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Abstract 

 

Background. Unlike adult mammals, zebrafish can regenerate their heart. Several 

mechanisms are essential to achieve regeneration; these include: 

 the de-differentiation and proliferation of cardiomyocytes contributing to new 

myocardium,  

 angiogenesis to provide a blood supply to the injured area  

 epicardial activation, leading to the establishment of a scaffold for the 

proliferating cardiomyocytes, vessel supporting mural cells and cytokine 

secretion.  

Platelet-derived growth factor (Pdgf), Vascular endothelial growth factor (Vegf), 

Transforming Growth Factor beta (Tgfβ) and Fibroblast growth factor (Fgf) signalling play 

critical roles in the zebrafish heart regeneration. Neuropilins (NRPs) are cell surface co-

receptors that have been implicated in VEGF, PDGF, FGF, TGFβ signalling.  

Aims. I hypothesised that neuropilins are required for the regenerative response, and 

investigated the role of neuropilins in zebrafish heart regeneration following cryoinjury.  

Results. Zebrafish have four neuropilins isoforms, nrp 1a, 1b, 2a and 2b. I found that all 

isoforms were upregulated in the ventricle following cardiac cryoinjury. Neuropilins 

were strongly expressed, at both the mRNA and protein level, by the activated 

epicardium and endocardium and at the injured/healthy myocardium border. 

Neuropilin upregulation coincides with leucocyte infiltration to the injured area, 

epicardial activation and initiation of neovascularisation, implicating a role of nrps in 

these processes. A nrp1a mutant, encoding a truncated, non-functional protein, showed 

a significant delay in heart regeneration in comparison to wild type fish. Furthermore, 

epicardial cells from nrp1a mutant zebrafish heart explants displayed an impaired 

response to activation by cryoinjury.  
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Conclusions. Nrp1 plays a key role in zebrafish heart regeneration, mediated through 

epicardial activation and migration and likely contributes to further physiological 

processes in other cardiac cell-types. This is the first report of an injury-induced 

epicardial activation phenotype caused by the disruption of a single allele in zebrafish. 
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1 Introduction  

Myocardial infarction (MI) is the leading cause of death worldwide (Kabir et al., 2007; 

Sidney et al., 2013; Unal et al., 2005). MI is commonly referred to as a heart attack, and 

results from coronary artery occlusion consequently restricting blood supply to the 

cardiac tissue. Insufficient blood flow causes tissue ischaemia and leads to the death of 

the cardiac cells in the affected area. In adult mammals, damaged cardiac tissue is 

replaced with a fibrotic scar that does not possess the electrical or contractile properties 

of the healthy cardiac tissue (Laflamme and Murry, 2011; Pfeffer and Braunwald, 1990). 

Scar formation increases the risk of MI recurrence, sudden cardiac death, and heart 

failure, amongst other accompanying complications (Bui et al., 2011; Gaziano, 2007). 

Medical interventions have increased MI patient survival rates (Bui et al., 2011; Hardoon 

et al., 2011; Kabir et al., 2007; Unal et al., 2005); however no cure exists to reverse the 

permanent damage of a patient’s heart other than heart transplant. Understanding 

cardiac repair mechanisms could identify therapies to stimulate heart regeneration and 

alleviate secondary complications in MI survivors. Neonatal mammals (Porrello et al., 

2011b; Zogbi et al., 2014), urodele amphibians (Oberpril.Jo and Oberpril.Jc, 1974; 

Rumyantsev, 1977) and zebrafish (Poss et al., 2002) possess the remarkable ability to 

fully regenerate their heart after cardiac injury as well as removing scar tissue. The 

zebrafish in recent years has emerged as a valuable model organism for studying 

cardiovascular development and regeneration, and has provided promising insights into 

the cellular and molecular mechanisms that orchestrate endogenous heart 

regeneration, as yet unachievable in humans. 

1.1 Zebrafish as a model to study cardiovascular biology 

The zebrafish, Danio rerio, is a tropical freshwater fish native to North Indian Rivers. It is 

approximately 3.5 – 4.5 cm in length and readily identified by its distinctive striped scales 

pattern. Studying zebrafish has many advantages. They are vertebrates with a high 

number of conserved human-related genes; thus, at least one zebrafish ortholog exists 
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for 71.4% of human protein encoding genes (Howe et al., 2013). Zebrafish embryonic 

development is external, fast and the transparency of the eggs and early embryos 

provide an optically accessible means to visualise development. Additionally, an 

expanding range of genetic tools is readily available to manipulate the zebrafish 

genome. Furthermore, the zebrafish is practically and economically advantageous, given 

that large numbers of animals can be kept in a relatively small space at low cost.  

The extraordinary regenerative capacity of the zebrafish has attracted great scientific 

interest. The zebrafish can regenerate multiple organs and appendages, such as, fins 

(Johnson and Weston, 1995), maxillary barbel (LeClair and Topczewski, 2010), retinae 

(Vihtelic and Hyde, 2000), optic and spinal nerves (Becker et al., 1997; Bernhardt et al., 

1996). In 2002, Kenneth Poss and colleagues discovered the zebrafish could also 

regenerate the heart after amputation of 20% of the ventricle. This section will describe 

the similarities and differences between the zebrafish and human heart and highlight 

the relevance for using the zebrafish as a model organism to study cardiac function and 

disease. 

 Zebrafish Cardiogenesis 

Mechanisms governing regenerative events often recapitulate developmental 

processes. The heart is the first organ to fully develop and function during vertebrate 

embryogenesis, a process that occurs by 2 days post fertilization (dpf) in zebrafish, 12 

days in mice and 35 days in humans (Stainier, 2001). Several cardiac developmental 

processes and cardiac structural features are conserved between all vertebrate species 

and thus, zebrafish has been used to model cardiac development in humans. Zebrafish 

have proven a valuable tool to the development community as optical clarity allows 

detailed imaging of developmental processes. Zebrafish embryos can survive for up to 5 

days post fertilisation (dpf) with severe cardiac phenotypes because they are able to 

obtain oxygen by passive diffusion (Hu et al., 2001). This has permitted large-scale 

forward and reverse genetic screening and phenotypic characterisation of genes 

influencing cardiac development, to an advanced stage, that would otherwise be 

embryonic lethal in mammals. Thus, several genes orchestrating different aspects of 
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cardiac development in the zebrafish have been characterised, many of which parallel 

those implicated in mammalian cardiogenesis.   

Cardiac progenitor cells can be identified in the late blastula, upon expression of 

transcription factor (TF) gata5, at 5 hours post fertilisation (hpf) in the developing 

zebrafish embryo (Figure 1A) (Reiter et al., 1999). Expression of the vertebrate early 

myocardial gene nkx2.5 is targeted by gata5 just before gastrulation in mesodermal 

progenitor cells (Kishimoto et al., 1997; Reiter et al., 1999). The zebrafish genome 

encodes two orthologs of mammalian Nkx2.5, nkx2.5 and nkx2.7 (Lee et al., 1996), that 

drive expression of myocardial genes such as troponin T and tropomyosin (Stainier, 

2001). By 15 hpf (the 14-somite stage), two bilaterally aligned cell populations of cardiac 

fate form, called the cardiac primordia (or the first heart field) (Yelon et al., 1999) (Figure 

1B). The two primordia contain future ventricular cardiomyocytes on the internal lateral 

side closest to the mid-line and cells destined for the atrium are on the external margin 

of the fields (Stainier et al., 1993). The ventricular and atrial cardiac progenitor cells 

remain distinctly separated throughout the entirety of cardiogenesis, and express 

chamber specific sarcomeric myosins; the ventricular cells express my7 at an earlier 

stage (16hpf) and atrial progenitors express my6 (22hpf) (Berdougo et al., 2003; Yelon 

et al., 1999). The two parallel populations of progenitor cells migrate towards the 

midline and fuse (Figure 1D). This process requires hand2 expression and 

lysosphingolipids to regulate extracellular fibronectin for correct fusion(Garavito-Aguilar 

et al., 2010), similar to mammalian heart morphogenesis that demonstrates reliance on 

fibronectin deposition (George et al., 1997). Additionally, the second heart field 

(consisting of mesodermal progenitor cells intended as ventricular and smooth muscle 

cells of the outflow tract) merge with the migrating bilateral cardiac primordia to form 

the cardiac cone in a process known as asymmetric involution (Rohr et al., 2008) (Figure 

1D). Between 24 and 28 hpf the heart cone elongates along the middle of the fish 

forming the primitive structure of the heart, the heart tube, and begins spontaneous 

peristaltic contractions (Figure 1E). Islet1 is required for an initial phase of 

cardiomyocyte differentiation starting at the ventricle and terminating at the atrial 
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portion of the heart tube (de Pater et al., 2009). Following heart tube formation, the 

organ migrates to the left and begins to loop giving rise to two distinct compartments 

by 36 hpf (Figure 1F)(de Pater et al., 2009; Lu et al., 2016). Second heart field populations 

are added to the heart (described in 1.1.1.2), valvugenesis takes place and the 

proepicardium adheres (see 1.1.1.4) to give rise to a mature heart (Figure 1G). 

1.1.1.1 Endocardium morphogenesis  

In mammalian development, endocardial precursors give rise to the endothelial layer 

lining the lumen of cardiac chambers and a subpopulation create the septum and cardiac 

valves (Eisenberg and Markwald, 1995). The population of blastula cells (blastomeres) 

that give rise to zebrafish endocardium can be identified at 5 hpf at the anterior lateral 

plate mesoderm in close proximity to the cardiac progenitor cell population. Endocardial 

precursors migrate to the midline at 15 hpf (preceding heart tube formation) at the 

location where bilateral primordia fuse (Bussmann et al., 2007)( Figure 1C). Endocardial 

progenitor establishment at the midline is crucial for heart tube formation, and the 

interaction between myocardial progenitors and endocardial progenitors is critical for 

heart development (Holtzman et al., 2007). Endocardial progenitor cell migration to the 

midline is governed in part by a slit1/roundabout (Robo)/Vascular endothelial growth 

factor (VEGF) axis essential for heart tube formation (Fish et al., 2011; Schoenebeck et 

al., 2007). 
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Figure 1 Zebrafish heart morphogenesis 

Schematic representation of zebrafish heart development. (A) Cardiac progenitors are 
identified from 5 hours post fertilisation (hpf), located bilaterally in the lateral marginal 
zone. Atrial precursors are positioned more ventral (v) and ventricular precursors lie 
more dorsal (d) (B) At 15hpf cardiac primordia are bilaterally aligned at the anterior 
lateral plate mesoderm (ALPM) proximal to the mid-hind brain (C) Endocardial 
progenitors are established at the midline before the primordia that (D) migrate towards 
the midline and fuse to form the heart cone via asymmetrical involution, with ventricular 
cells at the apex and atrial cells  at the wider base. (E) The heart elongates giving rise to 
the heart tube that begins peristaltic contractions. (F) The heart tube undergoes looping 
morphogenesis to form distinct atrium and ventricle compartments by 36 hpf. (G) 
Cardiac maturation occurs; cell populations from the second heart field increase heart 
size, valvugenesis takes  place  and  proepicardium  adhere  to  heart  surface.  Image 
modified from Bakkers (2011) 
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The endocardium is subject to hydrodynamic forces that stimulate endocardium 

maturation and morphogenesis. Mechanisms that allow the endocardium to detect 

different fluidic forces exerted by blood flow are largely unknown. Platelet endothelial 

cell adhesion molecule-1 (PECAM-1) and vascular endothelial cadherin (VE-cadherin) 

stimulate VEGF-independent VEGF receptor (VEGFR) 2 and VEGFR3 

autophosphorylation and signalling in response to fluidic flow forces (Baeyens et al., 

2016). The biological function associated with VEGF-independent VEGFR stimulation is 

not clearly defined, however in the zebrafish it is proposed to influence cardiac looping 

and cell-cell junctions (Mitchell et al., 2010). 

1.1.1.2 Second heart field 

The four-chambered mammalian heart develops from two distinct populations of 

cardiac progenitor cells: the first heart field develops from cells at the lateral 

mesodermal plate early in development and contributes to the left ventricle (see 1.1.1), 

and the second heart field derived from cells at the pharyngeal mesoderm contribute to 

the atria and outflow tract (Cai et al., 2003; Waldo et al., 2001). Zebrafish do not have a 

right atrium, rather, the simple cardiac structure of the zebrafish only contains an 

outflow tract, raising initial scepticism whether the zebrafish contained a second heart 

field during development. A second heart field has been observed in the zebrafish and 

contributes to development of the arterial pole, particularly the distal ventricle and 

outflow tract (de Pater et al., 2009; Hami et al., 2011). Homeobox transcription factor, 

islet-1, is expressed by all second heart field progenitor cells in mammals, however 

zebrafish do not (de Pater et al., 2009). Instead, cells positive for latent transforming 

growth factor beta (TGFβ) binding protein 3 (ltbp3) and nkx2.5 expression were 

identified as zebrafish second heart field cardiac progenitor cells that are located at the 

pharyngeal mesoderm (Zhou et al., 2011b). The second heart field contributes 

cardiomyocytes for heart tube elongation at the venous pole from 28 hpf, simultaneous 

to cardiac looping (Figure 1E) and outflow tract endothelium (Lazic and Scott, 2011). 

Fibroblast growth factor (Fgf)8 signalling is required for second heart field 

cardiomyocyte addition at the arterial pole via Bmp4 signalling (Reifers et al., 2000; 
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Sorrell and Waxman, 2011). Additionally, myocyte enhancer factor 2cb (Mefc2b), sonic 

hedgehog (Shh) and T-box1 (Tbx1) signalling have also been described to mediate 

second heart field cardiomyocyte contribution to the heart (de Pater et al., 2009; Dyer 

and Kirby, 2009; Lazic and Scott, 2011; Xu et al., 2004), in line with mammalian second 

heart field signalling, supporting the existence of conserved mechanisms in higher and 

lower vertebrates despite the latter’s overall simpler cardiac structure.  

1.1.1.3 Cardiac maturation  

At 48 hours post fertilisation, the zebrafish heart is fully functional and made of two 

defined chambers, the ventricle and atrium, however at this stage, the heart is formed 

by only two layers; the endocardium and the myocardium (Stainier et al., 1993). Outflow 

tract (bulbus arteriosus) formation, epicardial layer establishment and trabeculation of 

the myocardium are required to complete cardiac maturation after cardiac looping.  

The myocardium expands and chambers trabeculate during cardiac maturation; 

trabeculae are muscular projections lined with endocardium that protrude into the 

cardiac chambers in a seemingly irregular manner (Gupta and Poss, 2012; Staudt et al., 

2014). The trabeculae serve to increase chamber surface area, contribute to electrical 

signal conductivity and enhance contraction. Absence of trabeculae lead to 

cardiomyopathies, severely impaired cardiac function and potential lethality in both 

humans and zebrafish (Jenni et al., 1999; Liu et al., 2010). An overwhelming body of 

studies indicate that the endocardium strongly influences myocardial morphogenesis 

through a variety of signals that are observed in zebrafish and higher vertebrates 

(Gassmann et al., 1995; Kramer et al., 1996; Lai et al., 2010; Lee et al., 1995; Liu et al., 

2010; Peshkovsky et al., 2011). Endocardium-derived FGF and neuregulin signals induce 

cardiomyocyte proliferation, differentiation and trabeculation of the embryonic 

mammalian heart (de Pater et al., 2009; Molina et al., 2009). This interaction is 

recapitulated in the zebrafish, where the endocardium influences cardiomyocyte 

maturation via Brg1 (a chromatin remodelling protein) and bone morphogenic protein 

(Bmp) 10 production (Samsa et al., 2013; Stankunas et al., 2008). Trabeculae fail to 

develop in zebrafish cloche mutants that lack endocardium, leading to the conclusion 
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that endocardial maturation precedes cardiac maturation (Stainier et al., 1995; Suri et 

al., 1996). Cardiomyocytes that provide the cell population for trabeculae are stimulated 

to proliferate by Fgf. The cardiomyocytes of the heart tube express Fgf receptors (Fgfrs) 

simultaneous to epicardial maturation, whereby the epicardium produces Fgf9 (see 

1.1.1.4) (Lavine et al., 2005). 

The zebrafish outflow tract comprises the bulbus arteriosus and ventral aorta and forms 

after 48 hpf (Grimes and Kirby, 2009). The development of the bulbus arteriosus remains 

largely uncharacterised. Humans do not have a bulbus arteriosus, but it is considered 

analogous to the arterial trunk (conotruncus) observed during higher vertebrate 

development (Brown et al., 2016). The bulbus arteriosus expresses a specific elastin 

extracellular matrix (ECM) protein eln2, ortholog of tropoelastin, that possesses 

mechanical properties to protect gills from fluctuating forces generated during systole 

(see 1.2.1).  

1.1.1.4 Epicardium in heart development 

The epicardium is the final layer of the heart to form; it is essential for full cardiac 

development and function (Manner, 1993), contributing to non-myocardial lineage 

resident cardiac cells and central to injury response (Kikuchi et al., 2011a; Manuel 

Gonzalez-Rosa et al., 2012). It begins to form at embryonic day (E) 9.75 (until E11) in the 

mouse, Hamburger Hamilton (HH) stage 18 in the chick, and 72 h post fertilisation (hpf) 

in the zebrafish (Masters and Riley, 2014). The epicardium is a heterogeneous 

mesothelial monolayer that forms from epicardial precursors sourced from two distinct 

populations of spherical cells during zebrafish development. The predominant source of 

epicardial precursors is the proepicardium that is located in the inner lining of the 

pericardial wall close to the atrioventricular canal (Serluca, 2008). Movement from the 

contracting heart releases epicardial precursors into the pericardial cavity that then 

circulate within the pericardial fluid until they eventually adhere to the myocardium 

(Peralta et al., 2013) (Figure 2). A second population of epicardial precursors arises from 

the cranial pericardial mesothelium and migrates as a cellular bridge to the heart and 

directly adheres to the myocardium (Plavicki et al., 2014) (Figure 2). Once adhered to 
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the myocardial surface, epicardial cells expand and migrate over the surface of the 

underlying myocardium. Epicardium establishment in the zebrafish differs to that of the 

mammalian heart, in that the epicardium forms during mid-gestation concomitantly 

with cardiac looping (Masters and Riley, 2014). After cardiac development, embryonic 

developmental markers (such as TBX18 and Wilm’s tumor 1 (WT1)) of the epicardium 

are switched off and the epicardium enters a quiescent state (Chen et al., 2002). 
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Figure 2 Proepicardium adherence to developing zebrafish heart 

Diagrammatic representation of epicardial progenitor cell attachment to the 
developing zebrafish heart. Epicardial precursors are released (small grey 
arrows) from proepicardium (PE) clusters (green) in the pericardial wall and 
circulate as advected PE (advPE) in the pericardial fluid (pink). Directionality and 
velocity of advPE movement is generated by heart contractions, strong fluid 
forces occur at the atrioventricular boundary (red arrow) and weaker fluid force 
at the ventricle (V) (blue arrow). Epicardial precursors eventually contact and 
adhere to the ventricle surface, once attached they proliferate and populate a 
monolayer of cells encasing the heart to form the complete epicardium. A 
population of epicardial cells originates from single cells that delaminate from 
the pericardium mesothelium (blue circle) and are transferred to the ventricle 
surface (grey arrow) via a cellular bridge. At – atrium. Image adapted from 
Peralta et al (2014). 
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It is widely accepted that epicardial-derived cells (EPDCs) contribute to fibroblasts and 

mural vascular supporting cells, but their contribution to endothelial cells and 

cardiomyocytes are still under debate (Poelmann et al., 2002; Red-Horse et al., 2010). It 

has been shown in chicken embryos that EPDCs migrate towards the myocardium and 

differentiate into coronary vascular smooth muscle cells and fibroblasts (Mikawa and 

Gourdie, 1996). EPDCs may also be driven toward a myocardial lineage in mammalians 

and zebrafish by FGF/VEGF/thymosinβ4 (Tβ4) signalling (Cai et al., 2008; Smart et al., 

2007; Wills et al., 2008; Zhou et al., 2008), and other studies suggest they can 

transdifferentiate to endothelial cells to contribute to coronary vasculature (Dettman et 

al., 1998; Perez-Pomares et al., 2002).  

 

The epicardium is an important source of trophic factors that support myocardium 

maturation and autocrine signalling to co-ordinate its own maturation and 

differentiation (Cai et al., 2008; Katz et al., 2012; Zhou et al., 2008). Retinoic acid (RA)  

(also referred to as vitamin A) is abundantly produced by the epicardium. Global knock 

out models of the retinoic acid receptor alpha (RARα) is embryonic lethal, mutants 

display abnormal epicardial adherence and deformed myocardium demonstrating an 

essential role for epicardial-derived RA for mammalian heart development (Sucov et al., 

1994). The epicardium and endocardium express retinaldehyde dehydrogenase 2 

(RALDH2) during embryogenesis in mammals and zebrafish (D'Aniello et al., 2013; 

Niederreither et al., 1999). Retinoic acid signalling in the epicardium stimulates 

epicardium-derived production of FGFs (Lavine et al., 2005); and combined with cardiac 

fibroblasts (also derived from EPDC), provides a main source of FGF to stimulate 

cardiomyocyte proliferation (Merki et al., 2005; Nag, 1980). FGF10 enhances epicardium 

epithelial to mesenchymal transition (EMT), potentially via FGFR2 stimulation 

permitting migration into the myocardium and transdifferentiate to fibroblasts (Pennisi 

and Mikawa, 2005; Vega-Hernandez et al., 2011). Failure of the epicardium to undergo 

EMT prevents coronary vessel morphogenesis implying close association of coronary 

vasculature development with epicardium dynamics and signals (Tevosian et al., 2000).   
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1.1.1.5 Coronary vessel development 

In mammals, coronary vasculature starts to develop approximately between E11.5 –

E14.5 (Gonzalez-Iriarte et al., 2003; Viragh and Challice, 1981). Some vessels originate 

at the sinus venosus and expand to encase the heart towards the apex (Red-Horse et al., 

2010), while a second population emerges from the endocardium (Tian et al., 2013; Wu 

et al., 2012). Coronary vasculature formation is governed by VEGF signalling that recruits 

existing endothelial cells to invade the subendocardial space and form vasculature; in 

particular, VEGF-C was identified to mediate this process (Chen et al., 2014; Tian et al., 

2013). VEGF-B is associated with mediation of coronary plexus tubulogenesis once 

endocardial cells have been recruited (Tomanek et al., 2006). Lastly, some contribution 

to the coronary vasculature is thought to originate from the epicardium (Katz et al., 

2012; Pennisi and Mikawa, 2005).  

In the zebrafish friend leukaemia integration 1a (fli1a) positive angioblasts can be 

detected as early as 12 hpf and mediate vasculogenesis to form the dorsal aorta and 

luminal vessels by 24 hpf (Ellertsdottir et al., 2010; Roman et al., 2002). The zebrafish 

vasculature can be readily visualised thanks to the development of a transgenic line that 

expresses EGFP downstream of the fli1a promoter (Lawson and Weinstein, 2002) 

expressed in all endothelial cells (Melet et al., 1996; Thompson et al., 1998). This model 

has led to extensive characterisation of the zebrafish cardiovascular system, and it was 

described that the coronary vessel cell population primarily originates from the 

endocardium (Harrison et al., 2015). Endocardial-derived cells migrate to the 

subendocardial space is driven, in part, by the Cxcr4 signalling axis to give rise to 

coronary vessels (Harrison et al., 2015).  

1.2 Adult zebrafish cardiovascular system 

 Heart structure and circulation 

The adult zebrafish heart is approximately 1mm in length and width, and, unlike the 

four-chambered hearts of mammals, is made up of two chambers consisting of a single 

atrium and ventricle (Figure 3).  The atrium is a large highly folded capacitance chamber 

with a thin muscular wall lined with pectinate muscle; when fully extended the atrium 
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can accommodate a volume larger than the ventricle (Hu et al., 2001). The atrium 

receives blood from the body via the sinus venosus (also referred to as the inflow tract) 

that itself receives blood from the cardinal and hepatic portal veins and contracts to fill 

the atrium (Figure 3). During diastole, the atrium contracts at a pressure of 

approximately 0.68 mmHg to direct blood through the four-leaflet atrioventricular valve 

into the ventricle (Figure 3) (Hu et al., 2001). The ventricular myocardium comprises two 

distinct structures: most luminal is a highly trabeculated thick muscular layer that is in 

contact with the endocardium, and externally, is a thin compact layer that runs 

perpendicular to the trabeculated layer and is connected with the epicardium. This 

differs to human hearts that are predominantly formed of a thick compact layer of 

myocardium (Sedmera et al., 2000). The highly trabeculated zebrafish ventricle is 

thought to increase surface area and contact of blood with cardiomyocytes, thus 

reducing dependence on coronary vasculature for nutrition and oxygen; whereas, higher 

vertebrates depend on coronary blood delivery to cardiomyocytes. During diastole, the 

ventricular pressure is approximately 0.42 mmHg allowing the blood to enter the 

chamber from the atrium. The ventricle then exerts a pressure of approximately 

2.5mmHg during systole to direct blood through a bicuspid bulbo-ventricular valve into 

the bulbus arteriosus (also referred to as the outflow tract) towards the gills (Hu et al., 

2001) (Figure 3). The bulbus arteriosus is a collagenous, pear-shaped appendage, rich in 

smooth muscle cells and connects the ventricle to the ventral aorta. It is thought to serve 

as a buffering chamber preventing the entry of blood under high pressure into the gills 

during systole, and to be comparable to the arterial trunk in higher vertebrates. The 

bulbus arteriosus is formed of three layers: an intima, media and externa layer.  The 

intima layer is predominantly formed from smooth muscle cells, collagen and elastin 

fibers, the media layer is formed from helically arranged smooth muscle cells encircling 

the intima layer and the externa layer comprises elastic lamina.  The ventral aorta has a 

total of 8 bifurcations that deliver blood for reoxygenation from the ventricle (via the 

bulbus arteriosus) to gills either side of the zebrafish (Hu et al., 2001), thus, the zebrafish 

heart is described as a ‘venous’ heart that receives and pumps deoxygenated blood. 
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Figure 3 Adult zebrafish heart 

Schematic representation of the adult zebrafish heart. Deoxygenated blood returning in veins 
from the body is collected in the sinus venosus and then fills the atrium. Blood is pumped into the 
ventricle from the atrium via the four-leaflet atrioventricular valve. During systole, blood exits the 
ventricle via the bicuspid bulbo-ventricular valve into the bulbus arteriosus that direct blood 
around the body via the gills for reoxygenation. Image modified from Leong et al. (2010) 
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 Electrical properties and conduction of the zebrafish heart  

The heart rate and electrophysiological properties of cardiomyocytes in the adult 

zebrafish heart more closely resemble that of humans than mice. The adult zebrafish 

heart beats at approximately 120-180 beats per minute, which is closer to the 60-100 

beats per minute in humans than the rapid 600 beats per minute in mice (Milan et al., 

2006b; Sun et al., 2009b). The pacemaker cell population of the zebrafish heart was 

identified as a group of islet-1, tbx2b positive cells arranged in a circular orientation 

between the sinus venosus and atrium interface (Tessadori et al., 2012) (Figure 4). The 

pacemaker electrophysiological properties are comparable to mammalian pacemaker 

cells and the location is analogous to the sinoatrial node in mammals, although the ion 

channels permitting electrical conductance in the pacemakers remain unknown (Poon 

and Brand, 2013). A delay in impulse propagation at the atrioventricular canal (termed 

slow conduction) has been observed to allow ventricle chamber filling from as early as 

40 hpf (Chi et al., 2008; Milan et al., 2006a). This is followed by a fast conduction impulse 

relayed through trabeculae to achieve apex to base conduction during systole (Liu et al., 

2010; Sedmera et al., 2003). Electrical impulse propagation in the zebrafish ventricle 

trabeculae is analogous to His-purkinje fiber conductance observed in mammals and 

coordinates contraction in a similar manner. Action potential amplitude and 

cardiomyocyte resting membrane potential are comparable between zebrafish and 

humans (Sedmera et al., 2003). Zebrafish electrocardiogram measurements display a 

defined P-wave, QRS-complex and T-wave and each QT interval lasts a similar amount 

of time as in humans (200-290 vs 300-450 ms, respectively) (Figure 4) (Milan et al., 

2006b). Furthermore, sodium, calcium and potassium channel currents generate action 

potentials in a similar manner, although the ion channels that mediate the electrical 

conductance differ between the two species (Brette et al., 2008; Haverinen et al., 2007; 

Rottbauer et al., 2001). The cardiac electrophysiological properties of the zebrafish 

therefore support its use as a model to study cardiac physiology and disease. 
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Figure 4 Cardiac electrophysiological properties human, zebrafish and mouse 

Diagrammatic representative traces of electrocardiograms (ECG) from human (left), zebrafish (middle) and mice 
(right). The ECG of zebrafish hearts better resembles the shape and duration of one human electrical cycle (P‐wave 
(atrial depolarization) QRS‐complex (ventricular depolarization) and T wave (ventricular repolarisation)) than the ECG 
of mice. QT‐interval encompasses the beginning of the QRS‐complex to the end of the T‐wave. Image modified from 
Leong et al. (2010)  
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1.3 Use of zebrafish to study cardiac disease 

Well established techniques that allow zebrafish genome editing, and embryo optical 

clarity to monitor cardiac development, have paved the way for genetic screens and 

resulted in identification of several mutations causing phenotypes resembling human 

cardiomyopathies. Additionally, transgenic fluorescent reporter lines that specifically 

identify endothelium (Lawson and Weinstein, 2002), cardiomyocytes (Burns et al., 

2005), epicardium (Peralta et al., 2013), and blood (Long et al., 1997) have been 

developed allowing visualisation of cardiovascular events. Below, I will describe the 

genetic manipulation techniques commonly applied to zebrafish and cardiovascular 

disease models currently established. 

 Genetic manipulation of zebrafish genome 

Reverse genetic screening has proven a useful approach to identify candidate genes 

responsible for pathological phenotypes. However, genetic manipulation can be 

somewhat complicated in the zebrafish due to evolutionary genome duplication, thus 

disruption of a single allele may not present a phenotype due to redundancy and 

compensation of the duplicated gene (Amores et al., 1998; Postlethwait et al., 1998; 

Rossi et al., 2015). Despite the challenges, several approaches to modify the genome 

have been successfully applied to the zebrafish; below I describe three of the most 

commonly practised approaches. 

1.3.1.1 Morpholinos 

For several years, the use of morpholinos was the preferred method to carry out reverse 

genetic screening approaches in the zebrafish. Morpholino technology was introduced 

by Nasevicius and Ekker in 2000 who induced gene silencing via antisense 

complementarity oligonucleotides (~25mer) to disrupt target protein synthesis (Figure 

5A). Morpholinos are nucleic acid analogs that contain methylenemorpholine rings in 

place of ribose or deoxyribose sugar in the macromolecule backbone. They can be 

designed to bind in close proximity to the ATG translation start site or other essential 

mRNA features, interfering with target gene translation or splicing to elicit target gene 

knockdown. Though this proved effective for studying gene functions and modelling 
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diseases, the technique is limited to transient gene knockdown, restricting experiments 

to developmental stages. Additionally, more recent observations have added a level of 

scepticism towards the validity of the morpholino approach. Morpholino-induced 

phenotypes often differ from other genetic silencing techniques of the same gene (Kok 

et al., 2015; Novodvorsky et al., 2015; van Impel et al., 2014), there can be widespread 

side effects (Eisen and Smith, 2008), and non-specific gene-targeting due to the high 

relative abundance of the morpholino constructs in comparison to their target is a major 

problem (Schulte-Merker and Stainier, 2014).  

1.3.1.2 CRISPR 

Clustered regularly interspaced short palindromic repeats (CRISPR) were originally 

identified in bacteria as a defence mechanism from bacteriophages (Barrangou et al., 

2007). Bacteria store bacteriophage genomic sequences from a previous infection. Upon 

repeated infection, the bacteria generate RNA complementary to the viral genome and 

recruit Cas9 endonuclease to cleave viral DNA to prevent infection. CRISPR technology 

adapts this mechanism, using guide RNA (gRNA) that encodes a 20 base complimentary 

sequence to a target gene, and recruits Cas9 to the DNA to induce a blunt end double-

stranded break (Figure 5B). The host molecular machinery attempts to mend the break 

via non-homologous repair that is likely to trigger random insertions and deletions of 

nucleotides (indels) leading to the introduction of mutations and gene disruption (Figure 

5B). In zebrafish, this genome editing technique can be applied at the one cell stage 

during which gRNA and Cas9 (mRNA or protein) are co-microinjected into the cell, in 

order to induce gene disruption and produce a mutant line (Chang et al., 2013; Hwang 

et al., 2013). It is a highly effective genome-editing technique that achieves greater than 

75% mutagenesis efficiency (Sander and Joung, 2014). This approach can also be 

modified to insert nucleotide sequences and generate knock-in transgenic fish lines 

(Bedell et al., 2012; Chang et al., 2013; Hwang et al., 2013).  

1.3.1.3 ENU 

N-ethyl-N-nitrosourea (ENU) mutagenesis is a chemical method used to induce 

mutations that has been widely applied in zebrafish. ENU is a highly mutagenic chemical 

that triggers the transfer of an ethyl group to nucleotide bases, inducing point mutations 
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(Coghill et al., 2002) and can alter 1 in every 700 bases (Davis and Justice, 1998). 

Spermatogenesis is targeted for mutation incorporation and male zebrafish are treated 

with ENU to induce anomalies randomly throughout the DNA in gametes.  ENU-treated 

males are crossed with wild type females, and mutant founder fish are generated with 

random mutations in their genome (Figure 5C). Offspring (F1) are screened for mutations 

using a PCR and endonuclease method termed targeting-induced local lesions in 

genomes (TILLING) (McCallum et al., 2000; Wienholds et al., 2002; Wienholds et al., 

2003). Identified mutations are categorised by the function of their genetic outcome 

(e.g. nonsense mutation, loss of function, amino acid change) and F1 fish are crossed 

with wild type fish to confirm transmission of the mutation in the germline (Figure 5C). 

The heterozygous progeny (F2) are then incrossed and offspring are screened for 

phenotypes. Finally homozygous mutant fish lines can be established from the F4 

generation (Figure 5C). ENU mutant fish production and TILLING is laborious and 

expensive, additionally this approach does not allow targeted mutation of a specific 

gene, and thus this approach is more frequently carried out as part of a large-scale 

effort. 
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Figure 5 Gene expression manipulation techniques in the zebrafish 

(A) Morpholinos (red) are anti-sense oligonucleotides analogs designed to encode the 
complimentary sequence to target gene mRNA (purple). When introduced to the cell, the 
morpholino binds to target mRNA and physically inhibits translation. (B) CRISPR technology utilises 
a customised RNA termed guide RNA (gRNA), that encodes a complimentary sequence to the target 
genomic DNA sequence enabling the gRNA to bind. The gRNA also encodes a Cas9 endonuclease 
(blue) recruitment domain that directs the Cas9 enzyme to the target sequence to induce a double 

strand break (DSB) ahead of the PAM (protospacer adjacent motif) sequence (pink). The cleaved 
DNA is repaired by non-homologous end-joining, likely resulting in the incorporation or deletion of 
nucleotides (indels) and the disruption of the target gene. Image modified from (Ding et al., 2016) 
(C) Male zebrafish are treated with the mutagenic chemical N-ethyl-N-nitrosourea (ENU) to induce 
mutations during spermatogenesis. The fish is crossed with WT (+/+) females and the 
heterozygous(+/-) progeny (F1) are crossed with wild types to confirm germline transmission to the 
F2 generation. F2 fish are incrossed to establish homozygous mutants in the offspring (F3). 
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 Cardiovascular disease models in the zebrafish 

The zebrafish heart is a simpler structure to that of higher vertebrates and may not 

recapitulate complications occurring in mammals and limit identification of mechanisms 

contributing to human cardiac diseases. Indeed, as a consequence of its anatomical 

features (two chambers versus four chambered in mammals), some human congenital 

heart defects involving right and left heart septation are unable to be modelled in 

zebrafish. However, several development mechanisms (see 1.1.1) and cardiac functions 

(see 1.2) are conserved between zebrafish and human hearts, supporting the use of 

zebrafish as a model to study cardiac disease.  

Multiple mutant zebrafish lines have been developed to study human cardiovascular 

diseases. Arrhythmias have been modelled in zebrafish encoding ion channel mutations. 

For example, the tremblor zebrafish contains a mutation in the cardiac-specific sodium 

calcium exchanger, this model recapitulates ventricular fibrillation due to heightened 

intracellular calcium levels and irregular calcium transients (Langenbacher et al., 2005). 

