, London, WC1E 6BT
- 52. Department of Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland
 Rd, London NW1 1AT
- 122 53. Cancer Immunology Unit, University College London Cancer Institute, Paul O'Gorman
 123 Building, 72 Huntley Street, London, WC1E 6BT

124	54. Cancer Genomics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1
125	1AT
126	55. Department of Human Genetics, University of Leuven, B-3000 Leuven, Belgium
127	56. Cancer Research UK Manchester Institute, Manchester, United Kingdom, M20 4BX
128	57. Dana-Farber Cancer Institute, 450 Brookline Ave. Boston, United States, MA 02215-
129	5450
130	
131	Corresponding author:
132	Charles Swanton
133	Translational Cancer Therapeutics Laboratory
134	The Francis Crick Institute
135	3rd Floor South West
136	1 Midland Road
137	London
138	NW1 1A
139	Email: Charles.Swanton@crick.ac.uk
140	Office +44 203 796 2047

141 Summary (156 words)

142 Earlier detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic 143 144 approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a patient-145 specific approach to ctDNA profiling in the first 100 lung TRACERx (TRAcking Cancer 146 Evolution through therapy (**Rx**)) study participants, including one patient co-recruited to the 147 PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We 148 identify independent predictors of ctDNA release in early-stage non-small cell lung cancer and 149 perform tumor volume limit of detection analyses. Through blinded profiling of post-operative 150 plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients 151 destined to experience recurrence of their lung cancer. Finally, we show that phylogenetic 152 ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases, providing 153 154 a new approach for ctDNA driven therapeutic studies

155

156

157 Main text

158	Lung cancer is the leading cause of cancer death worldwide ¹⁻² . Established metastatic non-
159	small cell lung cancer (NSCLC) cannot be cured with systemic chemotherapy. Yet clinical
160	studies have shown a 5% benefit of post-operative (adjuvant) chemotherapy on overall
161	survival ³ . This modest survival benefit may reflect a vulnerability of treating low volume
162	disease within the context of reduced intra-tumor heterogeneity ⁴ . Improving adjuvant treatment
163	of lung cancer could improve cure rates. However, achieving this objective will require the
164	development of a diagnostic platform capable of identifying, monitoring and genomically
165	characterizing recurring or residual disease early. This would create a therapeutic setting where
166	only patients destined to recur would receive treatment, where intervention could be directed
167	to the evolving tumor subclone seeding metastatic recurrence guided by clinical trials powered
168	to determine treatment effect within smaller patient cohorts.
169	Circulating tumor DNA (ctDNA) detection in plasma has been shown in breast ^{5,6} and colorectal

cancer⁷ to detect minimal residual disease in the adjuvant setting and identify patients destined
to relapse post-operatively in advance of established clinical parameters. Here, we report a
bespoke multiplex-PCR NGS approach to ctDNA profiling within the context of the

prospective tumor evolutionary NSCLC study TRACERx. We address determinants of ctDNA
detection in early-stage NSCLC and investigate the ability of ctDNA to identify and
genomically characterize, at subclone resolution, post-operative NSCLC relapse using a tumor
phylogenetic framework.

177 **Phylogenetic ctDNA profiling**

The TRACERx study monitors the clonal evolution of NSCLC from diagnosis through to 178 relapse and death⁸. Using multi-region exome sequencing (M-Seq) derived tumor phylogenetic 179 trees developed through prospective analysis of the 100 patient TRACERx cohort, we 180 conducted a phylogenetic approach to ctDNA profiling in early stage NSCLC (Fig. 1). Bespoke 181 multiplex-PCR assay-panels were synthesised for each patient, targeting clonal and subclonal 182 single nucleotide variants (SNVs) selected to track phylogenetic tumor branches in plasma (Fig 183 1.). Analytical validation of the multiplex-PCR NGS platform demonstrated a sensitivity of 184 185 above 99% for the detection of SNVs at frequencies above 0.1% and the specificity of detecting a single SNV was 99.6% (Extended Data Fig 1a). At least two SNVs were detected in ctDNA 186 from each NSCLC analyzed in our published discovery cohort data⁹, demonstrating biological 187 sensitivity of a two SNV threshold for ctDNA detection in early-stage NSCLC. Therefore, we 188

189	prospectively selected a threshold of two detected SNVs for calling a sample ctDNA positive
190	for validation within this study - to minimize type I error in a platform testing up to 30 tumour-
191	specific SNVs per time-point in a single patient (see Extended Data Fig 1b for justification).
192	Cross-platform validation was performed in 28 patients with M-Seq confirmed SNV(s) within
193	one or more hotspots targeted by a generic multiplex PCR-NGS panel (Extended Table 1a-b,
194	Supplementary Table 1). All 18 bespoke-panel ctDNA negative patients had no tumor SNVs
195	detectable in plasma pre-operatively by the generic panel supporting biological specificity of
196	the targeted approach, 7 of 10 bespoke-panel ctDNA positive patients had tumor SNVs
197	detected in plasma by the generic panel (Extended Table 1a-b).
198	Determinants of ctDNA detection in NSCLC

We sought to identify clinicopathological determinants of ctDNA detection in early-stage
NSCLC by profiling pre-operative plasma samples in 96 of 100 TRACERx patients (cohort,
sample characteristics **Extended Table 2a-c**, **Supplementary Table 2**). It was not possible to
analyze samples from four patients (see **Extended Data Fig 2a** for details). Individual patient
assay-panels were designed to target a median of 18 SNVs (range 10 to 22) comprising a

204 median of 11 clonal SNVs (range 2 to 20) and a median of 6 subclonal SNVs (range 0 to 16)

205 (Extended Data Fig 2b).

