
Article

Multiparty Delegated Quantum Computing

Elham Kashefi 1,2 and Anna Pappa 1,3,∗

1 School of Informatics, University of Edinburgh, Edinburgh EH89AB, UK; ekashefi@gmail.com
2 Laboratoire d’Informatique de Paris 6-CNRS, Université Pierre et Marie Curie, 75005 Paris, France
3 Department of Physics and Astronomy, University College London, London WC1E6BT, UK
* Correspondence: a.pappa@ucl.ac.uk

Received: 29 May 2017; Accepted: 26 July 2017; Published: 30 July 2017

Abstract: Quantum computing has seen tremendous progress in the past few years. However, due
to limitations in the scalability of quantum technologies, it seems that we are far from constructing
universal quantum computers for everyday users. A more feasible solution is the delegation of
computation to powerful quantum servers on the network. This solution was proposed in previous
studies of blind quantum computation, with guarantees for both the secrecy of the input and of the
computation being performed. In this work, we further develop this idea of computing over encrypted
data, to propose a multiparty delegated quantum computing protocol in the measurement-based
quantum computing framework. We prove the security of the protocol against a dishonest server and
against dishonest clients, under the assumption of common classical cryptographic constructions.

Keywords: quantum cryptography; secure multiparty quantum computation; composability

1. Introduction

Since the early days of quantum computing and cryptography, research has been focused on
finding secure communication protocols for different cryptographic tasks. However, the no-go results
for bit commitment [1,2] and oblivious transfer [3] soon provided evidence that it is not possible to
guarantee perfect security against any type of quantum adversary. In fact, the authors of [4] showed
that any non-trivial protocol that implements a cryptographic primitive necessarily leaks information
to a dishonest player. It directly follows that two-party unitaries, and by consequence multi-party
ones, cannot be used without further assumptions, to securely implement cryptographic protocols.
An important question that arises then is what are the cryptographic assumptions that are needed in
order to achieve secure multiparty computation.

Dupuis et al. [5,6] examined the case of two-party computation and showed that in order to
guarantee security, access to an AND gate for every gate that is not in the Clifford group plus a final
SWAP gate between the two parties’ registers are required. In the multiparty setting, Ben-Or et al. [7]
rely on an honest majority assumption in order to build a verifiable quantum secret sharing scheme
that is the basis of the multiparty quantum computation. From a different perspective, much research
in quantum computing has been focused on delegation of computation [8–11]. This is because the
current state-of-the-art is still far from constructing scalable quantum devices, and it seems that the first
quantum networks will rely on the use of a limited number of powerful quantum servers. Common
requirements from delegated computation schemes are that they are provably secure (the input of
the computation remains private), blind (the computation performed is hidden from the server) and
verifiable (honest participants can verify the correctness of the computation).

In this work, we extend previous research on quantum computing, by examining the problem
of secure delegation of a multiparty quantum computation to a powerful server. More specifically,
we suppose that a number of clients holding some quantum input state want to perform a unitary
operation on it, but are lacking the computational abilities to do so. They would therefore like to

Cryptography 2017, 1, 12; doi:10.3390/cryptography1020012 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
http://dx.doi.org/10.3390/cryptography1020012
http://www.mdpi.com/journal/cryptography

Cryptography 2017, 1, 12 2 of 20

delegate the computation to a server, while keeping their quantum inputs, quantum outputs and
the performed computation secret. In the proposed protocol, the quantum operations required from
the clients are limited to creating |+〉 states and applying X gates and rotations around the z-axis.

As already mentioned, in order to provide any type of security in the multiparty setting, we need
to make some assumptions about the dishonest parties. In this work, we will need two assumptions.
First, we will assume that the clients have secure access to classical multiparty functionalities, which we
will treat as oracles. This is a common construction in classical secure multiparty computation and uses
assumptions on the participating parties, like honest majority or difficulty inverting specific one-way
functions. The second assumption is that a set of malicious clients cannot corrupt the server, and the
other way around. We therefore prove security against two adversarial models, against a dishonest
server and against a coalition of dishonest clients. To achieve this type of security, all clients contribute
to some form of quantum encryption process, while at the same time, they commit to the values that
they use for the encryption. Security in the more general scenario, where a server and some clients
collaborate to cheat, remains an open question (however, see [12] for a relevant model with only one
client, where the server is also allowed to provide an input).

A big advantage over previous protocols [7] is that quantum communication between all clients is
no longer required in order to provide security against dishonest participants. By using a remote state
preparation procedure, we manage to remove any quantum communication between clients, making
our protocol adaptable to a client/server setting. More interestingly, the quantum communication
from the clients to the server can be done in single-qubit rounds, not necessitating any quantum
memory from the clients. Furthermore, all quantum communication takes place in the preparation
(offline) phase, which makes the computation phase much more efficient, since it only requires
classical communication.

Finally, we should note that in this work, we are focusing on proving security against malicious
quantum adversaries in order to provide a simple protocol for quantum multiparty computation.
As such, no guarantee is given on the correctness of the computation outcome. However, it is normal
to assume that in future quantum networks, the quantum servers would want to maintain a good
reputation and provide the correct outcome to the clients in case the results get cross-checked with
other competing servers. In principle though, it seems possible to add verification processes in our
protocol, by enforcing honest behaviour, following the work of [6,11].

2. Materials and Methods

2.1. Measurement-Based Quantum Computing

Delegated computation is commonly studied in the Measurement Base Quantum Computing
(MBQC) model [8], where a computation is described by a set of measurement angles on an entangled
state. A formal way to describe an MBQC computation was proposed in [13] and is usually referred
to as an MBQC pattern. In the general case of quantum input and quantum output, such a pattern
is defined by a set of qubits (V), a subset of input qubits (I), a subset of output qubits (O) and a
sequence of measurements {φj} acting on qubits in Oc := V \O. Due to the probabilistic nature of
the measurements, these angles need to be updated according to a specific structure. This structure
is described by the flow f of the underlying graph G of the entangled state. The flow is a function
from measured qubits to non-input qubits along with a partial order over the nodes of the graph such
that each qubit j is X-dependent on qubit f−1(j) and Z-dependent on qubits i for which j ∈ NG(f (i)),
where NG(j) is the set of neighbours of node j in graph G. We will denote the former set of qubits by
SX

j and the latter set of qubits by SZ
j . If we define the outcome of a measurement on qubit i as si, then

the new measurement angle for qubit j is:

φ′j = (−1)sX
j φj + sz

j π (1)

Cryptography 2017, 1, 12 3 of 20

where sX
j =

⊕
i∈SX

j
si and sZ

j =
⊕

i∈SZ
j

si (we will use this notation throughout the paper).

2.2. Multiparty Delegated Quantum Computing

In this section, we will give some necessary definitions for multiparty delegated quantum
computing protocols. We will consider multiple clients C1, ..., Cn that have registers C1, ..., Cn. To allow
the computation to be done in a delegated way, we also introduce the notion of a server S, who is
responsible for performing the computation of a unitary U on input ρin. The server has register S ,
but no legal input to the computation. We also denote with D(A) the set of all possible quantum states
(i.e., positive semi-definite operators with Trace 1) in register A. We denote the input state (possibly
entangled with the environment R) as:

ρin ∈ D(C1 ⊗ · · · ⊗ Cn ⊗R) (2)

In what follows, we consider that the input registers of the participants also contain the classical
information necessary for the computation. We denote with L(A) the set of linear mappings fromA to
itself, and we call a superoperator Φ : L(A)→ L(B) that is completely positive and trace preserving
a quantum operation. Finally, we will denote with IA and 1A the totally mixed state and the identity
operator, respectively, in register A.