Bradycardia is modelled using the slow mo zebrafish mutant, in which the recessive 

allele causes delayed heart rate due to impaired hyperpolarization-activated cation 

pacemaker currents (Ih) (Baker et al., 1997). The reggae (reg) zebrafish mutant encodes 

a gain-of-function mutation in the zebrafish ether-à-go-go-related gene (zERG) 

potassium channel and results in shortened action potentials that cause cardiac 

fibrillation (Hassel et al., 2008). The reg mutant closely resembles arrhythmia 

pathologies observed in human short-QT syndrome (SQTS) that can lead to sudden 

cardiac death (Schimpf et al., 2005). 

Dilated human cardiomyopathy can be effectively modelled in the zebrafish via tintin 

gene silencing which results in the disruption of the Z-line of sarcomeres and the 

impairment of cardiac function (Xu et al., 2002). During cardiac stress due to 

cardiomyopathies, the hypertrophic natriuretic peptide signalling pathway is switched 

on in both mammals and fish. A transgenic reporter zebrafish line has been developed 

that expresses luciferase downstream of the natriuretic peptide promoter, this can be 



 

47 

 

used to study cardiac hypertrophy in models such as the tintin mutant or environmental 

influences that elicit hypertrophic responses (Becker et al., 2012).  

 Zebrafish myocardial infarction models 

Several techniques have been developed to simulate cardiac damage sustained during 

MI in humans. They either rely on mutant or transgenic lines or physical damage by 

surgical means.  A decade and a half ago, it was found that the zebrafish could survive 

the surgical removal of up to 20% of its ventricle (Poss et al., 2002). Initially, the zebrafish 

response triggers mechanisms reminiscent of those in humans after MI, including 

inflammation and fibrosis. However, the zebrafish can then repair the damage with new 

functional myocardium during a regenerative phase. The following section addresses 

techniques developed in zebrafish to investigate heart regeneration. 

1.3.3.1 Ventricular resection 

Poss and colleagues (2002) were the first to identify the regenerative capacity of the 

zebrafish heart using ventricular resection. In this model, approximately 20% of the 

ventricle is surgically removed from the adult heart using fine iridectomy scissors (Figure 

6A). A clot forms immediately at the site of injury, followed by inflammation and fibrosis. 

The fibrotic scar is subsequently replaced by functional cardiomyocytes, completely 

regenerating the lost cardiac tissue within 60 days following amputation (Poss et al., 

2002). In mammals and amphibians the scar tissue is collagen rich (Cleutjens et al., 

1995), this is unlike the resection model in zebrafish, which results in fibrin clot 

formation without extensive collagen deposition within the injured area (Poss et al., 

2002). Furthermore, in this model, neomyogenesis predominantly produces a thick 

compact myocardial layer at the site of insult (Poss et al., 2002). The architecture of the 

myocardium of the uninjured zebrafish heart comprises a thin compact layer and a more 

prevalent trabecular layer, which suggests that resection, although achieving functional 

restoration, permanently alters the structural composition of the heart. 

The resection model has also been investigated in neonatal mice that similarly retain 

regenerative capacity until 7 days post birth (Porrello et al., 2011b). The initial response 

to injury observed in mice is similar to that of zebrafish, with initial blood clotting and 
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inflammation followed by cardiomyocyte proliferation, resulting in minimal cardiac 

hypertrophy and fibrosis and leading to restoration of cardiac function within 21 days of 

resection (Figure 6) (Porrello et al., 2011b). It has since been shown that different 

severities of resection will determine the regenerative outcome; for example, large 

apical ventricular resections (>23% ventricle damage) result in incomplete regeneration 

and the deposition of a lasting scar in contrast to the results of 15% resection (Bryant et 

al., 2015).  

1.3.3.2 Inducible genetic ablation  

Inducible genetic ablation is a non-invasive procedure that causes the death of 

cardiomyocytes. Genetically modified zebrafish expressing inducible Cre recombinase 

under the control of the cardiac myosin light chain 2 (cmlc2) promoter have been 

engineered to express the cytotoxic diphtheria toxin A (DTA) gene downstream of loxP 

sites. Tamoxifen exposure stimulates DTA production specifically in cardiomyocytes, 

resulting in the death of up to 60% of the cardiomyocyte population (Figure 6). 

Nevertheless, surviving cardiomyocytes dedifferentiate, undergo rapid proliferation 

and, within 30 days, complete regeneration of the cardiac tissue is achieved (Wang et 

al., 2011). This demonstrates the robust resilience of the zebrafish heart that, even after 

suffering a huge loss of cardiomyocytes, is able to rapidly regain full cardiac function 

(Wang et al., 2011). Despite only affecting one cardiac cell type, genetic cardiomyocyte 

ablation induces epicardium and endocardium activation and inflammation, similarly to 

other models of cardiac damage in the zebrafish. Nevertheless, the relevance of the 

genetic ablation technique to mammalian MI is limited because organ-wide 

cardiomyocyte death occurs rather than localised tissue necrosis; moreover, there is no 

scar formation. Genetic cardiomyocyte ablation results in reduced exercise tolerance 

and sudden cardiac death, mirroring some of the repercussions of heart failure, but 

weakly resembles mammalian MI. 

1.3.3.3 Cryoinjury  

Cryoinjury (also known as cryocauterisation) was developed by the group of Nadia 

Mercader and colleagues (2011) as an alternative model for myocardial infarction and 

heart regeneration in the zebrafish. A small metal filament, cooled in liquid nitrogen, is 
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pressed onto the exposed ventricle of the zebrafish. Subsequently, thermal shock-

induced necrosis and apoptosis takes place, creating a lesion of approximately 25% of 

the ventricle (Figure 6). A similar injury can also be achieved by application of dry ice to 

the ventricle (Schnabel et al., 2011). The damage is extensive and spans over the endo-

, myo- and epicardial layers. This model best recapitulates mammalian MI as it achieves 

cardiac cell death in a localised region without removal of cardiac tissue. Furthermore, 

the reparative process that subsequently occurs relies on the deposition of a fibrotic 

scar formed predominantly by a collagen-rich core and a fibrin cap. This process also 

resembles more closely the fibrotic response observed in humans after myocardial 

infarction (Chablais et al., 2011; Manuel Gonzalez-Rosa et al., 2011). The fibrotic tissue 

is gradually removed and replaced with proliferating cardiomyocytes to achieve 

complete regeneration, albeit over a longer time scale than resection, in up to 130 days 

(Figure 6)(Manuel Gonzalez-Rosa et al., 2011). Cryoinjured hearts regain reasonable 

cardiac function, however impaired ventricular contraction is evident due to 

myocardium remodelling that perturbs homogeneous contraction (Manuel Gonzalez-

Rosa et al., 2011). 

The cryoinjury procedure has been applied to the neonatal mouse (Darehzereshki et al., 

2015). The neonatal mouse heart retains some regenerative capacity for up to 7 days 

post injury (see 1.3.3.1), however varying results were observed with this model. The 

extent of cardiac damage determines the regenerative process. Transmural damage 

(throughout the endo-, myo- and epicardium) results in incomplete regeneration and 

extensive scarring, whereas, non-transmural injury restricted to epicardial and 

myocardial damage, results in regeneration with scarring to a lesser extent (Figure 

6)(Darehzereshki et al., 2015). 
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Figure 6 Myocardial infarction models in regenerative animals 

Illustrative representation of the three zebrafish (upper row) and neonatal mouse 
(lower row) myocardial infarction models. Apical resection (also known as 
ventricular resection) consists of the removal of up to 20% of the ventricle. Genetic 
ablation involves cardiomyocyte-specific death induced by tamoxifen delivery to a 
transgenic fish expressing DTA under the control of Cre recombinase. Cryoinjury of 
the ventricle is induced by the application of a metal probe cooled in liquid nitrogen 
onto the exposed ventricle. Myocardial infarction can be induced in the neonatal 
mouse via ligation of a major coronary artery. Description regarding regenerative 
capacity, cardiomyocyte (CM) proliferation and neomyocyte origin (genetic 
lineage) are listed below each MI model. Image modified from (Porrello and Olson, 
2014) 
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1.4 Mechanisms of zebrafish heart regeneration  

 Regenerative capacity of the zebrafish 

Increased survival rates following MI have been achieved with improved medical 

interventions that allow the recovery of blood supply to the ischemic area (Kabir et al., 

2007; Unal et al., 2005). However, the affected area of the heart of patients who survive 

MI does not regain full physiological function because of extensive fibrotic remodelling; 

this can result in heart failure, fatal arrhythmias amongst other secondary 

complications. Evidence exists supporting an endogenous ability to repair damaged 

cardiac tissue in humans, as observed in new-born babies who are able to recover from 

myocardial infarction; however this ability is lost within 6 months postnatally (Haubner 

et al., 2016). In contrast to zebrafish, adult mammalian hearts, once damaged, are 

unable to fully repair, limited cardiomyocyte proliferation takes place, and, instead of 

neomyogenesis, extensive collagen deposition and cardiomyocyte hypertrophy 

compensate for compromised cardiac function (Buja and Vela, 2008; Pasumarthi and 

Field, 2002; Pfeffer and Braunwald, 1990). Although the fibrotic scar prevents ventricle 

wall rupture, it does not possess the contractile properties of the myocardium. 

Furthermore, fibrotic tissue perturbs electrical conductivity that co-ordinates a 

synchronised heartbeat, promoting arrhythmias.  

Several investigations have been initiated using the different models described in the 

previous section (1.3.3), in order to understand what events govern the regenerative 

process throughout the zebrafish life span (Itou et al., 2012a). Initially, inflammation 

(inflammatory phase) occurs in the lesion, this is followed by scar deposition (reparative 

phase), and finally scar tissue removal and cardiomyocyte proliferation (regenerative 

phase) (Figure 7) (Jopling et al., 2010). A genetic profile switch occurs, whereby a 

plethora of embryonic genes are re-expressed allowing transdifferentiation and 

proliferation of cells that would otherwise be quiescent. 
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 Inflammation 

1.4.2.1 Mammalian inflammatory phase 

The death of cardiac cells following MI or cardiac insult results in the production of 

danger associated molecular patterns (DAMPs) and reactive oxygen species (ROS) that 

recruit innate immune cells to the damaged area (Timmers et al., 2012). Additionally, 

matrix metalloproteinases (MMPs) are activated, resulting in the degradation of cardiac 

matrix, further enhancing inflammation (Etoh et al., 2001; Senior et al., 1980; 

Weathington et al., 2006)). The initial inflammatory response lasts up to 4 days in adult 

mammals. It is essential for necrotic and apoptotic cell removal and central to mediating 

subsequent reparative events (Dobaczewski et al., 2010). Neutrophils and macrophages 

primarily infiltrate the ischemic tissue from the blood in response to inflammatory 

signals produced by damaged and adjacent healthy cardiomyocytes (Pfeffer and 

Braunwald, 1990). Macrophages secrete a cocktail of cytokines such as tumour necrosis 

factor alpha (TNFα), interleukin (IL)-1, IL-6, FGF and monocyte chemoattractant protein 

(MCP)-1 to stimulate fibroblast recruitment and proliferation and angiogenesis 

(Frangogiannis et al., 2003; Lambert et al., 2008).  

Macrophage colony-stimulating factor (MCSF) promotes VEGF production and 

angiogenesis that ultimately improves cardiac function following MI and enhances 

cardiomyocyte preservation (Okazaki et al., 2007). Inflammation was reported to 

support cardiac function following MI in a study by Sun and colleagues (2009). In line 

with their findings, the inhibition of inflammation via the delivery of pharmacological 

agents, has shown deleterious consequences in mammalian MI models (Mannisi et al., 

1987; Sun et al., 2009a; van Amerongen et al., 2007). This highlights the pivotal role of 

the inflammatory response following MI. Nevertheless, some conflicting results 

generated by other studies have shown that complete inhibition of the inflammatory 

response reduced infarct size and promoted cardiac healing (Oyama et al., 2004; 

Timmers et al., 2008), whereas other reports have shown no overall benefit of 

inflammation inhibition in clinical trials (Armstrong et al., 2007; Faxon et al., 2002).  

Controversy remains concerning the beneficial influence of inflammation following MI. 

It is possible that leucocytes are associated with detrimental cardiac remodelling due 
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indirect activities, such as fibroblast recruitment to the lesion and the triggering of their 

transdifferentiation into cardiac myofibroblasts. The extent of the inflammatory 

response may also contribute to pathological outcomes. Acute inflammation is 

suggested as essential in the reparative response (Hubner et al., 1996); prolonged 

chronic inflammation can reverse these beneficial effects because it potentially 

promotes cardiac remodelling (Frantz et al., 2009). The promotion of acute 

inflammation following MI and the tightly regulated clearance of immune cells via 

lymphatic vessels to reduce chronic inflammation, have been proven beneficial after MI 

(Evans et al., 2013; Henri et al., 2016).  

1.4.2.2 Zebrafish inflammatory phase 

The inflammatory phase occurs from 0 to 3 days after cryoinjury of the zebrafish heart 

(Figure 7) (Chablais and Jazwinska, 2012). The zebrafish initiates an innate immune 

response whereby, infiltrating leucocytes produce pro-inflammatory cytokines, helping 

with the removal of cellular and matrix debris and the recruitment of fibroblast-like cells 

to the injury area. Several evolutionary features of innate immunity have been 

conserved in vertebrates (Beck and Habicht, 1991). The zebrafish genome encodes 

orthologs of potent pro-inflammatory cytokines that are produced following tissue 

injury and mediate leucocyte recruitment and inflammatory responses reminiscent of 

higher vertebrates (Ogryzko et al., 2014; Stein et al., 2007). 

Acute inflammation is an essential step for cardiac regeneration, as it precedes and 

initiates the subsequent reparative phase. Huang and colleagues (2013) reported that 

pharmacological inhibition of inflammation with glucocorticoids perturbs phagocytic 

clearing of cellular debris and diminishes vegfaa and fgfr expression, thus reducing the 

revascularisation of the injured area. The anti-inflammatory treatment also attenuated 

cardiomyocyte proliferation, leaving a persistent scar and preventing the complete 

regenerative response (Huang et al., 2013). These observations were further supported 

by evidence that revealed the essential role of leukocyte-derived TGFβ signalling 

orchestrating the subsequent regenerative events. Indeed, inhibiting TGFβ signalling 

pathways during the early inflammatory phase completely inhibited cardiac 

regeneration (Chablais and Jazwinska, 2012). The TGFβ contribution to zebrafish heart 
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regeneration is dependent on activin and Smad3 signalling (see 1.5.5.5). TGFβ targets 

fibronectin, collagen and tenascin C synthesis, initiating inflammatory signals driving the 

fibrotic responses and remodelling (Chablais and Jazwinska, 2012). The resolution of the 

inflammation response is regulated, in part by, by hydrogen peroxide and Tβ4 signalling 

that inhibit pro-inflammatory interferon   (IFN) and reduce inflammatory macrophage 

infiltration (Evans et al., 2013). Although initial inflammation is a prerequisite for 

neuronal and heart regeneration in the zebrafish (Huang et al., 2013; Kyritsis et al., 

2012), it is not essential for fin regeneration (Mathew et al., 2007). These studies imply 

that acute inflammation is important for the regenerative response for both mammals 

and fish, but its pivotal role differs between regenerating organs. 

 Fibrosis 

1.4.3.1 Adult mammals 

In mammals, neutrophil apoptosis marks the resolution of the inflammation process and 

the initiation of the reparative (also referred to as the proliferative) phase. This phase 

occurs approximately 4 days following cardiac injury and continues for up to 14 days 

(Dobaczewski et al., 2010). During this phase of cardiac repair, fibroblasts are recruited 

to the lesion. Fibronectin and hyaluronan polysaccharide deposits produced during the 

inflammatory phase act as a scaffold to support cardiac structure, preventing 

haemorrhage and facilitating fibroblast and endothelial cell infiltration (Clark, 1988; 

Dobaczewski et al., 2006). TGFβ and platelet-derived growth factor (PDGF) produced by 

macrophages recruit resident cardiac fibroblasts to the injury (Yano et al., 2005), and 

induce fibroblast transdifferentiation to myofibroblasts (Brown et al., 1993; 

Dobaczewski et al., 2006; Serini et al., 1998; Ulrich et al., 1997). Myofibroblasts 

subsequently synthesise collagen deposits at the site of injury (Cleutjens et al., 1995). 

Cytokines such as basic fibroblast growth factor (bFGF) and TGFβ enhance tenascin C 
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production by fibroblasts at the injury border, thus facilitating myofibroblast migration, 

aiding delamination and cardiac tissue remodelling (Imanaka-Yoshida et al., 2001).  

.
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Figure 7 Phases of cardiac regeneration in zebrafish 

The inflammatory phase takes place in the first three days following cryoinjury. 
Leucocytes infiltrate to the injured area, neovessel begin to revascularise the lesion 
and fibroblasts are recruited to the damaged area. Fibroblasts synthesise and secrete 
extracellular matrix (ECM) components during the reparative (days 4-7 post cryoinjury) 
phase; a collagen core and fibrin cap are produced to provide mechanical support to 
prevent ventricle wall rupture and scaffolding for neomyocardium. During the 
regenerative phase (7-130 dpci), cardiomyocytes dedifferentiate, proliferate and 
invade the lesion; fibrotic tissue is reabsorbed to regenerate cardiac tissue. 
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Once myofibroblasts are established at the injury site, the heart progresses towards the 

maturation phase of cardiac repair that lasts from 14 to 60 days post injury (Dobaczewski 

et al., 2010). Maturation involves the cross-linking of collagen extracellular matrix 

proteins to create a permanent and stable scaffold to provide mechanical support. 

Myofibroblast and vessel infiltration diminishes over time and the maturing scar 

becomes acellular, leaving a dense collagen scar deposit (Jennings et al., 1990; Lerman 

et al., 1983; Ren et al., 2002). 

1.4.3.2  Zebrafish fibrosis 

Cardiac remodelling after injury in zebrafish, similarly to mammals, is a complex process, 

however limited studies have focused on the fibrotic response in zebrafish heart 

regeneration. The reparative phase lasts from 4-7 days post injury (Figure 7) (Chablais 

and Jazwinska, 2012). At this stage, cellular and matrix debris within the lesion have 

been cleared. Tgfβ and Activin signalling induce fibronectin and collagen matrix 

deposition by differentiated proliferating myofibroblasts (Chablais and Jazwinska, 

2012). Tgfβ type 1 receptor (Alk5/4) inhibition results in the reduction of Smad3 

phosphorylation and markedly impairs the regenerative response. Tenascin C, a de-

adhesive extracellular matrix protein, is implicated in cardiac remodelling at the injury 

border. It is essential for cardiomyocyte infiltration (Chablais and Jazwinska, 2012) which 

supports observations generated from adult mammalian models (Imanaka-Yoshida et 

al., 2001).  

A fibrin dominant scar encases a collagen core by 7 days post cryoinjury, but the exact 

mechanisms, signals and cellular processes that mediate this organised scar structure 

remain largely unclear (Manuel Gonzalez-Rosa et al., 2011). The transient scar deposited 

in the zebrafish heart is essential for full repair; perturbation of the reparative phase 

with TGFβ signal inhibitors results in incomplete cardiac regeneration and gross 

malformation of the injured hearts due to partial ventricular rupture (Chablais and 

Jazwinska, 2012). 

Additional fibronectin deposits are produced by the epicardium and are necessary for 

zebrafish heart regeneration. Fibronectin (fn), fn1 and fn1b, expression can be observed 

in epicardial cells close to the injury. Concomitantly, cardiomyocytes around the injured 
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area express integrin β3 (itgb3). Fibronectin-itgb3 interaction is required for complete 

regeneration, likely through enhancing the migratory response of cardiomyocytes, as 

proliferation was unaffected by disruption of this pathway (Wang et al., 2013b). This is 

reminiscent of embryonic heart cardiac primordia fibronectin-dependent migration 

during heart tube formation (as described in section 1.1.1) (Garavito-Aguilar et al., 2010; 

Kupperman et al., 2000). 

Remarkably, scar tissue is reabsorbed and replaced with new myocardium during the 

regenerative phase (Figure 7). The mechanisms involved in this process remain unclear. 

Understanding the endogenous events that trigger the removal of pathological scar 

tissue before maturation could help us uncover potential targets for therapies in 

humans. 

 Cardiomyocyte proliferation  

1.4.4.1 Mammalian cardiomyocyte proliferation 

The inability to replace the dead cardiomyocyte population results in the retention of 

fibrotic deposits within the lesion. Scar tissue does not possess any contractile 

properties; however, the spared myocardium must still meet cardiac demands. This 

ultimately causes hypertrophy of the surviving cardiomyocytes and the dilation of the 

ventricles, compromising heart function and leading to heart failure (Li et al., 1996). 

Mammalian cardiomyocytes become terminally differentiated shortly after birth and 

exhibit limited proliferative capacity thereafter (Li et al., 1996; Rumyantsev, 1977). Low 

homeostatic cardiomyocyte proliferation can be detected under basal conditions, 

cardiomyocyte turnover gradually declines from birth (Mollova et al., 2013) to 

approximately 0.5-1% per year in adult humans (Bergmann et al., 2009). Varying 

turnover rates are observed at different ages in other mammalian models, but mitotic 

cardiomyocytes consistently account for a minute percentage of the overall cardiac 

population (Li et al., 1996; Naqvi et al., 2014). Terminal differentiation coincides with a 

change in nuclear content (Li et al., 1998; Pasumarthi and Field, 2002). Cardiomyocytes 

of the neonatal mouse are mononuclear for the first 7 days after birth, then, the majority 

of cardiomyocytes undergo an incomplete round of cytokinesis, and remain in a 
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binucleated state (Figure 8). The loack of cytokinesis coincides with loss of neonatal mice 

regenerative capacity and upregulation of the cardiomyocyte cell cycle suppressor, 

meis1 (Li et al., 1996; Mahmoud et al., 2013; Porrello et al., 2011a; Porrello et al., 

2011b). In contrast, neonatal mouse cardiomyocytes have been demonstrated to retain 

proliferative properties up to 21 days after birth (Walsh et al., 2010). Despite disparities 

between studies, it is commonly accepted that shortly after birth, proliferative capacity 

diminishes. Similarly, in humans, a few months after birth, cardiomyocytes increase their 

DNA content and arrest in a polyploid mononuclear state (Figure 8) (Laflamme and 

Murry, 2011).  This is associated with a loss of cardiomyocyte capacity to re-enter the 

cell cycle and results in the establishment of a heart described as “post-mitotic” 

(Mollova et al., 2013). 

The number of cardiomyocytes in an adult mammal is predetermined and fixed 

postnatally; the post-mitotic human heart contains up to 9.5 billion cardiomyocytes 

(Mollova et al., 2013; Tang et al., 2009) of which up to a billion can be lost following MI 

(Murry et al., 2006). Post-mitotic mammalian cardiomyocytes can re-enter the cell cycle 

when stimulated (Engel et al., 2005), and following cardiac damage, approximately 3% 

of pre-existing cardiomyocytes on the periphery of the injury do so in a mouse model 

(Senyo et al., 2013). Nevertheless, the response is insufficient to replace damaged 

myocardium (Ali et al., 2014). Thus, other studies have made efforts to produce an 

alternative source of cardiomyocytes from endogenous or induced cardiac progenitor 

cells (Chong et al., 2011; Domian et al., 2009; Laugwitz et al., 2005; Smart et al., 2011).  

In the neonatal mice models of MI via coronary ligation and apical resection, the primary 

source of neomyocytes are derived from pre-existing cardiomyocytes (Haubner et al., 

2012). Attempts to replenish cardiac lesions by stimulating endogenous cardiomyocyte 

cell cycle re-entry or stem cell differentiation in adult mammals have been unsuccessful 

so far, but still maintain therapeutic promise (Garbern and Lee, 2013). Some studies 

implicate a pool of resident cardiac stem cells capable of producing a limited 

cardiomyocyte population, however, the consensus of these studies is that progenitor 

populations are insufficient to replace the huge cardiomyocyte loss that occurs following 

MI (Hsieh et al., 2007; Malliaras et al., 2013). One study estimated that c-kit (a receptor 
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tyrosine kinase) positive endogenous resident cardiac progenitor cells contribute to 

0.03% or less of the total cardiomyocyte population following cardiac damage and thus 

questioned the physiological relevance of such a small population (Garbern and Lee, 

2013; van Berlo et al., 2014). On the contrary, other studies reported that resident c-kit 

positive cells are essential for MI recovery, improve cardiac function and therefore hold 

therapeutic potential (Ellison et al., 2013; Hsieh et al., 2007; Loffredo et al., 2011; Senyo 

et al., 2013). The generation of new cardiomyocytes from a population other than pre-

existing cardiomyocytes is still a hotly debated topic and an active area of research. 

1.4.4.2 Zebrafish cardiomyocyte proliferation 

Pre-existing cardiomyocytes are the primary source for cardiac neomyogenesis in 

zebrafish following cardiac injury (Gupta et al., 2013; Jopling et al., 2010; Kikuchi et al., 

2010; Schnabel et al., 2011). In contrast to pathological cardiomyocyte hypertrophy 

occurring in the adult mammalian heart under stress, the zebrafish heart can undergo 

homeostatic growth to modify its size via cardiomyocyte proliferation throughout their 

lifetime (Itou et al., 2012a; Wills et al., 2008). The trigger for cardiomyocytes to re-enter 

the cell cycle may shed light on the proliferative capacity of adult zebrafish 

cardiomyocytes following cardiac damage. Cardiomyocyte mitogenic potential 

correlates with nuclei numbers and DNA content: neonatal mammals, urodele 

amphibians and teleost fish all maintain the ability to regenerate their heart, and all 

possess a majority of mononuclear diploid cardiomyocytes. In contrast, the adult 

mammalian heart is made up binucleated and polyploid cardiomyocytes. (Kikuchi and 

Poss, 2012). Zebrafish cardiomyocytes remain mononuclear and diploid throughout 

their lifespan and retain their regenerative capacity (Figure 8) (Itou et al., 2012a). 
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Figure 8 Cardiomyocyte nuclear content and proliferative capacity 

Diagram illustrating human (upper row), mouse (middle) and zebrafish 
(bottom) cardiomyocytes nuclear content at birth and adulthood. Shortly 
after birth neonatal mammalian cardiomyocytes undergo an incomplete 
round of mitosis and arrest in a polyploid (human) or binucleated (mouse) 
state; this coincides with the time at which cardiomyocyte proliferative 
capacity is lost. Zebrafish cardiomyocytes remain in a mononuclear and 
diploid throughout their lifetime and cardiomyocytes retain proliferative 
potential. Blue arrows indicate regenerative capacity. Image modified from 
Kikuchi and Poss (2012) 
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Seven days after cardiac damage induced by cryoinjury, zebrafish enter the regenerative 

phase (Figure 7). Global cardiomyocyte proliferation is observed with increased 

myocardial proliferation at the injured area border and cardiomyocytes invade and 

replenish lost myocardium (Manuel Gonzalez-Rosa et al., 2011). The regenerative phase 

completes within 60 to 130 days (Figure 7) (Chablais and Jazwinska, 2012; Manuel 

Gonzalez-Rosa et al., 2011). Cardiomyocytes dedifferentiate and disassemble 

sarcomeric structures before dividing. This process is strongly associated with the 

expression of embryonic markers (Jopling et al., 2010; Kikuchi et al., 2010). The viable 

cardiomyocytes proximal to the damaged area re-express nkx2.5 and hand2 within 4 

days of ventricular amputation (Lepilina et al., 2006). Further studies showed that at 7 

days post-injury Fgf signalling induces gata4 expression by subepicardial 

cardiomyocytes at the periphery of the injury within the compact layer. This 

cardiomyocyte population is thought to be the primary source of cells contributing to 

the regenerating neomyocardium (Kikuchi et al., 2010), although evidence exists for a 

significant contribution to new cardiac tissue by peripheral cardiomyocytes in the 

trabecular myocardium (Manuel Gonzalez-Rosa et al., 2011). NF-kappaB signalling was 

also demonstrated to initiate cardiomyocyte gata5 expression upon injury (Karra et al., 

2015). Cardiomyocytes localized at the epicardial edge of the injury proliferate 

extensively to provide new myocardium and migrate into the injured region leading to 

initial compact myocardium recovery (Gupta et al., 2013; Jopling et al., 2010). After this 

process, the scar is encased and the wound is described as “closed”. Subsequently the 

scar tissue is gradually removed and replaced with new myocardium (Gupta et al., 2013; 

Gupta and Poss, 2012; Manuel Gonzalez-Rosa et al., 2011).  

Paracrine factors have been implicated in stimulating cardiomyocyte replication after 

cardiac damage in the zebrafish heart. Retinoic acid produced by the epicardium and 

endocardium signals to underlying healthy myocardium and is able to induce 

cardiomyocyte proliferation (Figure 9) (Kikuchi et al., 2011b). This is in contrast to the 

retinoic acid response observed in zebrafish during cardiac development, whereby 

retinoic acid was shown to restrict atrial cardiomyocyte addition from the second heart 

field and limit organ growth (Waxman et al., 2008). Leucocyte-derived TGFβ also 
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initiates zebrafish cardiomyocyte proliferation (Figure 9) (Chablais and Jazwinska, 2012), 

whereas the same signal drives pathological hypertrophy in adult mammalian hearts 

(Rosenkranz, 2004). It is also reported that PDGF signalling can influence the 

cardiomyocyte cell cycle, although it is uncertain whether this results from the secretion 

of mitogenic factors by PDGF-stimulated epicardium or if Pdgf can directly signal to 

cardiomyocytes (Kim et al., 2010). The epicardium also secrets Cxcl12a that signals 

through the cardiomyocyte receptor, Cxcr4, and induces migration and proliferation of 

the cells in close proximity to the lesion (Itou et al., 2012b). 

Although the scar tissue is ultimately resorbed, extracellular matrix deposition and 

cardiomyocyte proliferation occur simultaneously (Kikuchi et al., 2010; Kikuchi and Poss, 

2012). The newly generated myocardium does not recapitulate the initial architecture 

of the original healthy cardiac tissue, the compact layer is thicker in comparison with 

uninjured control hearts (Manuel Gonzalez-Rosa et al., 2011). Furthermore, it was 

reported that the regenerated myocardium presents altered contraction dynamics 

compared with uninjured myocardium. Despite the slight hypertrophic phenotype of the 

compact layer and asynchronous contraction after regeneration, cardiac function is fully 

restored (Manuel Gonzalez-Rosa et al., 2011). 

 Revascularisation 

1.4.5.1 Mammalian angiogenesis 

Part of the myocardium at risk is salvaged, and adverse remodelling and heart failure 

reduced when vascular supply to the ischemic tissue is enhanced in MI patients (Harada 

et al., 1996; Pearlman et al., 1995; Yanagisawa-Miwa et al., 1992). Although angiogenic 

signals are triggered early at the onset of MI, the lesion remains poorly vascularised in 

the mammalian heart (Dimmeler et al., 2005; Harrison et al., 2015). Hypoxia and 

mechanical stress induce the expression of VEGFA, a key mitogen essential for 

revascularisation (Heil and Schaper, 2004; Lee et al., 2000). VEGFA is primarily produced 

by hypoxic cardiomyocytes, endothelial cells and leucocytes recruited to the infarct 

(Berse et al., 1992; Taichman et al., 1997). Endothelial cells detect VEGFA via VEGFR2 

(KDR), stimulating their proliferation and migration (discussed in further detail in section 
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1.5.5.2). The VEGFB isoform of VEGF has also been found to stimulate coronary artery 

growth post MI through a VEGFR1-NRP1 signalling axis in rats; however, this has not 

been replicated in other species (Kupatt and Hinkel, 2014; Lahteenvuo et al., 2009).  

Despite the triggering of endogenous signalling in response to hypoxia, the blood supply 

to the infarcted area is insufficient; thus, stimulating revascularisation has been 

identified as a potential therapeutic target for the treatment of acute MI (Haider et al., 

2009; Hao et al., 2007; Henry et al., 2003). Zangi et al. (2013) used modified RNA 

encoding VEGF in MI mice models and observed improved cardiac function in parallel 

with increased myocardial capillary density. The study also highlighted a previously 

uncharacterised epicardial response to VEGF that could also play a role in heart repair. 

However, attempts to increase revascularisation using VEGF, FGF or other angiogenic 

factors have not ameliorated cardiac dysfunction in MI patients (Haider et al., 2009; 

Henry et al., 2003; Losordo and Dimmeler, 2004). Although the delivery of endothelial 

or bone marrow-derived progenitor cells to the infarct area brings acute benefits, these 

effects are short-lived (Lunde et al., 2006; Schachinger et al., 2006). Additionally, VEGFA 

signalling, if not tightly regulated, can potentially result in the generation of leaky vessels 

and inhibition of vessel maturation because of interference with the PDGF pathway and 

mural cell recruitment (Cochain et al., 2013; Schwarz et al., 2000). One study by Hao et 

al. (2007) demonstrated that controlled VEGF and PDGF deliveries facilitated 

revascularisation following MI in rat and, ultimately, led to improved cardiac function 

1.4.5.2 Zebrafish angiogenesis 

In the injured adult zebrafish heart, new vessels are formed via angiogenesis (Zhao et 

al., 2014); however, until recently, the molecular mechanisms and characterisation of 

the revascularisation process after MI were largely undefined. Marin-Juez and 

colleagues (2016) reported that vessels are observed invading the cardiac lesion as early 

as 15 hours after cardiac damage and inhibition of the initial vascular response severely 

impedes the entire regenerative process. Therefore, the early-onset angiogenic 

response is essential for the regeneration of the zebrafish heart. Vegfaa signalling was 

shown to mediate early revascularisation (Figure 9) using a dominant negative Vegfaa 

mutant fish that presented reduced infarct vessel density, inefficient cardiomyocyte 
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proliferation, and permanent scar formation and failed to regenerate (Marin-Juez et al., 

2016). Because neovascularisation precedes vegfaa upregulation (this occurs at 24 hour 

post injury); the authors hypothesised that endothelial cells responded to the local 

release of extracellular matrix-bound Vegfaa made available by proteolytic activity, as 

previously described by Ferrara et al (2010), but this requires further investigation.  

Additionally, maturation of new coronary vessels via mural cell recruitment is central to 

the revascularisation of the cardiac lesion. Pericyte coverage maintains integrity and 

provides structural support for the newly formed vessels. Pdgfbb signalling is essential 

for endothelial cell proliferation and, upregulation of mural cell markers such as acta2 

by pericytes mediate angiogenesis following injury (Kim et al., 2010). The authors noted 

an upregulation of EMT markers such as snail and twist1b after apical resection 

reminiscent of arteriogenesis, which is partly regulated by FGF and PDGF signalling 

(Figure 9) (De Smet et al., 2014; Wiens et al., 2010). Inhibition of the Pdgfbb signalling 

pathway has deleterious effects on coronary vasculature formation and zebrafish heart 

regeneration. Whether Pdgf effects on revascularisation are mediated directly or 

indirectly via endothelial cells is unclear, but it was confirmed that Pdgf receptor β 

(Pdgfrβ) activity is required for vascular development in the lesion during regeneration 

(Figure 9)  (Kim et al., 2010). Lepilina and colleagues (2006) demonstrated the 

importance of Fgf signalling for the regulation of vessel formation during zebrafish heart 

regeneration. Dominant negative Fgfr2 zebrafish mutants were unable to regenerate 

their heart after apical resection due to their inability to revascularise the injury site. 

These studies strongly suggest that epicardial transdifferentiation is largely regulated by 

Pdgf and Fgf signalling during zebrafish heart regeneration (discussed in greater detail 

in section 1.4.6). 

. 
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Figure 9 Signalling pathways and cellular mechanisms in zebrafish heart regeneration. 

Retinoic acid (RA) produced in the epicardium and endocardium stimulate 
cardiomyocyte (CM) proliferation additional to Tgfβ production by fibroblasts and 
leucocytes. Tgfβ also coordinates fibrosis and remodelling of the lesion in conjunction 
with tenascin-c and fibronectin synthesised by fibroblasts. Angiogenesis is promoted 
by several paracrine factors, Vegfaa is produced by hypoxic cardiomyocytes. It is 
hypothesized that hypoxic infiltrating leucocytes and local release of ECM bound 
Vegfaa provide additional Vegf sources. Pdgfbb and Fgf17b (derived from 
cardiomyocytes) signalling through epicardial cell Pdgfrβ and Fgfr2, respectively, 
facilitate neovessel maturation.    
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 Epicardial response in zebrafish heart regeneration  

The epicardium is a mesothelial epithelial monolayer surrounding the heart. It is made 

of a quiescent cell population that provides basal cytokine secretion for the homeostasis 

of the underlying myocardium (Wills et al., 2008). However, following cardiac damage, 

the epicardium becomes “activated”, proliferates and facilitates cardiac repair. This is 

highlighted by the expression of epicardial embryonic transcription factors; such as, 

wilms tumour 1 (wt1), T-box 18 (tbx18) and retinoic acid synthase enzyme retinaldehyde 

dehydrogenase 2 (raldh2) which are otherwise silenced shortly after cardiac maturation 

(Takeichi et al., 2013; Zhou and Pu, 2011). Injury-activated embryonic epicardial gene 

profile expression is conserved in adult mammals after MI (Limana et al., 2010; van Wijk 

et al., 2012; Zhou et al., 2011a), and in regenerative models such as the zebrafish and 

neonatal mouse (Kikuchi et al., 2011b; Lepilina et al., 2006; Manuel Gonzalez-Rosa et 

al., 2011; Porrello et al., 2011b). This suggests that the upregulation of epicardial 

developmental genes in response to cardiac damage is conserved across species. 