206	At least two SNVs were detected in ctDNA pre-operatively in 46 of 96 (48%) early-stage
207	NSCLCs, a single SNV was detected in 12 additional cases (Fig 2a). Centrally reviewed
208	pathological data revealed that ctDNA detection was associated with histological subtype: 97%
209	(30/31) of lung squamous cell carcinomas (LUSCs) and 71% (5 of 7) of other NSCLC subtypes
210	were ctDNA positive, compared with 19% (11/58) of lung adenocarcinomas (LUADs) (Fig
211	2a). ctDNA detection stratified by TNM stage revealed that 94% (16 of 17) of stage I LUSCs
212	were detected compared with 13% (5 of 39) of stage I LUADs (Extended Data Fig 3a).
213	Passive release of ctDNA into the circulation may be associated with apoptosis and necrosis ¹⁰ .
214	As expected ¹¹ , LUSCs were significantly more necrotic than LUADs and ctDNA positive
215	LUADs formed a sub-group of more necrotic tumors compared with ctDNA negative LUADs
216	(Extended Data Fig 3b). Necrosis, lymph node involvement, lymphovascular invasion,
217	pathological tumor size, Ki67 labelling indices, non-adenocarcinoma histology and total cell-
218	free DNA input predicted ctDNA detection in univariable analyses (Extended Data Fig 3c).
219	Multivariable analysis revealed non-adenocarcinoma histology, the presence of lympho-
220	vascular invasion and high Ki67 proliferation index as independent predictors of ctDNA

detection (**Extended Data Fig 3c**). Since FDG-avidity on positron emission tomography (PET) scans correlates with proliferative indices in early-stage NSCLC^{12,13}, we investigated tumor PET FDG-avidity and ctDNA detection. PET FDG-avidity predicted ctDNA detection (area under curve = 0.84, P<0.001, n=92) (**Extended Data Fig 3d**). Within LUADs, common driver events in *KRAS*, *EGFR* or *TP53* were not associated with ctDNA detection (**Extended Data Fig 3e**). We analyzed the distribution of clonal and subclonal SNVs in ctDNA positive patients. Clonal

SNVs were detected in all 46 ctDNA positive patients; a median of 94% (range 11% to 100%)
of clonal SNVs targeted by assay-panels were detected in ctDNA. 40 of 46 ctDNA positive

patients had subclonal SNVs targeted by assay-panels and subclonal SNVs were detected in 27

231 (68%) of these patients. A median of 27% (range 0% to 91%) of targeted subclonal SNVs were

- detected in ctDNA positive patients (Figure 2b). The mean plasma variant allele frequency
- 233 (VAF) of clonal SNVs was significantly higher than that of subclonal SNVs (Extended Data
- 234 Fig 4a) (within patient comparison, Wilcoxon signed-rank test, P<0.001, n=27,
- **Supplementary Table 3**) supporting the use of clonal alterations as a more sensitive method
- 236 of ctDNA detection than subclonal alterations 9,14 .

237	In ctDNA positive patients, macroscopic tumor size correlated with mean clonal plasma VAF
238	(Spearman's Rho = 0.405, P=0.005, n=46) (Extended Data Fig 4b). CT scan volumetric
239	analyses were available in 38 of 46 ctDNA positive patients (see Extended Data Fig 4c).
240	Tumor volume correlated with mean clonal plasma VAF (Fig 3a, Spearman's Rho = 0.61,
241	P<0.001, n=38). A linear relationship between log- transformed volume and mean clonal VAF
242	values was observed (Fig 3a). The line of best fit applied to our data was consistent with the
243	line fitted to NSCLC volumetric data and ctDNA plasma VAFs reported in previously
244	published work ¹⁵ (Extended Data Fig 4d). Linear modelling based on the TRACERx data
245	approximated that a primary tumor volume of 11cm ³ would result in a mean clonal plasma
246	VAF of 0.1% (Figure 3b). We multiplied tumor purity by tumor volume to control for stromal
247	contamination and determine cancer cell volume (Extended Data Fig 4e). On the assumption
248	that 1 cm^3 of effective tumor contains 9.4 x 10^7 cells we approximated that a plasma VAF of
249	0.1% corresponds to a tumor burden of 326 million malignant cells (Extended Data Fig 4f).
250	To investigate predictors of subclone detection we mapped detected subclonal SNVs back to
251	M-seq derived tumor phylogenetic trees. 35 of 57 (61%) shared subclones (identified in more
252	than one tumor region through M-Seq analysis) were identified in ctDNA, compared with 26
253	of 80 (33%) private subclones (detected in a single tumor region only) (Extended Data Fig

4g). This suggested subclone volume influences subclonal ctDNA detection. We estimated
subclone volume based on mean regional subclone cancer cell fraction (CCF) and cancer cell
volume. Detected subclonal SNVs mapped to subclones with significantly higher estimated
volumes than subclones containing undetected SNVs (Figure 3c) and subclone volume
correlated with subclonal SNV plasma VAF (Figure 3d).