In order to analyse the properties of the protocol to follow, we will first consider an abstract
system that takes as input ρin and the computation instructions for implementing U in MBQC
(i.e., the measurement angles {φj}) and outputs a state ρout. We will call such a resource an ideal
functionality because this is what we want to implement. In order to allow the server to act dishonestly,
we also allow the ideal functionality to accept input from the server, which dictates the desired
deviation in the form of quantum input and classical information (Figure 1). In the case where the
server is acting honestly, the ideal functionality is outputting the correct output ρout = (U ⊗ 1R) · ρin,
where for the ease of use, we will write U · ρ instead of UρU† each time we talk about applying
a unitary operation U to a quantum state ρ.

Figure 1. The ideal functionality that implements a multiparty quantum computation (MPQC), given
by measurement angles {φj}

q
j=1 on input ρin.

Definition 1 (MPQC Delegated Resource). A multiparty quantum computation (MPQC) delegated resource
gets input ρin and computation instructions from n clients and leaks the size of the computation q to the server.
The server can then decide to input a quantum map and a quantum input. The output of the computation is
ρout = (U ⊗ 1R) · ρin if the server does not deviate; otherwise, the output is defined by the quantum deviation
on the inputs of the server and the clients.

A protocol can in general be modelled by a sequence of local quantum operations on
the participants’ registers together with some oracle calls, which are joint quantum operations on

Cryptography 2017, 1, 12 4 of 20

the registers. Here, we will consider the delegated version of communication protocols [5–7], where n
clients are delegating the computation to a server.

Definition 2. We denote a t-step delegated protocol with oracle calls between clients Ck (k ∈ [n]) and
a server S, with πO = ({πk}n

k=1, πS,O). If we denote by Ck and S the registers of the clients and the server,
respectively, then:

• Each client’s strategy πk, k ∈ [n] consists of a set of local quantum operators (Lk
1, . . . , Lk

t) such that
Lk

i : L(Ck)→ L(Ck) for 1 ≤ i ≤ t.
• The server’s strategy πS consists of a set of local quantum operators (LS

1 , . . . , LS
t) such that LS

i : L(S)→
L(S) for 1 ≤ i ≤ t.

• The oracle O is a set of global quantum operators O = (O1, . . . ,Ot) such that Oi : L(C1 ⊗ · · · ⊗ Cn ⊗
S)→ L(C1 ⊗ · · · ⊗ Cn ⊗ S) for 1 ≤ i ≤ t.

Therefore, at each step i of the protocol πO, all participants apply their local operations, and
they also jointly apply a global Oi. If we define the joint quantum operation Li = L1

i ⊗ · · · ⊗ Ln
i ⊗ LS

i ,
then the quantum state at step i when the input state ρin is defined by Equation (2) is:

ρi(ρin) := (OiLi . . .O1L1) · ρin (3)

At the end of the protocol, the output will be:

πO(ρin) = (OtLt . . .O1L1) · ρin (4)

A commonly-used oracle is the communication oracle that transmits information from one
participant to the other, by just moving the state between registers. Due to no-cloning, however,
when the information transmitted is a quantum state, we require that the oracle also erases
the transmitted information from the original party’s register.

Another oracle that we will use in our protocol is what we call the computation oracle, which can
be thought of as a classical ideal functionality (i.e., a box that takes inputs from all parties and outputs
the correct outputs of the functionality on the specific inputs). All classical multiparty computation
in this work will be done with the help of such a computation oracle. Under standard cryptographic
assumptions, there exist classical protocols for building such oracles that emulate in a composable
way any classical multiparty functionality. In [14], this is shown for an honest majority of participants,
given that they share pairwise secure classical channels and a physical broadcast channel. Since the last
physical requirement is quite strong and constructions of broadcast channels in a non-physical way are
usually based on authenticated Byzantine agreement, which is non-composable, we are led to relax the
requirement of the honest majority to either having more than 2/3 of honest participants or to allow
them access to other cryptographic constructions like oblivious transfer [15,16]. The quantum lifting
theorem of Unruh [17] states that if there exists such a construction that is secure against classical
adversaries, then the same also holds against quantum adversaries, therefore allowing us to replace any
classical multiparty computation in a quantum protocol, by using the computation oracle. This result
was proven in the universal composability framework, but it also holds in the Abstract Cryptography
(AC) framework that we will use in this paper, since the two are equivalent when there is only one
malicious participant (i.e., we need to build one global simulator).

2.2.1. Properties

In the following section, we will present a delegated protocol πO and claim that it emulates
the MPQC resource of Figure 1. We can evaluate how well this is done by measuring how well
a global distinguisher can understand whether it is interacting with one system or the other. This is
quantified by using a pseudo-metric on the space of the resources that is often referred to as the
distinguishing advantage of the distinguisher. The reason why a global distinguisher is used to

Cryptography 2017, 1, 12 5 of 20

quantify security instead of an adversary is composability. In what follows, we will use the AC
composable framework [18] to model the properties of our protocol and prove its indistinguishability
from the ideal functionality of Figure 1.

We will deal with three distinct cases of malicious behaviour: (a) when all clients and the server
are honest, (b) when the server is dishonest and (c) when a subset D of clients is dishonest. For Case
(a) where everyone acts honestly, we consider that the MPQC resourceM has a filter ⊥ blocking all
dishonest behaviour, and therefore, we want to prove that:

d(πO,M⊥) ≤ ε (5)

In Case (b) when the server is acting dishonestly, we want that:

d(π1 . . . πnO, σSM) ≤ ε (6)

where σS is a simulator for the dishonest server. Finally, for Case (c), when a subset D of clients is
dishonest, we want to prove that:

d(πHOπS, σDM⊥) ≤ ε (7)

whereH is the set of honest clients and σD is a simulator for the dishonest clients.
In the above equations, the filter ⊥ blocks input from the server’s side, since the MPQC resource

of Definition 1 accepts deviated behaviour only from the server. The clients, on the other hand,
have the liberty to choose the quantum state that they will give as input to the MPQC resource.
However, this does not mean that the clients behave honestly during the protocol. We will see that the
protocol “enforces” honest behaviour on clients by asking them to secretly share their classical values
in a verifiable way, in order to commit to using the same values during the protocol. This is done
using Verifiable Secret Sharing (VSS) schemes, where a dealer wants to share their secret information
with all parties, in such a way that a group of honest parties can reconstruct the sharing without the
help of the dealer. There are two stages in a VSS protocol: the sharing stage, where the dealer and
the parties exchange messages depending on the dealer’s secret and the parties’ chosen randomness,
and the reconstruction stage, where the parties apply a function on their received messages in order to
reconstruct the dealer’s secret. VSS schemes can be viewed as a multiparty computation, and we can
therefore use a computation oracle under the same cryptographic assumptions as previously discussed
(see [19,20] for examples of VSS based on different constructions).