In zebrafish, the epicardium responds to cardiac damage by proliferating extensively 

around the injured area (Manuel Gonzalez-Rosa et al., 2011; Schnabel et al., 2011). 

Organ wide epicardial activation occurs very rapidly after cardiac damage. It is evident 

as early as 3 hours after injury in zebrafish (Kikuchi et al., 2011b), within 24 hours in 

adult mammals (von Gise et al., 2011), then soon becomes restricted to the injured area. 

The epicardial activation is highly responsive, such that even after sham operation, 

raldh2 expression is detected in the epicardium, though wt1 and tbx18 expression are 

not induced in these conditions, suggesting partial activation after sham operation (Itou 

et al., 2014). A recent study investigated the importance of the epicardium after cardiac 

injury using genetic ablation of the epicardial cell population, showing that hearts devoid 

of epicardium do not regenerate (Wang et al., 2015).  

The role of the epicardium is central to cardiac repair and has been extensively studied. 

In zebrafish, it provides structural support via the secretion of fibronectin and thus 

supports myocardial proliferation and migration (Wang et al., 2013a). This is in line with 

the role of fibronectin during cardiogenesis when the timely migration of myocardial 

precursors relies on epithelial integrity (Trinh and Stainier, 2004), but contrasts with the 
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pathological association of ECM deposition in cardiac fibrosis following adult 

mammalian MI (Brooks et al., 2010; Knowlton et al., 1992; Willems et al., 1996).  

Figure 10 Epicardial-derived cells (EPDC) in the embryonic and injured mammalian heart 

(A) Flow chart describing proepicardial (PEO) progenitor cell fates and functions following 
epicardial epithelial to mesenchymal transition (EMT) in embryonic development. (B) Flow 
chart diagram of adult heart epicardial response to myocardial infarction (MI) and EPDC 
fate and functions. EPDC transdifferentiate to fibroblasts and smooth muscle cells (SMC) 
and secrete cytokines. It remains unclear whether EPDCs adopt an endothelial cell (EC) or 
cardiomyocyte (CM) fate. Dashed lines and red boxed highlight outcomes that remain 
unclear at present. Image adapted from (Smits and Riley, 2014) 
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1.4.6.1 Epicardial derived paracrine signalling 

An increasing body of evidence supports the epicardium as a central signal transducer 

for paracrine and autocrine signalling that orchestrates cellular events required to 

achieve zebrafish heart regeneration. Treatment of infarcted hearts with conditioned 

medium supplemented with epicardial secreted factors improves cardiac function and 

enhances coronary vasculature density (Zhou et al., 2011a). In the following paragraphs, 

I will highlight some of the epicardium-derived cytokines playing a conserved role across 

species in the response to cardiac damage as well as cytokines with promising 

therapeutic potential that were characterised in model systems.  

The epicardium secretes retinoic acid (RA) both during development and following 

cardiac damage. Retinoic acid transduces signals via retinoic acid receptors (RARs) that 

form heterodimers, translocate to the nucleus and mediate transcription factor 

activities to regulate gene expression. In the adult mammalian heart, shortly after MI, 

the epicardium re-expresses embryonic-associated RA synthesising enzyme RALDH2 

(also referred to as Aldh1a2 in the zebrafish) and the production of RA inhibitors is 

reduced (Bilbija et al., 2012; Zhou and Pu, 2011). Raldh2 is expressed by the zebrafish 

epicardium following cardiac damage, indicating conserved epicardial RA production 

between species. Additionally, Raldh2 is expressed by the endocardium, which is not 

observed in the mammalian heart after MI (Kikuchi et al., 2011b; Limana et al., 2010). In 

the zebrafish heart, epicardial expression of radlh2 accumulates near the injury site and 

enhances cardiomyocyte proliferation (Kikuchi et al., 2011b).  In contrast to its beneficial 

effects in zebrafish, RA encourages pathological inflammatory cell infiltration (Huang et 

al., 2012) and consequently mediates the fibroblast synthetic profile and ECM 

deposition in mammals (Figure 10)(Bilbija et al., 2012).  

In the mouse, FGF2 (also referred to as basic FGF (bFGF)) and FGF9 are secreted by 

epicardial cells after MI and mediate autocrine and paracrine signalling (Zhou et al., 

2011a). In line with its role in zebrafish, FGF signalling helps cardiac recovery in 

mammals. Mice lacking FGF2 exhibit increased infarct size caused by the lack of scar 

tissue formation and fibroblast proliferation that compromise cardiac function; this is 

compounded by limited angiogenesis (Virag et al., 2007). The reverse was observed in 
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FGF2 overexpressing mice, whereby greater fibroblast proliferation caused excessive 

scar deposition, and vascular density and increased cardiomyocyte hypertrophy, 

ultimately improving cardiac function (Virag et al., 2007). In the zebrafish, Fgf17b, 

derived from cardiomyocytes, signals through Fgfr2 in the epicardium to mediate 

epicardial EMT (Figure 9) (further described in section 1.4.6.2). In addition, Pdgf is 

essential for epicardial cell proliferation and neovascularisation, and is essential for the 

epicardial response to cardiac damage in zebrafish (Kim et al., 2010; Lien et al., 2006). 

1.4.6.2 Epithelial to mesenchymal transition 

Epithelial to mesenchymal transition (EMT) is the process whereby epithelial cells 

transdifferentiate to a mesenchymal phenotype and acquire a migratory profile. EMT 

has been described in several physiological and pathological processes and is particularly 

associated with cancer metastasis (Chaffer et al., 2016), during which epithelial cells 

delaminate from the epithelial layer, and migrate to other organ tissues (Figure 11). 

During mammalian cardiac development, epicardial cells undergo epicardial EMT in 

response to PDGF; they migrate into the underlying myocardium and transdifferentiate 

into vascular smooth muscle cells, cardiac fibroblasts and pericytes (Figure 10) (further 

discussed in section 1.1.1.4) (Lu et al., 2001). The re-expression of embryonic epicardial 

markers after cardiac injury in the adult heart has led to the hypothesis that the 

epicardium recapitulates developmental events such as EMT to facilitate 

revascularisation and fibrosis (Zhou et al., 2011a). This concept has been convincingly 

demonstrated by several other studies that have used lineage tracing to identify 

epicardial cell fate in the regenerating adult zebrafish heart (Aguiar and Brunt, 2015; 

Kikuchi et al., 2011a; Kim et al., 2010; Lepilina et al., 2006; Manuel Gonzalez-Rosa et al., 

2012). A subpopulation of these epicardial cells undergo epithelial-to-mesenchymal 

transition and migrate into the damaged myocardium to provide vascular smooth 

muscle cells (Lepilina et al., 2006) and myofibroblasts (Chablais and Jazwinska, 2012) 

(Figure 11).  

Myocardium-derived Fgf17b is reported to signal through epicardial Fgfr2 and Fgfr4 to 

initiate epicardial EMT and promote revascularisation of the injured area. Inhibition of 

Fgf signalling via dominant negative Fgfr transgenic fish resulted in reduced migration 
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of activated tbx18-positive epicardial cells into the injury area, implicating a role for Fgf 

induced epicardial migration. Kim et al. (2010) demonstrated that Pdgfbb, via Pdgfrβ, 

mediates a similar epicardial response during zebrafish heart regeneration. In primary 

epicardial cultures the authors showed that Pdgfbb enhances proliferation and 

stimulates epicardial tight junction disassembly, two key features observed in epicardial 

EMT during regeneration indicating a loss of epithelial identity. Inhibition of Pdgfbb 

signalling perturbs epicardial expression of EMT markers following injury and abrogates 

heart regeneration. This study also elucidated that Pdgf signalling was transduced, at 

least in part, by Rho-associated protein kinases in primary epicardial cultures.  

Wt1 expression by activated epicardium targets the upregulation of snai1 (encoding 

transcription factor Snail) and twist, which in turn, promotes a migratory phenotype 

essential for EMT (Martinez-Estrada et al., 2010). Wt1b, and not its wt1a ohnolog, is 

specifically expressed by epicardial cells after injury in the zebrafish (Aguiar and Brunt, 

2015; Schnabel et al., 2011). However, not the entire epicardial cell population express 

wt1b after cardiac damage presumably indicating that only a subpopulation of epicardial 

cells undergo EMT (Manuel Gonzalez-Rosa et al., 2011; Peralta et al., 2014). 

1.4.6.3 Endocardial response to injury  

During zebrafish cardiac repair, endocardial expression of Raldh2 is observed within 3 

hours of cardiac injury and is restricted to the injury site by 24 hours. The endocardium 

undergoes endothelial to mesenchymal transition (endoMT) which induces 

morphological changes, endothelial delamination from the endocardium and 

transdifferentiate to contribute fibroblast mural cells in the injury site proliferation 

(Kikuchi et al., 2011b). Although different to the zebrafish response, the mammalian 

heart is also known to elicit an endocardium response after MI. Endocardium-derived 

FGF-2 is implicated in cardiomyocyte proliferation and growth. It is expressed by the 

endocardium for up to 14 days post MI in the mammalian heart (Zhao et al., 2011) 

supporting a role for the endocardium in cardiac repair. Few studies have addressed the 

endocardial response to cardiac damage and regeneration, but clear evidence exists for 

a damage-induced response that likely helps recovery. 
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Figure 11 Epicardial epithelial to mesenchymal transition (EMT) 

Schematic representation of epicardial EMT. Epicardial cells (green) express embryonic genes 
(listed to the right) that induce a mesenchymal profile and trigger delamination from the 
epicardium, giving rise to migratory epicardial derived cells (EPDCs) (light blue). EPDCs 
translocate to the myocardium and transdifferentiate into fibroblasts (dark blue) to synthesise 
extracellular matrix and pericytes/smooth muscle cells (pink cells) to support coronary 
vasculature maturation. The precise signal pathways that drive EPDC fate are 
undercharacterised. Image modified from Braitsch and Yutzey (2013) 
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1.5 Neuropilin as a potential contributor to zebrafish cardiac 

regeneration  

It is evident that several cell types and signals co-ordinate zebrafish heart regeneration, 

however, there remain many candidate signalling pathways to be characterised. The co-

receptor, neuropilin (NRP), has been reported to modulate signalling of a number of 

extracellular ligands, namely VEGF, PDGF, FGF and TGFβ (Evans et al., 2011; Glinka and 

Prud'homme, 2008; Liu et al., 2005; Pellet-Many et al., 2011; Soker et al., 1998). These 

signalling pathways have also been demonstrated to be essential regulators of zebrafish 

heart regeneration (Chablais and Jazwinska, 2012; Kim et al., 2010; Lepilina et al., 2006; 

Marin-Juez et al., 2016). However, the role of neuropilins in zebrafish heart regeneration 

has not been characterised to date.  

 Neuropilin structure  

Neuropilins (NRPs) are type 1 transmembrane glycoprotein receptors. In humans, two 

NRP isoforms exist, NRP1 and NRP2, which share 44% protein sequence similarity ( 

Table 1). The zebrafish karyotype contains 25 pairs of chromosomes; and the zebrafish 

genome encodes four neuropilins, nrp1a, nrp1b, nrp2a and nrp2b due to evolutionary 

teleost fish genome duplication (Amores et al., 1998; Phillips et al., 2006; Postlethwait 

et al., 1998). Zebrafish Nrp1a and Nrp1b ohnologs are the zebrafish orthologs for human 

NRP1 (hNRP1) and share 65% and 51% protein sequence similarity with hNRP1, 

respectively ( 

Table 1). A similar level of sequence similarity is observed between human NRP2 and 

zebrafish orthologs, Nrp2a and Nrp2b (57% and 59%, respectively) ( 

Table 1) (Bovenkamp et al., 2004).  

NRP1 was originally identified in 1987 via an antibody screen in the developing xenopus 

brain and termed the A5 antigen (Takagi et al., 1987). Subsequently, its basic structural 

features were characterised (Fujisawa et al., 1989) and was named neuropilin, because 

the A5 antigen was found localised in the xenopus ‘neuropile’, a dense neuronal 

structure (Fujisawa et al., 1995; Takagi et al., 1991).  NRP2 was later characterised in 



 

73 

 

1997 and identified as a NRP1 isoform because of structural similarities (Chen et al., 

1997). Although both were initially reported in neuronal development, they have since 

been described as regulators of various additional physiological and pathological 

processes.  

Table 1 Full-length NRP amino acid sequence similarity (%) 

Protein % 

homology 
zf Nrp1a zf Nrp1b Zf Nrp 2a zf Nrp2b hNRP1  hNRP2 

zf Nrp1a 

(923 aa) 
100 54.9 43.9 43.6 65.8 45.9 

zf Nrp1b  

(959 aa) 
54.9 100 47.3 47.1 51.5 41.6 

zf Nrp2a  

(927 aa) 
43.9 47.3 100 74.0 43.7 56.6 

zf Nrp2b  

(920 aa) 
43.6 47.1 74.0 100 43.4 59.3 

hNRP1  

(923 aa) 
65.8 51.5 43.7 43.4 100 44.2 

hNRP2  

(926 aa) 
45.9 41.6 56.6 59.3 44.2 100 

h – human, zf – zebrafish, aa – amino acid 

The neuropilins derive from two structurally conserved genes that encode the 923 

amino acid (aa)-long NRP1 and the 926 aa-long NRP2 proteins, both with an approximate 

molecular mass of 130 kDa (Chen et al., 1997). The NRPs consist of a large extracellular 

domain (ectodomain), anchored to the cell by a single pass transmembrane domain and 

contain a small intracellular cytoplasmic domain (Figure 12). The ectodomain is formed 

by 5 protein homology domains: two CUB repeats (a1/a2) , two FA58C domains (b1/b2) 

and a MAM domain (c) (Takagi et al., 1991). The protein domain arrangement is 

conserved between species; they contain the identical ectodomain organisation (a1/a2, 

b1/b2, MAM). 
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The CUB domains share significant similarity with complement factor C1s/C1r, Uegf (sea 

urchin fibropellins) and Bone Morphogenetic Protein 1 (BMP1) proteins (Bork and 

Beckmann, 1993). Each of the CUB domains contain approximately 100 aa residues 

arranged in an anti-parallel β-barrel structure and require calcium to mediate 

electrostatic protein-protein interactions (Gaboriaud et al., 2011). NRP1 and NRP2 CUB 

domains are required for class 3 semaphorin binding to modulate axonal guidance 

(described in greater detail in section 1.5.5.1) (Gu et al., 2002). 

The FA58C domains (b1/b2) are 150 aa regions that share structural similarity to the C-

termini anion-binding structures of blood coagulation factors V and VIII. The b1 domain 

is essential for both semaphorin and VEGF binding (Appleton et al., 2007). The b2 

domain further enhances NRP affinity for VEGF (Appleton et al., 2007; Gu et al., 2002).  

The MAM (c) domain has homology to mephrin (a cell-surface glycoprotein), A5 antigen 

(the former name of NRP) and receptor tyrosine protein phosphatase μ and κ. The MAM 

domain has been previously implicated in neuropilin receptor oligomerisation and the 

formation of signal complexes to mediate semaphorin signal transduction to plexin-A1 

(Nakamura et al., 1998; Takahashi et al., 1997). However, a recent study elucidated that 

the MAM domain alone is insufficient for receptor multimerisation and proposed that 

the MAM domain’s function is to modify neuropilin domain positioning and optimise 

protein/protein interactions in signal complexes (Yelland and Djordjevic, 2016).  

The cytoplasmic carboxyl (C)-terminal domain of neuropilins is made of 44 amino acid 

residues for NRP1 and 43 for NRP2, and does not possess any known enzymatic activity; 

thus, neuropilin complex formation with other receptors has been considered to be the 

primary mechanism for neuropilin signal transduction. This theory is supported by 

studies that showed no downstream signalling in response to VEGF stimulation of cells 

expressing NRPs but devoid of VEGFRs (Gluzman-Poltorak et al., 2000; Soker et al., 

1998). The C-terminus ends with the protein sequence serine-glutamic acid (glutamate)-

alanine (S-E-A); this motif interacts with PDZ (post synaptic density protein (PSD95), 

Drosophila disc large tumor suppressor (DlgA), and zonula occuldens-1 protein) 

homology domain-containing intracellular proteins. Further studies have demonstrated 

that the neuropilin C-terminus mediates interactions with a variety of cytosolic proteins, 
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best described as scaffold adaptor proteins, including synectin (also known as GIPC and 

neuropilin-interacting protein-1) (Cai and Reed, 1999). Synectin regulates the 

endocytosis of membrane receptors via myosin VI recruitment to form non-coated 

vesicles (Naccache et al., 2006). This mechanisms is thought to facilitate receptor signal 

transduction as VEGFRs propagate signalling most efficiently from intracellular vesicles 

(Lanahan et al., 2010). Furthermore, the PDZ domain has been implicated in VEGFR2 

complex formation, as deletion of the SEA C-terminal sequence of NRP1 impairs VEGFR2 

multimerisation (Prahst et al., 2008). The C-terminus can regulate receptor trafficking 

via rab proteins to facilitate endocytosis and has been linked to the turnover of focal 

adhesion components to aid cell motility (Seerapu et al., 2013). The NRP1 C-terminus is 

required for cytokine stimulation of tyrosine phosphorylation of the integrin adaptor 

molecule p130Cas phosphorylation that participates in the formation of a signalling 

platform to enhance cell motility, cytoskeletal organisation, cell survival and 

proliferation (Cai and Reed, 1999; Evans et al., 2011; Lanahan et al., 2010; Pellet-Many 

et al., 2011).  
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Figure 12 Neuropilin structure 

Representative diagram depicting basic neuropilin structure. The ectodomain 
consists of the semaphorin-interacting a1 and a2 domains (CUB domains) 
(purple), VEGF-binding (and other heparin binding growth factors) b1 and b2 
(FA58C) (green) and the MAM domain (pink) implicated in optimising receptor 
binding. The receptor has a single-pass transmembrane domain (grey) and a 
small cytosolic C-terminal domain (red) that mediates signal transduction with 
cytosolic proteins and regulates receptor trafficking. aa – amino acids 
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 Neuropilin 1 

1.5.2.1 Human NRP1 

Full-length NRP1 is a 120 kilo base pair (kb)-spanning gene located on chromosome 

10p12 and encoding a 17 exons/16 introns gene transcribed into a 7kb mRNA (Rossignol 

et al., 2000). Several variants are differentially spliced to generate either a shorter 

transmembrane NRP1 lacking exon 16 (Tao et al., 2003) or a soluble NRP1 (sNRP1) 

species (Figure 13). sNRP1 is encoded by a 2.2-2.5kb-long mRNA sequence and 

translated to a 90kDa protein containing the CUB (a1/a2) and coagulation factor 

domains (b1/b2) (Figure 13) (Gagnon et al., 2000). Several sNRP1 exist as a 551- 704 

amino acid peptide; termed s12NRP1, s11NRP1, sIIINRP1 and sIVNRP1 referring the exons 

they contain. The soluble species retain the structural features required for ligand 

interaction but lack the MAM, intracellular and transmembrane domains and 

additionally encode a unique GIK (glycine-isoleucine-lysine) aa sequence (Figure 13). 

s12NRP1 has been demonstrated to act as VEGF165 antagonist/decoy for VEGF in vitro 

(Figure 14) (Gagnon et al., 2000). Although the endogenous physiological sNRP splice 

variant roles are still uncharacterised, soluble NRP species may alter NRP activity to be 

antagonistic as a monomer, but an agonist when dimerised, aiding delivery of ligands 

(Figure 14) (Yamada et al., 2001). Another two isoforms, sIIINRP1 (551aa) and sIVNRP1 

(609 aa) were later identified. They contain a similar structure (a1/2, b1/2) and are 

endogenously expressed in normal and cancerous tissue in humans (Cackowski et al., 

2004). Soluble and full-length neuropilins are differentially expressed: full length NRP1 

is found mostly in neuronal tissue and vessels, whereas, sNRP1 is not detected in 

endothelial cells (Rossignol et al., 2000). 

Moreover full-length neuropilin is subject to posttranslational modifications that vary in 

different tissues; O-linked chondroitin sulphate addition at ser612 and N-linked 

glycosylation (CS-GAG) (Figure 13) are proposed to modify migratory capacity but 

further studies are required to elucidate the role of the modification (Frankel et al., 

2008; Pellet-Many et al., 2011; Shintani et al., 2006). Ser612 is encoded by some sNRP1 

isoforms, and not all undergo posttranslational modification by CS-GAG addition. 
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Figure 13 Neuropilin isoform homology 

Illustrations representing neuropilin gene organization and protein structures. NRPs are encoded by a 17 exon gene (black rectangles). Both full-length NRP1 (923 amino 
acids (aa)) and NRP2 (926 - 931 aa) proteins contain a large ectodomain; two CUB (a1 and a2) domains (pink); two Factor V/VIII homology (b1 and b2) domains (green); a 
linker region; a MAM (c) domain (yellow); a single transmembrane domain (TM) (red); and a 43-44 aa cytoplasmic (Cyt) domain containing a C-terminal PDZ-binding domain 
motif (PDZ BD) (blue), with the sequence, SEA. The ectodomain mediates semaphorin and VEGF ligand interactions and optimises oligomerisation (indicated). NRP1 is subject 
to posttranslational O-linked CS-GAG modification (CS GAG) at Ser612 (red arrows). Soluble NRP1 (sNRP1) is truncated between the second Factor V/VIII and the MAM 
domain and ends with the three amino acids GIK. NRP2 exists as two main isoforms (NRP2a and NRP2b) that have identical ectodomains, but share only 11% 
transmembrane/C-terminal homology. NRP2b lacks the SEA PDZ-motif binding domain. A soluble NRP2 (sNRP2) is truncated at aa 548 (blue arrow) with an additional 9 aa 
(VGCSWRLPL). Sizes of NRPs and splice variants are indicated to the right. Amino acid homology between full-length NRPs is indicated as %values. Image modified from 
Pellet-Many et al. (2008) 
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1.5.2.2 Zebrafish NRP1 

Evolutionary teleost genome duplication gave rise to two zebrafish nrp1 genes, nrp1a, 

and its ohnolog, nrp1b. The zebrafish nrp1a gene is located in linkage group 24 

(chromosome 23), and encodes a 4 kb-long mRNA translated into a 923 aa protein of 

125kDa (Bovenkamp et al., 2004). The nrp1b genes is located in linkage group 2 

(chromosome 8) and contains a 4.5 kb-long mRNA encoding for a 959 aa protein of 

intracellular

extracellular

sNRP

Sequestered 
VEGF

Delivered  
VEGF

KDR

Key: NRP FA58C (b) 
homology  domain

NRP CUB (a) 
homology  domain

Figure 14 Soluble neuropilin mechanisms 

Representative image of soluble neuropilin (sNRP) 
sequestration and delivery of vascular endothelial growth 
factor (VEGF) to receptors. When monomeric (left), sNRP acts 
a VEGF signalling antagonist.   When sNRP is dimeric (right) it 
is thought to deliver VEGF to KDR (VEGFR2) rather than act as 
a decoy. 
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approximately 145kDa (Bovenkamp et al., 2004). A soluble Nrp1b (Nrp1b(s)) is 

endogenously expressed in the zebrafish. This isoform is 871 aa-long and translated into 

a 135kDa protein comprising the entire ectodomain, but lacking TM and C-terminus. It 

is therefore comparatively larger than the endogenous human sNRP1 isoforms that 

contain exclusively a1/a2, b1/b2 (Yu et al., 2004). 

 Neuropilin-2 

1.5.3.1 Human NRP2 

NRP2 is a 17 exons/16 introns gene located on chromosome 2q34, spanning over 112 

kb and encoding a 926-931 aa-long protein. Two distinct isoforms, NRP2a and NRP2b, 

with identical ectodomains, are expressed in humans, however, their C-terminus and 

transmembrane domain exhibit only 11% protein sequence similarity (Figure 13) 

(Rossignol et al., 2000). NRP2a contains the SEA C-terminal sequence, whereas NRP2b is 

devoid of the PDZ-binding motif (Figure 13). Two NRP2a isoforms exist, NRP2a(17) and 

NRP2a(22) in humans, and four in mice (with the addition of NRP2a(0) and NRP2a(5)), which 

are alternative splice variants resulting from the addition of 0, 5, 17 or 22 amino acids 

after amino acid 809 (between the MAM and transmembrane domain). The differential 

functions and roles of these isoforms caused by these insertions are undefined. Two 

endogenous isoforms of NRP2b also exist in humans. Similarly to NRP2a, insertions of 

either zero or 5 residues are added after amino acid 808, to generate NRP2b(0) or 

NRP2a(5), respectively (Rossignol et al., 2000).  

Despite their identical extracellular domains, divergent roles for the different C-termini 

have evolved and their tissue expression varies. NRP2b is the isoform predominantly 

expressed in skeletal muscle, whereas NRP2a is seen in lungs, small intestine and 

kidneys, and both are present in the brain and heart (Rossignol et al., 2000). Lastly, a 

soluble NRP2 species, generated by alternative splicing, also exists. It is a 555 aa-long 

protein (62kDa) containing the a1/a2, b1 and a truncated b2 domain with a 9 aa 

insertion, and thus termed (s9NPR2) (Figure 13) (Rossignol et al., 2000). 
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1.5.3.2 Zebrafish NRP2 

The zebrafish nrp2a gene is located in linkage group 1 (chromosome 6) and encodes a 

5.3 kb-long mRNA translated into a 927 aa-long protein (Bovenkamp et al., 2004). The 

nrp2b gene is located in linkage group 9 (chromosome 5) encodes a 4.8 kb gene and is 

translated into a 920 aa-long protein. The molecular weights of Nrp2a and Nrp2b have 

not yet been characterised in the zebrafish. Similarities to the Nrp1a and Nrp1b protein 

sequence would predict a molecular weight for Nrp2 of approximately 130kDa, 

however, post-translational modifications may alter molecular size. The zebrafish 

neuropilin 2 ohnologs both encode two small soluble splice variants, nrp2a express 

nrp2a1 (1423bp, 309aa) and nrp2a2 (437 bp, 84 aa). nrp2b1 (759bp, 101 aa) and nrp2b2 

(704bp,188 aa) are splice variants (Bovenkamp et al., 2004), but their physiological role 

is unclear.    

 Neuropilins in development  

1.5.4.1 Mammalian NRPs in development  

Mammalian and zebrafish neuropilins have important roles in neuronal and vascular 

embryonic development. NRP1 null-mutant mice die in utero between embryonic day 

(E) 12 and E13.5 due to severe vascular and neuronal defects (Gerhardt et al., 2004; 

Kawasaki et al., 1999; Kitsukawa et al., 1997). Abnormal directionality of cranial and 

spinal efferent nerve fibres is also observed in NRP1 mutant mice (Kawasaki et al., 1999). 

NRP1 is also critical for vasculogenesis: null mutants display persistent truncus arteriosus 

of the great vessels due to septation defects, reduced vessel networks in the brain, and 

agenesis of great vessels such as the dorsal aorta (Kitsukawa et al., 1997; Kitsukawa et 

al., 1995). The NRP1-null mice vascular phenotype is recapitulated in transgenic mice 

that lack NRP1 specifically in endothelial cells; these mice die in utero around mid-to-

late gestation (Gu et al., 2003). Conversely, excess neuropilin expression during 

development results in embryonic lethality with excess capillary growth, increased 

vascular permeability, haemorrhaging in the head and neck and a malformed heart, in 

addition to anarchic sprouting and defasciculation of nerves (Kitsukawa et al., 1995).  

Doubly deficient NRP1/NRP2 knockout mice exhibit earlier embryonic mortality than the 
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single NRP1 knock out (E8 versus E12-13.5) and have a more severe vascular phenotype 

with large avascular areas in the yolk sacs, and head and trunk regions, and a lack of 

connections between blood vessel sprouts. (Takashima et al., 2002). 

1.5.4.2 Zebrafish Nrps in development 

In zebrafish, morpholino (MO) knockdown (KD) of neuropilins results in developmental 

defects. nrp1 KD impairs angiogenesis of the intersegmental vessels (ISV) (analogous to 

mammalian capillary sprouting) (Lee et al., 2002) and leads to embryonic lethality 

(Jensen et al., 2015). Arteriovenous malformations, notably of the dorsal aorta and ISV 

are observed in zebrafish embryos injected with MO targeting nrp1a, nrp1b or nrp2a 

(Martyn and Schulte-Merker, 2004). In contrast, nrp2b morpholino knockdown causes 

more restricted impairment of vessel development, with effects on the caudinal vein 

and artery and cardiac oedema (Martyn and Schulte-Merker, 2004). Morpholino 

knockdown of nrp1a or nrp2b also results in axonal guidance defects in the developing 

zebrafish embryo (Wolman et al., 2004).  

The zebrafish neuropilins display differential expression patterns during embryogenesis 

(see Table 2).  However, they are predominantly localised to neuronal and vascular 

organs and tissues, with the addition of fin bud and mandibular expression. Taken 

together with higher vertebrate neuropilin expression patterns, the roles of neuropilins 

are largely conserved among species during development and provide evidence for 

retention of similar functions between species.   
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Table 2 nrp expression patterns in developing zebrafish embryo 

Neuropilin 
isoform 

Neuronal expression Cardiovascular 
expression 

Other localised 
expression 

Morpholino 
knockdown phenotype 

Reference 

 

nrp1a 

Vagus and spinal motorneurons, 
hypochord 

Retina, telecephalon, hypothalamus, 
hindbrain, otic sensory epithelium, 
epiphysis 

Lateral plate mesoderm, migrating 
cranial neural crest cells (nccs) 

Heart 

Intersegmental vessels, tail 
angioblasts, dorsal aorta, 
posterior cardinal vein, 
caudal vein plexus 

Gut, pronephros, 
mandibular 

Pharangeal arches  

Pectoral fin buds 

Arteriovenous 
malformations. 
Intersegmental vessel 
sprouting irregularities 

Bovenkamp (2004) 

Yu (2004) 

Lee (2002) 

Schulte-Merker (2004) 

 

nrp1b 

Hind brain 

Anterior neural tube, cranial ganglia, 
dorsal neural tube, lateral plate 
mesoderm 

Dorsal aorta 

Endothelial cells, 
angioblasts 

Melanophores 

Ventral fin 

Arteriovenous 
malformations. 
Intersegmental vessel 
sprouting irregularities 

Bovenkamp (2004) 

Yu (2004) 

Schulte-Merker (2004) 

 

nrpb2a 

Migrating cranial nccs, ventral 
cerebellum, anterior hindbrain, 
anterior neural tube, hypothalamus, 
epiphysis 

Caudal vessels  

Cardinal vein 

Pharangeal arches, 
pectoral fin buds 

Arteriovenous 
malformations. 
Intersegmental vessel 
sprouting irregularities 

Bovenkamp (2004) 

Yu (2004) 

Schulte-Merker (2004) 

 

nrp2b 

Migrating cranial nccs, mid- and 
hindbrain, lateral plate mesoderm, 
telecephalon, olfactory axonal 
trajectory, hypothalamus 

Caudal vessel, heart Melanaphores, 
mandibular,  

Gut endoderm, 
pharangeal arches 

Posterior cardinal vein 

Cardiac oedema 

Reduced circulation  

Caudal artery shunting 

Bovenkamp (2004) 

Yu (2004) 

Schulte-Merker (2004) 
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 Neuropilins ligands and physiological functions 

NRPs were initially characterised as co-receptors for semaphorins that mediate axonal 

guidance and were later implicated in limb and heart development (He and Tessier-

Lavigne, 1997; Kitsukawa et al., 1997; Kitsukawa et al., 1995). NRPs interact with several 

ligands, notably class 3 semaphorins and VEGF family members to regulate neuronal cell 

guidance and angiogenesis respectively (Soker et al., 1998; Takahashi et al., 1999; 

Takahashi et al., 1998). NRPs are increasingly implicated in signalling of additional 

heparin-binding extracellular ligands (West et al., 2005) in various physiological 

processes, such as during inflammation (Glinka and Prud'homme, 2008; Tordjman et al., 

2002), cancer metastasis (Adham et al., 2014; Evans et al., 2011; Grandclement et al., 

2011) and smooth muscle cell migration (Pellet-Many et al., 2011). This section will 

briefly summarise neuropilin ligands and functions currently characterised.   

1.5.5.1 Semaphorins 

Semaphorins are a large family of 20 proteins, categorised into 5 classes and expressed 

as both membrane bound and soluble forms that regulate cell-cell contacts and axonal 

growth cone guidance via plexin receptors. The class 3 semaphorins (SEMA3) are 

secreted soluble peptides and require neuropilins as an obligate co-receptor to signal 

through type A plexins. Neuropilin co-receptors bind class 3 semaphorins via the a1/a2 

and b1 ectodomains. These domains are essential for semaphorin signalling and 

presumably required for positioning, oligomerisation or optimal binding to their 

respective plexin receptor (Kitsukawa et al., 1997). The plexin-semaphorin-neuropilin 

signalling axis has been well characterised, in particular in the context of axonal guidance 

and patterning during development, but has been more recently identified to play roles 

in the vascular development of the aortic arch and outflow tract, lymphatic system, 

pulmonary veins and also in immune responses (Bouvrée et al., 2012; Plein et al., 2015; 

Suzuki et al., 2008; Worzfeld and Offermanns, 2014).  

Different subsets of class 3 semaphorins preferentially bind to different neuropilin 

isoforms. SEMA3A signalling via NRP1-interaction was originally identified to cause 

neuronal growth cone collapse, and led to SEMA3A being initially named collapsin-1 (Luo 

et al., 1993). NRP1 is also able to bind SEMA3 classes B-F, although these interactions 
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have not been extensively characterised. NRP2 binding to SEMA3B, C and F is also 

implicated in axonal, vascular and immune cell physiology in mammals (Worzfeld and 

Offermanns, 2014).  

NRP-semaphorin-plexin holoreceptors mediate intracellular signal cascades via the 

relief of plexin auto-inhibition, leading to the stimulation of Rho GTPase activity and thus 

causing neuron collapse (Negishi et al., 2005; Oinuma et al., 2004). The exact 

mechanisms by which NRP modulates semaphorin signalling remain  poorly 

characterised; however, it is known that NRP1 and 2 can form complexes with plexin 

receptors independently of ligand availability (Rohm et al., 2000; Tamagnone et al., 

1999). It has also been shown that the NRP1 C-terminus domain is dispensable for plexin 

receptor signalling (Nakamura et al., 1998).    

Similar to mammals, zebrafish semaphorins regulate neuronal and vascular 

development. Semaphorin 3a1 affects the migration of angioblasts and the formation of 

the dorsal aorta (Shoji et al., 2003), and motor neuron patterning (Feldner et al., 2005). 

Additionally Nrp1a and 2b exert opposite modulation of axonal guidance in response to 

semaphorins: repulsion (Nrp1a mediated) or attraction (Nrp2b mediated) (Wolman et 

al., 2004).  

1.5.5.2 Vascular endothelial growth factor 

Vascular endothelial growth factors (VEGFs) are potent angiogenic glycoproteins that 

form dimers of approximately 40kDa (Leung et al., 1989). In mammals, 5 members of 

the VEGF families are known (VEGF-A, -B, -C, -D, and placental growth factor (PlGF)), and 

alternatively spliced variants give rise to several isoforms of these molecules. VEGFs 

signal through VEGF receptors (VEGFR) which are receptor tyrosine kinases (RTK). Three 

main VEGFRs have been identified: VEGFR1 (FLT-1(FMS-like tyrosine kinase)) and 

VEGFR2 (FLK-1 (Foetal Liver Kinase 1)/KDR (kinase insert domain-containing receptor)) 

regulate vasculogenesis (formation of blood vessels from haematopoietic stem cells) 

and angiogenesis (formation of new blood vessels from pre-existing vessels); VEGFR3 

(FLT-4) is involved in lymphangiogenesis (Soker et al., 1998). VEGFR interaction with VEGF 

dimers initiates VEGFR homo- or heterodimer complex formation that stimulates its 

intracellular tyrosine kinase domain activity and auto(trans)phosphorylation. 
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Phosphorylated tyrosine residues associate with intracellular proteins containing the SH1 

(Src homology 1) domain to mediate downstream signal cascades such as ERK (extracellular 

signal-regulated kinases/MAPK (mitogen-activated protein kinase)) activation. 