259 Detecting and characterizing NSCLC relapse

The longitudinal phase of the study aimed to determine if ctDNA profiling with patient-specific 260 assay panels could detect and characterize the branched subclone(s) seeding NSCLC relapse. 261 Pre- and post-surgical plasma ctDNA profiling was performed blinded to relapse status in a 262 sub-group of 24 patients (cohort characteristics, Extended Table 2d-e). This included relapse 263 free patients who had been followed-up for a median of 775 days (range 688 to 945 days, n=10) 264 and confirmed NSCLC relapse cases (n=14) (cohort design, Extended Data Fig 2c). PCR 265 assays were added to panels in this phase of the study to optimize sensitivity in LUADs. A 266 median of 18.5 SNVs (range 12 to 20) were targeted by LUSC assay-panels and a median of 267 28 SNVs (range 25 to 30) were targeted by LUAD assay-panels (Extended Data Fig 2d-e). 268

269	Patients were followed up with three to six monthly clinical assessment and chest radiographs.
270	At least 2 SNVs were detected in 13 of 14 (93%) patients with confirmed NSCLC relapse prior
271	to, or at, clinical diagnosis of relapse and detected in 1 of 10 (10%) patients (CRUK0013) with
272	no clinical evidence of NSCLC relapse (Fig 4a-k, Extended Data Fig 5a-n). Excluding a
273	single case where no post-operative plasma was taken prior to clinical relapse (CRUK0041)
274	the median interval between ctDNA detection and NSCLC relapse confirmed on clinically
275	indicated CT imaging (lead-time) was 70 days (range 10 to 346 days). Four of 13 relapse cases
276	exhibited lead-times of more than six months (Fig 4a-d). In two cases ctDNA detection
277	preceded CT imaging inconclusive for NSCLC relapse by 347 days (Fig 4a) and 260 days (Fig
278	4d). Post-operative ctDNA profiling reflected adjuvant chemotherapy resistance; CRUK0004,
279	CRUK0080 and CRUK0062 had detectable ctDNA in plasma within 30 days of surgery. The
280	number of detectable SNVs increased in all cases despite adjuvant chemotherapy with disease
281	recurring within 1 year of surgery (Fig. 4a-c). In contrast, CRUK0013 had 20 SNVs detectable
282	in ctDNA 72 hours after surgery and 13 SNVs detectable prior to adjuvant chemotherapy (Fig
283	4e). 51 days following completion of adjuvant treatment, no SNVs were detectable. Two
284	further plasma samples were profiled for this patient at day 457 and 667; ctDNA remained
285	undetectable and the patient remains relapse free 688 days post-surgery (Fig 4e). ctDNA

profiling detected intracerebral relapse; CRUK0029 had a pre-operative PET scan performed
50 days prior to surgery demonstrating normal cerebral appearances. Mean clonal plasma VAF
of detected SNVs remained above 1% 30 days post-surgery, 54 days post-operatively the
patient was confirmed to have intracerebral metastasis (Fig 4f).

We sought to resolve subclonal evolutionary-dynamics associated with NSCLC relapse. 290 291 Subclonal SNVs displaying plasma VAFs similar to clonal SNVs and mapping to phylogenetic clusters confined to a single phylogenetic branch, were detected post-operatively in the ctDNA 292 of four patients who suffered NSCLC relapse (CRUK0004, CRUK0063, CRUK0065 and 293 294 CRUK0044) (Fig. 4a,g-i). These findings suggested a relapse process dominated by a subclone represented in our assay-panel. Notably the subclone implicated by ctDNA as driving the 295 relapse in the case of CRUK0004 contained an ERRB2 (HER2) amplification event that may 296 be targetable in NSCLC¹⁶. This suggests ctDNA defined subclonal evolution may inform 297 precision strategies against emerging subclones (Fig. 4a). Relapses involving subclones from 298 more than one phylogenetic branch were evident in patients CRUK0080, CRUK0062 and 299 300 CRUK0041 (Fig 4b-c,j).

301 Validation of phylogenetic characterization

302	To validate subclonal ctDNA analyses, data acquired from sequencing metastatic tissue was
303	interpreted with M-seq primary tumor data (Supplementary Table 4). Patient CRUK0063
304	suffered para-vertebral relapse of their NSCLC. Post-operative ctDNA analysis revealed the
305	detection of the same subclonal SNV (OR5D18) on four consecutive occasions over a 231-day
306	period (Extended Data Fig 6a). The OR5D18 SNV traced back to a subclonal cluster private
307	to primary tumor region three (Fig 5a). Exome sequencing of CT-guided biopsy tissue acquired
308	from the para-vertebral metastasis revealed the subclone implicated in the metastatic event by
309	detection of the OR5D18 SNV in ctDNA gave rise to the metastatic clone. This supported
310	ctDNA phylogenetic characterization of relapse (Fig 5a). The para-vertebral biopsy contained
311	88 SNVs not present in the primary tumor including an ARID1A stop-gain driver SNV. Re-
312	examination of primary tumor region M-Seq data with a lower SNV calling threshold revealed
313	that 16 of 88 SNVs including ARID1A were detectable in primary tumor region three, compared
314	to a maximum of 2 of 88 in other tumor regions (Extended Data Fig 6b). Since ctDNA
315	implicated the subclone private to primary tumor region three in the relapse process, these data
316	suggest that ctDNA profiling can resolve the primary tumor region from which a low frequency
317	metastatic subclone derives. CRUK0035 developed two liver and one adrenal metastases (Fig
318	5b). Sequencing of the metastatic liver deposit revealed that only 109 of 149 SNVs classed as