The distinguishing advantage of Equations (5)–(7) can reduce to simple measures of distance
between the states that a distinguisher sees, when interacting with the real and ideal system.
For example if the outputs of the resources are classical strings, then a distinguisher will be given
strings sampled from either the probability distribution produced by the ideal or the real resource.
He/she then needs to decide from which one the strings were sampled; therefore, the distinguishing
advantage is equal to the total variation distance between the two probability distributions. If the
outputs of the resources are quantum states, then the distinguishing advantage is given by the Helstrom
measurement, which depends on the trace distance of the states of the two systems.

3. The Protocol

In this section, we propose a cryptographic protocol that constructs an MPQC resource using
quantum and classical communication between the n clients and the server. We suppose that the clients
want to perform a unitary U on their quantum inputs, translated in an MBQC pattern on a brickwork
state using measurement angles {φj}

q
j=1, where q = |Oc|. For simplicity, we consider that each client

Ck (k ∈ [n]) has one qubit as input and one qubit as output, but it is easy to generalize to any other case.
We will use the following labelling: client Ck has as input qubit “k” and as output qubit “q + k”, while
the first qubit of the second column in Figure 2 has label “n + 1”, the last one in the second column
“2n”, etc.

Cryptography 2017, 1, 12 6 of 20

We want to guarantee that the private data of the clients remain secret during the protocol. Here,
each client’s data consist of the quantum input and output, while we consider that the measurement
angles are not known to the server (they can be known to all clients or to a specific client that delegates
the computation). The protocol first starts with a process named “remote state preparation” [21]. The
clients send quantum states to the server, who then entangles them and measures all but one. In the
case where one of the clients has a quantum input, he/she sends that quantum state one-time padded
to the server, while the rest of the clients send Z-rotated |+〉 states to the server (Algorithm 1, Figure 3).
In the case of the extra “operational” qubits in Oc \ I, all clients send rotated |+〉 states to the server
(Algorithm 2, Figure 4). In this way, the clients remotely prepare quantum states at the server’s register
that are “encrypted” using secret data from all of them, without having to communicate quantum
states to each other.

However, since each client is supposed to only choose their own quantum input, and not affect
the input of the other clients, the protocol should ask the clients to commit to using the same classical
values for the duration of the protocol. This is done by using a VSS scheme each time a classical value
is chosen by a client. In the case of the “remote state preparation” process, each time a client sends
a Z-rotated |+〉 state, that rotation needs to be corrected at a later point in the protocol. In order to
ensure that the “reverse” rotation is used later, the clients send many copies of randomly Z-rotated |+〉
states (Algorithm 3) and commit (via VSS) to the rotations used. They then get tested by the server and
the rest of the clients on the correctness of the committed values. A similar commitment takes place
for the quantum one-time pad that each client performs on their quantum input, since the classical
values used affect the measurement angles of consecutive layers of computation.

At the end of the “remote state preparation” phase, the server entangles the non-measured states
in a universal graph state (for example, in the brickwork state of Figure 2 [11]). Since the proposed
protocol uses MBQC to compute the desired functionality, there is an unavoidable dependency between
measurement angles of the qubits in different layers of computation. This means that the clients need
to securely communicate between them and with the server, in order to jointly compute the updated
measurement angles, taking into account the necessary corrections from the previous measurements
and the dependency sets of each qubit. This procedure is purely classical and uses VSS schemes and
a computation oracle to calculate the necessary values at each step of the protocol and to ensure that
the clients behave honestly.

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .

. . .

Figure 2. The brickwork state with the encrypted quantum input in the first layer of computation.
The colours of the qubits denote their origin, while the encrypted input state can also be entangled
with the environment R. During the computation, all qubits will be measured except the last layer.

Cryptography 2017, 1, 12 7 of 20

Algorithm 1 State preparation for j ∈ I.
server stores states received from clients Ck to distinct registers Sk ⊂ S (k = 1, . . . , n);
for k = 1, . . . , n− 1

if k = j then
break;

if k = n− 1 and j = n then
break;

if k = j− 1, then
CNOT on Sk ⊗ Sk+2;

else
CNOT on Sk ⊗ Sk+1;

end;
measure state in Sk and get outcome tk

j ;
end;
if j = n then

CNOT on Sn−1 ⊗ Sn;
measure state in Sn−1 and get outcome tn−1

n ;
else

CNOT on (Sn ⊗ Sj);
measure state in Sn and get outcome tn

j ;
end;

C1 :
∣∣∣∣+θ1

j

〉
t1

j

C2 :
∣∣∣∣+θ2

j

〉
• t2

j

C3 :
∣∣∣∣+θ3

j

〉
• t3

j

...
...

...
. . .

Cn :
∣∣∣+θn

j

〉
• tn

j

Cj : Xaj Z(θ j
j)
[
Cj
]

• Xaj Z(θj)
[
Cj
]

Figure 3. Remote state preparation with quantum input (Algorithm 1). Client Cj performs a one-time

pad on his/her register Cj, and the result of the circuit remains one-time padded, where θj = θ
j
j +

∑n
k=1,k 6=j(−1)

⊕n
i=k ti

j+aj θk
j .

Algorithm 2 (State preparation for j ∈ Oc \ I)
server stores states received from clients Ck to distinct registers Sk ⊂ S (k = 1, . . . , n);
for k = 1, . . . , n− 1

CNOT on Sk ⊗ Sk+1;
measure state in Sk and get outcome tk

j ;
end;

Cryptography 2017, 1, 12 8 of 20

C1 :
∣∣∣∣+θ1

j

〉
t1

j

C2 :
∣∣∣∣+θ2

j

〉
• t2

j

C3 :
∣∣∣∣+θ3

j

〉
• t3

j

...
...

...
. . .

Cn−1 :
∣∣∣∣+θn−1

j

〉
• tn−1

j

Cn :
∣∣∣+θn

j

〉
•

∣∣∣+θj

〉
Figure 4. Remote state preparation without quantum input (Algorithm 2), where θj = θn

j +

∑n−1
k=1 (−1)

⊕n−1
i=k ti

j θk
j .

Finally, in the output phase, each output qubit j ∈ O is naturally encrypted due to the corrections
propagated during the computation. Qubit j is sent to the legitimate recipient Cj−q, while the operation

that is needed to decrypt it is the XsX
j ZsZ

j . The classical values necessary to compute sX
j and sZ

j are
then computed from the secret shares of all clients and sent to client Cj−q, who applies the necessary
quantum operation.

Algorithm 3 (Enforcing honest behaviour for client Ck).

1. Client Ck sends m qubits
∣∣∣+θk

i

〉
= 1√

2
(|0〉+ eiθk

i |1〉) to the server and secretly shares the values

{θk
i }m

i=1 with all clients, using a VSS scheme.
2. The server requests the shared values from the clients for all, but one qubit, and measures in

the reconstructed bases. If the bases agree with the results of the measurements, then with
high probability, the remaining state is correctly formed in relation to the shared angle.

4. Analysis of the Protocol

4.1. Correctness

Theorem 1. Algorithm 4 emulates the filtered ideal resourceM⊥ of Figure 1.