VEGFR2 (or KDR) is the VEGFR predominantly expressed in blood vessels. VEGFR1/2 bind 

with high affinity to VEGFA, B and PlGF. VEGFR3 is expressed in venous, lymphatic and 

capillary endothelia, as well as neuronal progenitors during development; it 

preferentially binds to VEGFC and D and can form homodimers or heterodimers with 

KDR (Dixelius et al., 2003). VEGFC signalling through VEGFR3 homodimers stimulates the 

ERK1/2 cascade, whereas VEGFR2/3 heterodimer interaction with VEGFC triggers Akt 

(RAC-alpha serine/threonine-protein kinase/PKB (protein kinase B)) signalling (Deng et 

al., 2015). The Akt signal axis is required for lymphangiogenesis, via the formation of a 

VEFGR3-VEGFC-NRP1 complex in cardinal vein lymphatic progenitors (Deng et al., 2015). 

VEGFC has also been shown to bind to NRP2 with high affinity and to participate in the 

formation of a VEFGR3-VEGFC-NRP2 complex (Xu et al., 2010). This complex plays a role 

in lymphangiogenesis and is associated with poor prognosis in cancer due to enhanced 

metastatic potential (Grandclement et al., 2011; Kawakami et al., 2002). Moreover, 

recent evidence uncovered a role for the VEGFC/NRP2 axis in autophagy and endocytic 

trafficking, improving cancer survival and triggering metastatic profile (Dutta et al., 

2016; Stanton et al., 2013)  

VEGFR1 is thought to act as an endogenous negative regulator of VEGFR2 signalling (Cao, 

2009). Heterodimers formed with VEGFR1 do not stimulate ERK-induced calcium influx 

in endothelial cells (Cudmore et al., 2012), possibly because of weak VEGFR1 kinase 

activity (Ito et al., 1998). It is therefore proposed that VEGFR1 (FLT-1) acts as a decoy, 

sequestering VEGF away from VEGFR2 and therefore limiting signalling via the latter 

(Seetharam et al., 1995; Waltenberger et al., 1994). NRPs are unable to bind VEGF121 in 

the absence of VEGFRs; the interaction of NRPs with VEGFRs is necessary to induce 

conformational changes for efficient VEGF121 binding (Fuh et al., 2000; Gluzman-

Poltorak et al., 2001).  

NRPs act as a co-receptor that promotes VEGF-induced intracellular signal transduction 

by enhancing VEGFR affinity to its ligands. It does so by forming signal complexes, thus 

https://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
https://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
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bridging VEGF to VEGFRs and regulating intracellular vesicle trafficking (Figure 15). 

VEGFA signalling is central to embryonic development. In mice, haploinsufficiency leads 

to early embryonic lethality due to a lack of vascular and hematopoietic systems 

(Carmeliet et al., 1996). Neuropilin knockout mice models recapitulate some of the 

phenotypes observed in VEGFA mutant mice and highlight the critical influence of NRPs 

on VEGF signalling. The b1 domain is critical for NRP1 and 2 binding to VEGF and the b2 

domain optimises binding, although it is dispensable for NRP1 binding (Gu et al., 2002). 

More precisely, NRP1 b1 domain binds to the VEGFA heparin-sulfate binding domain C-

terminus (Pan et al., 2007). 

The NRP C-terminus domain interacts with synectin which, in turn, interacts with myosin 

VI to mediate endocytosis of the VEGFR/NRP1/VEGF complex and is essential for VEGFR-

mediated ERK activation and intracellular trafficking (Figure 15) (Lanahan et al., 2010). 

In contrast, NRP1 can also negatively regulate VEGFR2 signalling. When NRP1 interacts 

with VEGFR2 expressed by a neighbouring cell (binding in trans), VEGFR internalisation 

is blocked which results in reduced angiogenic signalling (Koch et al., 2014). NRP1 is 

required for VEGFA165-mediated p38MAPK (p38 mitogen-activated protein kinase) 

activation for the induction of angiogenic sprouting and pericyte coverage (Kawamura 

et al., 2008). VEGF signalling in endothelial cells upregulates NRP1 expression via the 

VEGFR2 signalling pathway to enhance angiogenic EC proliferation (Oh et al., 2002). This 

upregulation of both VEGFR2 and NRP1 is relied upon by several physiological systems 

to facilitate vessel growth. For example, in regenerating livers following hepatectomy, 

hepatic endothelial cells redistribute VEGFR2 and NRP1 from perinuclear space to the 

membrane (Braet et al., 2004). Additionally, TNFα targets VEGFR2 and NRP1 in a similar 

manner to mediate the angiogenic properties of TNFα during inflammation (Giraudo et 

al., 1998).  
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Figure 15 NRP trafficking of VEGFR2 

Diagrammatic representation of NRP1 regulation of VEGFR trafficking. 
Upon ligand binding, receptor complex formation and trans- 
autophosphorylation (at the intracellular domains, red), the KDR receptor 
is internalised (black dotted arrow) to propagate signal (black arrow). NRP1 
interacts with synectin via its C-terminal domain SEA (PDZ-recruiting) 
sequence. Synectin binds with myosin VI that mediate endocytic vesicle 
trafficking along cytoskeletal actin filaments.   
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As mentioned in the previous paragraphs, several VEGF-NRP1 pathways are implicated 

in angiogenesis, however NRP1 can also acts as a co-receptor to promote angiogenesis 

via VEGF-independent mechanisms. NRP1 can modulate angiogenesis by interacting 

with other molecules, such as hepatocyte growth factor (Sulpice et al., 2008), 

transforming growth factor (Hirota et al., 2015) and notch (Aspalter et al., 2015). 

Furthermore, NRP1 was shown to contribute to angiogenic sprouting by promoting tip 

cell formation via SMAD/ALK1/5 signalling inhibition (Aspalter et al., 2015). 

VEGF signalling via NRP to regulate vessel growth is conserved in the zebrafish (Lee et 

al., 2002). In zebrafish, Vegfba signals through Nrp1 isoforms and is essential for vascular 

and neuronal development (Jensen et al., 2015). Vegfba knock down is embryonic lethal 

in the developing zebrafish due to cerebral vascular defects (Jensen et al., 2015), in 

contrast to mice where vegfb knockouts are viable but with only mild vascular defects 

(Bellomo et al., 2000). Interestingly, Vegfbb cannot compensate for vegfba morpholino 

knock down, however hypoxia-induced Vegfaa expression can rescue deleterious effects 

of Vegfba morpholino-mediated knockdown. These data provide some evidence for a 

more prominent role for Vegfb and Nrp1 signalling axis in developmental angiogenesis 

(as opposed to VEGFA driven angiogenesis during mammalian development) (Jensen et 

al., 2015).  

1.5.5.3 Fibroblast growth factor 

Fibroblast growth factors (FGFs) represent a large family of polypeptides, 22 fgf genes 

have been described in the human genome, and 10 fgf genes have been identified in the 

zebrafish (Bottcher and Niehrs, 2005; Griffin et al., 1995). All FGFs exhibit high affinity 

for heparin and mediate cellular responses via binding and activation of FGF tyrosine 

kinase receptors (FGFRs). FGF form dimers bridged by heparin sulphate proteoglycans 

(HSP). HSP stabilise the ligands and facilitate receptor dimerisation to mediate trans-

autophosphorylation of intracellular tyrosine residues upon ligand interaction. 

Phosphorylated tyrosine residues interact with SH2 homology-containing intracellular 

proteins to relay signals. Two key signal cascades initiated by FGFs, are the 

phospholipase C and Ras/MAP (mitogen-activates protein) kinase (MAPK) pathways, 
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which stimulate protein kinase C (PKC), and ERK activity (Presta et al., 2005; Sternberg 

and Alberola-Ila, 1998), respectively. FGF signalling modulates a vast range of cellular 

and physiological processes during development, disease and homeostasis including cell 

migration, angiogenesis, proliferation, differentiation and cell fate specification (Thisse 

and Thisse, 2005). 

It was reported that NRP1 does not bind the exon 7- lacking VEGF121 isoform devoid of 

the heparin-binding domain, thus it was hypothesised that a heparin-like moiety is 

encoded by NRP that permits VEGF isoforms, containing heparin binding motifs, to 

interact (Ashikari-Hada et al., 2005; Pan et al., 2007). Additional proteins and growth 

factors encode heparin-binding motifs in their structure, such as fibroblast growth factor 

(FGF). Indeed, some FGF species have been reported to interact with neuropilin (FGF-1, 

-2 and -4), although, the physiological relevance and endogenous occurrence of these 

interactions remain largely unknown. FGF-2/NRP1 interactions enhance proliferation of 

HUVECs in vitro (West et al., 2005), although there are conflicting reports on signalling 

changes in response to FGF-2 in HUVEC (Guttmann-Raviv et al., 2007). Furthermore, FGF 

can regulate NRP1 availability; FGF signalling increases neuropilin expression in vascular 

smooth muscle cells to enhance VEGF/KDR-induced cell motility (Liu et al., 2005). FGF 

signalling via NRPs is not well characterised; further studies both in vitro and in animal 

models are needed to understand in which physiological or pathological context it is 

relevant. 

1.5.5.4 Platelet derived growth factor 

Platelet derived growth factor (PDGF) is a glycoprotein of approximately 14 kDa that 

forms dimers via a disulphide link to produce a 30 kDa peptide (Deuel et al., 1981). Five 

PDGFs exist, PDGF-A, –B, -C, -D and –AB, that signal through the two types of 180kDa 

PDGF receptor (PDGFR) tyrosine kinases, PDGFRα and PDGFRβ. The receptors are 

capable of forming homo- or hetero-dimers and specific PDGFRs combinations bind 

specific PDGF dimers. Upon ligand binding the PDGFR intracellular tyrosine kinase 

domain is activated, initiating trans-autophosphorylation and downstream signals that 

mediate cell division, motility, angiogenesis, wound-healing, inflammatory cell 

migration, proliferation and epithelial-to-mesenchymal transition (Pierce et al., 1991).  
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Platelet–derived growth factor is able to bind to NRP (Ball et al., 2007; Holmes and 

Zachary, 2005; Keck et al., 1989). PDGF-B and PDGFRβ null mice die shortly after birth 

due to severe cardiovascular abnormalities, haemorrhages, glomerular and renal 

dysfunction and breathing difficulty, thus presenting some common developmental 

defects of NRP1-null and VEGF-null mice (see 1.5.2 and 1.5.5.2) (Leveen et al., 1994; 

Lindblom et al., 2003). NRP1/PDGF interaction is important for vascular smooth muscle 

cell migration in response to PDGF-AA and –BB (Pellet-Many et al., 2011). NRP1 

regulates PDGF-B-induced chemotaxis in hepatic stellate cells that transdifferentiate to 

myofibroblasts and contribute to the pathobiology of liver fibrosis(Cao et al., 2010a). 

These studies also confirmed NRP1/PDGFRβ co-localisation, suggesting complex 

formation, and that NRP1 overexpression enhanced cell migration via Rac1.  

In line with its role in the potentiation of angiogenesis in mammals, Pdgf signalling via 

Pdgfrβ is essential for zebrafish ISV formation during development (Wiens et al., 2010). 

The authors observed impaired ISV development following both PDGFRβ morpholino 

knockdown and dominant negative receptor (lacking the intracellular kinase domains) 

expression. As observed in mammals, PDGFRα initiates PI3K activity in the mesoderm 

during gastrulation in zebrafish (Klinghoffer et al., 2002; Montero et al., 2003). 

Furthermore PDGFRα mediates endodermal myocardial fusion during cardiac 

morphogenesis in both mammals and zebrafish (Bloomekatz et al., 2016). Additionally, 

during zebrafish heart regeneration, Pdgf signalling is required for maturation of the 

neovasculature within in the lesion (Kim et al., 2010). Further studies are required to 

delineate the roles of Pdgfs and their receptors in zebrafish development and disease 

models; however, current reports provide compelling evidence for evolutionary 

conservation of physiological events stimulated by PDGF signalling in the zebrafish and 

higher vertebrates.   

1.5.5.5 Transforming growth factor  

The transforming growth factor beta (TGFβ) family of dimeric secreted polypeptides 

encodes 33 members in humans including TGFβ 1,2,3, activin, nodal and bone 

morphogenic proteins (Huminiecki et al., 2009). The ligands signal via binding and 

activation of TGFβ receptors (TGFβRs). TGFβRs represent a class of transmembrane 
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receptor kinases that phosphorylate serine and threonine residues. Upon ligand binding, 

TGFβRs receptors form a heterocomplex of two type I and two type II receptors to 

initiate downstream signal cascades. There are 7 type I and 5 type II TGFβ receptors 

(Massague, 2012). The type II receptors (activators) phosphorylate the type I receptors 

(signal-propagators) at the intracellular domain and permit SMAD effector protein 

interaction (Wrana et al., 1994). Type I receptors phosphorylate SMAD proteins that 

transduce the signal, primarily through nuclear translocation, with co-SMAD (SMAD4) 

to mediate gene regulation (Huse et al., 2001; Wrana et al., 1994). TGFβ 1,2 and 3 signal 

exclusively via type I receptor TβRI (ALK5) and type II receptor, TβRII (Moustakas and 

Heldin, 2009).   

TGFβ signalling mediates a diverse range of physiological and pathophysiological 

functions, including morphogenesis, inflammation, fibrosis, angiogenesis, tumour 

metastasis and EMT (Derynck and Akhurst, 2007; Leask, 2007; Moustakas and Heldin, 

2009; Scherz et al., 2008). TGFβ signalling drives the expression of EMT genes, such as 

snail and twist, via smad2/3 translocation to the nucleus, thereby enhancing 

dedifferentiation and transdifferentiation implicated in cancer metastasis (Kang et al., 

2003; Xu et al., 2009). A central role in inflammation and fibrosis is governed by TGFβ 

(Frangogiannis, 2006) as it induces the transdifferentiation of myofibroblasts into a 

more synthetic phenotype thus increasing connective tissue deposition (Cao et al., 

2010b; Leask, 2007; Lijnen et al., 2003). 

NRPs involvement in the TGFβ signalling pathway has been well characterised. TGF is 

maintained in a latent inactive form whereby it is bound to latency associated peptide 

(LAP) and requires proteolytic activity or interactions with other proteins like integrins 

to release the active signal peptide. NRP1 can bind and activate LAP-bound latent TGFβ 

by mechanisms not yet fully understood, as well as active TGFβ and interact with TGFβRs 

(Glinka and Prud'homme, 2008). NRPs initiate signal complex formation to enhance 

TGFβ signal transduction and serve as TGFβ co-receptors (Glinka et al., 2011). NRP 

involvement in the TGFβ signal pathways has been described in cancer epithelial to 

mesenchymal transition (EMT) in vivo. NRP2 promotes TGFβ1-mediated EMT in 

colorectal cancer cells and is associated with a worse prognosis because of enhanced 
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metastatic potential (Grandclement et al., 2011; Kawakami et al., 2002). NRP1 and NRP2 

modulate regulatory T (Treg) cell TGFβ signalling to promote SMAD3 signal transduction 

and enhance Treg suppression of immune response (Glinka and Prud'homme, 2008). 

The NRP1/TGFβ axis can also mediate an alternative cerebral angiogenesis, 

circumventing VEGFR2-mediated angiogenesis via ERK1/2, to generate neovessels in a 

VEGFR2-independent manner (Hirota et al., 2015).  

The zebrafish tgfβ receptors and smad genes underwent genome duplication 

(Postlethwait et al., 1998; Wu and Hill, 2009). The duplicated TGF signalling genes show 

overlapping and distinct expression patterns during development (Dick et al., 2000; 

Pogoda and Meyer, 2002), indicating additional functional roles for the genes, though 

these are currently poorly defined (Huminiecki et al., 2009). During zebrafish 

development TGFβ/SMAD3 signalling has been linked to spinal cord development 

(Casari et al., 2014) and left-right symmetry (Chocron et al., 2007; Sun et al., 2006). 

1.6 Hypothesis  

Although some cellular processes and mechanisms underlying zebrafish heart 

regeneration have been elucidated, in general these remain poorly characterised. Vegf, 

Fgf, Pdgf and Tgfβ, and are all cytokines implicated in zebrafish cardiac repair, and are 

all known neuropilin ligands. Additionally, cardiac damage switches on the re-expression 

of embryonic genes in the regenerating zebrafish heart, and, it is also known that 

neuropilins are expressed in the cardiovascular system during zebrafish embryonic 

development. It is also evident that the physiological roles of neuropilins extend beyond 

that of vascular and neuronal development, and, several biological processes occurring 

in zebrafish heart regeneration could involve neuropilins. For example, Neuropilins 

could be required for PDGF- and FGF- induced EMT of the epicardium, TGFβ/smad3 

signalling that regulate fibrotic and inflammatory responses, as well as for VEGF-

stimulated revascularisation of the injured area. Thus, I hypothesised that neuropilins 

are upregulated during and required for zebrafish heart regeneration. 
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1.7  Aims  

Using the cryoinjury model of cardiac damage in zebrafish, I intended to carry out the 

following studies:  

 Characterise the temporal expression of zebrafish neuropilin isoforms in the 

heart following cardiac damage using RT-qPCR. 

 Investigate the spatiotemporal expression of neuropilins at time points 

coinciding with the inflammatory, reparative and regenerative stages of 

zebrafish heart regeneration. 

 Identify the cell types expressing neuropilins during cardiac regeneration.  

 Examine the role(s) Nrp1 may have in response to cardiac damage using a mutant 

fish lacking a functional nrp1a gene.  
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2  Materials and Methods  

2.1 Animals 

 Husbandry  

Procedures were performed in line with the Animals (Scientific Procedures) Act 1986 

under project licence 70/7700. Zebrafish were raised at a density of 5 fish per litre in 

mixed sex populations, with a light-cycle (14 hours light + 10 hours of dark), water 

temperature (27-29oC) and diet regulated by the Central University College London fish 

facility. 

 Animal details 

Adult zebrafish between 6-18 months of age were used for experiments (see Table 3). 

Wild type ABxTupLF (AB X Tupfel Long Fin) and nrp1asa1485/sa1485 fish were used for in 

vitro culture, histological samples, RNA and protein expression analysis. Additionally, the 

following transgenic fish were used for histological preparations;  Tg(fli1a:GFP) and 

Tg(kdrl:mCherry) (Chi et al., 2008) to identify endocardial cells, Tg(wt1b:GFP) (Perner et 

al., 2007) to detect activated epicardial cells and Tg(cmlc2:GFP) (Huang et al., 2003) to 

identify viable cardiomyocytes. TraNac zebrafish (gift from Paul Frankel, University 

College London) were crossed to produce embryos used for whole-mount in situ data. 



 

 

 

9
6 

Table 3 Details of zebrafish used in the study 

Line name Short name 
Component 
identified 

Obtained from ZFIN ID allele 

AB X Tupfel Long  Fin ABxTupLF 
Wild Type 

Max-Planck, Tübingen, 
Germany 

ZDB-GENO-990623-2 dt2 

nrp1asa1485/sa1485 nrp1asa1485/sa1485 
N/A 

Zebrafish Mutation Project, 
Sanger Centre, Cambridge , 

UK 
ZDB-ALT-120411-534 sa1485 

Wilms’ Tumour 1b: enhanced green 
fluorescent protein 

Tg(wt1b:GFP) Active epicardial cells 
Fritz Lipmann Institute, Jena, 

Germany 
ZDB-TGCONSTRCT-071127-

1 
li1 

Cardiac myosin light chain: 
enhanced green fluorescent protein 

Tg(cmlc2:GFP) Viable cardiomyocytes 
Institute of Molecular and Cell 

Biology, Taipei, Taiwan 
ZDB-TGCONSTRCT-140716-

2 
mss5 

Friend leukaemia integration 1a: 
enhanced green fluorescent protein 

Tg(fli1a:GFP) 
Endothelial cells 

C.A.R.E.G institute, Ottawa, 
USA 

ZDB-TGCONSTRCT-070117-
94 

is10 

Kinase insert domain receptor 
like:mCherry 

Tg(kdrl:mCherry) Endothelial cells 
Max-Planck, Tübingen, 

Germany 
ZDB-ALT-081212-4 s896 

Transparent (mpv17) x nacre 
(mitfa) 

TraNac 
Pigment mutation fish –
transparent appearance 

Cancer Research UK, London 
Research Institute, UK 

ZDB-GENE-040426-1168 
and ZDB-GENE-990910-11 

Mpv17b18 and 
mitfab692 
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 Zebrafish breeding 

Zebrafish aged 3 months and above were used for breeding to generate new transgenic 

lines and maintain stocks. One male and one female fish of selected genotypes were 

placed into a 500 ml tank containing system water and fed with live brine shrimp for 10 

minutes. Following feed, fish were transferred to a new 500 ml tank containing system 

water and breeding base insert (designed to separate eggs from fish) and left overnight. 

The following morning, fish were returned to tanks on system racks and eggs laid 

collected by removing insert and pouring tank water through a narrow-holed sieve to 

retain eggs. Collected eggs were transferred to petri dishes containing 0.01% methyl 

blue (in aquarium water) and stored in a 28oC incubator. After 24 hours, unfertilised 

eggs were identified and removed using a plastic Pasteur pipette. Fertilised eggs, 

selected for fluorescence where appropriate, were transferred to a fresh petri dish 

containing system water with methyl blue and stored in a 28oC incubator. At 4 days post 

fertilisation (dpf) zebrafish embryos (now fry at this stage) were returned to the UCL 

zebrafish facility and raised to adults according to establishment protocol.  

 Cryoinjury 

Fish were anaesthetized in 0.02% (w/v) MS-222 (tricaine) (Sigma-Aldrich, A-5040) and 

transferred to a dampened sponge, ventral side up, under a microscope (Nikon, 

SMZ1500) and halogen fibre optic light (Schott, KL1500). Fine forceps were used to 

remove scales at the chest cavity and a small incision was made into the silvery 

pericardial sac to expose the ventricle (Figure 16A and B). The incised region was then 

dabbed dry of excess liquid and blood. A copper probe (0.75 mm Ø), cooled in liquid 

nitrogen, was gently pressed onto the tip of the ventricle for 5 seconds (Figure 16C). A 

Pasteur pipette containing system fish water was used to thaw and remove probe from 

the ventricle. Fish were returned to tanks containing system water supplemented with 

10 µM lidocaine analgesic (Sigma-Aldrich, L5647) and a pasteur pipette was used to 

direct water towards the gills to improve recovery rate. Fish were left in lidocaine-

containing water for 1 hour before placing them back to the general water system. Sham 

operations were performed as above, with the absence of probe application. 
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 Fin clip 

Fish were anaesthetized in 0.02% (w/v) MS-222 (tricaine) (Sigma-Aldrich, A-5040) then 

transferred to a petri dish. A small segment of the caudal fin was excised with a surgical 

scalpel and sterile forceps were used to transfer the fin sample to a clean Eppendorf 

tube, then residual aquarium water was removed. Fish were placed in 500 ml tanks 

containing aquarium system water to recover from anaesthesia and returned to a 

segmented grid tank (DC-96 R&D aquatics, #103) connected to aquarium system water 

for future identification. Genomic DNA was extracted from fin clips using the Phire 

Animal Tissue Direct PCR Kit (Thermo Scientific, F140WH) dilution protocol. Fin-clips 

were incubated in digestion solution (20 µl dilution buffer, 0.5 µl DNARelease), briefly 

vortexed, then digested at room temperature for 5 minutes before terminating the 

digestion at 98 °C for 2 minutes. Supernatant containing genomic DNA was transferred 

to a new Eppendorf and stored at -20oC until required for genotyping. 
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A B

C D

Figure 16 Cryoinjury procedure 
Zebrafish are anaesthetised and placed into a dampened sponge and the heart location is 
identified by visibility of the heartbeat. The scales are removed from dissection area and 
(A) an incision is made to expose silvery pericardial sac. (B) Removal of the pericardial 
tissue exposes the ventricle at the surface of the thoracic region, excess blood and liquid 
is then dabbed dry. (C) A copper filament probe (0.75 mm Ø) cooled in liquid nitrogen is 
applied to the ventricle for 5 seconds and thawed with system water to aid removal. (D) 
The incision area is monitored briefly for successful injury and fish is returned to system 
water, supplemented with analgesic, for recovery.  
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2.2 Tissue collection 

 Heart collection 

Operated fish hearts were collected at 1, 3, 7, 14, 30, 60 or 160 days post cryoinjury 

(dpci) for all protocols except in vitro epicardial culture whereby hearts were collected 

at 5 dpci. Fish were euthanised in tricaine (0.04% w/v). Gills were monitored for 

movement, the caudal fin pressed between fingers to initiate pinch reflex and reactions 

to vibration assessed. After cessation of all three responses, an incision was made 

between the gills to sever vessels and confirm death. The pectoral was cavity opened 

and heart excised with forceps at the bulbus arteriosus.  

 RNA preservation  

The atrium and the bulbus arteriosus were removed from hearts, and the remaining 

ventricles were rinsed briefly in PBS and stored at -20oC in RNAlater® stabilization 

reagent (Qiagen, Crawley, UK) until RNA extraction procedures. 

 Protein preservation 

The atrium and the bulbus arteriosus were removed from hearts, and the remaining 

ventricles were rinsed briefly in PBS, placed in 1.5 ml Eppendorf tubes and snap frozen 

in liquid nitrogen. Samples were stored at -80oC until processing for protein extraction. 

 Histology preparation 

When possible, the entire heart (atrium, ventricle and bulbus arteriosus) was kept intact 

and placed in PBS/0.1 M KCl for 5 minutes to arrest heart in diastole before fixing with 

4% (w/v) Paraformaldehyde (PFA) overnight at 4oC. After fixation, hearts were rinsed 

several times in PBS. Samples were then dehydrated in biopsy cassettes (ProMarc 

Cellpath, J0109-10A) by immersion in a series of increasing ethanol concentrations (70, 

80, 90 and 95%) to 100%, water-free alcohol using an automated tissue processor (Leica, 

TP1050). Samples were embedded in paraffin wax using a Tissue-Tek®TEC™ (Sakura) 

embedding station and mounted to cassette lids. Samples were cut in serial sections at 

10 µm using microtome (Shandon finesse 325, Leica), mounted to slides and left to dry 

at room temperature (RT) overnight. Samples intended for Acid Fuchsin Orange G 
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(AFOG) staining and immunolabelling were mounted onto Superfrost® Plus 

(ThermoScientific, 630-0950) slides then stored at room temperature, those intended 

for in situ hybridisation were mounted onto Superfrost® ultra plus (ThermosScientific, 

631-0099) slides and stored at -80oC.  

 In vitro assay  

The atrium and the bulbus arteriosus were removed from hearts, and the remaining 

ventricles were rinsed several times in HDMEM (DMEM (Dulbecco's Modified Eagle's 

medium), 23 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and 15 

mM NaCl) to remove residual blood, then stored temporarily in a petri dish at room 

temperature before promptly mounting to gel. 

 Embryo harvest 

Zebrafish embryos that have a double mutation in the transparent and nacre genes 

(TraNac) were collected at 24, 48 and 72 hours post-fertilisation (hpf) into 1.5 ml 

Eppendorf tubes and then fixed in 4% PFA overnight at 4oC. The following day embryos 

were rinsed with five 5-minute PBS washes and then transferred to 100% methanol for 

storage at -20oC.  

2.3 PCR 

 Principle of PCR 

Polymerase chain reaction (PCR) is a molecular biology technique used to exponentially 

amplify DNA sequences. It relies on thermal cycling, with repeated heating and cooling 

of the reaction for DNA denaturation and replication, respectively. PCR generates a large 

quantity of a specific genetic sequence used as the starting point for many molecular 

biology protocols such as genotyping, cloning, virus synthesis and probe design. 

To amplify a specific region of a gene, online databases, such as ncbi primer blast, can 

be used to design small 20-25 base pairs (bp) oligonucleotides (primers) that 

complement the gene of interest sequence within parameters required for the protocol. 

Often PCR requires amplicon products of less than 200 bp. The primers will be designed 
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to bind to the gene of interest on the template DNA in either the 3’-5’ direction on the 

leading strand (forward primer) or in the 5’-3’ direction on the lagging strand (reverse 

primer). The primers are often designed to anneal at high temperatures to increase 

specificity and reduce primer dimer formation.  

Taq DNA polymerase was initially isolated from a thermophilic bacterium, Thermus 

aquaticus, that lives in geothermally heated bodies of water such as hot springs. The 

bacterium’s enzymatic activities occur at temperatures exceeding 42°C (the 

temperature at which most mammalian proteins denature). It was consequently used 

to avoid the need of enzyme addition at each cycle and allowed the automated upgrade 

of the original PCR setting. The annealed primer provides a free 3’ hydroxyl group from 

which DNA polymerases catalyse a hydrolysis reaction between the 5’ phosphate group 

of the subsequent deoxynucleotide (dNTP) to form a covalent bond. These hydrolysis 

reactions repeat and the DNA polymerase synthesises a complementary strand of DNA 

from the template sequence, a process described as elongation (Figure 17). The taq 

polymerase can function at 72°C, incorporating up to 100 complementary 

oligonucleotides per second.  

Often, commercially available taq polymerases are provided in an inactive form, 

whereby specific antibodies block non-specific amplification by the enzyme during 

reaction set up. An initial activation incubation at 95°C routinely precedes PCR reactions 

to denature the enzyme and activate taq polymerases.  Following enzyme activation, 

the PCR reaction consists of a repeated series of temperatures, which mediate one of 

three PCR key stages; denaturation, annealing and extension (Figure 17). Denaturation 

is the initial stage, often at 95°C, to disrupt hydrogen bonds between anti-parallel double 

strands of DNA (dsDNA) molecules producing accessible DNA templates for primers to 

anneal to and simultaneously prevent DNA polymerase activity. Following denaturation, 

the temperature is lowered to approximately Tm-5°C (Tm, Melting temperature: 

Temperature at which half of the primers are annealed to the template DNA). Primers 

start to form bonds with the complementary target sequence, this is the second key 

stage: annealing. Finally, the extension step is carried out at 68-72°C, depending on the 
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polymerase used in the reaction. Taq polymerase binds to incomplete regions of double 

stranded DNA (at the primer-bound region) and synthesises a new strand of DNA, 

complementary to the template strand.  

After one PCR thermal cycle, a new fragment of double stranded DNA stemming from 

both the forward and reverse primers is produced, therefore one copy of DNA template 

yields two copies of the desired DNA sequence. The cycle is repeated and the two newly 

synthesised double strands of DNA serve as the new template for the subsequent cycle. 

As there are now more templates available, more products are produced; 2 strands of 

double stranded DNA (dsDNA) will both be amplified and produce 4 new dsDNA PCR 

amplicons after a second cycle. An additional round of PCR will produce 8 amplicons 

from the initial 4 at the third cycle, 8 copies become 16 on the fourth cycle and so on. 

The process amplifies gene products exponentially, efficiently yielding millions to billions 

of copies of the target fragments of DNA.    
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and anneal

Rev primer
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Extension

Taq

1st

cycle

Denature 
and anneal

Extension 2nd
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Template DNA

Taq

Figure 17 Polymerase Chain Reaction Schematic 
Schematic representation of PCR thermal cycle DNA amplification. Template double 
stranded DNA (dsDNA) (green) from sample is denatured at high temperatures (95oC), 
the temperature is cooled (~60oC) to permit primers (red) to anneal its complementary 
sequence. Taq polymerases use primers as the origin to synthesise a new 
complementary strand of DNA from existing template (blue). Completion of 
denaturation, annealing and extension forms one thermal cycle and yields two strands 
of dsDNA (amplicons) from the original template. The second thermal cycle produces 
4 amplicons from the original 2. This process is repeated over several cycles to yield 
millions to billions of identical amplicons.    
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 Genotyping  

2.3.2.1 Principle of Sanger sequencing 

Sanger sequencing is commonly used to carry out genotyping and applies PCR principles 

to amplify a specific region of the gene of interest, however, it employs additional 

parameters to delineate the sequence of an unknown DNA template. The reaction 

mixture includes a small concentration of dideoxynucleotides (ddNTPs) that do not 

contain the 3’ hydroxyl group required for the hydrolysis reaction catalysed by DNA 

polymerase during elongation. During sequencing, at an unpredictable point during the 

PCR, a ddNTP is incorporated during elongation at its 5’ phosphate group, the absence 

of the 3’ hydroxyl group for the next nucleotide results in the elongation termination. 

The ddNTPs are labelled to be identified. The early sequencing method relied on 

radiolabelled ddNTPs; four separate PCR reactions would be carried out for the same 

gene, containing a single radiolabelled ddNTPs, one per nucleotide base (A, T, C and G) 

along with the unlabelled other dNTPs (Sanger et al., 1977). More recently, ddNTPs have 

been used where each base is labelled with a different fluorophore, and sequencing is 

now performed in a single reaction (Smith et al., 1986). The PCR reaction yields several 

amplicons of differing lengths depending on at which point the complementary ddNTPs 

was incorporated. The PCR reaction can then be ran in an acrylamide gel thereby 

separating the amplicons by size. The unknown sequence can be determined by reading 

the fluorescence of the different amplicons in ascending order of size. As PCR produces 

millions of replicates of a single product, sufficient copies of each possible fragment are 

generated to produce a detectable signal for hundreds of bases.  
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Figure 18 Sanger Sequencing 
Schematic representation of Sanger sequencing. A PCR reaction is carried out with template 
DNA of unknown sequence. The PCR reaction contains both deoxyribonucleotides (dNTPs) and 
a low concentration of fluorescently labelled dideoxyribonucleotides (ddNTPs) that terminate 
elongation. Amplicon fragments of all possible lengths are generated in the PCR, each 
incorporating a fluorescent ddNTP. The PCR products are run in a polyacrylamide gel to 
separate amplicon fragments by size. A fluorescent detector records the light emitted by 
amplicons in sequential sizes and deduces which fluorescently labelled nucleotide is present. 
A chromatogram is produced indicating fluorescence and corresponding nucleotide to 
delineate the DNA sequence.   
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2.3.2.2 Experimental details 

Genomic DNA (gDNA) from fin clip samples was diluted 1 in 10 with molecular grade 

water (HyClone™, SH30538.02). PCR reactions were carried out to amplify the portion 

of the nrp1a gene where nrp1asa1485 nonsense mutation occurs. Maxima Hot Start Green 

PCR Master Mix (Thermo scientific, EP0601) 50 µl reactions were performed as per 

manufacturer’s instructions containing 0.5 µM primers (forward (Fwd) 

TCCAGCAGCGGAGTCATCAAG, reverse (Rev) CCAGGGAATCCGTCCCAAAC (5’-3’)) and 2 µl 

diluted gDNA. 20 µl aliquots of PCR products were analysed with agarose gel 

electrophoresis to confirm presence of a single PCR product. The remaining PCR 

reactions were purified with Zymo DNA clean and concentrator™ spin columns and DNA 

eluted in 12 µl molecular grade water and concentration and purity determined with 

NanoDrop 8000 spectrophotometer (Thermo Scientific). PCR products were sent for 

Sanger sequencing (Source bioscience services) at 2 ng/µl concentration, along with the 

forward primer of the PCR reaction. Sequencing data were analysed with Sequencher 

5.3 software aligned to predicted sequence of mutation.    

 RT-qPCR 

2.3.3.1 Principle of absolute RT-qPCR 

Quantitative reverse transcription PCR (RT-qPCR) relies on the logarithmic generation of 

double stranded DNA fragments following each thermo cycle of PCR. The technique 

employs the use of a fluorescent signal (either a fluorescent/quencher signal reaction or 

non-specific double stranded DNA binding fluorophore) that correlates with the amount 

of DNA amplicons generated after each cycle. For the purposes of this study, the non-

specific dsDNA-binding fluorophore SYBR® green was used. Upon interaction, the DNA-

dye-complex absorbs blue light (λmax = 497 nm) and emits green light (λmax = 520 nm). 

The fluorescence emitted correlates with the amount of DNA amplicons produced 

during the PCR reaction. 

Several variations of RT-qPCR exist, all require template DNA generated by reverse 

transcription of sample messenger RNA (mRNA) to produce complementary DNA 
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(cDNA). Most commonly used is the relative qPCR that simultaneously measures 

amplification of a reference gene along with the gene of interest and calculates a ratio 

between the two. Sample treatments are compared as differences between ratios of 

target gene with the reference gene (often described as a fold-change in expression).  