319	clonal in the primary tumor were detectable in the metastasis. This was suggestive of an
320	ancestral branching event not resolved through primary M-seq analysis (Figure 5b). Post-
321	operative ctDNA profiling identified clonal SNVs present in the liver metastasis biopsy but
322	also revealed SNVs representing a subclone from the primary tumor (Extended Data Fig 6c).
323	This subclone was not present in the metastatic liver deposit (Fig 5b). These data may reflect
324	ctDNA identified from the non-biopsied metastases suggesting multiple metastatic events.
325	CRUK0044 suffered a vertebral and right hilar relapse. Post-operatively the same subclonal
326	SNV (OR10K1), was detected in ctDNA on two occasions 85 days apart (Extended Data Fig
327	6d). This SNV represented a single subclone detected through sequencing hilar lymph-node
328	metastatic tissue, supporting ctDNA findings (Fig. 5c). CRUK0041 suffered an intracerebral,
329	hilar and subcarinal lymph node relapse. Four subclonal SNVs representing both branches of
330	the tumor phylogenetic tree were detectable in ctDNA at relapse. Concordant with these data,
331	sequencing of subcarinal metastatic tissue revealed the presence of subclonal SNVs mapping
332	to both phylogenetic branches (Fig 5d, Extended Data Fig. 6e). Patient CRUK0013 was found
333	to have lymph-node metastases following primary surgery. Two lymph node metastases were
334	sampled for exome analysis together with M-seq of the primary tumor. Subclonal SNVs
335	detected in ctDNA post-operatively mapped to an ancestral subclone (describing a subclone

that existed during the tumor's evolution) containing a KRAS amplification (Extended Data
Fig 6f, Fig. 5e). This ancestral subclone was present in the primary tumor and sampled lymphnodes (Fig. 5e). Given the lymph node involvement in this case these findings suggest residual
metastatic lymphadenopathy following surgery that responded to adjuvant chemoradiotherapy
(Fig. 4e)

341 ctDNA profiling in the metastatic setting

Patient CRUK0063 underwent examination through the PEACE post-mortem study 24 hours 342 following death. Six tumor regions were sampled from three metastatic sites (thoracic 343 vertebral, para-aortic and lung metastases). M-Seq data from the six post-mortem tumor 344 regions (day 857), the para-vertebral relapse biopsy (day 467) and five primary tumor regions 345 (day 0) were combined to infer the phylogenetic structure of this patient's NSCLC (Fig 6a). 346 All seven metastatic tumor regions arose from a single ancestral subclone represented by 347 348 phylogenetic cluster 8 (Fig 6b). Six metastatic regions shared a later phylogenetic origin, phylogenetic cluster 12 (Fig. 6b). The single tumor region that had not arisen from 349 phylogenetic cluster 12 was sampled from the para-aortic metastasis at autopsy and contained 350 a private subclone represented by phylogenetic cluster 9 (**Fig 6b**). The findings could represent 351

352	two or more independent metastatic events arising from a single branch of the primary tumor
353	phylogenetic tree, with ongoing tumor evolution at each metastatic site (Fig 6b). Or a single
354	metastatic event to the para-aortic site involving the ancestral subclone (phylogenetic cluster
355	8) prior to evolution of the subclone represented by phylogenetic cluster 9. Followed by
356	metastatic cross-seeding to para-vertebral and lung sites and ongoing clonal evolution (Fig 6b).
357	We designed a bespoke ctDNA assay-panel to retrospectively track metastatic subclonal
358	burden. 20 clonal SNVs and a median of 8 subclonal SNVs (range 4 to 15) in 9 metastatic
359	subclonal clusters were targeted by the assay-panel (Extended Data Fig 7). Since 103 variants
360	per time-point were profiled, SNV call thresholds were increased to maintain platform
361	specificity of more than 99.2% at the 2 SNV ctDNA detection threshold (see Extended
362	Methods). ctDNA detection occurred at day 340 post-surgery (Fig 6c, Extended Data Fig 7).
363	At day 466 following clinical-relapse at the thoracic para-vertebral site, 18 of 20 SNVs
364	mapping to phylogenetic clusters (8,11 and 12) were detected in ctDNA (Fig 6c, Extended
365	Data Fig 7). These subclonal clusters were shared between six of seven metastatic sites (Fig
366	6b). A single SNV from a private subclone (phylogenetic cluster 9) was also detectable in
367	ctDNA at day 466 (Fig 6c, Extended Data Fig 7). This subclone was not identified in the CT
368	guided para-vertebral biopsy taken at day 467 (Fig 6b). The mean plasma VAF of the 18 SNVs

