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Abstract. The last two centuries saw groundbreaking advances in the
field of healthcare: from the invention of the vaccine to organ trans-
plant, and eradication of numerous deadly diseases. Yet, these break-
throughs have only illuminated the role that individual traits and be-
haviours play in the health state of a person. Continuous patient mon-
itoring and individually-tailored therapies can help in early detection
and efficient tackling of health issues. However, even the most developed
nations cannot afford proactive personalised healthcare at scale. Mobile
computing devices, nowadays equipped with an array of sensors, high-
performance computing power, and carried by their owners at all time,
promise to revolutionise modern healthcare. These devices can enable
continuous patient monitoring, and, with the help of machine learning,
can build predictive models of patient’s health and behaviour. Finally,
through their close integration with a user’s lifestyle mobiles can be used
to deliver personalised proactive therapies. In this article, we develop the
concept of anticipatory mobile-based healthcare – anticipatory mobile
digital health – and examine the opportunities and challenges associated
with its practical realisation.

Keywords: Anticipatory Mobile Digital Health, Anticipatory Mobile
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1 Introduction

Mobile computing devices, such as smartphones and wearables4 represent more
than occasionally used tools, and nowadays coexist with their users throughout
the day. In addition, these devices host an array of sensors, such as a GPS re-
ceiver, accelerometer, heart rate sensors, microphones and cameras, to name a
few [11]. When data from these sensors are processed through machine learning
algorithms, they can reveal the context in which a device is. The context can

4 In this paper by wearables we refer to smartwatches, smartglasses, e-garments and
similar clothing and accessory items equipped with computing and sensing capabil-
ities.
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2 Anticipatory Mobile Digital Health

include anything from a device’s location to a user’s physical activity, even stress
levels and emotions [25,14]. Therefore, the personalisation and the sensing ca-
pabilities of today’s mobiles can provide a close view of a user’s behaviour and
wellbeing.

Above all, mobile devices are always connected. They represent the most di-
rect point of contact for the majority of the world’s population. Mobile phones,
for example, provide an opportunity for an intimate, timely communication
unimaginable just twenty years ago. One of the consequences is that mobile
devices are becoming a new channel for the delivery of health and wellbeing
therapies. For instance, digital behaviour change interventions (dBCIs) harness
smartphones to deliver personally tailored coaching to participants seeking be-
havioural change pertaining to smoking cessation, depression or weight loss [12].
Communication through a widely used, yet highly personal device ensures that
a person can be contacted at all times, which might be crucial in case of suicide
prevention interventions. In addition, the smartphone is used for numerous pur-
poses, which protects a dBCI participant from stigmatisation that may happen
if the device is used exclusively for therapeutic purposes.

Besides the inference of the current state of the sensed context, an ever-
increasing amount of sensor data, advances in machine learning algorithms, and
powerful computing hardware packed in mobile devices, allow the predictions of
the future state of the context. Context predictions have already been shown in
the domains of human mobility [1,29,3], but also population health state [15].
Every next generation of mobile devices comes equipped with new sensors, and
soon we may expect galvanic skin response (GSR), heart rate, body tempera-
ture oxymetry sensors as standard features5. This would open up the ability to
accurately predict the health state of an individual.

Anticipatory mobile computing is a novel concept that, just like context pre-
diction, relies on mobile sensors to provide information upon which the models of
context evolution are built, yet it extends the idea with reasoning and actioning
upon such predictions. The concept is inspired by biological systems that often
use the past, present and the predicted future state of itself and its environment
to change the state at an instant, so to steer the future state in a preferred
direction [27]. Anticipatory mobile computing has a potential to revolutionise
proactive healthcare. Health and wellbeing problems could be predicted from
personalised sensor readings, and preventive actions could be taken even before
the onset of a problem. We term this new paradigm – Anticipatory Mobile Digi-
tal Health, and in this paper we discuss the challenges and opportunities related
to its practical realisation. First, we examine the key enablers (i.e., mobile and
wearable sensors) that provide the contextual data which can be leveraged to
infer the health state of a user. Then, we discuss machine learning techniques
used for building predictive models of the user’s (health) context. We are par-
ticularly interested in the models that describe how the context might change
after an intervention or a therapy. We investigate the challenges related to un-