For the purpose of my project, I used absolute qPCR. Absolute qPCR compares target 

gene expression with a combination of at least three reference genes which are used to 

produce a normalisation factor. Known numbers of amplicons (standards) are used to 

extrapolate the number of amplicons within the unknown samples, thus giving an 

indication of the level of gene expression. Whereas a two-fold change could mean from 

10 to 20 copies, or 100,000 to 200,000 copies, absolute qPCR provides a quantitative 

value of amplicon copy numbers. Variability of qPCR is far greater at low copy numbers 

(e.g. 10-100 copies) than at high copy numbers. Knowing the level of expression gives 

some indication to the likely physiological relevance in gene expression changes.  

qPCR standards are produced by amplifying the single gene product via PCR, they are 

then purified and quantified. Because the DNA sequence of the amplicon is known, the 

copy numbers per µl of that amplicon can be calculated from nanodrop concentration 

measurements. The PCR product is diluted to set concentrations from 1x107 to 1x101 

copies per µl via serial dilutions. The standards are run to produce a standard curve by 

plotting the known copy numbers (x-axis) against the cycle threshold (ct) values (y-axis). 

Using standards also gives a simple way of directly checking the efficiency of the assay 

from the regression line of Cq vs. log standard concentration (Eff = 10-1/slope). The ct 

values of the experimental samples are aligned to the standard curve to extrapolate the 

copy number of the amplicon in the PCR reaction.  Several reference genes are amplified 

following the same principle to gauge which are the most stable amongst all samples 

regardless of treatment, and a normalisation factor is generated by geNorm software 

using a minimum of three reference genes. The previously extrapolated experimental 

(unknown) sample copy numbers per reaction are multiplied by the normalisation factor 

to finally produce a “Normalised copy numbers per reaction” for genes of interest. 
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2.3.3.2 cDNA synthesis 

All primers and standards were designed and purchased from qStandard services. Five 

ventricles were pooled from corresponding time points and treatments for RNA 

extraction.  Ventricles were homogenised in 600 µl RLT buffer (Qiagen, 74106) in 1.4 mm 

ceramic bead-containing tubes (Peqlab precellys ceramic kit, 91-PCS-CKM) and 

mechanically disrupted in minilys® Tissue homogeniser (Bertin instruments). A further 

homogenisation step was carried out by passing homogenates through QIAshredder 

spin columns (Qiagen, 79654). Total RNA was extracted using RNeasy Mini Kit (Qiagen, 

74104) spin columns. Spin column nucleic acid purification is based on silica gel 

membranes embedded within tubes. Nucleic acids are precipitated in ethanol and 

chelating reagents and cations within spin column buffers promote nucleic acid 

negatively charged backbones to bind silica columns. Residual homogenate components 

are then washed and removed from the membranes in a series of ethanol and salt 

washes via centrifugation, resulting in only precipitated nucleic acids bound to the silica 

gel membranes. Nucleic acids are then resuspended in a solvent, such as water, and 

collected in a final spin. RNA extraction for my studies were eluted from columns in a 

final volume of 30 µl. The quantity and purity of RNA were evaluated using a NanoDrop 

8000 spectrophotometer (Thermo Scientific) and RNA integrity was assessed with a 

Bioanalyzer (Agilent). 500 ng of total RNA was treated with DNase to remove genomic 

DNA and cDNA synthesis was performed using QuantiTect® Reverse Transcription Kit 

(Qiagen) as per manufacturer’s instructions. cDNA was stored at -20°C and diluted 10-

fold with yeast transfer RNA (tRNA) (10 µg/ml) (Sigma, R8759) for subsequent PCR 

reactions. 

2.3.3.3 qPCR  

Absolute RT-qPCR reactions were performed by qStandard services using a Rotor-Gene 

PCR thermocycler (Qiagen).  10 μl reactions contained 0.5 M primers (Table 4), 5 µl 

Brilliant III (Agilent) and 1 µl diluted cDNA. All incubations included an initial 

denaturation step at 95°C for 5 minutes, followed by 40 two-step thermocycles of 95°C 

denaturation for 10 seconds, followed by combined annealing and extension at 57°C for 
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7 seconds. Product specificity was confirmed by running the amplified products on an 

agarose gel and thereafter during every qPCR run by melting curve analysis. qPCR 

standards were prepared by amplification of 10-fold diluted zebrafish ventricle cDNA; 

the single PCR amplicon was then isolated by agarose gel electrophoresis (E-gel® 

SizeSelect™ Gels, Life Technologies Ltd, Paisley, UK) and purified with microCLEAN 

(Microzone Ltd, 2MCL-1) purification kit. Quantity and purity of the DNA were evaluated 

using a NanoDrop 8000 spectrophotometer (Thermo Scientific). For all runs, a set of 10-

fold serial dilutions of each internal standard (101 – 107 copies/µl) was used to generate 

a standard curve. All qPCR assays were linear within this concentration range with 

correlation coefficients (r2) >0.95. Normalisation factors were calculated using the 

geNorm software by combining the values obtained for the three following reference 

genes: gapdh, Rpl13a and eef1a1a (see Table 4 for details) whose gene expression 

stayed constant regardless of time points or treatments in the zebrafish ventricles. 



 

 

 

1
1
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  Gene Name 
Accession 
Number 

Primer Sequence  5’-3’ 
Melting 

temperature 
Product 
length 

rpl13a 
Ribosomal protein L 13A 

NM_212784 Fwd gtctgaaacccacacgcaaat                                             
Rev cgttcttttcagcctgcttagt  

52 
53 

171 

eef1a1a Eukaryotic translation 
elongation factor 1a 

NM_200009 Fwd ctcctctgggtcgttttgct                                                       
Rev tatgtgtctctggagttggca 

54 
52 

169 

gapdh Glyceraldehyde 3-
phosphate dehydrogenase 

NM_001115114 Fwd ttcctgagctcaatggcaagc                                               
Rev agacggactgtcagatccaca 

54 
54 

85 

nrp1a 
Neuropilin 1a 

NM_001040326 
& NM_181497 

Fwd ctccaacaaaccctaccaggt                                                
Rev tcggtgatgtccaccatgatttc  

54 
55 

184 

nrp1b 
Neuropilin 1b 

AY493415 Fwd gaccaaaagcagatggagggaa                    
Rev catcttctgtattctctggatctttgc 

55 
57 

176 

nrp2a 
Neuropilin 2a 

NM_212965 Fwd gattctgacttcagctgggttatg                       
Rev cgatgtacaggtagtttcccaaa 

56 
53 

109 

nrp2b 
Neuropilin 2b 

NM_212966 Fwd cagcattgagcttgagcagt                           
Rev tcaggtcttcgctcagtcat 

52 
52 

72 

kdrl kinase insert domain 
receptor like 

NM_131472 Fwd ccttgagacgcagatgaatcc                                             
Rev ctgcgttatccaccctggtc  

54 
56 

140 

flt1 
fms-related tyrosine kinase 
1 

NM_001014829 
& 
NM_001257153 

Fwd aactcacagaccagtgaacaaga                                                       
Rev ttagccttctgtgggtatgtcca 

53 
55 156 

vegfaa Vascular endothelial growth 
factor Aa 

NM_001190933 Fwd ccatctgtctgctgtaaaggct                                               
Rev gatgatgtctaccagcagctctc 

55 
57 

130 

vegfc Vascular endothelial growth 
factor c 

NM_205734 Fwd tgccatgcaggagcattcaga                                               
Rev gcctcctccgaccttgtttc  

54 
56 

180 

tgfb1a Transforming growth factor 
beta 1a 

NM_212965 Fwd gctggctctcatttgacgtg                     
Rev ctctgcttgtctagccctga 

54 
54 

157 

pdgfra Platelet-derived growth 
factor receptor alpha 

NM_131459 Fwd tgataatctctacacaacgctgagt 
Rev ctcatagacatcactggacgcat 

54 
55 

178 

pdgfrb Platelet-derived growth 
Factor receptor beta 

NM_001190933 Fwd gctatcacaacaggactggttc                       
Rev ctctgtgcgaaagtctggga 

55 
54 

177 

pdgfab Platelet derived growth 
factor alpha b 

NM_001076757 Fwd tgataatctctacacaacgctgagt                          
Rev caggggtctgaggtcaaagtc 

55 
51 

124 

bcar1 Breast cancer anti-estrogen 
resistance protein 1 

NM_001135133 Fwd gcactaccaacaaacggtatatgac                                               
Rev tggttctgattctccaggctct 

56 
55 

132 

Table 4 qPCR primer details for housekeeper and neuropilin genes 
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2.4 Histology 

 Immunofluorescence 

2.4.1.1 Principle of immunofluorescence 

Immunofluorescence is a common laboratory technique relying on the use of antibodies 

to detect proteins in cells and tissues. Several antibodies can be used simultaneously to 

identify multiple molecules of interest within a sample, therefore allowing the detection 

of proteins localised to the same region (colocalised) of the cell or tissue. In the case of 

indirect immunofluorescence, the antibody specific for the antigen (the primary 

antibody) is unlabelled, and a second anti-immunoglobulin antibody (the secondary 

antibody), conjugated to a fluorophore, recognises the constant portion of the first 

antibody. If co-labelling is desired; primary antibodies generated in distinct species are 

applied to the same sample. Indirect immunofluorescence grants greater sensitivity 

than direct immunofluorescence (whereby the fluorophore is bound to the primary 

antibody) as multiple secondary antibodies can bind each primary antibody, resulting in 

an amplified signal. Moreover, it allows more flexibility with the choice of colour 

combinations and is relatively less expensive. 

Fluorescent microscopes, fitted with lasers to excite the desired fluorophores and filters 

for emitted light, are used to localise the molecule of interest. Sequential images of a 

sample region are obtained for the different fluorophores and combined to produce a 

final image overlay. When proteins of interest colocalise, the colour in the overlay 

changes, e.g. if red and green staining are used, colocalisation will be indicated by a 

yellow stain.  

2.4.1.2 Experimental details 

Slides were placed in an oven at 60oC for 10 minutes to soften paraffin wax, and then 

incubated twice in xylene for 10 minutes. Xylene is a strong organic solvent allowing the 

solubilisation of the paraffin. Sections were then rehydrated through graded washes of 
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ethanol in water, ending in a final rinse in pure water (100%, 95%, 90%, 70%, 30% and 2 

times ddH2O for 5 minutes each). Formaldehyde forms methylene crosslinks between 

proteins and is commonly used to fix tissues for histological preparations. The 

crosslinked proteins can mask epitope recognition by the primary antibodies, therefore 

two methods are commonly used to remove these bridges: heat-induced epitope 

retrieval (HIER) and proteolytic-induced epitope retrieval (PIER). I used HIER for all 

histology procedures in this project: sections were submersed in boiling citrate buffer 

(10 mM sodium citrate dehydrate, 5.4 mM HCl) with occasional boiling of samples in 

microwave for 10 minutes. Slides were then left to re-temper to room temperature for 

10 minutes, washed 3 times in ddH2O and once with Phosphate Buffer Saline Tween 

(PBST) (0.1% tween®20). Samples were permeabilised in PBS Triton X-100 (0.5% Triton 

X-100) for 15 minutes and washed again three times in PBST. Sections were blocked for 

1 hour at room temperature in blocking solution (5% Bovine Serum Albumin (BSA)/10% 

donkey serum/PBST). Primary antibodies (details can be found in Table 5) were diluted 

50-fold (100-fold for IgG controls as stock solutions are twice as concentrated) in 

blocking solution and incubated on samples overnight at 4oC in humidifying chamber. 

The following day, slides were washed three times in PBST, incubated with two 

fluorescent secondary antibodies (anti-rabbit Alexa 488 (Life Technologies Ltd, A11034) 

and anti-mouse Alexa 555 (Life Technologies Ltd, A31570)) diluted 1 in 500 in blocking 

solution in light-insulated humidifying chamber for 1 hour at room temperature. Slides 

were then washed 3 times with PBST and incubated in 1% (w/v) Sudan black in ethanol 

for 15 minutes at room temperature to quench background fluorescence and finally 

rapidly rinsed 8 times with PBS. Slides were mounted with ProLong® Gold Antifade 

reagent with DAPI mounting medium (Life Technologies Ltd, P36931) and left overnight 

at room temperature in light-incubated conditions to set. Z-stack images were captured 

on a Leica TCS SPE1 confocal microscope system and processed using ImageJ software 

(Schneider et al., 2012). 
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Antibody name 
Structure 
labelled 

Catalogue 
number 

Company 
raised 

in 

Neuropilin-1 
antibody 

[EPR3113] 

Neuropilin-1 (c-
terminus) 

GTX62190 Genetex rabbit 

Mouse/Rat 
Neuropilin-2 

Antibody 
Neuropilin-2 AF567 

R&D 
systems™ 

Biotechne® 
goat 

WT1 Antibody (6F-
H2) 

Wilms Tumor 1 NB110-60011 
Novus 

Biologicals® 
mouse 

Monoclonal 
Mouse anti-GFP 

antibody 

Green 
fluorescent 

protein 
11814460001 Roche mouse 

Monoclonal Anti-
Tropomyosin 

antibody 
Tropomyosin T2780 Sigma mouse 

mCherry Antibody 
(1C51) 

mCherry NBP1-96752 
Novus 

Biologicals® 
mouse 

L-plastin 
Lymphocyte 

cytosolic 
protein 

In house 
antibody 

Gift from 
imperial 
College 
London 

rabbit 

mlck Mural cells 018M4800 Sigma Mouse 

aldh2 
Retinoic acid 

dehydrogenase 
GTX124302 Gentex Rabbit 

Mouse IgG N/A 026502 Invitrogen Mouse 

Goat IgG N/A Sc-2028 Santa Cruz Goat 

Rabbit IgG N/A 20009-1-200 
Alpha 

diagnostics 
Rabbit 

Alexa anti mouse-
555 

Mouse IgG A31570 
Life 

Technologies 
Donkey 

Alexa anti goat-
488 

Goat IgG A11055 
Life 

Technologies 
Donkey 

Phalloidin FITC actin 8953S Cell Signalling Donkey 

Alexa anti rabbit-
488 

Rabbit IgG 018M4800 Sigma Donkey 

Table 5 Immunofluorescence antibody details 
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 Acid Fuchsin Orange G 

2.4.2.1 Principle of AFOG staining 

Acid Fuchsin Orange G (AFOG) is a histological chemical stain that identifies the three 

following main tissue components: nuclei, cytoplasm and extracellular matrix. 

Incubation with phosphomolybdic acid is incorporated into the staining procedure to 

allow the dyes to interact with acidophilic macromolecules such as collagen. The 

different interactions of the AFOG dyes results in tissue components being labelled in 

distinct colours (described in Table 6). 

Table 6 Acid Fuchsin Orange G staining key 

Tissue component Colour 

Muscle and cytoplasm Orange 

Collagen Blue 

Fibrin Red 

Basement membrane Pale blue 

Vessels Lively red 

Nuclei Black/dark brown 

Erythrocytes  Yellow/brown 

2.4.2.2 Experimental details 

Slides were placed in the oven at 60oC for 10 minutes to soften paraffin wax, and then 

incubated in xylene for 10 minutes, twice, to remove the paraffin. Sections were then 

rehydrated through graded ethanol in water, ending in pure water (100%, 95%, 90%, 

70%, 30% and 2 times ddH2O for 5 minutes each). Samples were then fixed in Bouin’s 

fixative (Thermo Scientific, 57211) for 2 hours at 60oC followed by overnight incubation 

at room temperature. The following day, slides were rinsed for 10 minutes under a 
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stream of tap water. Nuclei were stained with Weigert’s iron haematoxylin (Amresco, 

0701; Sigma F2877) and differentiated with three rinses in 1% hydrochloric acid (v/v) in 

100% ethanol. Sections were treated for 5 minutes with 1% phosphomolybdic acid (w/v) 

in ddH2O (Sigma-Aldrich, P7390). Slides were then incubated in AFOG staining solution 

(5g Methyl Blue (Sigma, 95290), 10g Orange G (Sigma, 0-3756), 15g acid fuchsin (Acros 

organics, 227900250) per litre ddH2O, pH 1.09) for 10 minutes and briefly rinsed in 

ddH2O 5 times. Slides were rapidly dehydrated in a series of increasing ethanols 

solutions (70%, 80%, 95%, and 100%) to xylene and DPX-mounted with glass coverslips 

for imaging in NanoZoomer automated slide scanner (Hamamatsu). 

 In situ hybridisation 

2.4.3.1 Principle of in situ hybridisation 

In situ hybridisation (ISH) is used to detect nucleic acid localisation within a sample, most 

commonly ribonucleic acids (RNA), and provides a specific detection technique to 

analyse gene expression patterns. In this project, in situ probes were designed to detect 

mRNA of specific genes. All or part of the target gene sequence intended for detection 

is amplified from cDNA to produce a sequence complementary to the mRNA expressed 

in vivo. The gene sequence is inserted into a vector and transformed into bacteria for 

amplification. After recovery of the recombined plasmid via DNA purification, an RNA 

polymerase reaction incorporating UTP ribonucleotides conjugated to digoxigenin (DIG) 

is performed to synthesise DIG-labelled RNA probes. The gene sequence can be 

synthesised to encode the 5’-3’ and 3’-5’ target gene sequence. The 5’-3’ sequence will 

have the same sequence as the mRNA, termed the sense probe and will not bind to 

sample mRNA, this is often used as a blocking reagent or negative control. The 3’-5’ 

sequence will have the complementary sequence to endogenous mRNA and will be able 

to bind in situ, this is known as the anti-sense probe and is used for specific gene 

detection. The anti-sense DIG-labelled probe hybridises with complementary mRNA 

expressed in the sample and an anti-DIG antibody conjugated to an enzyme (most 

commonly a peroxidase or alkaline phosphatase) or fluorescent reporter is used to 
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detect the hybridised probe. In the case of enzymatic detection, the signal is amplified 

using a reaction to produce a visible precipitate (Figure 19).  

2.4.3.2 Dig-labelled RNA probe generation 

cDNA derived from adult zebrafish heart samples were used as template to generate 

digoxigenin-labelled probes (see Table 7). cDNA diluted 10 fold was used for 50 µl 

Maxima Green Hot Start PCR reaction to amplify the probe sequence. The amplification 

of a single PCR product was confirmed by agarose gel electrophoresis, purified with 

Zymo DNA clean and concentrator™ spin columns (Zymo research, D4003) and the DNA 

concentration determined with a NanoDrop 8000 spectrophotometer (Thermo 

Scientific). Purified PCR products were ligated into 50 ng of pGEMT® vector (Promega, 

A3600) at a ratio of 3:1, insert: vector, using instant sticky ends ligase master mix (New 

England Biolabs, M0370L) as per manufacturer’s instructions. The ligation reaction was 

used to transform One Shot® Top 10 competent E.coli. Successfully transformed 

AP

Target 
mRNA

DIG – labelled Anti-
sense RNA probe

Dark blue 
precipitant 

DIG- labelled Sense 
RNA probe

Alkaline 
phosphatase-

conjugated anti-DIG 
antibodies

5’ 3’

5’ 3’

3’ 5’

Figure 19 In situ hybridisation 
Representative illustration of in situ hybridisation. Target mRNA expressed in the 
sample is bound by complementary digoxigenin (DIG)-labelled anti-sense RNA 
probes. Antibodies specific for DIG bind the RNA probes. Alkaline phosphatases 
conjugated to the antibody produce visible precipitate in the sample and mRNA 
localisation can be observed.  
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bacteria were identified through blue white screening and orientation of amplicon 

confirmed from mini prep plasmid isolation (Qiagen, 27104) and Source Bioscience 

Sanger Sequencing. Confirmed plasmids were isolated from bacteria via the midi prep 

procedure as per manufacturer’s instructions (Qiagen, 12145) and plasmid 

concentration determined with NanoDrop 8000 spectrophotometer (Thermo Scientific). 

1 µg of plasmid DNA was linearised by restriction digest; digestion was repeated twice, 

one reaction at either of the pGEMT® multiple cloning sites (for digest details see Table 

7). The linear plasmid was purified in 30 µl molecular grade water with Zymo DNA clean 

and concentrator™ spin columns. Linearised plasmids were used to provide template for 

subsequent RNA polymerase reactions; one to generate a sense probe and the other 

reaction performed from the opposing pGEMT® RNA promoter (SP6 or T7) (see Table 7) 

to generate the anti-sense probe. 20µl reactions (containing 2 µl DIG-labelled RNA 

(roche, 11277073910), 11.5 µl linear plasmid, 2 µl 0.1 M DTT, 2 µl 10X RNA polymerase 

transcription buffer (NEB, B9012S), 0.5 µl RNasin® (Promega, N2111), 1 µl molecular 

grade water) were carried out to generate in situ probes. Probes were purified from 

reaction with Zymo RNA clean and concentrator™ spin columns, 30 µl probe was eluted 

in molecular grade water, concentration determined with NanoDrop 8000 

spectrophotometer (Thermo Scientific), then aliquoted and stored -80oC.  
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nrp1a PCR product

ligation

linearise

MCST7

SP6

pGEM®T
-Easy

T

A

A

T

nrp1a

nrp1a

SP6

T7

SP6 RNA 
polymerase 

reaction

RNA 
polymerase 

reaction
T7

nrp1a sense probe

nrp1a anti-sense probe

nrp1a

Figure 20 In situ probe synthesis 
Schematic representation of nrp1a riboprobe synthesis. For the purpose of 
generating digoxigenin (DIG)-labelled RNA probes (riboprobes) for this study, regions 
of neuropilin genes were amplified from zebrafish cDNA in a taq polymerase PCR 
that leave 3’-A overhangs on products. Amplicons were ligated to pGEM®T-easy 
vector to the complementary 3’ T overhangs of the open plasmid. Two restriction 
enzyme digest reactions were then carried out, one at either multiple cloning site 
(MCS) of the vector. Probes were synthesised with the appropriate RNA polymerase 
(SP6 or T7) in a reaction containing DIG-labelled UTP nucleotides to generate sense 
or anti-sense encoding probes.  

Figure 21 pGEM®T easy vector map 
pGEM®T- Easy is a commercially available open vector. The vector has 3´-T overhangs 
at either end that provide a complementary base for taq polymerase PCR products 
containing 3’-A overhangs. pGEM®T- Easy also encode several restriction enzyme 
recognition sequences in succession in the multiple cloning site (MCS) preceded by 
either the T7 or SP6 RNA polymerase promoters. 
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Table 7: In situ RNA probe details 

Gene 
Primer sequence 

Fwd 5’-3’ 
Rev 5’-3’ 

Probe 
length 

Anti-
Sense 

Enzyme 

Anti-Sense 
RNA 

Polymerase 

Sense 
Enzyme 

Sense RNA 
polymerase 

nrp1a 
TACAGTGCCGCCTACTACAC 

CACGCTTCCGAGTACGAGTT 

993 SalI T7 NCOI SP6 

nrp1b 
CAAAACCATGACACGCCAGA 

TGCCCTCACAGTTCACGATTT 

997 NCOI SP6 SalI T7 

nrp2a 
AGACCAGCACGACACAGAAA 

GTGAGGGGTTTGGTGTGGTC 

813 

 

SalI T7 SacII SP6 

nrp2b 
ACCACCATTCCTGACACTGC 

GTGAGGGGTTTGGTGTGGTC 

715 PstI T7 SacII SP6 
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2.4.3.3 Paraffin-embedded slides in situ hybridisation 

Slides were placed in the oven at 60oC for 10 minutes to soften paraffin wax, and then 

incubated in xylene for 10 minutes, twice, to remove the paraffin. Sections were then 

rehydrated through graded washes of ethanol in diethyl pyrocarbonate–treated double 

distilled water (DEPC-H2O)(100%, 95%, 90%, 70%, and 30%), transferred to PBS for 5 

minutes and then fixed with 4% PFA at RT for 10 minutes. Slides were washed 2 times 

for 5 minutes in PBS and digested with proteinase K (10 μg/ml in PBS) at 37oC for 10 

minutes. Enzymatic activity was stopped with a 10 minute incubation in glycine/PBS (2 

mg/ml) and slides were further washed with PBS for 5 minutes and again fixed with 4% 

PFA for 5 minutes at RT. Sections were subsequently washed twice in PBS for 5 minutes 

and acetylated for 10 minutes with 0.25% acetic anhydride in 0.1 M triethanolamine 

(DEPC-treated) as an initial blocking step (to minimise non-specific binding of the 

negatively-charged probe to the positively charged glass slides). Slides were washed 

with PBS, then DEPC-H2O for 5 minutes and 2 Frame-Seal™ Slide Chambers (Bio-Rad, 

SLF0601) borders were applied to the slides to enclose tissue sections. Hyb+ solution 

(50% deionised formamide, 10% dextran sulphate, 1X Denhardt’s, 5X Saline-Sodium 

Citrate (SSC), 1 mg/ml yeast tRNA, 0.1% Tween®20) was placed into chambers and slides 

incubated at 67oC for 2 hours in humidifying chamber (chamber humidifying solution 

5XSCC/50% formamide in DEPC-H2O). Hyb+ was replaced with 100 μl hyb+ containing 

either anti-sense (AS) or sense (S) digoxigenin-labelled probe (0.5 μg probe/ml) and 

incubated overnight at 67oC in humidifying chamber. 

Slides were washed at 67oC in graded salt solutions (5X SSC/50% formamide, 2X SSC/50% 

formamide, 2X SSC and 0.2X SSC) for 30 minutes per wash. Slides were then washed 

with malate buffer (100 mM maleic acid, 150 mM NaCl, pH 7.5, 0.1% Tween®20) (MAB) 

3 times, and sections blocked with 100 μl blocking solution (MAB/ 2% Boehringer 

blocking reagent/10% sheep serum) at RT for 2 hours. Blocking solution was replaced 

with 100 μl alkaline phosphatase-conjugated anti-DIG antibody (roche, 11 093 274 910) 

containing blocking solution (1:3000 dilution) and incubated overnight at 4oC in 

humidifying chamber (ddH2O was used for chamber humidifying solution).  
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The following day, slides were washed with MAB 6 times for 15 minutes per wash, then 

equilibrated with 3 washes for 5 minutes in staining buffer (100 mM Tris pH 9.5, 50 mM 

MgCl2, 100 mM NaCl, 0.1% Tween®20). Gene detection by alkaline phosphatase/ nitro-

blue tetrazolium (NBT)/ 5-bromo-4-chloro-3'-indolyphosphate (BCIP) reaction 

(containing 5% polyvinyl alcohol) was carried out at 37oC in dark until dark purple 

precipitant was visible under stereomicroscope (Leica S8 APO). Upon substrate 

development, slides were washed in PBS, fixed with 4% PFA for 20 minutes at RT, 

washed a further 2 times in PBS before rapid dehydration in graded ethanols (70%, 80%, 

95%, and 100%) to xylene for mounting with DPX and glass coverslips for imaging. 

2.4.3.4 Whole-mount in situ hybridisation 

Zebrafish embryos were dechorionated in 100% methanol, and rehydrated in graded 

methanols, then permeabilised with proteinase K (10 μg/ml) at RT for 20 minutes and 

further fixed in 4% (w/v) paraformaldehyde. Hybridisation buffer (50% formamide, 5X 

Saline-Sodium Citrate buffer (SSC), heparin (50 μg/ml), torula yeast tRNA (5 mg/ml), 

0.1% Tween®20) was used to block embryos at 67oC for one hour. Probes were diluted 

to 0.5μg probe/ml in the same hybridisation buffer and denatured at 80oC for 3 minutes. 

Equilibrated embryos were then incubated in probe-containing hybridisation solution at 

67oC overnight. Similarly, detection was performed using alkaline phosphatase-

conjugated anti-DIG antibodies (Roche Life Science). Visualization was done using 

alkaline phosphatase substrate BM purple (Roche Life Science) in the dark at room 

temperature until a dark purple precipitant developed. Embryos were then post fixed 

with 4% (w/v) paraformaldehyde overnight at 4oC and stored in 80% glycerol/PBS for 

imaging. 
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2.5 Zebrafish primary in vitro epicardial culture 

 Assay 

Thrombin-induced fibrinogen conversion to fibrin was performed in DMEM (gibco, 

21063029) as described in (Kim et al.) (2012) to produce fibrin gel matrix. Gel matrix was 

set in either 24-well plates or 4-chamber slides (Lab-Tek II Chamber Slide System, 

154526). The apices from dissected cryoinjured and sham-operated zebrafish hearts 

were placed in HDMEM (DMEM, 23 mM HEPES and 15 mM NaCl). Apices were rinsed 

several times with HDMEM at room temperature to remove residual blood. One apex 

per well/chamber was placed firmly on set fibrin gel matrices, ensuring epicardial 

surface contact with the gel. Excess DMEM was removed from heart tissue using a 10 µl 

pipette tip and left to adhere for 1 hour in a 28oC tissue culture incubator. 1 ml of DMEM 

(supplemented with 0.5% FBS, 0.05% Normocin™ (Invivogen, ant-nr-1), penicillin (100 

I.U./ml) and streptomycin (100 µg/ml) antibiotics (Sigma, P0781)) was added to the well 

or chamber and heart tissue cultured in a 28°C incubator (5% CO2 and 100% humidity). 

Medium was changed every 2-3 days and cells were cultured for 7 days before 

harvesting epicardial outgrowths for protein extracts and immunofluorescence imaging.  

 Immunofluorescence 

After 7 days culture, epicardial outgrowths were visible in all treatment groups. Medium 

was removed from slide chambers and rinsed twice with ice cold PBS. Cells were then 

fixed in 4% PFA at room temperature for 15 minutes and washed twice with PBST (0.1% 

Tween®20). Cells were permeabilised with PBS/triton X-100 (0.1% triton x-100) at room 

temperature for 10 minutes and further washed with PBST twice. Samples were blocked 

in blocking solution (1% BSA/10% donkey/PBST) at room temperature for 1 hour and 

incubated overnight at 4oC with primary antibody diluted 1 in 200 (1 in 400 for IgG 

controls) (see Table 5 for antibody details) in blocking solution. The following day, 

samples were washed three times in PBST and incubated for one hour at room 

temperature with fluorescent secondary antibody (anti-rabbit Alexa 488 and Alexa 

Fluor® 546 conjugated phalloidin (Thermo Scientific, A11034 and A22283) in blocking 

solution (both 1 in 500) and insulated from light. Chambers were washed a further three 
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times in PBST to remove unbound excess antibodies. Boundaries were removed, heart 

tissue discarded and slides mounted with ProLong® Gold Antifade reagent with DAPI 

mounting medium (Life Technologies Ltd, P36931). Slides were left to set overnight at 

room temperature in light-insulated conditions and z-stack images captured on Leica 

TCS SPE1 confocal microscope system. Images were processed using ImageJ software 

(Schneider et al., 2012).  

2.6 Rat epicardial culture and assays 

Cultured rat epicardial cells described in (Wada et al.) (2003) were used to study 

epicardial cell signalling. Cells were grown in DMEM (Life Technologies Ltd, 41965-039) 

supplemented with 10% FBS, penicillin (100 I.U./ml) and streptomycin (100 µg/ml) 

antibiotics (Sigma, P0781). For signalling studies, cells were seeded to 6-well culture 

plates, when ~70% confluent, cells were infected with adenovirus encoding rat short 

hairpin RNA (shRNA) targeting either NRP1 or a control Scrambled (Scr), as described in  

Pellet-Many et al. (2015) at a multiple of infection (MOI) of 100. After 48 hours infection, 

cells were serum-starved for 16 hours and stimulated with various growth factors at 

concentrations and durations specified in Figure legends, before harvesting for western 

blotting analysis. 

2.7  Western blotting 

 Principle of Western blotting 

Western blotting is a common semi-quantitative molecular biology technique used to 

compare regulation of protein synthesis, post-translational modification and signalling. 

Homogenates of tissues or lysates of cells are made by mechanical disruption in a 

detergent containing solution to break cell membranes and release intracellular and 

membrane proteins. The proteins are often denatured to their primary peptide 

structure using a reducing agent (most commonly used Tris(2-carboxyethyl)phosphine 

(TCEP), dithiothreitol (DTT) or beta-mercaptoethanol) to remove disulphide bonds and 

heated to break secondary structures such as hydrogen bonds within the protein. The 
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samples are coated with an anionic surfactant, sodium dodecyl sulfate (SDS), to ensure 

all proteins have a negative charge. The proteins are then loaded into a polyacrylamide 

gel immersed in a conductive solution. An electric current is run through the gel and 

induces the migration of the negatively charged proteins towards the anode; this 

process is referred to as polyacrylamide gel electrophoresis (PAGE). The gel consists of 

a series of cross-linked polymers forming nanopores. The pore size is determined by the 

acrylamide concentration, a higher acryclamide concentration increases crosslinks and 

narrows the pore size. The denatured proteins are able to migrate through the polymer 

crosslinks, however, the rate of migration is restricted by their size (larger proteins 

migrate at a slower rate than the smaller proteins) and therefore gel electrophoresis 

allows the separation of proteins by size. A protein ladder with proteins of a known 

molecular weight and labelled with coloured dye is run alongside the samples as a 

reference, allowing the direct visualisation of the achieved separation. 

Once the gel has run, proteins are transferred to a nitrocellulose or polyvinylidene 

fluoride membrane (PDVF), polymers with adhesive properties for proteins. This 

transfer process is also mediated in a chamber with an electric field driving the 

movement of proteins out of the gel and onto the membrane. The protein lysates are 

now immobilised on a stable platform that can be used to detect proteins of interest. 

A primary antibody is used to target the protein or post-translational modification of 

interest, and a secondary antibody conjugated to horseradish peroxidase (HRP) enzyme 

is used to detect the primary antibody. In the final chemiluminescence reaction, HRP 

catalyses the oxidation of luminol into a reagent that emits light upon decay. Western 

blotting is often described as a semi-quantitative technique, with the amount of protein 

originally present in the lysate proportional to the amount of peroxidase enzyme bound 

to protein on the membrane, and so, to the amount of light generated and area and 

intensity of the band present on the film. 

 Lysate preparation 

Proteins were extracted from samples with lysis buffer (consisting of RIPA buffer (Sigma, 

R0278) supplemented with proteinase inhibitor (cOmplete mini, Roche Diagnostics, 
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04693116001), phosphatase inhibitor cocktails (Sigma-Aldrich, P5726 and P2850), and 

TCEP (sigma, 646547)). For Western blot loading, lysates were mixed with 4x lithium 

dodecyl sulfate (LDS) loading buffer (Novex, NP0007) and radioimmunoprecipitation 

assay (RIPA) buffer, to obtain loading samples of equal volumes and protein content. All 

samples were then boiled for 3 minutes at 98oC to denature proteins before loading to 

gels.  

2.7.2.1  Zebrafish ventricles 

Zebrafish heart lysates were obtained by homogenizing 3 ventricles of identical 

treatment and time points in 100 µl lysis buffer in 1.4 mm ceramic bead-containing tubes 

(Peqlab precellys, 91-PCS-CK14) using a MINILYS benchtop homogeniser (Bertin 

instruments). Homogenates were collected in 1.5 ml Eppendorf tubes and cellular debris 

separated by centrifugation at maximum speed for 15 minutes at 4oC in a tabletop 

centrifuge. Homogenate supernatants were transferred to fresh Eppendorf tubes for 

subsequent use in Western blotting experiments. Protein lysate concentrations were 

determined with DC™ protein assay (Bio-Rad) to calculate the homogenate volume 

required for 1 g protein/µl of sample to load to gels.  

2.7.2.2  Rat epicardial cells 

Following serum free or growth factor treatment of adenovirus infected rat epicardial 

cells, 6-well plates containing cells were placed on ice and washed with cold PBS twice, 

then all residual medium and liquid removed from wells with vacuum aspirator. 50 µl 

lysis buffer was added to each well and cell contents obtained by mechanical disruption 

with cell scrapper. The lysates were transferred to 1.5 ml Eppendorf tubes and vortexed. 

Cellular debris was pelleted from samples by centrifugation at maximum speed for 15 

minutes at 4oC in a tabletop centrifuge and the liquid homogenate was transferred to a 

fresh Eppendorf tube and stored at -20oC before subsequent use in Western blotting 

experiments. 
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2.7.2.3 Zebrafish in vitro epicardial cells  

Culture medium was removed from wells, explants were rinsed twice with ice cold PBS 

and residual liquid and medium were removed via vacuum aspiration. 15 µl lysis buffer 

was placed directly onto heart tissue (to ensure coverage of epicardial outgrowth), then 

the heart tissue promptly removed to allow lysis of underlying epicardial cell outgrowth. 