369	detected in phylogenetic clusters 11, 8 and 12 reflected their proximity to the clonal cluster
370	(light blue) in the M-Seq derived phylogenetic tree (Fig 6c). This suggested a tiered burden of
371	subclonal disease concordant with M-seq phylogenetic inferences (Fig 6a). Mean clonal VAF
372	fell in response to palliative radiotherapy and chemotherapy but at day 767 increased (Fig 6c).
373	Single SNVs mapping to phylogenetic clusters 5 and 9 and two SNVs mapping to phylogenetic
374	cluster 2 were now detectable in ctDNA 90 days before death (Fig 6a-c, Extended Data Fig
375	7). These phylogenetic clusters represented subclones private to the para-aortic metastases (Fig
376 377	6a-b). Consistent with these data significant para-aortic progression was observed at post- mortem compared with most recent CT imaging performed 112 days before death - which
378	showed no evidence of para-aortic disease.
570	showed no evidence of para-aortic disease.

379 **Discussion**

In summary, we find predictors of ctDNA detection in early-stage NSCLC characterized by non-adenocarcinoma histology, necrosis, increased proliferative indices and lymphovascular invasion (**Fig 2a**). Triple negative breast cancers display necrosis¹⁷, high proliferative indices^{18,19} and are associated with increased ctDNA levels compared with other breast cancer

subtypes⁶ suggesting extension of observations to other tumor types.

We find a relationship between tumor volume and ctDNA detection. We estimate that a primary 385 NSCLC tumor with a volume of 11cm³ is required to achieve a ctDNA plasma VAF of 0.1% 386 (Fig. 3b), a VAF reflecting the optimum sensitivity of most current ctDNA platforms. Low-387 dose CT lung screening can identify lung nodules with diameters as low as 4mm²⁰. Assuming 388 a spherical nodule, this would translate to a volume of 0.034cm³ and an approximate plasma 389 VAF of 1.4 x 10^{-4} % - at the extreme of detection limits of ctDNA platforms²¹. Sensitivity of 390 ctDNA NSCLC screening may therefore be constrained by tumor size using current 391 technologies. ctDNA release dynamics may alter at disease relapse - in three LUAD cases we 392 detect no ctDNA pre-operatively, yet detect ctDNA at relapse in the absence of clinically 393 detectable disease (Fig 4a,d,i). 394

Targeted ctDNA profiling characterized the subclonal dynamics of relapsing NSCLC. Limitations to this approach include cost, estimated at \$1750 per patient for single region tumor sequencing with evaluation of five plasma samples and synthesis of bespoke assay-panels within a clinically relevant timeframe. Adjuvant platinum-based chemotherapy in NSCLC improves cure rates following surgery in only 5% of patients and 20% patients receiving chemotherapy experience acute toxicities²². There is an urgent need to increase adjuvant therapy efficacy and better target its use. Our findings indicate that drug development guided

- 402 by ctDNA platforms to identify residual disease, define treatment response and target emerging
- subclones in the adjuvant NSCLC setting, with appropriate CLIA validation, are now feasible.

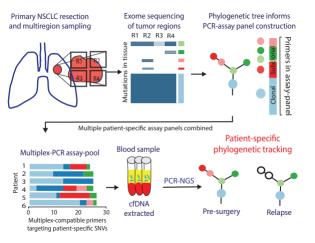
404	References			
404	Kelei	i chices		
405				
400 407	1.	Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A		
408		Cancer Journal for Clinicians 2011;61(2):69-90.		
409	2.	Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA: A Cancer Journal for Clinicians		
410		2017;67(1):7-30.		
411	3.	Pignon J-P, Tribodet H, Scagliotti GV, Douillard J-Y, Shepherd FA, Stephens RJ, et al. Lung		
412		Adjuvant Cisplatin Evaluation: A Pooled Analysis by the LACE Collaborative Group. Journal of		
413		Clinical Oncology 2008;26(21):3552-9.		
414	4.	Landau Dan A, Carter Scott L, Stojanov P, McKenna A, Stevenson K, Lawrence Michael S, et		
415		al. Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia.		
416		Cell;152(4):714-26.		
417	5.	Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, et al. Detection		
418		of Cancer DNA in Plasma of Patients with Early-Stage Breast Cancer. Clinical Cancer Research		
419		2014;20(10):2643-50.		
420	6.	Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in		
421		circulating tumor DNA predicts relapse in early breast cancer. Science Translational Medicine		
422		2015;7(302):302ra133-302ra133.		
423	7.	Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis		
424		detects minimal residual disease and predicts recurrence in patients with stage II colon		
425		cancer. Science Translational Medicine 2016;8(346):346ra92-ra92.		
426	8.	Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C, Quezada S, et al. Tracking genomic		
427		cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol		
428		2014;12(7):e1001906.		
429	9.	Jamal-Hanjani M, Wilson GA, Horswell S, Mitter R, Sakarya O, Constantin T, et al. Detection		
430		of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage		
431		non-small-cell lung cancer. Annals of Oncology 2016;27(5):862-7.		
432	10.	Jr LAD, Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. Journal of Clinical		
433		Oncology 2014;32(6):579-86.		
434	11.	Caruso R, Parisi A, Bonanno A, Paparo D, Quattrocchi E, Branca G, et al. Histologic		
435		coagulative tumour necrosis as a prognostic indicator of aggressiveness in renal, lung,		
436		thyroid and colorectal carcinomas: A brief review. Oncology Letters 2012;3(1):16-8.		
437	12.	Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallières E, et al. Lung Cancer		
438		Proliferation Correlates with [F-18]Fluorodeoxyglucose Uptake by Positron Emission		
439		Tomography. Clinical Cancer Research 2000;6(10):3837-44.		
440	13.	Higashi K, Ueda Y, Yagishita M, Arisaka Y. FDG PET measurement of the proliferative		
441		potential of non-small cell lung cancer. The Journal of Nuclear Medicine 2000;41(1):85.		
442	14.	Murtaza M, Dawson S-J, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et al. Multifocal		
443		clonal evolution characterized using circulating tumour DNA in a case of metastatic breast		
444	. –	cancer. Nature Communications 2015;6:8760.		
445	15.	Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive		
446		method for quantitating circulating tumor DNA with broad patient coverage. Nat Med		
447		2014;20(5):548-54.		