5 See for example the proposal by Intel: http://iq.intel.co.uk/

glimpse-of-the-future-the-healthcare-smartwatch/.

http://iq.intel.co.uk/glimpse-of-the-future-the-healthcare-smartwatch/
http://iq.intel.co.uk/glimpse-of-the-future-the-healthcare-smartwatch/
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obtrusive learning of the impact of an intervention to a person, and the oppor-
tunities for highly personalised healthcare. We also take into account individual
differences among users, and the potential for capturing and including genetic
pre-determinants into the system. We continue with the examination of human-
computer interaction issues related to the therapy delivery, and conclude with a
consideration of ethical issues in anticipatory mobile digital health. Finally, while
we have examined the potential for inducing a change in a person’s behaviour
through anticipatory mobile computing before [20], this paper extends the idea
on the much larger domain of digital healthcare, and elaborates on particular
challenges and opportunities in the area.

2 Mobile Sensing for Healthcare

The use of wireless and wearable sensors represents a novel and a rapidly evolving
paradigm in healthcare. These sensors have the potential to revolutionise the
way of assessing the health of a person. Sensor embedded devices are given
to the patients in order to obtain their health related data remotely. These
devices do not only help a patient in reducing the number of visits to the clinic,
but also offer unprecedented opportunities to the practitioners for diagnosing
diseases and tailoring treatments through continuous real-time sampling of their
patients’ heath data. Furthermore, some of these devices empower the users with
the ability to self-monitor and curb certain well-being issues on their own.

Today’s mobile phones are laden with sensors that are able monitor context
various modalities such as physical movement, sound intensity, environment tem-
perature and humidity, to name a few. Some previous studies have showed the
potential of mobile phones in providing data that can be used to infer the health
state of a user [4,5,10,2]. Houston [4] and UbiFit [5] are the early examples of
mobile sensing systems designed to encourage users to increase their physical
activity. Houston monitors a user’s physical movement by counting the number
of steps taken via an accelerometer that serves as a pedometer. Whereas, UbiFit
relies on the Mobile Sensing Platform (MSP) [13] to monitor varied physical ac-
tivities of a user. MSP is capable of inferring physical activities including walking,
running, cycling, cardio and strength exercise, and other non-exercise physical
activities, such as housework. BeWell is a mobile application that continuously
monitors a user’s physical activity, social interaction and sleeping patterns, and
helps the user manage their wellbeing [10]. Bewell relies on sensors such as ac-
celerometer, microphone and GPS, which are embedded in mobile phones. In [2]
the authors show that the depressive states of users can be inferred purely from
location and mobility data collected via mobile phones. The above examples
demonstrate the close bond between smartphone sensed data and different as-
pects of human health and well-being.

A particularly interesting example of mobile healthcare monitoring is given
by LifeWatch 6, a smartphone that is equipped with health sensors that con-
stantly monitor the user’s vital parameters including ECG, body temperature,

6 www.lifewatch.com

www.lifewatch.com
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blood pressure, blood glucose, heart rate, oxygen saturation, body fat percent-
age and stress levels. A user has to perform a specific action in order to take
health measurements. For example, a user should hold the phone’s thermometer
against the forehead in order to measure the body temperature, and to take
ECG readings, the user should clutch the phone horizontally with a thumb and
forefinger placed directly on top of a set of sensors that are placed on the sides of
the phone. The sensor data are sent to the cloud for the analysis and the results
are delivered back to the user within a short time interval. Such a phone can
prove to be extremely useful in the healthcare domain. However, there is still no
proof of the accuracy of its results.