The validity of Theorem 1 comes directly from the correctness of the individual circuits
implementing Algorithms 1 and 2, as well as the propagation of Z and X corrections through the flow
of the computation. A detailed proof is given in the Appendix that shows that:

d(πO,M⊥) = 0

therefore, a distinguisher cannot tell the difference between the real communication protocol and
an interaction with the ideal MPQC resource when all participants are honest.

Cryptography 2017, 1, 12 9 of 20

Algorithm 4 Multiparty quantum computing protocol.

• A quantum input ρin and measurement angles {φj}
q
j=1 for qubits j ∈ Oc.

Preparation phase

quantum input: For j ∈ I

1. Client Cj applies a one-time pad Xaj Z(θ j
j) to his/her qubit, where aj ∈R {0, 1} and

θ
j
j ∈R {lπ/4}7

l=0 and sends it to the server. He/she secretly shares the values aj and θ
j
j

with the other clients.
2. Each client Ck(k 6= j), runs Algorithm 3 with the server. If all clients pass the test,

the server at the end has n− 1 states
∣∣∣∣+θk

j

〉
= 1√

2

(
|0〉+ eiθk

j |1〉
)

for k 6= j.

3. The server runs Algorithm 1 and announces outcome vector tj.

At this point the server has the state ρ′in =
(
Xa1 Z(θ1)⊗ · · · ⊗ Xan Z(θn)⊗ 1R

)
· ρin, where

θj = θ
j
j +

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θk

j (8)

non-output/non-input qubits: For j ∈ Oc \ I

4. All clients Ck, k ∈ [n] run Algorithm 3 with the server. If all clients pass the test, the server

at the end has n states
∣∣∣∣+θk

j

〉
= 1√

2

(
|0〉+ eiθk

j |1〉
)

for k = 1, . . . , n.
5. The server runs Algorithm 2 getting outcome vector tj. He/she ends up with the state∣∣∣+θj

〉
, where:

θj = θn
j +

n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θk

j (9)

output qubits: For j ∈ O, the server prepares |+〉 states.
graph state: The server entangles the n + q qubits to a brickwork state by applying ctrl-Z gates.

Computation phase

non-output qubits: For j ∈ Oc

1. All clients Ck, k = 1, . . . , n choose random rk
j ∈ {0, 1}, which they secretly share with the

other clients. Then, using a computation oracle, they compute the measurement angle
of qubit j:

δj := φ′j + πrj + θj (10)

where undefined values are equal to zero, or otherwise:

• φ′j = (−1)aj+sX
j φj + sZ

j π + a f−1(j)π.

• rj =
⊕n

k=1 rk
j .

• si = bi ⊕ ri, for i ≤ j.
2. The server receives δj and measures qubit j in basis {

∣∣∣+δj

〉
,
∣∣∣−δj

〉
}, getting result bj.

He/she announces bj to the clients.

output qubits: For j ∈ O, the server sends the “encrypted” quantum state to client Cj−q.
All participants jointly compute sX

j and sZ
j and send it to client Cj−q, who applies operation

ZsZ
j XsX

j to retrieve the actual quantum output.

Cryptography 2017, 1, 12 10 of 20

4.2. Malicious Server

The proof of security against a malicious server that is allowed to deviate from the protocol,
by applying operations on the data he/she receives, is based on quantum teleportation. As observed
in [22], for all of the quantum states sent to the server in Algorithm 4, there exists an equivalent circuit
that sends half an EPR pair 1√

2
(|00〉+ |11〉) to the server and then ‘teleports’ to them via measurement

of the quantum input. It is then easy to build a simulator for the server σS, which creates EPR pairs
and sends half to the server and half to an MPQC resource that performs the delayed measurement for
the teleportation.

Theorem 2. Algorithm 4 is secure against a malicious server.

Proof. In order to show that Algorithm 4 is secure against a malicious server, we will argue that
Equation (6) holds for a simulator and an MPQC resource running Algorithms 5 and 6, respectively.
We want to be sure that the two resources π1 . . . πnO and σSM implement the same map, in other
words that the outputs are indistinguishable. The equivalence comes from the fact that every time
there is a quantum message sent to the server, there is an equivalent circuit based on teleportation that
uses an EPR pair to transmit the same quantum state to the server.

More specifically, in Step 1 of Algorithm 4, client Cj can equivalently create an EPR pair, entangle

it to their quantum input and then measure the input wire using angle θ
j
j and the EPR-half in the

computational basis. The unmeasured EPR-half now contains the information of the input wire (up to
corrections depending on the measurement outcomes of the other two wires). Due to no-signalling,
the two measurements can also be delayed till a later stage (for example till after the server has sent
some reply). This is very convenient when deciding on what angles δj to send to the server in Step 1
of the computation phase; since the angle θj can be decided later, angle δj can be chosen at random
and then corrected by the measurement done on the entangled state (i.e., instead of choosing θj at
random and fixing δj, it is equivalent to doing it the other way around).

From this, it is easy to break the procedure into two processes (see Figure 5). The first one
creates the EPR pair, sends half to the server, chooses random measurement angles δj to send to the
server and receives messages from them. The second entangles the other EPR half with the quantum
input and chooses their measurement angles based on δj, the measurement pattern {φj} and the
information received from the server. If we now name the first process the simulator σS and the second
process the MPQC resourceM, we can see that σS has at no point access to any information on either
the quantum input of the clients or the measurement pattern that is being implemented.

The same holds for any quantum message sent from any client to the server: there is an equivalent
circuit based on teleportation that allows the client to delay the choice of measurement angle θj till after
receiving information from the server. For a detailed proof based on a series of equivalent protocols
that show the full transition from Algorithm 4 to Algorithms 5 and 6, see Appendix A.

Figure 5. The equivalence between the circuit of client Cj sending his/her encrypted quantum input
in Algorithm 4 and the delayed measurement circuits of the simulator and the MPQC resource
of Algorithms 5 and 6 for the same action (see also [22]).

Cryptography 2017, 1, 12 11 of 20

Algorithm 5 Simulator for the server.

non-output qubits: For j ∈ Oc

1. σS creates an EPR pair and sends one half of it to the server.
2. σS runs Algorithm 3 on behalf of the clients Ck, k 6= j when j ∈ I and of the clients

Ck, k ∈ [n− 1] for j ∈ Oc \ I sending to the server half EPR pairs and always accepting.
3. σS receives vector tj.
4. σS sends δj ∈R {lπ/4}7

l=1 to the server and receives a reply bj ∈ {0, 1}.
output qubits: For j ∈ O

1. σS receives n qubits from the server.
2. σS sends the other halves of the EPR pairs, the received quantum states, as well as δj, bj

and tj for j = 1, . . . , q, to the MPQC resource.

Algorithm 6 MPQC resource.

1. The resource receives the n qubits of ρin from the clients and all the information from σS.
2. For j ∈ I: the resource performs a CNOT on the corresponding EPR half with the input qubit

as control and measures the EPR half in the computational basis, getting result aj. It chooses
random measurement angles θ̂k

j for the qubits coming from clients Ck, k 6= j, sets:

θ̂
j
j := δj − φ′j −

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θ̂k

j

and measures the corresponding qubits. For j ∈ Oc \ I, it chooses random measurement angles
θ̂k

j for clients Ck, k ∈ [n− 1], sets:

θ̂n
j := δj − φ′j −

n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θ̂k

j

and measures the corresponding qubits. In the computation of the angles, undefined values
are equal to zero, and:

• φ′j = (−1)aj+sX
j φj + sZ

j π + a f−1(j)π.