Lysates were collected to 1.5 ml Eppendorf tubes and care taken to minimise fibrin gel 

incorporation to lysate extract. Lysate from 3 outgrowths were pooled for cryoinjured 

samples and from 4 outgrowths for sham operated hearts. Cellular debris was pelleted 

from samples by centrifugation at maximum speed for 15 minutes at 4oC in a tabletop 

centrifuge and the liquid homogenate was transferred to a fresh Eppendorf tube and 

stored at -20oC before subsequent use in Western blotting experiments. 

 Western protocol 

Lysate protein contents were separated by electrophoresis on 4–12% Bis-Tris 

polyacrylamide gels (novex, NP0322) in NuPage® SDS MOPS running buffer solution 

(Thermo scientific, NP0001) at 200 volts for 1 hour. Proteins were then electro-

transferred onto PVDF membranes (Thermo scientific, LC2002) at 35 volts for 1.5 hours 

at room temperature in 20% methanol/2X transfer buffer (Thermo scientific, NP0006). 

Protein loading and transfer quality were briefly assessed with Ponceau S staining of the 

membrane. The membranes were then rinsed several times with distilled water and 

blocked with 5% (w/v) non-fat dried milk in PBS containing 0.1% Tween®20 (PBST) for 

one hour at room temperature on rocking platform. Membranes were incubated with 

primary antibodies (for details see Table 8) diluted 1000 fold in 5% milk/PBST overnight 

at 4oC. The following day, membranes were further washed five times in PBST, incubated 

for 1 hour with horseradish peroxidase-labelled secondary antibody (Alfa diagnostic, 

20320) in 5% milk/PBST (1 in 10,000 dilution) at room temperature for one hour. 

Proteins were detected using the ECL Plus™ Western blotting detection system and 

Hyperfilm ECL (both Amersham Biosciences). 
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2.8 Statistics 

All statistical analysis were calculated with graphpad prism 6 software; using either 

unpaired t-test, one-way anova or two-way anova (specified in the Figure legend). Data 

compared for statistical analysis with a P value <0.05 were considered statistically 

significant. Graphs present data as means ± standard error of the mean (S.E.M), unless 

stated otherwise and were generated using graphpad prism 6.  
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Table 8 Western blotting antibody details 

Antibody name Structure labelled Catalogue number Company  raised in 

Neuropilin-1 antibody 
[EPR3113] 

Neuropilin-1 (c-terminus) GTX62190 Genetex rabbit 

Mouse/Rat Neuropilin-2 
Antibody 

Neuropilin-2 AF567 R&D systems™ Biotechne® goat 

Mouse/Rat Neuropilin-1 
Antibody 

Neuropilin-1 AF566 R&D systems™ Biotechne® goat 

GAPDH Antibody (V-18) 
Glyceraldehyde 3-

phosphate 
dehydrogenase 

sc-20357 Santa Cruz goat 

Phospho-p44/42 MAPK 
(Erk1/2) (Thr202/Tyr204) 

Phosphorylated 
threonine 202 and 

tyrosine 204 Erk 
9101L Cell Signalling Technology rabbit 

p44/42 MAPK (Erk1/2) Erk 9102L Cell Signalling Technology rabbit 

HSP90 Heat shock protein 90 4874 Cell Signalling Technology rabbit 
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3 Results chapter 1: Characterisation of neuropilin 

expression in adult zebrafish heart regeneration 

Zebrafish have the remarkable capacity to regenerate their heart following injury and 

several investigations have set out to uncover the cellular and molecular mechanisms 

orchestrating this repair process. It has been reported that Pdgf, Tgfβ, Vegf and Fgf 

signalling are essential for zebrafish heart regeneration (Chablais and Jazwinska, 2012; 

Kim et al., 2010; Lepilina et al., 2006; Marin-Juez et al., 2016). These cytokines are also 

known ligands for neuropilin (NRP) co-receptors (Glinka and Prud'homme, 2008; Pellet-

Many et al., 2011; West et al., 2005); however, the role of Nrps in zebrafish heart 

regeneration has not been characterised. Therefore, I investigated the expression, 

localisation and function of Nrps in zebrafish heart regeneration. This first chapter 

focuses on the gene expression of nrp isoforms in the cryoinjured zebrafish heart. 

3.1 Establishing the zebrafish cryoinjury model of cardiac damage  

In order to investigate the zebrafish heart regenerative response, I used the cryoinjury 

(also known as cryocauterisation) model of cardiac damage to induce cardiac damage. 

A platinum-filament probe cooled in liquid nitrogen is pressed against the ventricle apex, 

resulting in thermal shock-induced injury and the death of cardiac tissue in the targeted 

region (Figure 22B). I analysed the reproducibility of the cryoinjury model in my hands 

using transgenic zebrafish that encode green fluorescent protein (GFP) downstream of 

the cardiac myosin light chain 2 (cmlc2) promoter (termed Tg(cmlc2:GFP)). In this model, 

viable cardiomyocytes express GFP (Figure 22C and D). Within 24 hours of surgery, the 

green fluorescence is significantly reduced in cryoinjured hearts (see Figure 22E), 

implicatining that cryoinjury results in loss of cardiomyocyte viability as a result of 

thermal shock.   
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Figure 22 Loss of GFP signal in the cryoinjury lesion 

Whole-mount images at 1 day post sham surgery (A and C) and 1 day post 
cryoinjury (dpci) (B and D) in transgenic cardiac myosin light chain 2:GFP 
(Tg(cmlc2:GFP)) zebrafish hearts, expressing GFP under a cardiomyocyte-
specific promoter. Panels A and B show bright field images of the 
corresponding fluorescence images below (C and D). The cryoinjured 
region is highlighted by black and white dotted lines and arrows (B and C). 
Note the swollen and discoloured appearance (B) and absence of green 
fluorescence (D) in the injured ventricle region. A – atrium, ba – bulbus 
arteriosus, V – ventricle, IA – Injured area, scale bars 1 mm. (E) 
Quantification of GFP signal expressed as a percentage (%) of total 
ventricle area in sham (white bar) and cryoinjured (black bar) hearts n = 5 
hearts p = 0.0008 (***p<0.005). 
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 Heart regeneration after cryoinjury 

The zebrafish heart is reported to fully regenerate up to 20% of the ventricle within 60 

days after resection (Poss et al., 2002), or up to 25% ventricular mass after cryoinjury 

within 130 days (Gonzalez-Rosa and Mercader, 2012). There are numerous cryoinjury 

procedures reported using probes of varying size and material (Chablais et al., 2011; 

Gonzalez-Rosa and Mercader, 2012; Schnabel et al., 2011) introducing potential 

variability of injuries between reports. I set out to analyse the size and consistency of 

ventricular damage induced by the surgeries I performed and align injury features to 

those previously characterised in the literature.  

 Regeneration 

Using Acid Fuchsin Orange G (AFOG) staining of serial sections to quantify injury size of 

hearts at 1 day post cryoinjury (dpci) (Figure 23B and H), I was able to achieve 25.2% 

(±5.6 % S.E.M., n = 5)  ventricular damage. This is a similar injury size to the level of 

damage achieved by the authors who established and taught us the technique 

(Gonzalez-Rosa and Mercader, 2012). I monitored the regeneration of zebrafish hearts 

after injury and compared them with previously published data. The size of the injury 

(as a percentage of total ventricle size) was reduced at each consecutive time point, 

confirming regeneration occurs in the surgeries I perform. However, in my hands, from 

30 dpci, regeneration slowed down and reached a plateau with an injury size 

comparable to the 60 dpci time-point (1.8% ± 0.98% S.E.M., n = 4 versus 2.2% ± 0.88% 

S.E.M., n = 8).  

Moreover, a small scar deposit was observed in half of all 60 dpci samples, suggesting 

complete regeneration was not consistently accomplished in all surgeries within 60 

days. This is consistent with other reports that state almost complete regeneration is 

achieved by 130 dpci using this approach (Gonzalez-Rosa and Mercader, 2012; Manuel 

Gonzalez-Rosa et al., 2011).  
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 Scar composition 

The composition of the injury was comparable to that reported by Manuel Gonzalez-

Rosa  and colleagues (2011). At 1 dpci, compared to the sham-operated hearts (Figure 

23A), the injured region appears inflamed, and contains blood clots, yet retains 

myocardial trabeculations (Figure 23B). Also consistent with this study, fibrosis is 

evident in the injured area by 3 dpci and the epicardial layer is thickened (Figure 23C). I 

also analysed the outline and composition of the injury at 7 dpci. The expanded 

epicardial layer covering the entire injured region remains at 7 dpci, encasing more 

extensive fibrotic deposits consisting of a fibrin cap (red staining) with a collagen core 

(blue staining) on the luminal region of the injury (Figure 23D). At 14 dpci the scar 

composition is largely similar to that observed at 7 dpci, however, the overall injury is 

smaller due to the regenerating compact layer of cardiomyocytes infiltrating the outer 

boundaries of the injury (Figure 23E). At 30 dpci, as the heart undergoes the later stages 

of regeneration, healthier tissue is evident and the compact layer of the myocardium 

has fully recovered (Figure 23F), an observation noted by Gonzalez-Rosa et. al. (2011). 

Notably, the fibrin deposits of the scar tissue are cleared, leaving collagen deposits 

within the trabeculated region of the ventricle where damage was sustained (Figure 

23F). When complete regeneration is evident, no blue collagen staining remains in the 

ventricle (Figure 23G). The progress of heart regeneration and the reduction in the 

damaged ventricular area are shown in Figure 23H.   
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Figure 23 Recovery of Zebrafish heart following cryoinjury regeneration 

(A-G) Acid Fuchsin Orange G (AFOG) staining of adult zebrafish hearts 1, 3, 7, 14, 30 and 60 dpci and sham surgery. Healthy cardiac 
muscle tissue is stained orange/brown, cytosolic components orange/yellow, fibrin red and collagen blue. The injury appears as an 
interruption of consistent orange colouring within the ventricle and demarcated with black dotted lines. The initial injury size 
observed at 1 day post cryoinjury (dpci) can be seen to reduce in area by 60dpci confirming regeneration occurring. A – Atrium, ba 
– bulbus arteriosus, V – ventricle, scale bar 250 µm (H) Quantification of total area of the ventricle damaged is presented as 
percentage ventricle damaged ± SEM (n ≥ 4) 



 

135 

 

 RT-qPCR quality measurements 

3.1.4.1 RNA integrity 

To assess the regulation of nrp isoform gene expression in the regenerating zebrafish 

heart following cryoinjury, absolute RT-qPCR was performed. Total RNA was extracted 

and its purity was initially assessed using a NanoDrop spectrophotometer (Thermo 

Fisher Scientific) by confirmation of a clear 260nm peak (the wavelength at which nucleic 

acids display maximal absorbance). To assure minimal reagent contamination the 

260/280 ratio was also assessed and purity indicated by a value above 1.6. 24 randomly 

selected RNA samples were assessed for integrity by qStandard Ltd. using a Bioanalyzer 

(Agilent). The 18S and 28S ribosomal RNA bands are clearly visible and defined on the 

BA

Figure 24 RNA integrity of zebrafish ventricle RNA extracts 

(A) Zebrafish ventricle total RNA extract electrophoresis recorded on Agilent Bioanalyzer 
of 12 randomly selected samples. Two bands of high intensities are visible and represent 
the populations of 18S and 28S ribosomal RNA. Greater resolution of these bands indicates 
high quality RNA, while degradation of RNA would appear as smears between lower 
resolution bands. Fainter bands lower in the gel represent tRNA and mRNA. (B) 
Electropherogram depicting size distribution ([S]) of total RNA band fluorescent intensities 
([FU]). Below the graph are listed the software-generated calculations of RNA 
concentration and RNA integrity (RIN). Values are calculated combining 18S and 28S 
fluorescent intensity peaks with the software algorithm. RIN values range from 1 to 10; 
the spectrum identifies 1 as degraded RNA and 10 as completely intact RNA. An RIN value 
of 7 or above is deemed suitable RNA for subsequent analytical techniques. n = 24 
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Bioanalyzer electrophoresis gel (Figure 24A). Bioanalyzer software algorithms calculate 

RNA integrity (RIN), incorporating the ratio of ribosomal electrophoresis band thickness 

and provides a number between 1 and 10; where 1 represents completely degraded 

RNA and 10 represents RNA of the highest integrity. Samples randomly selected for 

analysis produced RIN values of ≥9 (Figure 24B). High RIN values (>7) confirm minimal 

degradation during the RNA extraction procedure, and therefore, give confidence that 

the following reverse transcription to produce cDNA for the RT-qPCR will have complete 

and representative levels of mRNA templates. 

3.1.4.2 Absolute qPCR standard curve and melt curve analysis 

The majority of qPCRs were performed by qStandard Ltd., which provide additional 

analytical measurements to ensure qPCR efficiency and reliability. Standard curve 

amplification efficiency and melt curve analysis were systematically assessed for each 

qPCR. Standards containing known copy numbers of the gene of interest are run 

A B

Figure 25 Absolute qPCR post-run analysis 

Representative graphs of absolute qPCR quality measurements assessed following 
the final qPCR cycle. (A) Absolute qPCR standard curve applied to quantify copy 
numbers from samples. The standard curve is required to have an R2 value of 0.95 
or more for reliability. (B) Melt curve analysis is run at the end of the qPCR to ensure 
single peak observed to confirm one target gene PCR product amplified in the 
reaction.     
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simultaneously alongside the samples, allowing the extrapolation of the number of 

copies in the unknown samples. The target gene PCR amplification efficiency can be 

assessed via analysis of the standard curve. PCR at 100% efficiency amplifies all available 

DNA templates in each cycle and results in standard curve samples reaching the qPCR 

threshold at regular intervals. Placing standard curve values at a logarithmic scale 

against cycle threshold (ct) values generates a standard curve with a correlation 

coefficient (R2) of 1.0 in 100% efficient qPCRs. The R2 value ranges from 0 to 1, low R2 

indicates poor PCR efficiency and introduces inaccuracies in measurements, therefore 

only qPCRs with standard curves demonstrating 95% efficiency and R2≥0.95 were 

considered suitable for subsequent quantification. Figure 25A presents a software-

generated standard curve (blue dots) following the completion of a R2≥0.95 qPCR run; 

sample ct values are plotted along the standard curve (red dots) to decipher gene of 

interest copy numbers in the reaction.  

Melt curve analysis was performed for each qPCR reaction; it assesses the fluorescence 

of dissociating double stranded DNA amplicons at increasing temperatures. The 

fluorophore SYBR®green, used in the qPCR reaction, only fluoresces when bound to 

double stranded DNA (dsDNA). At a specific temperature (Tm), half of the amplicons will 

dissociate into single DNA strands and cause a sharp drop in fluorescence (or a peak if a 

graph of the negative first derivative of the melting-curve is plotted). For each gene, 

specific amplification of the single product was assessed. If another non-relevant 

product was generated, this would be evident via analysis of the melting curve (an 

additional peak would be visible). A single peak in the melt curve indicates a single PCR 

product in the reaction, confirming specific amplification of the target gene as 

demonstrated in Figure 25B.  
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Figure 26. nrp gene expression in the cryoinjured zebrafish heart 

Absolute Real Time quantitative PCR (RT-qPCR) analysis of nrp1a (A), nrp1b (B), nrp2a 
(C) and nrp2b (D) at 1, 3, 7, 14, 30 and 60 days following cryoinjury (black bars) or sham 
surgery (white bars). Basal expression of neuropilin isoforms were assessed with 
uninjured hearts (grey bars). Data are represented as means of normalised copy 
numbers per reaction ± S.E.M (error bars) **p<0.01, ***p<0.005, ****p<0.001. n = 4-5 
with each n being a pool of 5 ventricles of identical treatment and time point. 
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 RT- qPCR results 

3.1.5.1 Neuropilin isoforms are upregulated after cryoinjury 

Gene expression of all four neuropilin isoforms (nrp1a, nrp1b, nrp2a, and nrp2b) was 

evaluated in sham and cryoinjured ventricles at 1, 3, 7, 14, 30 and 60 days following 

sham operation and following surgery and cryoinjury, using absolute qPCR. Five 

zebrafish ventricles for each specific treatment and time point following sham operation 

and post-surgery were pooled, homogenised and used for RNA extraction and absolute 

RT-qPCR in order to generate a single value (i.e. n = 1). Gene expression in sham samples 

was assessed with one-way anova (Figure 26, white bars) and no significant changes in 

expression of any of the nrp isoforms was observed at different times following sham-

operation. Also, the levels of nrp isoform expression between sham-operated and non-

injured hearts (Figure 26, grey bars) were similar, indicating minimal effect of sham 

operation on nrp expression. Therefore, any change in gene expression following 

cryoinjury can very likely be attributed specifically to the cryoinjury of the heart.  

A significant increase in expression of nrp1a, nrp1b and nrp2a was observed at earlier 

time points (1 and 3 dpci) following cryoinjury (Figure 26A-C). Nrp1a was significantly 

upregulated at 1 and 3 days post cryoinjury (dpci) (p<0.005 and p<0.001, respectively) 

by approximately 2-fold in comparison to the corresponding sham samples (Figure 26A). 

At 7 and 14 dpci nrp1a gene expression remained elevated but this increase was not 

statistically significant when compared with sham control samples. Finally, by 30 and 60 

dpci, nrp1a expression returned to baseline levels. A significant increase in nrp1b was 

observed at 3 dpci only. It was also upregulated at 1 dpci but statistical significance was 

not reached at this time-point compared with sham control samples. Nrp1b expression 

returned to basal levels from 7 dpci onwards. Nrp2a was expressed at lower levels in the 

heart compared to other neuropilin isoforms, but was significantly upregulated at 1 and 

3 dpci and returned to basal levels from 7 dpci onwards. Out of the four neuropilin 

isoforms, nrp2b had the highest level of basal expression, with baseline copy numbers 

at least ten times higher than for the other three nrp isoforms (Figure 26, grey bars), 

However, nrp2b expression was not significantly altered following cryoinjury compared 
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with sham samples, though some trend to an increase was observed at 3dpci (Figure 

26D).  

3.1.5.2 Vascular genes regulated following cryoinjury 

I investigated the regulation of genes controlling angiogenesis because the 

revascularization of the injured area is an important process required for zebrafish heart 

regeneration (Kim et al., 2010; Marin-Juez et al., 2016). Moreover, neuropilins have an 

essential role in angiogenesis in mammals and zebrafish (Soker et al., 1998; Bovenkamp 

et al., 2004). Furthermore, NRP1 mediates VEGF and PDGF-BB signalling in endothelial 

cells and smooth muscle cells, respectively (Pellet-Many et al., 2011; Soker et al., 1998; 

Wang et al., 2003).  

I could not detect a significant change in expression of Vascular endothelial growth 

factor Aa (vegfaa) after cryoinjury, though a non-significant increase was observed at 

1dpci (Figure 27A). Vegfaa is the zebrafish orthologue of VEGF-A, the most potent 

angiogenic cytokine in mammals. Vascular endothelial growth factor C (vegfc), which 

plays a major role in lymphangiogenesis, was significantly upregulated at 1 and 3 dpci 

(both p<0.001) and returned to  baseline levels thereafter, consistent with previous 

publications (Lien et al., 2006) (Figure 27B). It should be noted that vegfc is expressed in 

the 100s of copy numbers at baseline (grey bar Figure 27B), whereas vegfaa basal 

expression is 10 times higher (Figure 27A).  

The regulation of VEGF receptors (VEGFRs), flt1 (orthologue of Human Vegfr1) and kdrl 

(orthologue of Human Vegfr2), was also assessed. No significant difference between 

sham and corresponding cryoinjury samples was observed for either gene at any time 

point post-cryoinjury (Figure 27C and D).  
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Figure 27 Regulation of genes associated with angiogenesis in the cryoinjured zebrafish 
heart  

Absolute Real Time quantitative PCR (RT-qPCR) of vegfaa (A), vegfc (B), flt1(C), kdrl (D) and 
bcar1 (E) at 1, 3, 7, 14, 30 and 60 days following cryoinjury (black bars) or sham surgery (white 
bars). Basal expression of genes was assessed with uninjured hearts (grey bars). Data are 
represented as means of normalised copy numbers per reaction ± S.E.M (error bars), *p<0.05, 
**p<0.01, ***p<0.005, ****p<0.001. Each n is a pool of 5 ventricles of identical treatment 
and time point. 
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p130Cas is an intracellular adaptor molecule encoded by the bcar1 gene implicated in 

angiogenesis, cytoskeletal dynamics and cell movement and its tyrosine 

phosphorylation is mediated via NRP1 in mammalian endothelial and vascular smooth 

muscle cells (Barrett et al., 2013; Evans et al., 2011; Pellet-Many et al., 2011). Although 

there was a trend for an increase in expression at 3, 7, and 14 dpci, these changes did 

not reach statistical significance (Figure 27E).  

3.1.5.3 Expression of other  cytokine ligands for Nrps and their receptors 

Several cytokines are ligands for Nrps, and have previously been reported to be 

upregulated in response to zebrafish heart injury and implicated in heart regeneration, 

including pdgfab and receptor, pdgfr and transforming growth factor beta (TGFβ). 

Therefore, I investigated the regulation of these genes both to confirm previous data, 

and to identify potential ligands and co-receptors for Nrps in the regenerating heart. 

Kim et al 2010 reported the upregulation of platelet derived growth factor receptor beta 

(pdgfr) but not platelet derived growth factor receptor alpha (pdgfrα) expression 

during zebrafish heart regeneration. Similarly, my results showed that pdgfrα displayed 

only a small non-significant trend for increased expression at 3 dpci (Figure 28A), 

whereas pdgfrβ expression was significantly upregulated at 1, 3 and 7 dpci and returned 

to baseline levels thereafter (Figure 28A). Using inhibitors of PDGFRs, Kim et al also 

reported platelet derived growth factor (PDGF) signalling as an essential regulator of 

epicardial response and revascularisation during zebrafish heart regeneration. My 

results also show a significant upregulation of pdgfab (encoding the PDGFab cytokine) 

at 3 and 7 dpci (Figure 28C), further supporting a role of PDGF signalling in cardiac 

regeneration. These data support the observations by Kim et al., implicating a role for 

PDGF in the early stages of zebrafish cardiac regeneration. 
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A study by Chablais and Jaźwińska (2012) identified transforming growth factor beta 

(TGFβ) signalling as an essential regulator of zebrafish heart regeneration, coordinating 

the inflammatory and fibrotic response and stimulating cardiomyocyte proliferation.  

My qPCR data shows that indeed, tgf1a expression is upregulated early at 3 dpci, 

during the inflammatory phase of repair (Figure 28D), in accordance with their findings. 
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Figure 28 Gene expression of growth factors and receptors previously reported in the 
regenerating zebrafish heart 

Absolute Real Time quantitative PCR (RT-qPCR) analysis of pdgfrα (A), pdgfrβ (B), 

pdgfab(C), tgf1a (D) 1, 3, 7, 14, 30 and 60 days following cryoinjury (black bars) or sham 
surgery (white bars). Basal expression of genes was assessed with uninjured hearts (grey 
bars). Data are represented as means of normalised copy numbers per reaction ± S.E.M 
(error bars), *p<0.05, **p<0.01, ***p<0.005, ****p<0.001, n = 4-5 with each n being a 
pool of 5 ventricles of identical treatment and time point. 
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 In situ hybridisation 

The vast majority of the ventricle mass is composed of cardiomyocytes, however other 

cell types, such as epicardial cells, fibroblasts, endothelial cells and leucocytes, are 

important for the cardiac regenerative response. All these cells express neuropilins, but 

represent relatively, a smaller proportion of the cells in the heart.  qPCR provides 

information of quantitative mRNA expression, but cannot determine which specific cells 

or regions of the heart are expressing the target genes. Moreover, variation in gene 

expression by a smaller cell population may not be detected by qPCR of the entire 

ventricle due to variation from sample to sample. One way to selectively investigate 

gene expression of one particular cell type is to purify a specific cell population via 

fluorescence-activated cell sorting; alternatively, laser capture could isolate specific 

sample regions, for example healthy myocardium versus injured area. I addressed 

differential tissue gene expression using in situ hybridisation, which provides qualitative 

information on mRNA localisation and in which, staining intensities correlate to relative 

expression levels. However, variations in probe efficiencies and development times 

need to be considered when interpreting expression intensities. 

3.2 Positive control riboprobe whole mount in situ hybridisation 

Initially, I optimised the in situ protocol using whole-mount TraNac zebrafish embryos 

to confirm the procedure results in the specific binding of probes to target mRNA. I was 

provided with probes of genes reported to be activated in the epicardial and endocardial 

response to injury (T-box18 (tbx18), retinaldehyde dehydrogenase 2 (raldh2), and Wilm’s 

tumor 1b (wt1b)) as well as the cardiomyocyte marker cmlc2 (kindly donated by Nadia 

Mercader, CNIC, Madrid). All four probes displayed staining patterns in agreement with 

the published literature (Figure 29), confirming the validity and stringency of my 

protocol.  
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3.3 Neuropilin isoform probe validation using whole mount in situ 

hybridisation 

Riboprobes of approximately 1000 bases were designed to specifically bind the mRNA 

of each nrp isoform. Additionally, I synthesized sense probes (negative controls) which 

were tested alongside the anti-sense whole mount in situ hybridisation reaction (Figure 

30 A-D). As expected, sense probes failed to develop a signal, confirming their inability 

to bind mRNA and their use as reliable negative controls.  

Figure 29 Positive riboprobe validation 

In situ hybridisation of TraNac zebrafish 48 hours post fertilisation (hpf) with positive control 
anti-sense riboprobes (kindly donated by Nadia Mercader, CNIC, Madrid) targeted to; (A) cmlc2, 
(B) tbx18, (C) raldh2, (D) wt1b mRNA. Gene detection is comparable to that of the literature (E-
H) and confirms riboprobe reliability and protocol parameter stringency.  v- ventricle a-atrium 
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I confirmed anti-sense riboprobe specificity using whole mount in situ hybridisation in 

TraNac zebrafish embryos 48 hours post fertilisation and compared the expression 

patterns with previous reports. I observed staining consistent with expression patterns 

characterised by Bovenkamp et al. (2004). All neuropilins are expressed in the brain 

(Figure 30E-L); yet additional differential staining is evident between isoforms 

suggesting different targets were bound by the different probes (Figure 30E-L). Nrp1a is 

also expressed in the fin buds, otic vesicles and hind brain in the developing embryo 

(Figure 30E), whereas nrp1b is expressed in the dorsal aorta and intersegmental vessels 

(Figure 30F), nrp2a expression is observed in the hind brain and fin buds (Figure 30G), 

and nrp2b expression is largely restricted to the brain and hind brain (Figure 30H) as well 

Figure 30 nrp riboprobe specificity validation 

In situ hybridisation of TraNac transgenic zebrafish embryos 48 hours post fertilisation 
(hpf) with nrp sense riboprobes (A-D) and nrp anti-sense riboprobes (E-H). A comparison 
to expression patterns reported by Bovenkamp et al (2004) in 48 hpf zebrafish embryos 
are presented in panels I-L (images obtained from (Bovenkamp et al., 2004). n ≥ 8 
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as the heart (Martyn and Schulte-Merker, 2004). These data confirm differential 

expression of neuropilins in the embryo and verify riboprobe specificity.  

3.4 Positive riboprobe localisation in the injured adult zebrafish heart  

I tested the specificity of my positive control riboprobes in paraffin-embedded adult 

zebrafish heart sections. The positive probes are specific for cardiomyocytes (cmlc2), 

activated epicardium (wt1b:GFP) and endocardium (raldh2 and tbx18), and  were used  

to inform on localisation and potential cells types expressing the neuropilin isoforms. 

The cmlc2 riboprobe clearly identifies viable cardiomyocytes, whereas the injured area 

(Figure 31A, A’), the bulbus arteriosus and active proliferating epicardium (Figure 31A’) 

remain devoid of staining. In contrast, raldh2 and tbx18 are developmental genes 

expressed by the endocardium and epicardium in the injured heart (Kikuchi et al., 

2011b; van Wijk et al., 2012). Accordingly, both genes were localised to the epicardium 

and endocardium surrounding the injured region in my samples (Figure 31B,B’,C,C’). 

Wt1b is a marker specific for epicardial cells undergoing EMT. The embryonic wt1b gene 

is re-expressed by a subpopulation of epicardial cells following cardiac damage. wt1b in 

situ staining can be observed near the injury and is indeed restricted to the epicardium 

(Figure 31D.D’).   

3.5 Neuropilin mRNA localisation in the injured zebrafish heart 

Neuropilins are required for cardiogenesis in mice and zebrafish (Bovenkamp et al., 

2004; Kitsukawa et al., 1995; Rossignol et al., 2000), however the localisation of 

neuropilin mRNA in the adult zebrafish heart has not been characterised in either basal 

conditions or during the regenerative response. After cardiac damage, embryonic genes 

are re-expressed by the zebrafish adult heart; therefore, I decided to investigate if 

neuropilins were similarly re-expressed in the heart following patterns observed 

throughout cardiogenesis. I investigated the localisation of the four zebrafish neuropilin 

isoforms in the injured adult heart using in situ hybridisation. 
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Figure 31. Positive riboprobe mRNA detection in the injured zebrafish heart 

Adult zebrafish heart section were probed with positive control anti-sense riboprobes (kindly 
donated by Nadia Mercader, CNIC, Madrid) targeted to; (A) cmlc2, (B) raldh2, (C) tbx18, and (D) 
wt1b, previously characterised in zebrafish heart regeneration. A - atrium, ba - bulbus arteriosus, 
IA - injured area, HM - healthy myocardium, epi - epicardium, endo – endocardium black 
scale bar 500 µm, red scale bar 100 µm n ≥ 3 
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 Localisation of nrp1a mRNA in the regenerating zebrafish heart 

Under basal control conditions neuropilin isoforms demonstrate differential expression 

(Figure 32A, F, K and P): nrp1a was expressed modestly within cardiomyocytes and a 

stronger signal was seen at the epicardium (Figure 32A). At 1 dpci, all neuropilin isoforms 

were detected within injured hearts and displayed a similar expression pattern (Figure 

32B, G, L and Q) at the interface between the healthy myocardium and the injured area 

as well as in the epicardium surrounding the injury. Additionally, at 1dpci, nrp1a 

continued to show modest and diffuse expression within the entire myocardium, though 

the intensity of myocardial staining was fainter than at the injury interface. In contrast 

to the 1 dpci time-point, nrp1a expression was predominantly epicardial at 3 and 14 dpci 

(Figure 32B-D). Expression of nrp1a at the interface between injury and healthy 

myocardium persisted, however, at 3dpci, but was undetectable at 14dpci (Figure 32D).  

At 60 dpci, when almost complete regeneration should have occurred, nrp1a mRNA 

expression was very weak (Figure 32E). These data broadly support the qPCR 

measurements that revealed a significant upregulation of nrp1a at 1 and 3 dpci, with 

elevated yet not significant expression persisting until 14 dpci. The markedly 

upregulated expression of nrp1a localised at the epicardium and injury border at 1 and 

3 dpci observed with in situ hybridisation, correlates with the significant gene 

upregulation detected in qPCR at those time points.  Although expression of nrp1a 

mRNA is still evident at 14dpci, because its expression pattern is more restricted to the 

epicardium, this discrete upregulation was not sufficient to result in a significant 

increase of nrp1a gene expression in qPCR using the whole ventricle. 

 Localisation of nrp1b mRNA in the regenerating zebrafish heart 

Following sham surgery, no evident expression of nrp1b mRNA was detected in the adult 

zebrafish heart (Figure 32F). At 1 dpci, nrp1b mRNA is markedly expressed at the 

interface between healthy myocardium and the injured area as well as at the epicardium 

(Figure 32G). This nrp1b mRNA distribution stays similar up to 14 dpci (Figure 32H and 

I). Nevertheless, in contrast to nrp1a and its striking epicardial expression, nrp1b mRNA 

is predominantly expressed at the injury/healthy myocardium interface throughout the 
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regenerative process. Finally, expression of nrp1b in the regenerated heart diminishes 

to basal levels by 60 dpci (Figure 32J) in accordance with the qPCR results.  

 Localisation of nrp2a mRNA in the regenerating zebrafish heart 

According to our absolute qPCR results, nrp2a is the isoform with the lowest expression 

and, indeed, little nrp2a can be seen in the zebrafish heart following sham surgery 

(Figure 32K). However, acute nrp2a mRNA upregulation is observed at 1 and 3 dpci, and 

correlates with qPCR measurements. At 1 dpci, similarly to all neuropilin isoforms, nrp2a 

mRNA is discretely localised at the epicardium and injury/healthy myocardium interface 

(Figure 32L). nrp2a expression redistributes and exclusively localises to the epicardium 

by 3 dpci (Figure 32M). Consistent with qPCR data, nrp2a mRNA detection in the injured 

heart by in situ hybridisation is low at 14 dpci and 60 dpci (Figure 32N and O). The data 

suggests an acute role for nrp2a in the injury-activated epicardium and injury border.   

 Localisation of nrp2b mRNA in the regenerating zebrafish heart 

Sham-operated hearts modestly express nrp2b in the entire ventricle (Figure 32P).  At 1 

dpci, nrp2b mRNA remains localised to the healthy myocardium additionally to 

upregulated expression at the injury/healthy myocardium border and by the epicardium 

surrounding the injury (Figure 32Q). Expression of nrp2b becomes predominantly 

localised within the injured region at 3 dpci (Figure 32R) and from 14 dpci onwards, 

nrp2b expression is comparable to expression in sham-operated hearts (Figure 32S and 

T).  

Nrp2a and nrp2b display differential expression patterns in the regenerating heart; 

while nrp2b expression is evident within the injury, nrp2a is dominantly expressed by 

the epicardium, implicating differential roles for both isoforms in the cardiac response 

to damage.  
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Figure 32 nrp mRNA localisation in the cryoinjured zebrafish heart 

The localisation of nrp isoforms in the adult zebrafish heart were assessed after sham surgery (A,F,K,P) or 1, 3, 14, 
60 days post cryoinjury (dpci) using in situ hybridization. Gene detection is observed as a dark blue stain within 
the section. IA = injured area, HM= healthy myocardium, epi = epicardium, arrows indicate gene expression within 
the epicardium or healthy myocardium to injury border. Scale bar 250µm.  n ≥ 3 
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3.6 Discussion 

 Technique validation 

In this chapter I have demonstrated that I can generate reproducible cryoinjuries in the 

zebrafish heart. The damage causes loss of cardiomyocyte viability in a localised region 

of the ventricle. AFOG staining reveals inflammation 1 day following the injury and scar 

formation of similar composition as reported in the literature during the fibrotic 

response. By 60 dpci almost all injuries are resolved. In some isolated cases, a hint of 

scar was still observed by that time-point. Therefore, I have demonstrated that I am able 

to reproduce the cryoinjury model and trigger similar physiological responses as 

reported in the literature. I am also confident that I can injure the heart in a reliable and 

reproducible manner, affecting around 25-30% of the ventricle with limited variability. 

 Nrp mRNA regulation 

The neuropilin isoforms, nrp1a, nrp1b, and nrp2a were all upregulated during the first 

three days following the injury. Upregulation suggest they all play a positive role in the 

zebrafish heart, and in situ hybridisation showed that these isoforms all localised at the 

injury interface and epicardium in the injured area 1 day following the injury. Despite 

these similar expression patterns, differential expression between these isoforms was 

noted, suggesting distinct roles may be played by different neuropilins in different cell 

types. Thus, nrp1a and nrp2a show marked expression in the activated epicardium, 

whereas expression of nrp1b was predominantly expressed at the injury interface.  

Localisation of the nrp isoform mRNA was persistent at regions of the heart at the injury 

border up to 14 dpci, further supporting a positive role of neuropilins in cells required 

for the regenerative response.  

According to my qPCR analysis, in basal conditions, nrp2b is the most highly expressed 

isoform in the zebrafish heart. This suggest that it might play a role in cardiac 

homeostasis.  Cardiac nrp2b is regulated in the heart during embryogenesis (Bovenkamp 

et al., 2004), but, according to the qPCR data presented here, nrp2b expression was not 

altered after injury. Nevertheless, in situ hybridisation indicated that nrp2b increased 
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markedly at the injury/healthy myocardium interface and within the injured region, 

supporting the conclusion that heart injury induces nrp2b upregulation, and suggesting 

that nrp2b also plays a role in the regenerative response of the zebrafish heart. 

The data in this chapter indicate possibly different roles for neuropilins in the 

regenerating zebrafish heart with evidence suggesting epicardial cells that are activated 

after injury and cells at the injury border require neuropilin activity. A study carried out 

by Chablais and Jaźwińska (2012) categorises the first 4 days following cryoinjury as the 

inflammatory phase, in which TGFβ signalling co-ordinates leucocyte infiltration and 

clearance of cellular debris. It is therefore possible that the increase in neuropilin 

isoform gene expression within this timeframe is associated with a role for neuropilins 

in the inflammatory response after cardiac damage. The expression of nrp isoforms at 

the border regions of the injured area might be consistent with such a notion, since this 

is where inflammatory cells infiltrate the injury. 

qPCR data does not provide information of specific heart area changes in gene 

expression; additionally, use of the entire ventricle for RNA isolation may mask smaller 

populations of expression changes. 