Although within their owners’ reach for most of the time, smartphones do not
stay in a constant contact physical with the users, and consequently are limited
with respect to personal data they can provide. More recently, mobile phone com-
panies have introduced smartwatches that link with mobile phones and enable
the users to perform actions on the mobiles without actually interacting with
them. These devices open up new possibilities for health data sensing. First, they
maintain continuous physical contact with their users, and second, they host a
new set of sensors, usually unavailable on traditional smartphones. In general
these devices come with the accelerometer, heart rate and body temperature sen-
sors. Smartwatches are inspired by the concept of a smart-wristband, a device
that monitors the health state of a user and presents it in a visual form on the
linked mobile phone. Smart-wristbands enable real-time health state monitoring,
and have achieved a considerable commercial success among health-aware pop-
ulation (e.g. Jawbone7). Initially these bands were able to report only a user’s
physical activity. However, new sensors, such as body temperature and hearth
rate, have been introduced, together with a more sophisticated data analytics
and presentation to the user.

Mobile sensing on the phone is for the majority of readings limited by the
amount of physical contact the user makes with the phone. Smartwatches and
smart-wristbands ensure that the contact is there, yet are limited to a par-
ticular part of the users body – her wrist. Sensor embedded smart-wearables
designed to dedicatedly monitor specific health related parameter from a spe-
cific part of a user’s body, have appeared recently and promise more reliable
sensing. Such smart-wearables could enable healthcare practitioners to obtain
their patients’ health data continuously and in the natural environment of the
patient. These devices come with a variety of health sensors. Pulse and oxygen in
blood sensor, airflow sensor, body temperature sensor, electrocardiogram sensor,
glucometer sensor, galvanic skin response sensor (GSR), blood pressure sensor
(sphygmomanometer), and electromyography sensor (EMG), are some examples
of the health sensors embedded in the smart-wearables. Some examples of smart-
wearables include Epoc Emotiv [6], an EEG headset capable of capturing brain
signals that can be analysed to infer a user’s thoughts, feelings, and emotions.
MyoLink is another wearable that can continuously monitor the user’s muscles
and heart. It can capture muscle energy output, which in turn can be used to

7 jawbone.com

jawbone.com
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quantify the user’s fatigue, endurance and recovery level. Also, it can be placed
on the chest to continuously track the heart rate of the user. ViSi mobile8, worn
on a wrist, measures blood pressure, haemoglobin level, heart rate, respiration
rate, and skin temperature. The device is highly portable and enables the user
to monitor their health at anytime and anywhere.

The next step in wearable computing is the one in which devices become
completely stealth, and as in the Weiser’s vision of pervasive computing, com-
pletely integrated with people’s lives [32]. Shrinking the size of smart-wearables
is push in that direction, for example reducing the size of a device from some-
thing obtrusive to a small adaptive device that the user can wear on their bodies
and forget about it. BioStamp [23] is a device composed of small and flexible
electronic circuits that stick directly to the skin like a temporary tattoo and
monitors the user’s health. It is a stretchable sensor capable of measuring body
temperature, monitoring exposure to ultraviolet light, and checking pulse and
blood-oxygen levels. The company envisions future versions of BioStamp able
to monitor changes in blood pressure, analyse sweat, and obtain signals from
the user’s brain and heart in order to use them in electroencephalograms and
electrocardiograms [23].

These wearable sensors enable the continuous measurement of health metrics
and deliver treatment to the patients on time. Yet, the difficulty of continuous
monitoring is not the only problem in modern healthcare. Recent studies have
shown that around 50% of the prescribed drugs are never taken [18,19], and
thus, prescribed therapies fail to improve the health of the patients [26]. In or-
der to address this problem, Hafezi et al. [7] proposed Helius, a novel sensor
for detecting the ingestion of a pharmaceutical tablet or a capsule. The system
is basically an integrated-circuit micro-sensor developed for daily ingestion by
patients, and as such allows real-time measurement of medication ingestion and
adherence patterns. Moreover, Helius enables practitioners to measure the cor-
relation between drug ingestion and patients health parameters, e.g. physical
activity, heart rate, sleep quality, and blood pressure, all of which can be sensed
by mobile sensors.

The ecosystem of devices supporting health sensing is already substantial and
constantly increasing. Soon, healthcare practitioners will have a remote multi-
faceted view of a patient’s health in real time. The key enabler is the unobtru-
siveness of these smart sensing devices. Furthermore, issues such as the accuracy
of measurements, accountability for mistakes and the security of a user’s pri-
vacy, need to be thoroughly addressed before these devices can penetrate into
the official medical practice.