• rj =
⊕n

k=1 rk
j .

• si = bi ⊕ ri, for i ≤ j.

3. For j ∈ O: the resource performs corrections ZsZ
j XsX

j on the remaining qubits.

We have proven that a server does not learn anything about the inputs of the clients,
since the protocol emulates an ideal MPQC resource and a simulator that reproduces the view
of the malicious server without having access to the clients’ input. From this result, we prove at the
same time that the computation is done in a blind way, meaning that the server does not know what
computation he/she is performing or equivalently that the measurement pattern (i.e., the angles φj)
remains hidden from him/her.

Corollary 1. The protocol is blind against a malicious server.

The proof of blindness follows directly from Theorem 2, since in the simulated model, the server
interacts only with the simulator σS, which just gives input to the MPQC resource and therefore has no
access to the measurement angles during the computation.

Cryptography 2017, 1, 12 12 of 20

4.3. Malicious Clients

Theorem 3. The protocol is secure against a coalition of malicious clients.

Proof. Algorithm 7 presents a simulator σC that receives communication from a malicious coalition
of clients on its external interface. For the ease of use, we will consider one malicious client Cc with
one input qubit, but this can easily be extended by thinking of all malicious clients as one client that
has multiple input qubits. It is straightforward to see that Equation (7) holds, since the malicious
clients never receive quantum information from the other clients, and the only information they share
is the one used in the computation oracles that are implemented using secure classical multiparty
computation protocols. The quantum outcome they receive is the correct outcome of an honest server,
encoded by some information (rj) that is chosen by the malicious clients in a previous step.

Algorithm 7 Simulator for clients.

1. σC receives a quantum state from client Cc as well as the secret shares of aj and θ
j
j .

2. For all other nodes of the brickwork state, σC runs Algorithm 3 with client Cc and aborts
if the secret shares of the classical values do not all match the measurement outcomes
of the quantum states.

3. For j ∈ Oc, σC receives the secret shares of the randomness rc
j , chosen by the client Cc and

interacts according to the communication protocol simulating the oracle of computing δj,
choosing uniformly at random the value of δj. σC also replies with random bj.

4. σC undoes rotation Xac Z(θc
c) on the input qubit of Cc, inputs it to the Ideal MPQC resource

and gets back the output corresponding to Cc.
5. Finally, σC rotates the output qubit j ∈ O corresponding to client Cc, applying the operation

ZsZ
j XsX

j , and participates in the computation protocol to compute sX
j and sZ

j with the previously
sent and shared values bj and rj.

5. Conclusions

In this work, we have presented a quantum multiparty delegated protocol that provides security
for clients with limited quantum abilities, therefore extending previous results on two-party [5]
and multiparty [7] computation while using recent work on delegated blind computing [10,11,22].
Our protocol requires no quantum memory, entangling operations or measurement devices for
the clients, only the ability to perform X gates and Z rotations. We prove security against a dishonest
server or a coalition of malicious clients; it remains to study whether the proposed protocol remains
secure against a dishonest coalition between clients and the server or if there is an unavoidable leakage
of information. One equivalent way of studying this problem would be by extending the results
of [12] in the multiparty setting, where both the parties and the server have inputs in the computation.
An even more interesting question is whether we can enhance our protocol to include verifiability in
a similar way as is done in [11].

The specific protocol presented here uses the measurement-based quantum computing framework,
to extend the delegated blind protocol of [10] into the multiparty setting. As such, it inherits the
key advantage of using MBQC over gate teleportation approaches; once the preparation phase is
finished (all qubits are sent to the server and entangled in a graph state), the rest of the communication
is classical. The scheme has low round complexity, both quantum and classical. The quantum
communication required is linear to the number of elementary gates required to decompose the unitary
that we want to apply (see Appendix of [10]). Concerning classical communication, it is not
straightforward to compute the necessary bits of communication that are required to perform the VSS
scheme and the computation of the angles, since they depend on the cryptographic assumptions that
we make (e.g., the number of malicious parties, physical infrastructure); however, we consider that
classical communication is less expensive than quantum communication, and since it seems to be

Cryptography 2017, 1, 12 13 of 20

growing at a worse polynomial with the parameters of the protocol [23], our scheme remains efficient.
Our scheme could also be adapted to any blind computing model, for example the measurement-only
model [24], since as mentioned in [22], all protocols with one-way communication from the server to
a client are inherently secure due to no-signalling. We have also assumed that the clients choose to
act passively maliciously, since any active dishonest activity would be detected with high probability;
however, a quantitative proof of security, assuming more extensive attacks from the side of the clients
would be a natural extension of this work.

Finally, a similar approach to ours has been explored for two-party computation, which uses
recent advances in classical Fully Homomorphic Encryption (FHE). In [25] and in follow-up work [26],
it is shown how to evaluate quantum circuits using quantum FHE; it would be very interesting to
see how they can be adapted in the case of multiple parties and whether the computational and
communication requirements are different from our work.

Acknowledgments: This work was supported by Grants EP/N003829/1 and EP/M013243/1 from the U.K.
Engineering and Physical Sciences Research Council (EPSRC) and by the Marie Sklodowska-Curie Grant
Agreement No. 705194 from the European Union’s Horizon 2020 Research and Innovation program. Part of this
work was done while Anna Pappa was visiting Telecom ParisTech, sponsored by a mobility grant from the Scottish
Informatics and Computer Science Alliance (SICSA). The authors would also like to thank Petros Wallden and
Theodoros Kapourniotis for many useful discussions.

Author Contributions: Both authors contributed to developing the theory and writing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We first give the complete proof of Theorem 1.

Proof. We want to prove that Equation (5) holds. First, we will prove that Equations (8) and (9) are

correct. We will start with Equation (9) for a server that receives n qubits
∣∣∣∣+θk

j

〉
for k = 1, . . . , n.

We will show the result by induction to the number of qubits received. For the case of two qubits∣∣∣∣+θ1
j

〉
and

∣∣∣∣+θ2
j

〉
, the server performs a CNOT operation on them (with control wire the second one).