448 449	16.	Peters S, Zimmermann S. Targeted therapy in NSCLC driven by HER2 insertions. Translational Lung Cancer Research 2014;3(2):84-8.
	47	
450	17.	Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic
451		evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol
452		2005;19(2):264-71.
453	18.	Keam B, Im S-A, Kim H-J, Oh D-Y, Kim JH, Lee S-H, et al. Prognostic impact of
454		clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel
455		and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer.
456		BMC Cancer 2007;7:203
457	19.	Rhee J, Han SW, Oh DY, Kim JH, Im SA, Han W, et al. The clinicopathologic characteristics and
458		prognostic significance of triple-negativity in node-negative breast cancer. BMC Cancer
459		2008;8:307.
460	20.	Team TNLSTR. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic
461		Screening. New England Journal of Medicine 2011;365(5):395-409.
462	21.	Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital
463		error suppression for improved detection of circulating tumor DNA. Nat Biotech
464		2016;34(5):547-55.
465	22.	Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, et al. Lung
466		adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol
467		2008;26(21):3552-9.
468		

469 **Supplementary information** is available in the online version of the paper

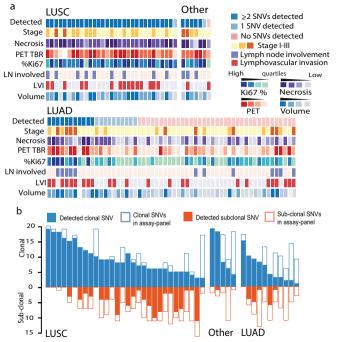
470 Acknowledgements We dedicate this manuscript to the memory of Roberto Macina. We also thank Samantha Navarro and Antony Tin for facilitating the PEACE ctDNA analysis presented 471 in this manuscript. We thank the members of the TRACERx and PEACE consortia (see 472 Supplementary Appendix for a list of centres and investigators) for participating in this study. 473 474 C.S. is Royal Society Napier Research Professor. This work was supported by the Francis Crick 475 Institute which receives its core funding from Cancer Research UK (FC001169), the UK Medical Research Council (FC001169), and the Wellcome Trust (FC001169); by the UK 476 Medical Research Council (grant reference MR/FC001169 /1); CS is funded by Cancer 477 478 Research UK (TRACERx and CRUK Cancer Immunotherapy Catalyst Network), the CRUK Lung Cancer Centre of Excellence, Stand Up 2 Cancer (SU2C), the Rosetrees Trust, 479 NovoNordisk Foundation (ID 16584), the Prostate Cancer Foundation, the Breast Cancer 480 Research Foundation, the European Research Council (THESEUS) and Support was provided 481

to CS by the National Institute for Health Research, the University College London Hospitals
Biomedical Research Centre, and the Cancer Research UK University College London
Experimental Cancer Medicine Centre.