In this paper we discuss the novel concept of anticipatory mobile digital
health, outlining the challenges and opportunities in this promising field. Al-
though smart health sensing devices are still in their infancy, we believe that we
will witness a rapid evolution of this research area in the coming years.

8 www.visimobile.com
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3 Anticipatory Mobile Computing

Anticipation, for living systems, is the ability to reason upon past, present and
predicted future information. Such, a systems Rosen described as “a system
containing a predictive model of itself and/or its environment, which allows it
to change state at an instant in accord with the model’s predictions pertaining
to a later instant” [27], thus indicated that there is an internal predictive model
that an anticipatory system builds and maintains. The concept of an antici-
patory computing system envisions a digital implementation of such a model,
and automated actioning based on the model’s predictions. Yet, an anticipatory
computing system is of interest only if the anticipation carries a value for the
end-user.

We argue that modern mobile computing devices fulfil the necessary prereq-
uisites for anticipatory computing. First, thanks to built-in sensors and person-
alised usage these devices can gather the information about theirs, and indirectly
the user’s state, and the state of the environment; second, their computing ca-
pabilities allow devices to build predictive models of the evolution of the state;
finally, the bond between a device and its end-user is so tight that automated
suggestions (based on the anticipation) a device might convey to a user, are
likely to influence the user’s actioning. After all, people already look into their
smartphones when they need to navigate in a new environment or choose a
restaurant. To clarify the concept of anticipation on mobile devices (termed An-
ticipatory Mobile Computing), in Figure 1 we sketch a system that senses the
context and builds a model of the environment evolution, which gives it the
original predicted future. The system then evaluates the possible outcome of its
actions on the future. An action that leads to the preferred modified future is
realised through the feedback loop that involves interaction of the system with
the user.

Fig. 1. Anticipatory mobile systems predict context evolution and the impact that
current actions can have on the predicted context. The feedback loop consisting of a
mobile and a human enables the system to affect the future.
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4 Anticipatory Healthcare System Architecture Design

The opportunity to infer the health and well-being state of an individual with
the help of mobile sensing, together with the perspective of anticipatory mo-
bile computing, pave the way for preventive healthcare through anticipatory
mobile healthcare systems. We sketch the main ideas behind such a system in
Figure 2. Physiological (e.g. heart rate, GSR) and conventional mobile sensors
(e.g. GPS, accelerometer) provide training data for machine learning models of
the context (e.g. a user’s depression level) and its evolution. The models predict
the future state of the context, termed the original future, and the state after
an intervention or a therapy, termed the modified future. Based on the predic-
tions, a therapy with the most preferred outcome is selected and conveyed to
the user. Finally, different users may react differently to the same therapy, and
close sensor-based patient monitoring, together with a-priori inputs, such as a
user’s genetic background, are used to custom tailor the therapies.

Fig. 2. Anticipatory mobile systems predict context evolution and the impact their
actions can have on the predicted context. The feedback loop consisting of a mobile
and a human enables the system to affect the future.

A practical realisation of an anticipatory mobile digital health system requires
that the following building blocks are present:

– Mobile sensing. The role of this block is to manage which of a number of
available mobile sensors are sampled, and how often. Mobile devices’ sensors
were originally envisioned as occasionally used features, and their frequent
sampling can quickly deplete a device’s battery. At the same time, important
events may be missed if sampling is too coarse.

– Therapy and prevention toolbox. This block contains definitions of pos-
sible therapies and prevention strategies that can be delivered to the user.
Although in future we envision further automatisation of this module, for
now, we feel that a professional therapist’s expertise should be harnessed to
limit the number of possible therapies, and oversee their deployment.

– Machine learning core. Anticipatory mobile digital health employs ma-
chine learning for two separate aspects of health state evolution modelling:
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context evolution model and therapy/prevention-effect model. The former
connects sensor data with higher-level context, and provides a predictive
model of how the context might evolve. The latter provides a picture of how
different therapies might affect a user’s health state. We discuss these models
in detail in the next section.