The resulting state is:

|0〉
∣∣∣∣+θ2

j +θ1
j

〉
+ eiθ1

j |1〉
∣∣∣∣+θ2

j −θ1
j

〉
When the server measures the first qubit, he/she sets outcome bit t1

j = 0 when the observed state

is |0〉 and t1
j = 1 when it is |1〉. Therefore, the resulting state is

∣∣∣∣+θ̃2
j

〉
, where:

θ̃2
j = θ2

j + (−1)t1
j θ1

j

Therefore, Equation (9) holds for n = 2. Now, we will assume that the claim holds for n− 1, and

we will prove it for n. After measurement of the qubit n− 2, the state of qubit n− 1 is
∣∣∣∣+θ̃n−1

j

〉
, where:

θ̃n−1
j = θn−1

j +
n−2

∑
k=1

(−1)
⊕n−2

i=k ti
j θk

j

The server performs a CNOT on qubits n− 1 and n, resulting in the state:

|0〉
∣∣∣∣+θn

j +θ̃n−1
j

〉
+ eiθ̃n−1

j |1〉
∣∣∣∣+θn

j −θ̃n−1
j

〉

Cryptography 2017, 1, 12 14 of 20

The state after the measurement of the qubit n− 1 is
∣∣∣+θj

〉
, where:

θj = θn
j + (−1)tn−1

j θ̃n−1
j

= θn
j + (−1)tn−1

j
(
θn−1

j +
n−2

∑
k=1

(−1)
⊕n−2

i=k ti
j θk

j
)

= θn
j +

n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θk

j

We have therefore proven Equation (9). What remains in order to prove Equation (8) is to see what

happens when the server entangles the one-padded quantum input of client Cj with the states
∣∣∣∣+θk

j

〉
of the rest of the clients Ck, k 6= j. If the server follows Sub-algorithm 1, it first entangles the rotated
qubits of the clients Ck, k 6= j and measures all but the last, creating a state

∣∣∣+θ̃j

〉
. Now, we know how

to compute θ̃j:

• For j 6= n: θ̃j = θn
j + ∑n−1

k=1,k 6=j(−1)
⊕n−1

i=k ti
j θk

j .

• For j = n: θ̃j = θn−1
n + ∑n−2

k=1 (−1)
⊕n−2

i=k ti
n θk

n.

The last step of Algorithm 1 performs a CNOT on
∣∣∣+θ̃j

〉
with the control qubit the one-time

padded input of client Cj and measures the first in the computational basis. We already have seen how
the Z-rotation propagates through the CNOT gate. The X operation of the one-time pad results in a bit
flip of the last measurement outcome (either n or n− 1 according to the two cases above). Therefore,
if the one-time pad on register Cj was Xaj Z(θ j

j), after the remote state preparation, the register Cj is
still one-time padded with Xaj Z(θj), where:

• For j 6= n:

θj = θ
j
j + (−1)tn

j +aj
(

θn
j +

n−1

∑
k=1,k 6=j

(−1)
⊕n−1

i=k ti
j θk

j

)
= θ

j
j +

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θk

j

• For j = n:

θn = θn
n + (−1)tn−1

n +an
(

θn−1
n +

n−2

∑
k=1

(−1)
⊕n−2

i=k ti
n θk

n

)
= θn

n +
n−1

∑
k=1

(−1)
⊕n−1

i=k ti
n+an θk

n

From the two cases above, it is obvious that for a general j = 1, . . . , n, Equation (8) is true, which
concludes the correctness of the preparation phase of Algorithm 4.

In the computation phase, for each qubit of the brickwork state, all clients input their data in the
classical box, and the output is the measurement angle of that qubit. From the properties of MBQC
and the flow of the protocol, when the entangled qubits in the preparation phase are in the |+〉 state,
each angle φj needs to be adjusted to φ′j as defined above. However, here each qubit is rotated by all
clients by a total angle θj. Therefore, the measurement angle in the MBQC needs to be adjusted by θj.
The final difference from ordinary MBQC is the insertion of some joint randomness rj, whose effect is
reversed in the consequent steps by adding the randomness to the correction of the function (see [10]
for details).

Finally, in the outcome phase, due to previous corrections, the state of qubit j ∈ O needs to be

corrected by client Cj−q by applying an operation ZsZ
j XsX

j , whose classical values can be computed
using a computation oracle. We have therefore proven that:

d(πO,M⊥) = 0

Cryptography 2017, 1, 12 15 of 20

meaning that a distinguisher cannot tell the difference between the real communication protocol and
an interaction with the ideal MPQC resource when all participants are honest.

Now, we will present intermediate protocols that prove Equation (6) similarly to the proof
technique used in [22]. We will not include any test of correctness for the clients (Algorithm 3 and
secret sharing schemes) since the technique used is based on teleportation and delayed measurements,
and therefore, it is not possible for the clients to commit to the correct preparation of the quantum
states beforehand. However, this does not affect the proof of security, since these protocols are artificial
and used only to show that a malicious server does not have access at any step to the private data
of the clients. We could have included these tests of correctness of the clients, always asking them
to accept any measurement outcome of the server and therefore showing that they do not provide
any further information to the server. The complete real communication protocol and the simulated
one are presented in the main text. Here, we restate the communication protocol, omitting the steps
where the clients’ honest behaviour is checked (Algorithm A1) and provide intermediate protocols
that are used to prove the equivalence of the real and ideal setting in the case of a malicious server.
This will be done by a step-wise process of proving that each of the presented protocols is equivalent
to the others, leading to the final one that uses a simulator for the server and the ideal resource defined
in the main text.

We can now check step-by-step the equivalence of the protocols described above and argue that
Equation (6) holds. We start by comparing Algorithms A1 and A2. In Algorithm A1, at Step 1, client
Cj chooses aj and θ

j
j uniformly at random from their domains and one-time pads his/her input state.

In Algorithm A2, at Step 1, Cj chooses uniformly at random θ̂
j
j and teleports his/her input register

to the server, one-time padded with Xaj Z(θ j
j), where θ

j
j = θ̂

j
j + πrj

j. Since both aj and θ
j
j occur with

the same probabilities, the state that the server receives from client Cj is the same in both protocols.
Similarly, in Step 2 of Algorithm A1, client Ck chooses uniformly at random θk

j and rotates the state |+〉
accordingly. In Step 2 of Algorithm A2, client Cj chooses uniformly θ̂k

j and teleports to the server the

state |+〉 rotated by θk
j = θ̂k

j + πrk
j . Since θk

j appears with the same probabilities for all clients in both
protocols, the state described by Equations (A1) and (A4) that the server has are the same. The same
argumentation holds for Step 4 of the two protocols; therefore, at the end of the preparation phase,
the server has received exactly the same information from the clients. Finally, at the computation phase
of the two protocols, the clients choose the measurement angles with the same probability.

We now check the equivalence of Algorithms A2 and A3. The main difference of Algorithm
A3 is that the phase flip (measurement of rk

j) is delayed till after the measurement of the half
of EPR pair by the server. This is possible because the operation commutes with the teleportation.
The states that the server holds in both protocols are the same due to no signalling. In the
computation phase, in Algorithm A2, the uniformly random value θ̂k

j defines the measurement angle

δj, while in Algorithm A3, the uniformly random value δj defines θ̂k
j and thus the delayed step of

the teleportation.
Finally, the combined simulator and ideal resource defined in Algorithms A4 and A5 are just

a separation and renaming of the preparation and computation tasks that the clients are required to do.
It is easy to see that the ideal resource described in Algorithm A5 fits the requirements of the MPQC
resource defined in the main text, and therefore, we have proven that the communication protocol is
equivalent to the ideal resource and a simulator for a dishonest server: π1 . . . πnO = σSM.

Cryptography 2017, 1, 12 16 of 20

Algorithm A1 Multiparty quantum computing.

• A quantum input ρin and measurement angles {φj}
q
j=1 for qubits j ∈ Oc.

Preparation phase

quantum input: For j ∈ I

1. Client Cj applies a one-time pad Xaj Z(θ j
j) to his/her qubit, where aj ∈R {0, 1} and

θ
j
j ∈R {lπ/4}7

l=0 and sends it to the server.