The validity of the conclusion that nrp isoforms are upregulated in response to cryoinjury 

is reinforced by the demonstration in the same mRNA samples of upregulation of several 

other cytokines and their receptors, shown previously to be upregulated early (1-7 dpci) 

after zebrafish heart injury, including pdgfab (encoding the PDGFab cytokine), platelet 

derived growth factor receptor beta (encoding its receptor, Pdgfr), and tgf1a (2012). 

My results also showed significant upregulation of vegfc 1-3 dpci, consistent with 

previous findings (Lien et al., 2006). Therefore, these findings also implicate a role for 

VEGFC in heart regeneration likely linked to lymphatic vessel development in the acute 

response to injury. Stimulating lymphangiogenesis to aid recovery from myocardial 

infarction and has been identified as a therapeutic approach (Henri et al., 2016; Klotz et 

al., 2015). Furthermore, it is known that NRP2 is required for lymphatic vessel 
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development and is a receptor for VEGF-C  (Xu et al., 2010), and, indeed, in my model, 

vegfc follows a similar expression pattern to that of nrp2a (Figure 26C).  

The analysis of gene expression suggests that vegfaa and its receptor kdr, the 

major endothelial ligand and co-receptor for Nrp1, respectively, are not upregulated 

during zebrafish heart regeneration. However, the use of the entire ventricle for qPCR 

may mask small and localised changes of vegfaa expression within the growing vessel in 

the injured area. Both vegfaa and kdr were expressed in high copy numbers, and thus 

localised changes in expression may be masked by performing qPCR of the entire 

ventricle rather than using a specific population of cells, obtained, for example, by 

fluorescence-activated cell sorting of endocardial and endothelial cells using a 

Tg(fli1a:GFP) fish. Marin-Juez et al very recently reported transient upregulation of 

Vegfaa at 1 dpci after cardiac cryoinjury, with a return to baseline expression by 3 dpci, 

and showed an important role for Vegfaa in inducing rapid revascularisation of the 

injured heart (Marin-Juez et al 2016). Though we found no significant upregulation of 

vegfaa following zebrafish cardiac cryoinjury concomitatnt with changes in Nrp1 

expression, our data did show a trend towards increased Vegfaa expression at 1 dpci, 

very similar to the findings of Marin-Juez and co-workers. Thus our findings could be 

consistent with a role for Nrp1 in mediating Vegfaa-driven angiogenesis in the 

regenerating heart. However, recent findings indicate that the role of NRP1 in 

mammalian developmental angiogenesis may be largely independent of VEGF, since 

NRP1 mutations which prevent VEGF-A binding impair post-natal angiogenesis but are 

compatible with normal embryonic development (Fantin et al., 2014). Establishing 

whether Nrp1 mediates angiogenesis in the regenerating heart through binding of Vegfa 

and heterocomplex formation between Nrp1 and Kdr will require studies of binding-

deficient Nrp1a mutants.  

Because of time and money constraints, I did not attempt to reproduce data 

related to FGF expression, which has also been implicated in the zebrafish regenerative 

response to cardiac damage and is also a neuropilin ligand. Although I investigated vegfc 

gene expression, regulation of its receptor, flt4, was not assessed. Due to the zebrafish 
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genome duplication, many genes have two ohnologs. I have investigated the expression 

of all neuropilin orthologs, but did not do so for all genes studied here. For example, 

PDGFAb has a distinct expression profile after cardiac damage in contrast to PDGFAa. 

Further investigation of expression of components of these signalling pathways, 

including in situ hybridisation analysis, would be of interest in future work. 

 qPCR 

The absolute RT-qPCR was carried out by external services that use automated systems 

to minimise human errors, all measurements were run in duplicates, non-template 

controls and reverse transcriptase controls were included for every gene and the 

reactions. Often, RNA quality is not addressed in studies before cDNA synthesis and 

qPCR; however, degraded RNA can result in unreliable, inconsistent and misleading 

qPCR measurements. I selected randomly 24 RNA samples (approximately 30% of the 

total samples used to make cDNA in the qPCR) and evaluated their integrity, and all 

samples had RIN values above 9. Because the method used to extract RNA, the tissue 

and subsequent RNA storage were identical, I assumed that all of the remaining RNA 

samples were of similar integrity. It would have been preferable (but prohibitively 

costly) to assess the integrity of all RNA samples extracted to ensure high quality of all 

samples before qPCR quantification.   

The absolute qPCR method informs of mRNA expression as copy number (rather than 

relative levels of expression), extrapolated from the reaction’s cDNA content. The cDNA 

is generated from a reverse transcription reaction, which is of limited efficiency (only 

around 30% of RNA is reverse transcribed into cDNA) introducing a potential source of 

experimental variability. Gene variation in the high copy number values range are most 

likely to be less variable and translate as physiologically relevant in vivo. In general, qPCR 

cannot inform on whether the mRNA turnover is rapid or to what extent the mRNA is 

translated into protein, nevertheless, there is a correlation between mRNA expression 

and protein level and therefore physiological function associated to changes in gene 

expression.  



 

156 

 

The RNA isolated for the qPCR was derived from the entire ventricle. Cardiomyocytes 

dominate the cell population represented in the ventricle; however other smaller cell 

populations have important roles in the regenerative response. Therefore, expression 

pattern changes after cardiac damage in these smaller cell populations could be masked 

by gene expression by cardiomyocytes. One way to circumvent this, would be to isolate 

specific cell populations from transgenic fish with specific myocardial, epi- or 

endocardial marker by FACS and isolating RNA from purified cell type.  

 In situ hybridisation 

I established the in situ hybridisation protocol to observe gene expression patterns in 

zebrafish heart samples. I confirmed that my technique leads to specific detection of 

target genes. Sense riboprobes did not stain samples, confirming them as a reliable 

negative control. Anti-sense neuropilins riboprobes stained whole mount embryos 

identically to previous reports in the literature confirming their specificity (Bovenkamp 

et al., 2004; Martyn and Schulte-Merker, 2004; Yu et al., 2004). The technique was then 

applied to paraffin embedded heart sections, positive control probes confirmed 

epicardial and endocardial activation, loss of cardiomyocyte viability and technique 

stringency. 

I was provided some control riboprobes from another institute (CMIC, Madrid) and had 

limited information about the target sequence and I was unable to generate the 

negative control sense probes. However, these probes were used in previous 

publications which provided confidence about their specificity and therefore the sense 

probe would have been unlikely to provide any contradictory data. 

The anti-sense riboprobes have different interaction properties depending on the target 

mRNA, therefore the staining intensity observed using the different riboprobes could be 

due to riboprobe binding efficiency, rather than expression levels. The nrp isoform 

staining intensities are not directly comparable between one another due to these 

variations in riboprobe affinity to target, only the localisation of probe detection can be 

compared. 
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Some sham hearts show slight expression of nrps whereas the expression is no longer 

evident at 60 dpci. This could be due to low grade activation of the epicardium during 

sham surgery which does not affect qPCR values on the entire ventricle, but that can be 

detected by ISH. Indeed, it has been reported that there is an epicardial and 

cardiomyocyte activation after even moderate disruption (de Preux Charles et al., 

2016b; Itou et al., 2014). Alternatively, this might reflect downregulation of nrp 

expression at 60dpci relative to control expression. 

 Summary 

In this chapter I have demonstrated: 

 In my hands, the zebrafish cryoinjury procedure results in 25% ventricle damage and 

cardiomyocyte viability loss in the targeted region. 

 Half of all cryoinjured fish fully replenish cardiac tissue and resolve the fibrotic scar 

within 60 days following cryoinjury.  

 nrp1a, nrp1b and nrp2a are significantly upregulated within the first three days of 

cardiac damage, corresponding to the inflammatory phase. 

 nrp2b is the dominant neuropilin isoform in the zebrafish heart.  

 All nrp isoforms mRNA is localised at the injury healthy myocardium border at 1 day post 

cryoinjury (dpci). Thereafter, nrps display differential localisation patterns in the injured 

heart until 14 dpci and return to basal expression levels by 60 dpci.  

 This chapter provides compelling evidence for positive yet distinct roles for neuropilins 

during the early cardiac regenerative response.  

  



 

158 

 

4 Results chapter 2: Cell-type specific nrp expression in 

zebrafish heart regeneration  

In the previous chapter, I demonstrated that 3 of the 4 zebrafish nrp isoforms are acutely 

upregulated at 1 and 3 days post cryoinjury (dpci). Although nrp2b does not seem to be 

upregulated, it is the most highly expressed nrp isoform in the zebrafish ventricle. In situ 

hybridisation (ISH) revealed that all nrp isoforms are strongly localised to the injury-

healthy myocardium border at 1 dpci, after which, the isoforms are differentially 

localised: 

- nrp1a expression persists in the epicardium until 14 dpci,  

- nrp1b is concentrated predominantly at the injury/healthy myocardium interface, 

-  nrp2a is distinctly epicardial at 3 dpci,  

-  nrp2b is localised within the injury and expressed throughout the myocardium. 

qPCR and ISH strongly suggest positive but distinct roles for the neuropilins in 

regenerating zebrafish hearts. In this chapter, I set out to characterise Nrp protein 

expression and identify Nrp-positive cell types after cardiac damage in the zebrafish.  

4.1 NRP C-terminus sequence similarities 

The zebrafish has recently emerged as a popular vertebrate model to study 

cardiovascular diseases. However, commercially available reagents, notably antibodies, 

that specifically detect zebrafish antigens are limited. Evolutionary genome duplication 

in the zebrafish has resulted in frequent occurrence of duplicate genes, adding further 

complexity, and making it more difficult to distinguish between the protein products of 

ohnologs (a gene duplicate originating from whole genome duplication) of high levels of 

sequence similarity.  
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Figure 33 NRP C-terminus amino acid sequence alignment 

A) Alignment of human NRP1 against zebrafish (zf) Nrp1a and Nrp1b c-terminus protein 
sequence. (B) Alignment of human NRP2 against zebrafish (zf) Nrp2a and Nrp2b C-
terminus protein sequence. Amino acids that differ between the two species but 
classified in the same amino acid group are highlighted in purple. Amino acid differences 
of unrelated molecular properties are highlighted in yellow. (C) Percentage protein 
sequence homology between zebrafish (zf) and human NRP isoforms c-termini were 
calculated using ClustalW sequence alignment software. 
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The NRP 42-44 amino acid C-terminal cytoplasmic domain is highly conserved between 

species and provides a suitable epitope for some commercially available and validated 

NRP antibodies. I compared the amino acid sequences of zebrafish and human NRP C-

termini to predict if human-targeting NRP antibodies were likely to cross-react with 

zebrafish Nrps (Figure 33). Immunogen sequence similarities of 80% and above are 

considered to have high cross-reactivity potential. 

Human NRP1 has 86% and 72.7% C-terminus sequence similarity to zebrafish Nrp1a and 

Nrp1b (respectively) (Figure 33A,C), suggesting that Nrp1a will likely cross react more 

with antibodies targeted to the C-terminus of human NRP1 than will Nrp1b. The 

zebrafish Nrp2 ohnologs have an 82.9% C-terminal amino acid sequence similarity to 

human NRP2 (Figure 33B,C), also supporting the potential cross-reactivity of human 

NRP2 C-terminal targeting antibodies to Nrp2a and Nrp2b. Amino acids that differ 

between the two species often belong to the same amino acid group and therefore 

possess similar chemical properties, suggesting they may retain comparable molecular 

interactions with antibodies (purple highlight Figure 33A and B). 

The zebrafish Nrp1a and Nrp1b ohnologs share 74% C-terminus protein sequence 

similarity, whereas Nrp2a and Nrp2b C-termini have complete sequence homology. This 

is consistent with a previous hypothesis suggesting that the genetic drift that has 

occurred between nrp1a and nrp1b genes is greater than between the nrp2 ohnologs 

(Bovenkamp et al., 2004). Therefore, with respect to antibody specificity, both Nrp2a 

and Nrp2b isoforms are predicted to indistinguishably bind to antibodies that detect 

zebrafish Nrp2 C-termini. However, antibodies targeting the C-terminus of human NRP1 

may not cross-react with both zebrafish Nrp1a and Nrp1b. Moreover, because the Nrp1 

ohnologs have different molecular weights, they can be identified as two separate bands 

when performing immunoblotting.  

There is approximately 50% amino acid sequence similarity between the zebrafish Nrp1 

ohnologs and the human NRP2 C-terminus, a similar level of C-terminus sequence 
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similarity as observed between human NRP1 and human NRP2 (52.7%). This strongly 

suggests that antibodies targeting the C-terminus of human NRP1 will unlikely cross 

react with the C-terminus of zebrafish Nrp2.   

Taken together, the C-terminus amino acid sequence suggests there is a high probability 

that antibodies targeted to human NRP C-terminus will cross react with the 

corresponding zebrafish Nrp ortholog, although it is uncertain which ohnolog will be 

identified and whether the antibodies will non-specifically cross-react with other 

zebrafish proteins. 

4.2 Neuropilin protein regulation in the cryoinjured heart 

qPCR and ISH data confirm regulation of nrp mRNA expression in response to cardiac 

damage. mRNA regulation is correlated to changes in protein levels. I observed an acute 

(1 and 3 dpci) upregulation of nrp mRNA in the zebrafish ventricle after cryoinjury and 

thus predicted this would be accompanied by protein upregulation at similar time 

points. To assess this hypothesis, immunoblotting was performed to measure protein 

expression in lysates from sham-operated versus cryoinjured ventricle at 1,3,7,14 and 

30 days post-surgery.  

GAPDH was used as a loading control for Western Blot as absolute qPCR measurements 

indicate stable GADPH expression regardless of treatment or time point (data not 

shown), suggesting that GADPH protein expression should also remain consistent. 

Several antibodies targeted to human, rat and mouse NRP1 or NRP2 C-termini were 

tested for cross-reactivity with zebrafish NRPs. Unfortunately, NRP2 immunoblots 

showed that NRP2 antibodies bound off-target zebrafish proteins (data not shown). 

However, a NRP1 antibody was validated and could identify two separate bands at 

approximately 130 and 150kDa (Figure 34A). These Nrp1 zebrafish doublets have been 

previously described by Bovenkamp et al., who identified the lower molecular weight 

band as Nrp1a at 125kDa, and the upper higher molecular weight band as Nrp1b at 

145kDa. The variation in Nrp1a and Nrp1b molecular weight, despite protein sequence 

similarity, are probably due to differential post-translational modifications.  Indeed, 
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work from others in our group has shown that NRP1 was post-translationally modified 

by the addition of a single glycosaminoglycan residue (either chondroitin sulphate or 

heparin sulphate) at Serine 612 in vascular smooth muscle cells and some cancer cells 

(Frankel et al., 2008; Pellet-Many et al., 2011). 

Nrp1a and Nrp1b band intensities were measured with the ImageJ software and 

normalised to GAPDH. Quantification of the two Nrp1 bands as a doublet shows a trend 

for NRP1 upregulation at 3 and 7 dpci and reaches statistical significance at 14 dpci in 

comparison to sham control samples (Figure 34B). The quantification of the single Nrp1a 

band hints a trend towards upregulation at 7 dpci, which is not concomitant with the 

timing from my qPCR results showing an earlier upregulation of nrp1a at 1 and 3 dpci 

(Figure 34C). Since translation occurs after transcription, the increased mRNA levels 

most likely precede the increase in protein expression. The quantification of the single 

Nrp1b band shows a significant upregulation at 3 dpci and reverts to basal sham 

expression levels thereafter (Figure 34D). Nrp1 upregulation during the first 14 days 

following cardiac damage is observed both at mRNA levels (qPCR analysis) and protein 

levels (immunoblotting) and thus support a role for Nrp1 role in the early regenerative 

process, concomitant with the inflammatory and reparative phases. At later stages of 

the regenerative response (30 dpci and later), neuropilin levels return to basal level 

expression, similar to sham expression in qPCR, ISH and Western blot analysis, indicating 

that neuropilin’s role is more important during the immediate and early cardiac 

responses following injury.  
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Figure 34 Nrp1 is regulated in cryoinjured zebrafish ventricle 

(A) Adult zebrafish ventricle lysates were obtained 1, 3, 7, 14 and 30 days following sham surgery (Sh) or cryoinjury (CI). 
Lysates were immunoblotted for Nrp1 and Gapdh. Nrp1a bands are visible at approximately 130kDa and Nrp1b at 
approximately 150 kDa (indicated). Quantification of (B) both bands, (C) Nrp1a lower band and (D) Nrp1b upper band 1, 3, 7, 
14 and 30 days following sham surgery (white bars) or cryoinjury (black bars). Data are represented as means of band 
intensities normalised to GAPDH ± S.E.M (error bars) *p<0.05; n = 4 with each n being a pool of 3 ventricles of identical 
treatment and time point. 
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4.3 Neuropilin localisation in the regenerating zebrafish heart 

ISH identified increased nrp expression localised at regions in close proximity to the 

injured area. Therefore, I further investigated which cell types express Nrps in the 

regenerating heart with immunofluorescent staining.   

 Nrp1 expression in the endocardium  

Immunofluorescence staining detecting Nrp1 and GFP in sham-operated Tg(fli1a:GFP) 

zebrafish heart sections was performed (Figure 35A). The endocardium lining the 

ventricle lumen and coronary vessel endothelial cells in the myocardium compact layer 
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Figure 35 Nrp1 colocalises with endothelium and endocardium in sham-operated hearts 

AFOG staining (A and A’) and immunofluorescence images (B-D and B’-D’) of Tg(fli1a:GFP) 
zebrafish heart 7 days post sham surgery. AFOG staining confirms the integrity of cardiac 
tissue and gives reference to the heart structure. fli1a expression by endothelium and 
endocardium are immunolabeled with GFP‐targeted antibody (red) (B and B’) and Nrp1 
expressing regions stained green (C and C’). Overlay of the two colours are displayed with 
DAPI nuclei staining (D and D’). White arrows indicate areas of colocalisation. Dotted boxes 
highlight magnified region. v – ventricle ba- bulbus arteriosus n = 5 
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express fli1a (Figure 35B and B’). Co-staining reveals Nrp1 in the epicardium and 

endocardium (Figure 35C,C’), and Nrp1 colocalisation with GFP-positive coronary vessel 

endothelial cells within the compact myocardial layer and the endocardium of sham-

operated Tg(fli1a:GFP) hearts (Figure 35D,D’). Nrp1 expression that does not colocalise 

with GFP positive cells is seen in the quiescent epicardial monolayer (Figure 35D’). 

Sections from cryoinjured Tg(fli1a:GFP) zebrafish hearts 1 dpci were evaluated with 

immunofluorescence, and corresponding serial sections were stained with AFOG (Figure 

36A,A’) or used for nrp1a and nrp1b anti-sense riboprobe ISH (Figure 36B,B’,C,C’). GFP 

immunofluorescence shows endothelial cells forming new vessels at the edges of the 

injured area (Figure 36D, D’). Nrp1 colocalises with all GFP positive cells of neovessels in 

the injured area suggesting a role for Nrps in early revascularisation after cardiac 

damage (Figure 36E, E’, F, F’). ISH staining of nrp1a and nrp1b shows  mRNA expression 

localised within the injury that could in part reflect Nrp1-positive neovasculature (Figure 

36B’ and C’). 

An endocardial GFP signal was largely absent within the injury core, however viable Nrp1 

endocardium remained evident in healthy cardiac tissue at the injury border (white 

arrows) (Figure 36F’). Furthermore, NRP1 immunofluorescent staining demonstrated 

greater intensity within the viable endocardium at the injury interface (Figure 36E’) and 

recapitulates ISH staining patterns that implicate a neuropilin expression increase at the 

injury border at 1 dpci (Figure 36B’ and C’). The data suggest a requirement for Nrp1 

upregulation in the endocardium proximal to the injury immediately after imsult. The 

endocardium responds within hours of cardiac damage essential for the regenerative 

process (Kikuchi et al., 2011b). 

Nrp1 expression patterns in the injured region were analysed at 7 dpci in Tg(fli1a:GFP) 

zebrafish (Figure 37A, A’). At this point of the regeneration process, revascularisation 

continues to develop in the injured area (Lepilina et al., 2006; Marin-Juez et al., 2016) 

and endocardium activation is established (Kikuchi et al., 2011b). At 7 dpci, endocardial 

cells proximal to the injury exhibited a rounded morphology (Figure 37B,B’) consistent 

with previous characterisation of the endocardial endoMT in response to ventricular 
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amputation (Kikuchi et al., 2011b). Moreover, a subpopulation of endocardial cells were 

observed protruding into the injured area (Figure 37B’ white arrows); these cells are 

likely being activated to form new vessels or provide new endocardium for the 

regenerating cardiac tissue by transiently transdifferentiating into mesenchymal cells. A 

higher vessel density stemming from the epicardium was evident (Figure 37B and B’), 

but the core of the injury remained largely avascular. 

Similar to my observations at 1 dpci, Nrp1 colocalised with all Tg(fli1a:GFP) positive 

cardiac tissue (Figure 37D,D’) at 7dpci, suggesting Nrp1 is required for endocardial 

activation and vessel development in the regenerating zebrafish heart from 1 dpci to 7 

dpci.  Additional staining of Nrp1 was observed at the periphery of the injury in a layer 

of GFP negative cells. The location and appearance of these latter cells suggested that 

they might be of epicardial origin since the epicardium has been previously reported to 

undergo extensive proliferation in response to injury (Kikuchi et al., 2011b; Manuel 

Gonzalez-Rosa et al., 2012; Schnabel et al., 2011). This indicates that distinct cell types 

other than endocardial and endothelial cells express Nrp1 in the regenerating zebrafish 

heart. 
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Figure 36 Nrp1 is expressed by the activated endocardium and neovasculature during 
the inflammatory phase (1 dpci) 

AFOG staining (A and A’), in situ hybridisation (B, B’, C and C’) and immunofluorescence 
of Tg(fli1a:GFP) zebrafish heart 1 day post cryoinjury (dpci). AFOG staining gives 
reference to the heart structure and cryoinjury-location (A and A’). nrp1a and nrp1b 
mRNA detection are observed as dark blue staining (B, B’, C and C’), black arrows indicate 
mRNA expression within the injury and at the injury/healthy myocardium border. GFP 
positive cells highlight fli1a expression by viable endothelium and endocardium labelled 
in red (D and D’) and Nrp1 expressing regions of the heart in green (E and E’). Overlay of 
the two colours are displayed with DAPI nuclear staining (F and F’). White arrows 
indicate areas of colocalisation. Dotted boxes highlight magnified regions. Dashed lines 
define injury interface. v – ventricle ba- bulbus arteriosus IA- injured area HM- healthy 
myocardium n = 3 
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Figure 37 Nrp1 is expressed by the activated endocardium and neovasculature during 
reparative phase 

AFOG staining (A and A’) and immunofluorescence images (B-D and B’-D’) of Tg(fli1a:GFP) 
zebrafish heart 7 days post cryoinjury (dpci). AFOG staining identifies cardiac damage and 
gives reference to the heart structure and cryoinjury-location. fli1a expression by 
endothelium and endocardium are immunolabeled with anti-GFP antibody (red) (B and B’) 
and Nrp1 expressing cells are shown in green (C and C’). Overlay of the two colours are 
displayed with DAPI nuclei staining (D and D’). White arrows indicate areas of colocalisation. 
Dotted boxes highlight magnified region. v – ventricle ba- bulbus arteriosus A – atrium n = 3 
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I studied the expression and colocalisation of Nrp1 using an additional transgenic 

endothelial/endocardial reporter line that express the mCherry fluorophore 

downstream of the kdrl (kinase insert domain receptor like, also known as vascular 

endothelial growth factor receptor-2) promoter in 7 dpci hearts (Figure 38A,A’). ISH was 

used in serial sections to localise nrp1a mRNA expression in these hearts (Figure 

38,B’,C,C’). mCherry positive cells were almost exclusively endocardial with limited 

expression by coronary vessels in the compact myocardium, indicating a lack of coronary 

vessel Kdrl expression in the zebrafish heart (Figure 38D’). Nrp1 colocalised with 

mCherry positive cells throughout the entire endocardium including the endocardium 

within the regenerating injured area (Figure 38E,E’,F ,F’) consistent with the 

Tg(fli1a:GFP)/Nrp1 co-staining data presented (Figure 37). This further strengthens the 

hypothesis that Nrp1 is constitutively expressed by the endocardium in zebrafish hearts 

and that Nrp1 could act as a potential endocardial marker. 
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Figure 38 Nrp1 expression in the endocardium at 7dpci 

AFOG staining (A and A’), in situ hybridisation (ISH) (B, B’, C and C’) and immunofluorescence 
(D-F) of Tg(kdrl:mCherry) zebrafish heart 7 days post cryoinjury (dpci). AFOG staining gives 
reference to cryoinjury location and tissue composition (A and A’). ISH of nrp1a anti-sense 
riboprobe (nrp1a AS) (B and B’) and negative control sense (nrp1a S) riboprobe (C and C’), 
signal is observed as a dark blue stain within the section (B and B’), black arrows indicate 
mRNA expression. kdrl expression by viable endocardium is immunolabeled with anti-
mCherry antibody (red) (D and D’) and Nrp1 expressing cells are labelled green (E and E’). 
Overlays of the two colours are displayed with DAPI nuclei staining (F and F’). White arrows 
indicate areas of colocalisation of Nrp1 and kdrl-mCherry. Dotted boxes highlight magnified 
regions. v – ventricle ba- bulbus arteriosus a – atrium IA- injured area n = 3 
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 Nrp1 expression in the myocardium 

The expression of Nrp1 by cardiomyocytes was assessed in sham-operated and 

cryoinjured adult zebrafish heart sections. Cardiomyocytes form the majority of the 

ventricle mass. Viable cardiomyocytes were identified with tropomyosin and injury 

location was identified where damaged tissue lacked tropomyosin expression (Figure 

39C’ and D’). In sham-operated hearts, Nrp1 expression by cardiomyocytes was limited; 

tropomyosin and Nrp1 staining patterns were mostly discrete from one another (Figure 

40B). Nrp1 expressing cells predominantly encase the trabeculated folds of the 

myocardium, distinctive pattern of the endocardium, or form a monolayer at the 

periphery of the heart, characteristic of the epicardium (Figure 39B).  

Following cardiac damage Nrp1 expression remained largely absent from 

cardiomyocytes; however Nrp1 expression was evident in cardiomyocytes protruding 

into the injured area from the sub-epicardial layer (Figure 39D white arrows). 

 Nrp1 expression in the epicardium 

The epicardium is a quiescent mesothelial cell monolayer that surrounds the entire 

heart. In the zebrafish, after cardiac damage, the epicardium becomes activated, 

proliferates and re-expresses developmental genes such as tbx18, raldh2 and wt1b. The 

activated epicardium produces cytokines to mediate epicardial epithelial-to- 

mesenchymal transition (EMT) (Kikuchi et al.., 2011; Manuel Gonzalez-Rosa et al.., 2012; 

Masters and Riley, 2014), orchestrate inflammatory cell recruitment (Han et al.., 2014) 

and induces cardiomyocyte proliferation (Chen et al.., 2002; Kikuchi et al.., 2011; 

Lepilina et al.., 2006). The mammalian epicardium responds to cardiac damage (Zhou et 

al.., 2011) and, during development expresses NRP1 (Partanen et al.., 1999). In my 

studies, neuropilin ISH and immunofluorescence staining patterns strongly indicated 

epicardial expression of Nrp1. Thus, localisation of neuropilin to the epicardium was 

assessed in sham-operated and cryoinjured Tg(wt1b:GFP) zebrafish, in which GFP 

expression is controlled by the promoter for the activated epicardial marker, wilms’ 

tumor 1b (wt1b). In sham-operated control Tg(wt1b:GFP) zebrafish heart sections 

(Figure 40A,D), GFP signal was absent consistent with the conclusion that epicardial cells 
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were not in an activated state, and confirming the quiescence of the epicardium 

following sham surgeries (Figure 40B’ and C’). In sham-operated hearts, as seen 

previously, Nrp1 was expressed by the endocardium and also expressed within the 

quiescent and discrete epicardial monolayer (Figure 40C). 7 days after cardiac damage, 

there was a robust increase in the number of wt1b:GFP positive cells within the 

activated epicardium, all of which also expressed Nrp1. Activated wt1b:GFP positive 

epicardial cells expressed Nrp1 after cardiac damage (Figure 40F white arrows). A subset 

of activated epicardial cells expressed wt1b:GFP (Figure 40F and Figure 41H), as 

previously described (Peralta et al., 2014). 

The localisation of Nrp1 immunofluorescent staining within the epicardium was 

compared to nrp1a AS ISH staining (Figure 41). nrp1 mRNA was strongly expressed at 

the border between healthy myocardium and the injured tissue as well as having an 

epicardial-wide expression at 3 dpci (Figure 41E), similar to protein expression of Nrp1 

observed using immunofluorescent staining at 3 dpci (Figure 41C,G). 
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Figure 39 NRP1 is expressed in migrating sub-epicardial cardiomyocytes 

Immunofluorescence of adult zebrafish heart sections 7 days post sham surgery (A and B) 
or 7 days post cryoinjury (C and D). Viable cardiomyocytes were labelled with tropomyosin 
and stained in red (A’-D’). Nrp1 expressing cells are shown in green (A’’-D’’). Overlay of the 
two colours are displayed with DAPI nuclei staining (A-D). Dotted boxes highlight magnified 
region. White arrows indicate colocalisation. v – ventricle ba- bulbus arteriosus IA – injured 
area HM- healthy myocardium n = 3 
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Figure 40 Nrp1 is expressed by epicardial cells 

AFOG staining (A and D) and Immunofluorescence (B, C, E and F) of Tg(wt1b:GFP) zebrafish 
heart sections 7 days post sham surgery (A-C) or 7 days post cryoinjury (D-F). AFOG staining 
confirms cryoinjury location and gives reference to tissue composition (healthy myocardium 
- orange, collagen – blue, fibrin – red, basement membrane – pale blue). Injury-activated 
epicardial cells were detected with anti-GFP antibody (B’, C’, E’ and F’) (red). Nrp1 expressing 
cells are shown in green (B’’, C’’, E’’ and F’’). Overlay of the two colours are displayed with 
DAPI nuclei staining (B, C, E and F). Dotted boxes highlight magnified region. Dotted lines 
indicate injury border with healthy myocardium. White arrows indicate areas of 
colocalisation. v – ventricle ba- bulbus arteriosus IA – injured area epi= epicardium n = 4 
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Figure 41 nrp1a mRNA localisation is reflected by Nrp1 immunostaining 

AFOG staining (A), nrp1a in situ hybridisation (ISH) (E) and immunofluorescence (B-D and F-
H) of Tg(wt1b:GFP) zebrafish heart 3 days post cryoinjury (dpci). AFOG staining show tissue 
composition and gives reference to injury location (healthy myocardium - orange, collagen – 
blue, fibrin – red, basement membrane – pale blue) (A). ISH of nrp1a anti-sense riboprobe 
(nrp1a AS) shows localisation of nrp1a mRNA observed as a dark blue stain within the section 
(E). Activated epicardium that express wt1b are GFP positive and are probed with anti-GFP 
antibody (red) (B and F) and Nrp1 expressing regions of the heart in green (C and G). Overlay 
of the two colours are displayed with DAPI nuclei staining (E and E’). White arrows indicate 
colocalisation. Dotted boxes highlight magnified regions. v – ventricle ba- bulbus arteriosus A 
- atrium IA- injured area epi- epicardium AS n = 3 
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 Nrp2 expression in the endocardium 

The ISH and qPCR data showed that nrp2a was upregulated at 1 and 3 dpci and that 

mRNA expression was initially localised to the injury borders and epicardium before re-

distributing to become almost exclusively epicardial at 3 dpci. Whereas nrp2b is 

expressed widely by the myocardium, by cells within the injury, at the injury border and 

in the epicardium.  
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Figure 42 Nrp2 expression is limited in endothelium and endocardium 

Immunofluorescence of Tg(flia:GFP) adult zebrafish heart 1 day post cryoinjury (dpci). 
fli1a expression by viable endothelium and endocardium are immunolabeled with anti-
GFP antibody (green) (A’’ and B’’) and Nrp2 expressing regions of the heart in red (A’ and 
B’). Overlay of the two colours are displayed with DAPI nuclei staining (A and B). Dotted 
box highlights magnified region. Dotted line indicates healthy myocardium and injury 
border.IA- injured area HM- healthy myocardium n = 2 
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  NRP2 antibody cross-reactivity to zebrafish  

Nrp2 was difficult to confirm by Western Blot; several NRP2 bands were detected using 

Western blot analysis, thus making antibody specificity questionable. I next tried to 

assess Nrp2 expression using immunofluorescence in Tg(fli1a:GFP) zebrafish heart 

sections. Nrp2 and GFP staining were segregated from each other 1 dpci at the injury 

border (Figure 42B). These data suggest that the ISH staining pattern of nrp2a and nrp2b 

observed at 1 dpci at the border between the injured tissue and the healthy myocardium 

was not due to endocardial expression was instead due to another cell type; 

alternatively, there may be a lag between nrp2 mRNA expression and NRP2 protein 

translation in the endocardium. 

 

 Nrp2 in inflammatory cells after cardiac damage 

At 1 dpci the zebrafish heart is in the inflammatory phase of the regeneration process, 

during which innate immune cells infiltrate the injury and clear cellular debris (Chablais 

and Jazwinska, 2012; Evans et al., 2013). Inflammatory cells express NRP2 (Aung et al., 

2016; Ji et al., 2009; Stepanova et al., 2007), therefore Nrp2 expression by leucocytes 

was investigated using immunofluorescence. The leucocyte marker, L-plastin, was used 

to identify inflammatory cells. Under basal sham-operated conditions, detection of L-

plastin is sparse in the zebrafish heart (Figure 43B). At 1 dpci, a cluster of L-plastin 

positive leucocytes was observed in and around the injured area (Figure 43C’ and D’). 

Co-staining of Nrp2 with L-plastin revealed that, at 1 and 7 dpci, these infiltrating 

leucocytes were Nrp2 positive (Figure 43D and F).  
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Figure 43 Inflammatory cells express Nrp2  

Sham-operated (A and B), 1 dpci (day post cryoinjury) (C and D) and 7 dpci (E and F) adult 
zebrafish hearts sections stained with immunofluorescence. Samples were immunolabeled 
for leukocyte marker L-plastin (red) (A’ - F’) and Nrp2 (green) (A’’ – F’’). Overlay of the two 
colours are displayed with DAPI nuclei staining (A - F). Dotted box highlights magnified region. 
White arrows indicate colocalisation.v – ventricle, ba- bulbus arteriosus, epi – epicardium, IA- 
injured area HM- healthy myocardium n = 2-3 
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 Nrp2 expression in cardiomyocytes  

Nrp2 immunofluorescence staining was observed throughout the entire myocardium. 

This is aligned with the qPCR data that suggests that nrp2b is highly expressed in the 

zebrafish heart under basal conditions and the ISH data showing nrp2b mRNA expression 

in the entire ventricle. Therefore, I investigated Nrp2 expression by cardiomyocytes. 

Immunofluorescent staining confirmed expression of Nrp2 by healthy cardiomyocytes 

in both basal sham conditions and after cryoinjury (Figure 44). Additionally, Nrp2 

colocalised with proliferating and migrating cardiomyocytes that infiltrate and replenish 

the injured area (Figure 44F). Nrp2 immunofluorescent staining also appeared to detect 

sarcomeric structures in cardiomyocytes (Figure 44F). This suggests a homeostatic role 

for Nrp2 in healthy cardiomyocytes consistent with previous studies that report Nrp2 

being expressed in the developing zebrafish heart (Bovenkamp et al., 2004). The bulk of 

Nrp2 protein expression by cardiomyocytes detected via immunofluorescence is likely 

due to nrp2b expression, given the ISH and qPCR data.   
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Figure 44 Nrp2 localises with viable cardiomyocytes 

AFOG staining (A and D) and immunofluorescence (B, C, E and F) of wild type zebrafish hearts 
7 days post sham surgery (A-C) and 7 dpci (days post cryoinjury) (D-F). AFOG staining shows 
tissue composition and gives reference to injury location (healthy myocardium - orange, 
collagen – blue, fibrin – red, basement membrane – pale blue). Immunofluorescence show 
viable cardiomyocytes immunolabeled in red (B’-F’) and Nrp2 expressing regions in green (B’’-
F’’). Overlay of the two colours are displayed with DAPI nuclei staining (B, C, E and F). Dotted 
box highlights magnified region. White arrows indicate colocalisation. HM – Healthy 
myocardium, ba- bulbus arteriosus, a- atrium, IA- injured area, v-ventricle n = 2 (sham), 3 
(cryoinjured) 
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 Nrp2 expression in endo and epithelial –to mesenchymal transition in the 

zebrafish heart  

ISH indicated a striking nrp2a epicardial expression at 3 dpci, whereas nrp2b is 

predominantly present within the injury with some expression in the epicardium. I set 

out to investigate Nrp2 expression in injury-activated epicardium and endocardium. 