– User interaction interface. The success of an anticipatory mobile digital
healthcare system is limited by the user’s compliance with the provided
therapy and prevention strategy. The look, feel and the behaviour of the
mobile application that delivers the therapy or prevention strategy to a user
is crucial in this step. in the following section, we also discuss the challenges
in designing a successful user interaction interface.

5 Challenges and Opportunities

Numerous challenges obstruct the path towards implementations of anticipatory
mobile digital healthcare systems. Rooted in mobile sensing, anticipatory mobile
digital health faces challenges such as resource, primarily energy, inefficiency of
continuous sensing, and the difficulty of reliable context modelling. Yet, these
challenges are common for a larger field of mobile sensing, and a thorough dis-
cussion on these issues is available elsewhere [11,22,9]. Instead, here we focus on
aspects that are unique to anticipatory mobile healthcare. The use of machine
learning algorithms to model and predict user behaviour and the effect of a ther-
apy or a prevention strategy on the future health state of a specific user is the
main challenge. The value of machine learning models, for instance, increases
with the amount of available training data for her. Second, the mobile moni-
tors the user, and may suggest therapies, yet, it is the user herself that decides
whether to take the therapy or to follow certain preventive measures or not.
Besides machine learning, future anticipatory mobile digital health developers
should pay a special attention to the human-computer interaction issues in this
field, and try to answer – what is the best way to convey an advice/therapy to
a user, so that the compliance with the proposed therapy or prevention strat-
egy is the highest? Finally, the area of ethics, responsibility and entity roles in
anticipatory mobile digital health remains an uncharted territory. In the rest of
the section we discuss each of the challenges individually, and provide positional
guidelines for overcoming the challenges.

5.1 Machine Learning in Anticipatory Mobile Digital Health

Anticipatory mobile digital health, as stated in the previous section, employs
machine learning for two separate aspects of health state evolution modelling:
context evolution model and therapy/prevention-effect model. First, a model of
a user current and predicted future health state is needed. In this model, a
relationship between mobile sensor data and high-level health state is built. The
model can be direct, if certain values of physiological sensor readings indicate
a certain health state, or indirect, if sensor readings reveal contextual aspects
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that can be connected to a health state of an individual – for instance, GPS
readings can reveal user mobility, which in turn can hint a user’s depression
state [2]. In the next step, inference models are extended to provide predictions
of the future state of the health state, either directly, or indirectly through the
predictions of the future context. Forecasting user’s next location is an active
area of research, with substantial achievements [1,29,3]. For many other aspects
of the user’s behaviour and health state, reliable predictive models still do not
exist, and even the possibility of them being built remains an open question.

The second major machine learning model in anticipatory mobile digital
health is the model of the impact of a possible therapy or prevention strategy
on the predicted future health state of a user. There are two non-exclusive ways
to construct such a model: one is to harness the existing expertise in healthcare
to map available therapies to health state transitions. For example, we could
map antidepressants to a transition from depressive states to a healthy state.
However, these rules are not suitable for preventive healthcare. Anticipatory
mobile digital health operates on predictions, and consequently therapies should
aim to prevention. In addition, although mobile devices remain highly personal,
and the sensor data uncovers fine-grained individual health state information,
these general rules limit the ability of the system to deliver personalised health-
care. An alternative approach is to build a therapy/prevention-effect model by
monitoring the evolution of a user state after a proactive therapy or prevention
strategy is delivered. By comparing the original predicted state with the ac-
tual state recorded some time after the therapy (or prevention strategy), we can
identify the relationship between the therapy (or prevention strategy) and the
future health state change. Built this way, a model reveals successful proactive
therapies, which is difficult to achieve in the traditional practice. Moreover, what
works for one patient may not work for another – these models are highly person-
alised, and can reveal therapies that are useful for a particular kind of a person
only. Still, we argue that these models should not be built from the scratch – the
available therapies that could be automatically suggested to a particular patient
in a particular situation should be determined by the rules stemming from the
existing medical expertise.