2. Each client Ck (k 6= j) chooses θk
j ∈R {lπ/4}7

l=0 and sends
∣∣∣∣+θk

j

〉
= 1√

2

(
|0〉+ eiθk

j |1〉
)

to the server.
3. The server runs Algorithm 1 and announces outcome vector tj.

At this point the server has the state ρ′in =
(
Xa1 Z(θ1)⊗ · · · ⊗ Xan Z(θn)⊗ 1R

)
· ρin, where

θj = θ
j
j +

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θk

j (A1)

non-output/non-input qubits: For j ∈ Oc \ I

4. All clients Ck, k ∈ [n] choose θk
j ∈R {lπ/4}7

l=0 and send
∣∣∣∣+θk

j

〉
= 1√

2

(
|0〉+ eiθk

j |1〉
)

to

the server.
5. The server runs Algorithm 2 getting outcome vector tj. He/she ends up with the state∣∣∣+θj

〉
, where:

θj = θn
j +

n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θk

j (A2)

output qubits: For j ∈ O, the server prepares |+〉 states.
graph state: The server entangles the n + q qubits to a brickwork state by applying ctrl-Z gates.

Computation phase

non-output qubits: For j ∈ Oc

1. All clients Ck, k = 1, . . . , n choose random rk
j ∈ {0, 1} and using a computation oracle,

they compute the measurement angle of qubit j:

δj := φ′j + πrj + θj (A3)

where undefined values are equal to zero, or otherwise:

• φ′j = (−1)aj+sX
j φj + sZ

j π + a f−1(j)π.

• rj =
⊕n

k=1 rk
j .

• si = bi ⊕ ri, for i ≤ j.
2. The server receives δj and measures qubit j in basis {

∣∣∣+δj

〉
,
∣∣∣−δj

〉
}, getting result bj.

He/she announces bj to the clients.

output qubits: For j ∈ O, the server sends the “encrypted” quantum state to client Cj−q.
All participants jointly compute sX

j and sZ
j and send it to client Cj−q, who applies operation

ZsZ
j XsX

j to retrieve the actual quantum output.

Cryptography 2017, 1, 12 17 of 20

Algorithm A2 Multiparty quantum computing (using EPR pairs).

• A quantum input ρin and measurement angles {φj}
q
j=1 for qubits j ∈ Oc.

Preparation phase

quantum input: For j ∈ I

1. Client Cj creates an EPR pair 1√
2
(|00〉+ |11〉) and sends half to the server. He/she then

applies a Z(θ̂ j
j) rotation to his/her qubit, where θ̂

j
j ∈R {lπ/4}7

l=0, performs a CNOT on
the remaining half EPR qubit with control the input qubit, and measures the input qubit
in the Hadamard basis and the half EPR in the computational basis, getting outcomes rj

j
and aj respectively.

2. Each client Ck (k 6= j) creates an EPR pair 1√
2
(|00〉+ |11〉) and sends half to the server.

He/she then chooses θ̂k
j ∈R {lπ/4}7

l=0 and applies a Z(θ̂k
j) rotation to the remaining half

EPR and then measures it in the Hadamard basis getting outcome rk
j .

3. The server runs Algorithm 1 and announces outcome vector tj.

At this point the server has the state ρ′in =
(
Xa1 Z(θ1)⊗ · · · ⊗ Xan Z(θn)⊗ 1R

)
· ρin, where:

θj = π
n⊕

k=1

rk
j + θ̂

j
j +

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θ̂k

j (A4)

non-output/non-input qubits: For j ∈ Oc \ I

4. Each client Ck, k ∈ [n] creates an EPR pair 1√
2
(|00〉+ |11〉) and sends half to the server.

He/she then chooses θ̂k
j ∈R {lπ/4}7

l=0 and applies a Z(θ̂k
j) rotation to the remaining half

EPR followed by a Hadamard and then measures it in the computational basis getting
outcome rk

j .
5. The server runs Algorithm 2 getting outcome vector tj. It ends up with the state

∣∣∣+θj

〉
,

where:

θj = π
n⊕

k=1

rk
j + θ̂n

j +
n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θ̂k

j (A5)

output qubits: For j ∈ O, the server prepares |+〉 states.
graph state: The server entangles the n + q qubits to a brickwork state by applying ctrl-Z gates.

Computation phase

non-output qubits: For j ∈ Oc

1. The clients use a computation oracle to send the measurement angle of qubit j to
the server:

δj := φ′j + πrj + θj (A6)

where undefined values are equal to zero or otherwise:

• φ′j = (−1)aj+sX
j φj + sZ

j π + a f−1(j)π.
• rj =

⊕n
k=1 rk

j .
• si = bi ⊕ ri, for i ≤ j.

2. The server measures qubit j in basis {
∣∣∣+δj

〉
,
∣∣∣−δj

〉
} and announces result bj.

output qubits: For j ∈ O, the server sends the “encrypted” quantum state to client Cj−q.
All participants jointly compute sX

j and sZ
j and send it to client Cj−q, who applies operation

ZsZ
j XsX

j to retrieve the actual quantum output.

Cryptography 2017, 1, 12 18 of 20

Algorithm A3 Multiparty quantum computing (using EPR pairs and delaying teleportation).

• A quantum input ρin and measurement angles {φj}
q
j=1 for qubits j ∈ Oc.

Preparation phase

quantum input: For j ∈ I

1. Client Cj creates an EPR pair 1√
2
(|00〉 + |11〉) and sends half to the server. He/she

then performs a CNOT on the remaining half EPR qubit with control the input qubit
and measures the former in the computational basis, getting outcome aj.

2. Each client Ck (k 6= j) creates an EPR pair 1√
2
(|00〉+ |11〉) and sends half to the server.

3. The server runs Algorithm 1 and announces outcome vector tj.

non-output/non-input qubits: For j ∈ Oc \ I

4. Each client Ck, k ∈ [n] creates an EPR pair 1√
2
(|00〉+ |11〉) and sends half to the server.

5. The server runs Algorithm 2 getting outcome vector tj.
output qubits: For j ∈ O, the server prepares |+〉 states.
graph state: The server entangles the n + q qubits to a brickwork state by applying ctrl-Z gates.

Computation phase

non-output qubits: For j ∈ Oc

1. The computation oracle sends a random angle δj ∈R {lπ/4}7
l=0 to the server,

who measures qubit j in basis {
∣∣∣+δj

〉
,
∣∣∣−δj

〉
} and announces result bj.

2. For j ∈ I, the computation oracle chooses random measurement angles θ̂k
j for clients

Ck, k 6= j and sets:

θ̂
j
j := δj − φ′j −

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θ̂k

j (A7)

while for j ∈ Oc \ I, the computation oracle chooses random measurement angles θ̂k
j for

clients Ck, k ∈ [n− 1] and sets:

θ̂n
j := δj − φ′j −

n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θ̂k

j (A8)

where undefined values are equal to zero, or otherwise:

• φ′j = (−1)aj+sX
j φj + sZ

j π + a f−1(j)π.

• rj =
⊕n

k=1 rk
j .

• si = bi ⊕ ri, for i ≤ j.
3. The clients measure the respective qubits in the received measurement bases.

output qubits: For j ∈ O, the server sends the “encrypted” quantum state to client Cj−q.
All participants jointly compute sX

j and sZ
j and send it to client Cj−q, who applies operation

ZsZ
j XsX

j to retrieve the actual quantum output.