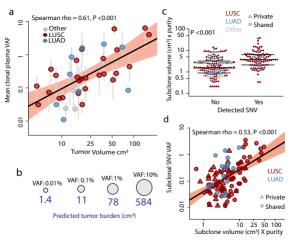

485 Authorship contribution statement

C.A., N.J.B., G.A.W., M.J-H., T.C., R.S., and J.L-Q. contributed equally to this work. C.A. 486 487 and C.S. co-wrote the manuscript. C.A., M.J.H., and C.S. conceived study design. C.A., N.J.B., G.A.W. and R.R. integrated clinicopathological data, exome data and multiplex-PCR NGS 488 data. B.G.Z, J.L., T.C., R.S., E.K., N.S., D.H., A.N. and A.P., conducted and analysed 489 multiplex-PCR NGS experimental work. N.J.B, G.A.W, T.B.K.W, R.R., and N.M. conducted 490 bioinformatic analyses of TRACERx data. J.L-Q and D.A.M. conducted a central pathological 491 492 review. T.M. analyzed tissue micro-array data. F.F., R.E. and F.Z. conducted central radiological review of pre-operative PET scans. H.J.W.L.A., W.L.B., F.M.F. and N.J.B. 493 conducted volumetric analyses of pre-operative CT scans. S.V., D.J., J.L., S.S., J.C-K., A.R., 494 495 T.C., D.O. and A.A. conducted technical work for TRACERx sample processing. G.E., S.W., N.M. and G.A.W. conducted TRACERx sample exome sequencing. L.M. and J.R. conducted 496 cross-platform validation on TRACERx cell-free DNA samples. M.J.H., C.S. and M.Fa. 497 498 designed the PEACE protocol. M.J.H., C.D., J.S. and C.S. designed the TRACERx protocol. C.H., S.L.M., M.F., T.A., M.Fa., E.B., D.L., M.H., S.K., N.P., S.M.J., R.T., A.A., F.B., Y.S., 499 500 R.S., L.J., A.M.Q, P.C., B.N., G.M., G.L., S.T., M.N., H.R., K.K., M.C., L.G., D.F., A.N., S.R., G.A., S.K., P.R., V.E., B.I., M.I-S., V.P., J.L., M.K., R.A., H.A., H.D., S.L. are integral clinical 501 members of TRACERx study sites. J.H. and H.L. run the UCL GCLP facility. A.H., H.B., N.I. 502 503 and Y.N. were involved in study oversight. J.A.S., J.L-Q., Z.S., E.G., S.K., S.T., M.A.B, R.F.S., J.H., A.S., S.Q., P.V.L., C.D. and J.L. gave advice and reviewed the manuscript. A.H. gave 504 statistical advice. C.S. provided overall study oversight. 505

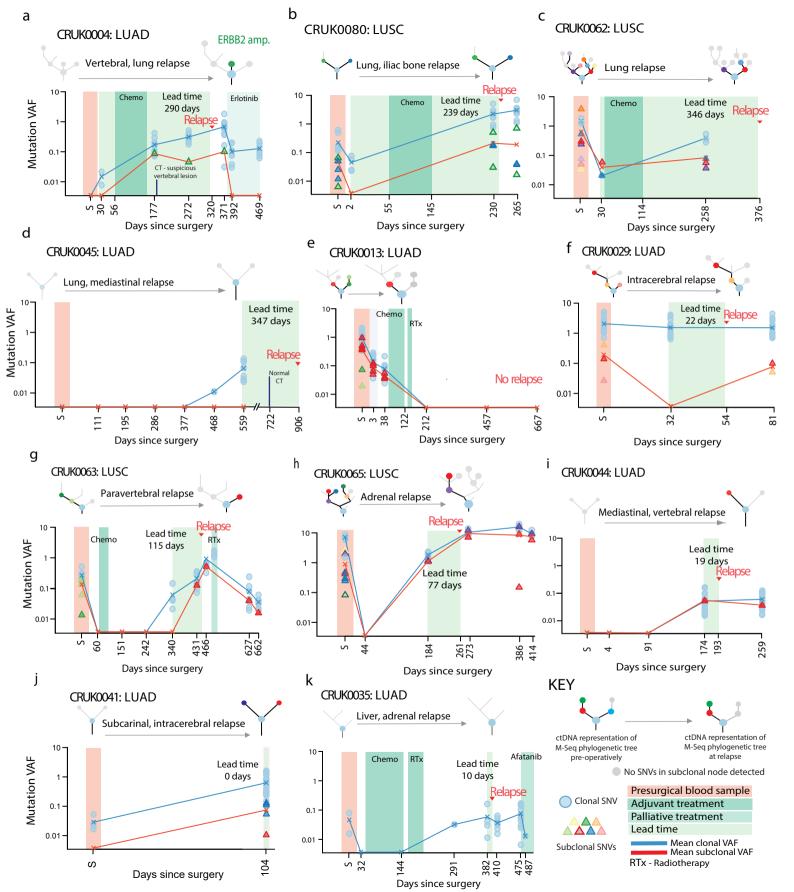
506 Author information


- 507 The authors declare competing financial interests. Reprints and permissions information is
- 508 available at <u>www.nature.com/reprints</u>. Correspondence should be addressed to C.S.
- 509 (<u>Charles.Swanton@crick.ac.uk</u>).

510


Figure 1 Phylogenetic ctDNA tracking

Overview of the study methodology. Multi-region sequencing of Stage I-IIIB non-small cell lung cancers was performed through the TRACERx study. Phylogenetic trees were constructed. PCR assay-panels were designed targeting clonal and subclonal single nucleotide variants to facilitate non-invasive tracking of the patient-specific tumor phylogeny. Based on predicted and validated primer compatibility assay-panels were combined into multiplex assay-pools containing primers from up to 10 patients. Cell-free DNA was extracted from pre and post-operative plasma samples and multiplex-PCR performed. This was followed by next generation sequencing of amplicons. Findings were integrated with M-Seq exome data to track tumor evolution.


Figure 2 – Clinicopathological predictors of ctDNA detection

a) Heatmap showing clinicopathological and ctDNA detection data, continuous variables quartiled. Raw data and patient IDs in Supplementary Table 1. b) Detection of clonal and subclonal single nucleotide variants within 46 patients with two or more single nucleotide variants detected in plasma. Histology indicated in panels as LUSC, LUAD and Other. Other histology refers to large cell carcinoma (1/1 ctDNA positive), adenosquamous carcinoma (2/3 ctDNA positive), large cell neuroendocrine carcinoma (1/1 ctDNA positive) and carcinosarcoma (1/2 ctDNA positive).