Learning with a user. Automated tool-effect modelling in anticipatory
mobile digital health requires that a therapy (or prevention strategy) is induced
to a user so that its effects can be observed. This outcome is then used to train
and refine the model. Reinforcement learning where an agent uses a tool in
the intervention environment (which for example can be represented through a
Markov decision process) is a natural way to model the problem [30]. In every
step, a certain tool is selected, used, and the observed change in the health state
elicits a reward that reflects how positive the change is.

Measuring health state. Thus, there is a need for a suitable metric for
measuring the health state change. Here we need to evaluate the effect of a
proactive therapy or prevention strategy, basically compare the original predicted
health state and the modified predicted health state. We argue that the comparison
metric has to be domain dependent. For example, if an anti-stress therapy is
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evaluated, the difference between the predicted skin conductivity and heart rate
values without an intervention, and the actual values after the intervention,
is a reasonable measure of stress level change [8]. However, system designers
should have in mind that the metric has to be both suitable for machine learning
algorithms as well as relevant from the healthcare point of view.

Learning without interfering. Reinforcement learning uncovers the map-
ping between therapies and health state changes. Delivering a previously unused
therapy or prevention strategy refines the model, as we learn more about how
the user reacts to this tool. From the practical point of view, however, we face a
dilemma: use a tool that is known to result in a positive health change outcome,
or experiment with an unused tool that might yield an even better outcome.
In reinforcement learning this dilemma is known as exploration vs. exploitation
trade-off. Strategies for solving the dilemma in an anticipatory mobile digital
health setting should be aware of the possible irreversible negative consequences
of a wrong therapy or prevention strategy. Preferably, the system should learn as
much as possible without explicit delivery of therapies to a user. Such a learn-
ing concept is called latent learning. It is a form of learning where a subject
is immersed into an unknown environment or a situation without any rewards
or punishments associated to them [31]. Latent learning has been demonstrated
in living beings who form a cognitive map of the environment solely because
they are immersed into the environment, and later use the same map in decision
making. We argue that mobile computing devices, through multimodal sensing,
can harness latent learning to build a model of the user reaction with respect
to certain actions or environmental changes that correspond to ones targeted by
the therapies. This is particularly relevant for therapies that are not based on
medications, such as behavioural change interventions [20]. For example, sup-
pose a depression prevention system can provide the user with the suggestion
to go out for a dinner with friends. We can get an a priori knowledge of how
this suggestion would affect the user, for example if on a separate occasion we
detect that the participant went out for a dinner with friends, and we gauge
the depression levels, estimated through mobility and physical activity metrics,
before and after the dinner. Defining how the expected action – going out with
friends – should manifest from the point of view of sensors – e.g., a number of
Bluetooth contacts detected, location, time of the day – is one of the prerequi-
sites for practical latent learning. Again, interdisciplinary efforts are crucial to
ensure that the detected reaction corresponds to the one that should be elicited
by the tool.

5.2 Personalised Healthcare

Current therapies are often created as “one size fits all”, yet in many cases
individuals react differently. For example, antidepressants are ineffective in 38%
of the population, while cancer drugs work for only one quarter of the patient
population [24]. Personalised therapies promise to revolutionise healthcare, by
avoiding the traditional trial-and-error therapy prescription, minimising adverse
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drug reactions, revealing additional or alternative uses for medicines and drug
candidates [16], and curbing the overall cost of healthcare [24].

Anticipatory mobile digital health is poised to bring personalised healthcare
closer to mainstream practice. Not only can mobile sensing provide a glimpse into
individual behavioural patterns, identifying risky lifestyles, but therapy/prevention-
effect machine learning models can also take into account a patient’s genetics in
order to individualise the therapy or prevention strategy. Investigation of which
genes impact the occurrence and reaction to a treatment of a certain disease
is a very active area of research. The potential for healthcare improvement is
immense, having in mind that with some conditions, such as melanoma tumors,
the majority of cases are driven by certain person-specific genetic mutations,
and could be targeted by specific drugs [24]. The relationship is not one way,
and anticipatory mobile digital health could also help with pharmacogenomics,
the study of how genes affect a person’s response to drugs. Identifying com-
mon pieces of genetic background in populations who reacted to an anticipatory
therapy or prevention strategy in the same way would help find the relation-
ship between genes and health treatments. Finally, the inclusion of the genetic
background in the common medical practice is not far from reality – in 2014 a
human genome sequencing for less than USD $1000 became available.