Cryptography 2017, 1, 12 19 of 20

Algorithm A4 Simulator for server.

non-output qubits: For j ∈ Oc

1. σS creates n EPR pairs and sends one half of each to the server.
2. σS receives vector tj.
3. σS sends δj ∈R {lπ/4}7

l=1 to the server and receives a reply bj ∈ {0, 1}.
output qubits: For j ∈ O

1. σS receives n qubits from the server.
2. σS sends the other halves of the EPR pairs, the received quantum states, as well as δj, bj

and tj for j = 1, . . . , q, to the MPQC resource.

Algorithm A5 MPQC resource.

1. The resource receives the n qubits of ρin from the clients, measurement angles {φj}
q
j=1 and all

the information from σS.
2. For j ∈ I: the resource performs a CNOT on the corresponding EPR half with the input qubit

as control and measures the EPR half in the computational basis, getting result aj. It chooses
random measurement angles θ̂k

j for the qubits coming from clients Ck, k 6= j, sets:

θ̂
j
j := δj − φ′j −

n

∑
k=1,k 6=j

(−1)
⊕n

i=k ti
j+aj θ̂k

j

and measures the corresponding qubits. For j ∈ Oc \ I, it chooses random measurement angles
θ̂k

j for clients Ck, k ∈ [n− 1] and sets:

θ̂n
j := δj − φ′j −

n−1

∑
k=1

(−1)
⊕n−1

i=k ti
j θ̂k

j

where undefined values are equal to zero, or otherwise:

• φ′j = (−1)aj+sX
j φj + sZ

j π + a f−1(j)π.

• rj =
⊕n

k=1 rk
j .

• si = bi ⊕ ri, for i ≤ j.

3. For j ∈ O: the resource performs corrections ZsZ
j XsX

j on the remaining qubits.

References

1. Lo, H.-K.; Chau, H.F. Is quantum bit commitment really possible? Phys. Rev. Lett. 1997, 78, 3410–3413.
2. Mayers, D. Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 1997, 78,

3414–3417.
3. Lo, H.-K. Insecurity of quantum secure computations. Phys. Rev. A 1997, 56, 1154–1162.
4. Salvail, L.; Schaffner, C.; Sotakova, M. On the Power of Two-Party Quantum Cryptography. In Proceedings

of the ASIACRYPT 2009, Tokyo, Japan, 6–10 December 2009; Volume 5912, pp. 70–87.
5. Dupuis, F.; Nielsen, J.B.; Salvail, L. Secure two-party quantum evaluation of unitaries against specious

adversaries. In Proceedings of the CRYPTO 2010, Santa Barbara, CA, USA, 15–19 August 2010; Volume 6223,
pp. 685–706.

6. Dupuis, F.; Nielsen, J.B.; Salvail, L. Actively Secure Two-Party Evaluation of any Quantum Operation.
In Proceedings of the CRYPTO 2012, Santa Barbara, CA, USA, 19–23 August 2012; pp. 794–811.

7. Ben-Or, M.; Crépeau, C.; Gottesman, D.; Hassidim, A.; Smith, A. Secure Multiparty Quantum Computation
with (Only) a Strict Honest Majority. In Proceedings of the IEEE FOCS 2006, Berkeley, CA, USA,
21–24 October 2006; pp. 249–260.

Cryptography 2017, 1, 12 20 of 20

8. Raussendorf, R.; Briegel, H.J. A One-Way Quantum Computer. Phys. Rev. Lett. 2001, 86, 5188.
9. Leung, D.W. Quantum computation by measurements. Int. J. Quantum Inf. 2004, 2, 33–43.
10. Broadbent, A.; Fitzsimons, J.F.; Kashefi, E. Universal blind quantum computation. In Proceedings

of the FOCS 2009, Atlanta, GA, USA, 25–27 October 2009; pp. 517–526.
11. Fitzsimons, J.F.; Kashefi, E. Unconditionally Verifiable Blind Computation. arXiv 2012, arXiv:1203.5217.
12. Kashefi, E.; Wallden, P. Garbled Quantum Computation. arXiv 2016, arXiv:1606.06931.
13. Danos, V.; Kashefi, E. Determinism in the one-way model. Phys. Rev. A 2006, 74, 052310.
14. Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings

of the FOCS 2001, Las Vegas, NV, USA, 14–17 October 2001; pp. 136–147.
15. Ishai, Y.; Prabhakaran, M.; Sahai, A. Founding cryptography on oblivious transfer–efficiently. In Proceedings

of the CRYPTO 2008, Santa Barbara, CA, USA, 17–21 August 2008; Springer: Berlin/Heidelberg, Germany,
2008; pp. 572–591.

16. Goldwasser, S.; Lindell, Y. Secure Computation without Agreement. In Distributed Computing (DISC 2002);
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2508.

17. Unruh, D. Universally Composable Quantum Multiparty Computation. In Proceedings of the EUROCRYPT
2010, French Riviera, 30 May–3 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6110,
pp. 486–505.

18. Maurer, U.; Renner, R. Abstract cryptography. In Innovations in Computer Science; Tsinghua University Press:
Beijing, China, 2011.

19. Kumaresan, R.; Patra, A.; Rangan, C.P. The round complexity of verifiable secret sharing: The statistical
case. In Proceedings of the ASIACRYPT 2010, Singapore, 5–9 December 2010; Springer: Berlin/Heidelberg,
Germany, 2010; Volume 6477, pp. 431–447.

20. Laud, P.; Pankova, A. Verifiable Computation in Multiparty Protocols with Honest Majority. In Proceedings
of the Provable Security (ProvSec 2014), Hong Kong, China, 9–10 October 2014; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2014; Volume 8782.

21. Dunjko, V.; Kashefi, E.; Leverrier, A. Universal Blind Quantum Computing with Weak Coherent Pulses.
Phys. Rev. Lett. 2012, 108, 200502.

22. Dunjko, V.; Fitzsimons, J.F.; Portmann, C.; Renner, R. Composable security of delegated quantum
computation. In Proceedings of the ASIACRYPT 2014, Kaoshiung, Taiwan, 7–11 December 2014; pp. 406–425.

23. Hirt, M.; Nielsen, J.B. Upper Bounds on the Communication Complexity of Optimally Resilient
Cryptographic Multiparty Computation. In Proceedings of the ASIACRYPT 2005, Chennai, India,
4–8 December 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3788.

24. Morimae, T.; Fujii, K. Blind quantum computation protocol in which Alice only makes measurements.
Phys. Rev. A 2013, 87, 050301.

25. Broadbent, A.; Jeffery, S. Quantum homomorphic encryption for circuits of low T-gate complexity.
In Proceedings of the CRYPTO 2015, Santa Barbara, CA, USA, 16–20 August 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 609–629.

26. Dulek, Y.; Schaffner, C.; Speelman, F. Quantum homomorphic encryption for polynomial-sized circuits.
arXiv 2016, arXiv:1603.09717v1.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Measurement-Based Quantum Computing
	Multiparty Delegated Quantum Computing
	Properties

	The Protocol
	Analysis of the Protocol
	Correctness
	Malicious Server
	Malicious Clients

	Conclusions
	