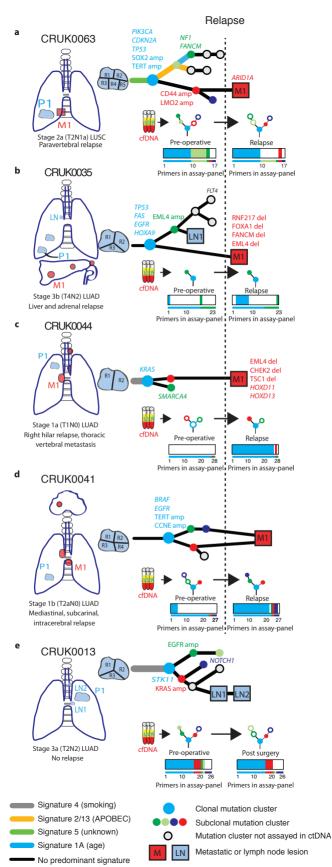


Figure 3. Tumor volume predicts plasma variant allele frequency

a) Tumor volume (cm³) measured by CT volumetric analysis correlates with mean clonal plasma VAF, n=38, grey vertical lines represent range of clonal VAF, line of best fit estimated in log-space, 95% confidence intervals indicated by red shading. b) Predicted tumor burden at hypothetical clonal VAF intervals ranging from 0.01% to 10% based on linear model shown in panel a. c) Estimated effective subclone size, defined as mean CCF of subclone across sampled tumor regions multiplied by effective tumor volume (volume × purity), influences subclonal SNV detection. For negative calls, median effective subclone size was 1.60 cm³, range = 0.21-14.11, n=163 for positive calls, median effective subclone size = 3.97 cm^3 , range = 0.33 - 45.09, n=109. Wilcoxon rank sum test, P<0.001, data from 34 patients (who passed volumetric filters and had subclonal SNVs represented in assay-panel). d) Estimated effective subclone size correlates with subclonal plasma VAF, n=109 subclonal SNVs in plasma).

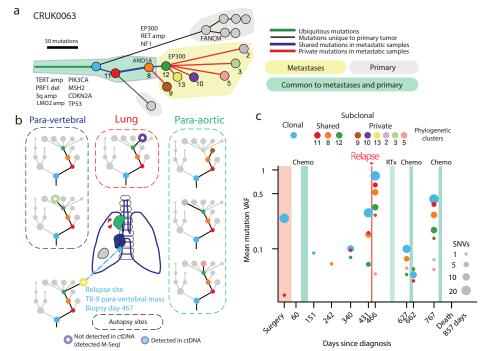


Figure 4 – Post-operative ctDNA detection predicts and characterizes NSCLC relapse – 2a-k) Longitudinal cell-free DNA profiling. Circulating tumor DNA (ctDNA) detection in plasma was defined as the detection of two tumor-specific SNVs. Relapse was based on imaging-confirmed NSCLC relapse, imaging was performed as clinically indicated. Detected clonal (circles, light blue) and subclonal (triangles, colors indicates different subclones) SNVs from each patient-specific assay-panel are plotted on graphs colored by M-Seq derived tumor phylogenetic nodes. Mean clonal (blue) and mean subclonal (red) plasma VAF are indicated on graphs as connected lines. Pre-operative and relapse M-Seq derived phylogenetic trees represented by ctDNA are illustrated above each graph.

Figure 5. Re-design of phylogenetic trees to incorporate relapse tissue sequencing data to benchmark post-operative ctDNA analyses

Phylogenetic trees based on mutations found in primary and metastatic tissue (a-d), or primary tumor and lymph node biopsies (e). Colored nodes in phylogenetic trees indicate cancer clones harboring mutations assayed for in ctDNA, grey indicates a clone not assayed. Thick colored bar shows number of assays per sample detected preoperatively and at relapse (a-d) or in the absence of relapse, post surgery (e). Thin colored bar shows number of assays in total. Colors matches clones on the phylogenetic trees.

Figure 6. ctDNA tracking of lethal cancer subclones in CRUK0063

Sampling and sequencing was performed of one relapse biopsy at day 467 and five metastatic tissue samples from three lesions at time of death through the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post mortem study. Phylogenetic analysis revealed cancer evolution and identified private subclones at each site. **a**). To-scale phylogenetic tree of CRUK0063 including M-seq based on metastatic and primary tumor regions. Branch length is proportional to number of mutations in each subclone. Colors represents mutation clusters, light blue node representing the clonal cluster. **b**) Tissue-specific phylogenetic trees for metastatic lesions, highlighted nodes in color represents mutation clusters found at each site and assayed for in ctDNA. Open circles represents mutation clusters not detected at any time in ctDNA. **c**) Tracking plot of identified subclones in ctDNA, showing mean VAF of identified subclones. Size of dots indicates number of assays detected. Colors corresponds to mutation clusters and matches panels a and b. Tiered burden of subclonal disease can be observed, with clusters representing earlier cancer subclones present at higher VAF, likely reflecting a larger cancer burden carrying shared relative to private mutations.