5.3 HCI Issues in Anticipatory Mobile Digital Health

Despite the automation that anticipatory mobile digital health brings, in the
end, it is up to a user to comply with the given therapy or prevention strategy.
This is particularly important for behavioural change intervention therapies, that
are delivered in cases where the health state is directly influenced by patient’s
behaviour. Consequently, the communication between the system and the patient
has to be seamless. Users are an important part of the system, and their inclusion
requires an appropriate interface between the participant and the system. As
noted by Russell et al. [28], a system that autonomously brings decisions and
evolves over the course of its lifetime needs to be transparent to the user. Through
the user interface such a system must be understandable by the user and capable
of review, revision, and alteration. In addition, the content should be framed to
emphasise that the tool can help, yet it is fundamental to avoid to harass and
patronise the participant.

The timing of a therapy or a prevention strategy is also important for its
successful delivery. This is particularly true for automated therapies delivered via
a mobile device. An inappropriately timed intervention that comes, for instance,
when a patient is in a meeting, or riding a bicycle, may lead to annoyance, or may
be completely overlooked by the patient. Mobile sensing helps with identifying
opportune moments to deliver therapies. The context in which a user is, such as
her location, physical activity and engagement in a task, to an extent determines
her interruptibility [21,17]. Machine learning and mobile sensing is harnessed for
monitoring a user’s reaction to an interruption arriving when the user is in a
certain context, and from there on a model of personal interruptibility is built.
Querying the model with a momentarily value of a user’s context returns the
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estimated interruptibility at the moment. While practical implementations of the
above models already exist [21], in future we envision predictive models of user
interruptibility. Finally, we highlight that opportune moments denote those time
at which a patient is likely to quickly acknowledge/read the content of a delivered
message. Identifying moments at which the delivered information will have the
highest medical impact is even more important, yet due to the difficulty of getting
the training data (we would need to deliver the same therapy or prevention
strategy at different times to the same user) identifying such moments remains
very challenging.

5.4 Ethics and Accountability

Privacy issues in mobile sensing emerged soon after the proliferation of smart-
phones started about a decade ago. Misuse and leaking of information that can
be collected by a mobile device, such as a user’s location, collocation with other
people, physical activity of a user, may deter people from trusting mobile appli-
cation. Trust is a key component for the success of anticipatory mobile digital
health applications, and every care should be taken that personal information
does not leak. Ensuring that sensor data do not leave the device at which they
were collected is one way to minimise the risk. However, this complicates the
construction of joint machine learning models discussed earlier.

The responsibility chain in the domain of anticipatory mobile digital health
is yet to be defined. Unsuccessful therapies can have serious consequences. It
is unclear who is to blame if a delivered therapy or prevention strategy does
not improve the health state of a patient, or even worse, endangers the person’s
life. A therapist who designed the therapy, a software architect who devised the
underlying machine learning components, and the patient herself, all play a role
in the process.

6 Conclusions

Personalised and proactive healthcare brings undisputed benefits in terms of
therapy (or prevention strategy) efficiency and cost effectiveness of the health-
care system. Mobile devices have a potential to become both our most vigilant
observers, and closest advisors. Anticipatory mobile digital health harnesses the
sensing capabilities of mobiles to learn about the user health state and predict
its evolution, so that proactive therapies tackling predicted health issues are de-
liver to the user in advance. With the help of machine learning that takes into
account rich sensor data and a user’s genetic background, anticipatory mobile
digital health applications can tailor personalised therapies. Yet, in addition,
the concept can be used to learn more about how therapies affect different de-
mographics, users who behave in a certain way, or have a particular genetic
background. Generalising from a larger pool of users and therapies can identify
groups for which a therapy (or prevention strategy) is successful, basically un-
covering new facts about drugs. Finally, we believe anticipatory mobile health
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applications warrant a discussion on their inclusion into the health insurance
frameworks.
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