Raldh2 is expressed by both the activated epicardium and endocardium following injury 

and contributes to EMT (Kikuchi et al., 2011b). Raldh2 positive cells expressed Nrp2 in 

both the endocardium and epicardium at 7 dpci, supporting a role for Nrp2 in the 

endocardial and epicardial EMT (Figure 45), a physiological process previously identified 

to require NRP2 in another pathophysiological setting (Grandclement et al., 2011). 

These data contrast with  expression of Nrp2 in endothelium and endocardium at 1 dpci 

in Tg(fli1a:GFP) hearts, which showed Nrp2 detection was discrete from GFP positive 

cells (Figure 42). It is possible Nrp2 is expressed in the endocardium and epicardium at 

time points later than 1dpci when epicardial and endocardial activation is established.    
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Figure 45 Activated endocardium and epicardium express Nrp2 

Immunofluorescence image of adult zebrafish heart 7 days post cryoinjury (dpci). Activated 
epicardium and endocardium are labelled with Raldh2 (A’ and B’) (red) and NRP2 expressing 
regions of the heart in green (A’’ and B’’). Overlay of the two colours are displayed with DAPI 
nuclei staining (A and B). Dotted box highlights magnified region. ba- bulbus arteriosus, IA- 
injured area, HM- healthy myocardium n = 2 
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4.4 Discussion  

 Nrp1 regulation 

The Human NRP1 cytoplasmic C-terminus sequence shares high amino acid sequence 

similarity to the zebrafish Nrp1a and Nrp1b C-termini (86% and 72% respectively). 

Immunoblotting for the Nrp1 C-terminus detected two bands in zebrafish hearts: a 

lower molecular weight Nrp1a band and higher molecular weight Nrp1b band. 

Quantified together Nrp1 protein was significantly upregulated in zebrafish ventricle 

lysates at 14 dpci. Whereas individual band analysis showed no statistical difference in 

the regulation of Nrp1a, Nrp1b upregulation was statistically significant at 3 dpci. The 

close proximity of Nrp1a and Nrp1b bands introduced potential for variation in Western 

blot band quantification due to the difficulty in delineating isolated ohnolog signal. 

Furthermore, similar to the qPCR studies, the samples measured for protein analysis 

were derived from the entire ventricle, and thus reflect total heart Nrp1 expression, 

which may mask smaller localised regions of high expression. Additionally, 

immunoblotting is a semi-quantitative technique, meaning that a standard curve is 

needed to interpolate the unknown protein levels in the experimental samples, 

something I was unable to do. Finally, Western Blotting is not a technique of high 

sensitivity able to detect subtle changes. A more sensitive and quantitative technique, 

such as ELISA, could be applied to quantify Nrp1 concentration in the ventricle samples. 

Because the Western blot sample consists of whole ventricle protein lysate of the entire 

ventricle, mainly made up of cardiomyocytes, localised changes of NRPs in the discrete 

endocardium and epicardium might be concealed. This was clearly evident when 

localisation of Nrp1 expression was analysed using immunofluorescent (IF) staining. 

Concordant with qPCR results, Nrp1 protein levels returned to basal expression by 30 

dpci. 

It is not possible to distinguish which Nrp1 isoform is detected via immunofluorescence. 

However, ISH expression patterns correlate with the localisation of Nrp1 observed using 

immunofluorescent staining, and therefore support antibody cross-reactivity to both 
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Nrp1a and Nrp1b. Immunofluorescence imaging demonstrates that, under basal 

conditions, Nrp1 localised to the epicardium, endocardium and fli1a-expressing 

endothelium of coronary vessels in the myocardium compact layer. Whereas, Nrp1 

expression by cardiomyocytes is low. Taken together, this suggests that Nrp1 has a 

constitutive role in the homeostasis of the endocardium, epicardium and coronary 

vasculature in the zebrafish heart, but probably not in cardiomyocytes themselves. 

After cardiac damage, activation of the endocardium in close proximity to the injury 

occurs within 24 hours and is required for zebrafish heart regeneration (Kikuchi et al., 

2011b). All or most fli1a and kdrl expressing endocardium also expressed Nrp1 after 

injury. This was including cells protruding into the cryoinjured region from the border 

between the injury and the healthy myocardium, implicating a role for Nrp1 in the 

endocardial response to cardiac damage. Additionally, early fli1a positive vessels that 

help revascularize the injured area from as early as 1 dpci, were also all positive for Nrp1 

and continued to express Nrp1 in the neovasculature at 7 dpci, indicating that Nrp1 

expression and upregulation is involved in revascularisation of the injured heart. The 

lack of coronary vessel kdrl expression in the zebrafish hearts analysed here (Figure 

38D’), is an unexplained observation, as arterial kdrl expression has been reported in the 

zebrafish heart coronary arteries 24 hours after cryoinjury (Marin-Juez et al.., 2016) and 

other tissues (Kumar et al., 2016). It is possible that, at 7 dpci, fli1a expressing vessels in 

the injured area are not arterial, but may be capillaries, venous or lymphatic vessels and 

thus might not express the mature arterial marker kdrl.   

The epicardium is also known to be essential for regulating the heart regeneration 

process (Lepilina et. al., 2006). After injury the epicardium becomes activated and 

proliferates and interestingly, I noted that Nrp1 was expressed in all epicardial cells after 

cardiac damage. Nrp1 could potentially serve as an epicardial marker in both its 

quiescent and activated states. A subpopulation of wt1b-expressing epicardial cells 

initiate EMT; they trans-differentiate and gain a migratory phenotype required for 

mesenchymal cell contribution to the regenerative process (Peralta et.al., 2014). All 
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wt1b-positive epicardial cells undergoing EMT also expressed Nrp1, suggesting Nrp1 is 

required for the trans-differentiation and/or the migration of these cells. 

Cardiomyocytes expressed low levels of Nrp1 after cardiac damage and some sub-

epicardial cardiomyocytes migrating into the injured region expressed Nrp1. Pre-existing 

cardiomyocytes provide the majority of new cardiomyocytes in the regenerating 

zebrafish heart (Jopling et al., 2010), with a subpopulation proposed to be derived from 

epicardial cells and cardiac stem cells  (Ellison et al., 2013; van Wijk et al., 2012). 

However, the accuracy of these lineage tracing studies have been questioned by other 

groups that identified different fates for epicardial cells and limited cardiac progenitor 

populations (Jopling et al., 2010; Manuel Gonzalez-Rosa et al., 2012). Cardiomyocytes in 

close proximity to the injury are stimulated to dedifferentiate, proliferate and invade 

damaged cardiac tissue to replenish the cardiomyocyte population (Itou et al., 2012b; 

Jopling et al., 2010). Proliferating and migrating cardiomyocytes localise to the sub-

epicardial area at the injury (Kikuchi et al., 2010), that results initially in the formation 

of a new compact myocardium, and they then invade the underlying scar tissue to 

regenerate the trabeculated myocardium (Manuel Gonzalez-Rosa et al., 2011). Nrp1 

expression in protruding cardiomyocytes from the sub-epicardial compact layer could 

indicate a role for Nrp1 in migrating cardiomyocytes that repopulate the damaged area 

or the subpopulation of epicardial cells implicated in contributing to new 

cardiomyocytes.  

Though basal Nrp1 expression by cardiomyocytes was low in comparison to the more 

prominent Nrp1 expression by the endocardium and epicardium, increased Nrp1 

staining in injured hearts suggests its potential role for the migration of cardiomyocytes 

from the sub-epicardial layer into the injured area following cardiac damage.  These data 

also support my Western blot and qPCR observations that show trends for NRP 

upregulation but do not reach significance.  

Thus, in the injured heart, Nrp1 likely plays a role in several cell types critical for the 

regenerative process. A common characteristic shared by the endocardium, epicardium, 

sub-epicardial cardiomyocytes and vessels during regeneration is that they are all 
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required to gain a migratory phenotype to elicit their regenerative function. Nrp1 has 

previously been implicated in cell migration in various cell types (Banerjee et al., 2006; 

Evans et al., 2011; Frankel et al., 2008; Pellet-Many et al., 2011; Seerapu et al., 2013; 

Soker et al., 1998) and therefore could also play a role in response to migratory cues in 

the regenerating zebrafish heart.  

Unfortunately, due to antibody incompatibility, Nrp1 colocalisation with the marker of 

active endocardium, Raldh2, was not possible; nevertheless, the data presented in this 

chapter strongly indicates Nrp1 as playing a role in these cells (Figure 37 and Figure 38). 

Nrp1 is clustered at the border between the healthy myocardium and the injury, a region 

that contains both activated endocardial cells and inflammatory cells. Previous studies 

support a role for Nrp1 in the immune response (Aung et al., 2016; Ji et al., 2009; 

Tordjman et al., 2002). However, I was unable to assess the expression of Nrp1 by 

leukocytes because the L-plastin and Nrp1 antibodies were both raised in rabbits, 

therefore it is possible that Nrp1 may also be expressed by infiltrating inflammatory 

cells.  

 Nrp2 regulation  

Zebrafish Nrp2a and Nrp2b C-termini protein sequences are homologous and share 

82.9% sequence similarity with Human NRP2 implicating important evolutionary 

conservation of the NRP2 cytoplasmic domain. Unfortunately, antibodies used for NRP2 

Western blot analysis of ventricle lysates failed to demonstrate specific cross-reactivity 

to zebrafish NRP2 orthologues and was not quantifiable. However, a signal was detected 

using immunofluorescent staining and Nrp2 localisation was therefore evaluated in 

zebrafish heart sections using this approach.  

Under sham-operated conditions, Nrp2 expression was evident within the myocardium, 

with low basal expression by the endocardium and epicardium. Following cardiac 

damage, I noted Nrp2 being expressed by infiltrating leukocytes, suggesting its role for 

the initial inflammatory response after cardiac damage. The majority of leucocytes in 

the inflammatory response are innate immune cells such as macrophages and 
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monocytes derived from circulating blood (Chablais and Jazwinska, 2012; Evans et al., 

2013), and my results suggest these cells either constitutively express Nrp2, or 

upregulate Nrp2 after recruitment to the damaged area. Evidence from other models 

and tissues suggests that Nrp2 is constitutively expressed by inflammatory cells (Aung 

et al., 2016; Ji et al., 2009; Stepanova et al., 2007). The ISH staining that identified nrp2a 

and nrp2b mRNA within and proximal to the injury at 1 dpci may therefore be due to 

infiltrating leucocytes. Thus Nrp2 upregulation and mRNA re-distribution to the injury 

area indicates a role for Nrp2 in inflammation following cardiac injury. 

Injury-activated epicardium and endocardium, identified by Raldh2 expression, also 

expressed Nrp2. Additionally, NRP2 was constitutively expressed by viable 

cardiomyocytes in normal conditions and following cardiac damage, including in 

migrating cardiomyocytes that infiltrate the injured area. Thus, Nrp2 likely plays a 

homeostatic role in zebrafish cardiomyocytes but also has an injury-induced role in 

inflammation and endocardial and epicardial EMT. 

It is uncertain whether immunofluorescent staining exclusively detected zebrafish Nrp2 

in my studies, or may also reflect non-specific protein binding. However, Nrp2 

immunofluorescent staining was located to similar regions of the heart that were 

highlighted using ISH patterns supporting the conclusion that immunofluorescent 

staining reflected genuine Nrp2 detection. For example, small round Nrp2 positive cells 

within the injury express the leucocyte marker L-plastin and are also present within the 

injury-activated epicardium, which reflects observations of nrp2 gene localisation in ISH 

(Figure 32). Nrp2 mRNA expression was observed within the myocardium using ISH, 

which is further supported by Nrp2 immunofluorescent staining which appeared to 

detect sarcomeric structures in cardiomyocytes (Figure 44F). Therefore, Nrp2 antibody 

likely cross-reacts with zebrafish Nrp2 in immunofluorescent staining, but not using 

immunoblotting, perhaps due to antibody epitope recognition of zebrafish Nrp2 in the 

more native rather than the reduced unfolded state.   
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 Summary 

In this chapter I have established the following: 

 Zebrafish NRPs are upregulated in response to cardiac damage, and may 

therefore play positive roles in the zebrafish regenerative response.  

 Nrp1 and Nrp2 display differential expression patterns in basal conditions and in 

regenerating zebrafish hearts 

 These data suggest that the isoforms carry out specific roles and have differing 

physiological responses in homeostasis versus regeneration.  

 Expression patterns reflected ISH mRNA detection confirming ISH data to 

accurately predict Nrp protein regulation in the zebrafish heart.  
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5 Results Chapter 3: Heart Regeneration in nrp1a mutant 

zebrafish 

Thus far, my data has demonstrated that all neuropilin orthologs are acutely 

upregulated in response to cardiac damage at both the mRNA and protein levels 

suggestive that they play a positive role in zebrafish heart regeneration. Neuropilins 

localise in close proximity to the damaged tissue or within the injury during the 

inflammatory and reparative phases of the regeneration process, with marked 

expression in the endocardium and epicardium. To investigate Nrp1 function in 

zebrafish heart regeneration, I studied a nrp1a mutant fish expressing a truncated and 

thus non-functional Nrp1a. This chapter focuses on the characterisation and 

regenerative capacity of this nrp1a mutant fish. 

5.1 nrp1a mutant fish identification 

The Sanger Wellcome Trust zebrafish mutagenesis project (ZMP) has generated several 

fish lines with point mutations in the sequence of protein encoding genes. The N-ethyl-

N-nitrosourea (ENU) mutagen has been used to treat male zebrafish to create random 

mutations in the genome during spermatogenesis. Male zebrafish were then bred with 

wild type females and offspring screened for genetic mutations and a founder fish that 

transmit the mutation through the germline was identified (See section 1.3.1.2). 

I obtained the nrp1asa1485 mutant zebrafish line from the ENU ZMP. This mutant fish 

encodes a nonsense point mutation (where a Cytosine replaces an Adenine base) 

resulting in the generation of an early stop codon at amino acid 206 out of 923 amino 

acids of the Nrp1a sequence (Figure 46A). This mutation yields a truncated Nrp1a 

protein lacking the cytoplasmic C-terminus, transmembrane domain, MAM domain, b1, 

b2 and half of the a2 ligand interacting domains, resulting in a non-functional and 

soluble Nrp1a fragment (Figure 48A). At the time when I acquired the nrp1asa1485/sa1485 

mutant fish, no other fish neuropilin mutant lines were available. Initially, genomic DNA 
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extracted from adult fish fin clips was used to identify heterozygous nrp1asa1485/+ mutant 

fish via sequencing. Heterozygous fish were then incrossed, and a random selection of 

48 hpf embryos were genotyped from the offspring (Figure 46A). The offspring 

genotypes followed a Mendelian ratio distribution of the three genetic outcomes 

indicating that homozygous inheritance of the nrp1a mutation is not embryonic lethal 

by 48 hpf (Figure 46B). Because of the occurrence of evolutionary genome duplication, 

four neuropilin isoforms are encoded by the zebrafish genome (Postlethwait et al., 

1998); thus redundancy due to the presence of the nrp1b ohnolog may compensate for 

the loss of full-length Nrp1a function during development.  

Embryos were raised to adulthood and homozygous mutants were identified via 

sequencing. This further confirmed that the homozygous inheritance of the mutation 

and loss of Nrp1a function is not embryonic lethal. The homozygous mutants were 

incrossed to establish a homozygous nrp1asa1485/sa1485 line. A 42% survival rate of the 

offspring was noted, which is significantly lower than the ~90% survival rate observed 

for established wild type lines. This suggests possible underlying complications during 

development that were not detected by my initial observational and qualitative analysis.  

5.2 nrp1a mutant line characterisation 

Nrp1a gene expression was assessed by RT-qPCR in adult nrp1asa1485/sa1485 zebrafish 

heart lysates (Figure 47A) and expression patterns were evaluated in nrp1asa1485/sa1485 

24 hpf embryos using ISH (Figure 47B). Both showed a marked reduction of nrp1a mRNA 

expression (Figure 47), suggesting that the nonsense mutation results in downregulation 

of nrp1a mRNA expression. This may be due to an adaptive response to loss of Nrp1a 

function. According to previous reports, nrp1a is expressed during embryogenesis and 

in wild type adult hearts (Yu et al., 2004). However, nrp1asa1485/sa1485 mutant embryos 

displayed no obvious morphological abnormalities in the absence of full-length Nrp1a. 

These results strongly suggest that genetic redundancy occurs: the presence of the 

nrp1b ohnolog might compensate for the reduced Nrp1a activity required for heart 

development. These data also confirm that the point mutation has a sustained and 
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marked effect on nrp1a gene expression from early development continued throughout 

adulthood.  

Figure 46 nrp1a mutant sequencing 

(A) Sequencing chromatograms of wild type, heterozygous (nrp1asa1485/+) and 
homozygous (nrp1asa1485/sa1485) mutant embryos 48 hpf. An Adenine replaces a 
Cytosine base causing the generation of the early stop codon (nonsense mutation) 
TAA, rather than the Tyrosine (TAC) codon at amino acid 206. (B) The table displays the 
genotypes of 14 zebrafish embryos 48 hpf alongside the expected mendelian ratio 
occurrence after heterozygous fish incross. Wild type and homozygous mutants are 
expected to account for 25% of the genotypes each (~3.5 out of 14), whereas 
heterozygous mutants should account for 50%. The outcome of genotyping is 
described in the third (actual fish number) column.  
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Figure 47 nrp1a mRNA expression in homozygous nrp1asa1485/sa1485 mutants 

(A) Absolute RT-qPCR of wild type (white bar) and nrp1asa14854/sa1485 homozygous mutant 
(black bar) adult zebrafish hearts under basal conditions. Data are represented as means of 
normalised copy numbers per reaction ± S.E.M (error bars) ***p<0.005 n = 4 with each n 
being a pool of 3 ventricles. (B) nrp1a anti-sense (AS) in situ hybridisation of wild type (upper 
row) and nrp1asa14854/sa1485 homozygous mutant (bottom row) 24 hpf embryos carried out 
simultaneously. Black dotted boxes indicate magnified region enlarged to the right.  
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5.3 Nrp1a expression in the nrp1asa1485/sa1485 mutant line 

Protein expression levels of adult ventricle lysates obtained from wild type and 

homozygous nrp1asa1485/sa1485 zebrafish hearts were evaluated using Western blot. An 

antibody targeting the human NRP1 C-terminus was used to detect Nrp1 ohnologs and 

verify the loss of full-length protein expression as a result of the mutation.  

Zebrafish Nrp1 is detected as a doublet on immunoblots, with a lower Nrp1a molecular 

weight band at ~120kDa, and a higher Nrp1b molecular weight band at ~140 kDa (Figure 

48A). The lower Nrp1a band is clearly not expressed by the nrp1asa1485/sa1485 mutants, 

confirming loss of the full-length Nrp1a protein expression.  

The Nrp1b protein was expressed by the nrp1asa1485/sa1485 adult hearts (Figure 48B) and 

though its expression appeared to be reduced compared to WT fish, this reduction was 

not statistically significant (Figure 48C). These data indicated that Nrp1b expression in 

the adult nrp1asa1485/sa1485 fish is not markedly affected by the mutation and that there 

is no compensatory upregulation of one Nrp1 ohnolog in response to the loss of the 

other.  

It is possible that alternative pathways mediate cellular mechanisms to compensate for 

loss Nrp1a loss in the adult zebrafish heart, or that the role of Nrp1a is redundant under 

basal conditions. 

5.4 nrp1asa1485/sa1485 anatomical characterisation  

The superficial anatomical measurements of wild type zebrafish were compared to 

those of age-matched nrp1asa1485/sa1485 mutants to identify any phenotypes that might 

arise from the mutation. Nrp1asa1485/sa1485 mutant fish were phenotypically 

indistinguishable from wild type fish (Figure 49A), they displayed normal behaviour and 

were fertile. There was no significant difference in fish body length (base of caudal fin 

to tip of mouth) (Figure 49B). Neither was there a difference in heart size when the area 

of whole ventricles collected were measured (Figure 49C) or the heart to body length 

ratio (Figure 49D). There was a trend for mutant fish to be smaller than wild type 
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controls but sample size was small and there were a few outliers in both groups. Thus, 

the loss of full length Nrp1a does not affect zebrafish growth or development. More 

detailed studies investigating the fish anatomical features and physiological functions 

that require full-length Nrp1a, such as the vessel development during embryogenesis 

and neuronal development, should be performed. 
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Figure 48 Nrp1a protein analysis of the nrp1a homozygous mutant 

(A) Schematic representation of wild type (WT) (left) and nrp1asa14854/sa1485 (right) Nrp1a 
structure. The point mutation results in the insertion of a premature stop codon at amino acid 
206, which generates a truncated Nrp1a fragment. The Nrp1a mutant encodes the a1 and 
part of the a2 extracellular semaphorin binding domain. (B) Western Blot of WT or 
nrp1asa14854/sa1485 homozygous mutant adult zebrafish ventricle lysates under basal 
conditions. Lysates were immunoblotted for the Nrp1 cytoplasmic domain and Gapdh. Note 
the absence of C-terminus detection in the nrp1asa14854/sa1485 samples (C) WT (white bars) and 
nrp1asa14854/sa1485 (black bars) adult zebrafish ventricle Western Blot quantification normalised 
to GAPDH, of Nrp1a band (left graph) and Nrp1b band (right graph). Data are represented as 
band density means ± S.E.M ****p<0.0001 n = 4 with each n being a pool of 3 ventricles.  
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Figure 49 Wild type and mutant fish measurements 

(A) Representative picture of WT (upper panel) and nrp1asa1485/sa1485 mutant zebrafish (lower 
panel) scale bar 1 cm. The body length, (B) and heart size (C) of age matched wild type (black 
dots) and nrp1a mutant (red dots) zebrafish were measured and comparison of body length 
to heart size made (D). Scatter graph values are displayed as means ±S.E.M and individual 
measurements of fish indicated as black (wild type) or red dots (nrp1asa1485/sa1485 mutants).  
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5.5 Regenerative capacity in nrp1asa1485/sa1485 

Under basal conditions the nrp1a mutants appeared normal and comparable to WT 

controls (Figure 50A and H). To evaluate the mutant response to cardiac damage, 

cryoinjuries were performed and the extent of the injury and viable cardiac tissue 

quantified using AFOG staining (Figure 50A-N). At 1 dpci both wild type and mutants 

sustained a similar proportion of damage to the heart (25.2 ± 5.5% and 22.6 ± 5.2%, 

respectively) (Figure 50O). The mutant heart demonstrated progressive reduction of 

injury size over time, confirming that they retain some regenerative capacity in the 

absence of full length Nrp1a (Figure 50O, black bars). However, my data revealed a clear 

reduction in the extent of decrease of the injured area in mutant as compared to WT 

hearts (Figure 50K-N). Statistical analysis of these data by two-way anova revealed a 

significant delay in regeneration of mutant hearts in comparison to wild type hearts (p 

= 0.038). Specific time-point comparison of injury size showed a significantly larger injury 

remaining at 14 and 30 dpci in mutant hearts compared to wild type hearts (Figure 50E,F, 

L and M), indicating Nrp1a is  required for efficient cardiac repair (Figure 50O). 

Additionally, the mutants displayed abnormal epicardial morphology throughout 

regeneration. Wild type epicardium proliferates and encases the entire injured region. 

In the mutant fish, the epicardial response was abnormal: the epicardium appeared to 

proliferate, evident as a a thickened layer of cell on the surface of the heart, but did not 

consistently surround the injured region (Figure 50J and L). Rather, the epicardium 

clustered at the periphery of the injury, however further experiments would be required 

to confirm whether clusters of cells on the heart surface are of epicardial origin or blood 

cells. Moreover, the scar resolution process in the mutants also differed from that in 

wild type fish. The fibrin cap is the first fibrotic tissue cleared from the scar, but fibrin 

deposits (observed as red staining in injury area denoted by black dotted line) were still 

evident at 30 and 60 dpci in mutant fish though not in wild type (Figure 50F, G, M and 

N). 
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Figure 50 Recovery from cryoinjury is delayed in the nrp1a mutant 

Wild type (A-G) and nrp1asa1485/sa1485 mutant (H-N) fish were cryoinjured and injury size (denoted by black dotted line) determined with AFOG 
staining. Black arrows indicate adipose deposits. White arrows indicate epicardial clusters (O) Total ventricle injury area was quantified and % 
ventricle damage presented as mean percentage (± S.E.M) n = 4-6 *p<0.05. V- ventricle, A-atrium, ba- bulbus arteriosus  
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Additionally, I also observed differences in regeneration of the compact layer and 

wound closure. The compact myocardium regenerates simultaneously to the removal 

of the fibrin cap (Gonzalez-Rosa and Mercader, 2012; Kikuchi et al., 2010). When a 

continuous layer of cardiomyocytes encloses the residual collagen scar, the wound is 

regarded as closed, whereas incomplete compact myocardial coverage is described as 

an open wound (see Figure 51A). In the advanced stages of regeneration (30 and 60 

dpci), a larger proportion of mutant hearts remained as an open wound compared with 

wild type hearts at 30 and 60 dpci (Figure 51B). This indicates a failure of the compact 

myocardium to migrate and/or proliferate efficiently towards the subepicardial layer in 

order to close the wound in nrp1a mutant fish.  

Mutant sham-operated hearts also displayed abnormal fat deposits rarely observed in 

wild type fish (Figure 50A and H, black arrows). Adipose tissue composition and 

morphology were not quantified, however.  

These data indicated that after cryoinjury, loss of full-length Nrp1a impairs the 

regenerative response, and results in abnormal epicardial morphology and scar 

composition in comparison to WT fish hearts. This points to a key role of Nrp1a in 

epicardial response and scar resorption during the regenerative process.   
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Figure 51 Wound closure in nrp1a mutant 

A) Example of a closed (upper image) and open (bottom image) adult cryoinjured zebrafish 
heart. The compact layer of the myocardium regenerates initially and encloses the fibrotic 
scar tissue (black arrow); open wounds do not display a continuous myocardial compact layer 
and the wound remains at the surface of the ventricle (white arrow).  (B) Open (white) and 
closed (grey) wounds were quantified in wild type (WT) and nrp1a mutant (Mut) hearts at 30 
and 60 dpci. Values are displayed as percentage of samples in either category. A – atrium, V- 
ventricle, ba – bulbus arteriosus  
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5.1 Discussion 

In this chapter I set out to identify and characterise a nrp1a mutant zebrafish line 

reported to express a nonsense mutation resulting in truncated Nrp1a molecule. The 

mutation generates a soluble Nrp1a fragment that cannot interact with intracellular 

scaffolding proteins or receptors, nor bind any known ligands. After identification of 

homozygous mutants via sequencing, I analysed nrp1a mRNA and Nrp1a protein 

expression in the zebrafish and evaluated regenerative capacity. 

5.1.1 Nrp1a mutants are viable 

Mutant fish are viable, present no gross phenotype under basal conditions and the 

genotype is detected at expected mendelian ratio from a heterozygous cross. However, 

there may be undetected underlying problems encountered during development as the 

nursery survival rate is approximately half to that of wild type fish. It is well established 

that nrp1a is expressed in several other organs during zebrafish development, especially 

in the nervous system (Bovenkamp et al., 2004; Martyn and Schulte-Merker, 2004; Yu 

et al., 2004). The phenotype of nrp1asa1485/sa1485 fish described here is not in line with 

previous studies that investigated the effects of nrp1a knock down using morpholinos, 

and showed abnormal vessel growth and high embryonic lethality (Bovenkamp et al., 

2004; Dell et al., 2013), features not recapitulated in the ENU nrp1asa1485/sa1485 mutants. 

Conflicting observations between morpholino gene silencing and germline-acquired 

mutations are common, and the morpholino approach is likely to have deleterious off-

target effects (Kok et al., 2015; Schulte-Merker and Stainier, 2014). Additionally, 

morpholinos could have off target and toxic effects that also affect development (Rossi 

et al., 2015). A zebrafish embryo encompasses 500 ng of total RNA, 2-5% of which is 

mRNA (25 ng). Assuming that at any given time there are more than 100 different and 

equally represented mRNA transcripts present in a cell (Dawid, 1987), only 2.5 pg of a 

specific mRNA species is available for targeting. MO injections typically deliver a 

minimum of 1 ng anti-sense oligonucleotide (Nasevicius and Ekker, 2000). Assuming 

further that the target mRNA has an average length of 1.25 kb, whereas the MO is a 25-

mer, this equates to a 20,000-fold molar excess of MO versus target mRNA. It is 
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therefore most likely that this vast excess of MO will bind other RNA or other 

macromolecules resulting in false positive phenotypes. Conversely, a recent study 

examined intersegmental vessel (ISV) sprouting in a nrp1a mutant embryo generated 

via TALEN mutagenesis. The mutation also results in a truncated soluble Nrp1a fragment 

and showed no adverse defects in ISV growth (Kok et al., 2015), in agreement with my 

observations that show no deleterious or obvious morphological abnormalities caused 

by nrp1a gene disruption in the nrp1asa1485/sa1485 fish under basal conditions.  

The nrp1asa1485/sa1485 mutants expressed a truncated and soluble Nrp1a, which could 

potentially retain some physiological activity by associating with some unknown 

molecules, which may in part explain the viability of these mutants. Soluble Nrp1a is 

endogenously expressed in the zebrafish (Bovenkamp et al., 2004), however the 

physiological function of this splice variant has not been investigated. Nevertheless, my 

data shows that full length Nrp1a is not essential for normal zebrafish development, 

implicating possible redundancy due to genome duplication and the existence of the 

nrp1b ohnolog or other compensatory adaptions and mechanisms. Further work is 

required to investigate this, including examination of the phenotype and response to 

cardiac injury of nrp1b mutant fish, and evaluation of expression and function of other 

pathways that could potentially compensate for loss of Nrp1a, such as components of 

Vegf angiogenic signalling pathways. Alternatively, Nrp1a signalling and activity may not 

have a role in embryonic development and in homeostasis in the adult zebrafish heart, 

and these roles may be performed by Nrp1b. Analysis of nrp1b mutant fish would reveal 

such a role. Nrp1b is the ohnolog of Nrp1a and theoretically could compensate for Nrp1a 

activity loss, however it has been suggested that the two genes have undergone 

extensive genetic drift to the extent that they demonstrate different embryonic 

expression profiles and post-translational modifications, which gives them 

distinguishably different molecular weights (Bovenkamp et al., 2004)(Figure 48A). They 

present differential localisation in the developing zebrafish embryo and during cardiac 

regeneration, implicating distinct roles for the two isoforms. Nrp1b protein expression 

is unaffected by the loss of function of Nrp1a in adult ventricle lysates, indicating that 
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Nrp1b is not upregulated to compensate for the limited Nrp1a activity, but any 

compensatory ability of this ohnolog cannot be precluded. 

5.1.2 Nrp1a expression downregulated in homozygous mutants  

It is clear that from an early developmental stage (24 hpf) the mutant fish actively 

downregulates nrp1a expression. This might be due to a negative feedback, perhaps 

from the truncated mutant protein, or exerted during protein translation, that results in 

constitutive downregulation of nrp1a gene expression; the mechanisms behind this 

remain unclear.  

Despite the gene and protein regulation of neuropilin1a being reduced in mutants, wild 

type and mutant adult fish are very similar suggesting that, under physiological 

conditions mutants that survive to adulthood are healthy. The adult fish showed a trend 

to be smaller than wild type fish, but were indistinguishable from wild type fish in other 

measurements and observations; thus the nrp1a mutation does not seem to trigger a 

detrimental adult phenotype. My examinations were mainly focused on cardiac and 

body size. Therefore, because the mutation is a global knockout, and nrp1a is expressed 

by many tissues, I cannot rule out the existence of a phenotype resulting from loss of 

function Nrp1a (for example within the nervous system) that I did not investigate. 

5.1.3 Nrp1a mutants have reduced survival and delayed regenerative response 

Mutant nrp1a hearts show a delayed regenerative response after cryoinjury, supporting 

the conclusion that full-length Nrp1a is required for normal heart regeneration. Since 

regeneration did occur in the nrp1a mutants, this isoform is not essential for the 

regenerative process. However, the nrp1a mutants also exhibited delayed recovery of 

the compact myocardium illustrated by an impaired ability of the compact myocardium 

to migrate and/or proliferate efficiently towards the subepicardial layer in order to close 

the wound. Furthermore, nrp1a mutants displayed abnormal scar resolution indicated 

by the persistence of fibrin deposits at later stages of the regenerative process (30 and 

60 dpci). Abnormal protrusions of proliferating epicardium were occasionally observed 

in the regenerating mutant hearts that may indicate a further consequence of functional 
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Nrp1a loss in the regenerating heart (Figure 50J and L). These findings, together, indicate 

a key role for nrp1a in zebrafish heart regeneration. 

The mutant zebrafish heart did finally regenerate overall, though this may be due to 

compensation by nrp1b, which was expressed in the mutant hearts. It is possible 

therefore, that Nrp1 may play a more vital role in heart regeneration, obscured by loss 

of only a single ohnolog. This could be examined in double nrp1a/nrp1b mutants, though 

these would be predicted to be embryonic lethal. However, this could be circumvented 

using an inducible (e.g. by tetracycline, or tamoxifen) knock-out. 

I also observed that mutant sham-operated hearts displayed abnormal fat deposits 

rarely observed in wild type fish (Figure 50A and H), though these were not quantified. 

Cardiac adipose tissue characterisation is limited in the literature, being briefly 

described in one publication (Hu et al., 2001). NRP1 is proposed to play a role in white 

adipose tissue nerve growth in conjunction with sema3A (Giordano et al., 2003) and 

macrophage recruitment through sema3E secretion(Shimizu et al., 2013), therefore 

neuropilin may regulate white adipose tissue of the heart. These observations regarding 

adipose morphology may shed light on possible phenotypes caused by lack of full-length 

Nrp1a in the zebrafish heart under resting conditions, but require further investigation. 

 Summary 

In this chapter I have demonstrated: 

 nrp1asa1485/sa1485 homozygous mutant zebrafish are viable and appear normal 

under physiological conditions. 

 Heart regeneration was severely delayed in mutant following cryoinjury. 

  Mutant hearts indicate an impaired epicardial phenotype in response to injury.  

. 
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6 Results chapter 4: Role of NRP1 in the epicardium 

In the previous chapters have described the upregulation of the different neuropilin 

isoforms in the cryoinjured zebrafish heart. I have noted a clear expression of Nrp1 in 

uninjured heart and found that its expression was notably increased by both the 

epicardium and the endocardium following injury. I have characterised a nrp1a mutant 

fish line expressing a non-functional soluble Nrp1a fragment. The nrp1asa1485/sa1485 fish 

exhibited a delayed resolution of the cryoinjured lesion; displayed an impaired 

regeneration of the compact myocardium layer as well as an abnormal epicardial 

morphology. Therefore, my results in the preceding chapters suggest a functional 

epicardial role for Nrp1. In this chapter I decided to further investigate the role of Nrp1 

in the epicardium in more detail using primary epicardial cells. 

6.1 Neuropilin activity in epicardial cells 

 Epicardial in vitro assay validation 

During the reparative phase of regeneration, a fibrin cap is laid down in the injured area, 

below the epicardium (Chablais et al., 2011; Manuel Gonzalez-Rosa et al., 2011). A 

subset of epicardial cells undergoes EMT, migrates through the subepicardial fibrin scar 

matrix (as shown in Figure 40) and eventually transdifferentiate into mural or fibroblasts 

cells (Lepilina et al., 2006; Manuel Gonzalez-Rosa et al., 2012).  

Primary epicardial cells from zebrafish ventricle explants can be cultured in vitro on fibrin 

gels that mimic in vivo conditions of cardiac repair (Kim et al 2012). The zebrafish 

ventricle apex is placed on a fibrin gel and left to adhere for a short period before 

medium is added to the sample (see section 2.5). Within 24 hours, epicardial cells can 

be seen infiltrating the matrix surrounding the apex tissue (Kim et al 2012) and, after a 

week, larger outgrowths can be visualised (Figure 52A). I performed this procedure with 

three transgenic lines (Tg(fli1a:GFP), Tg(cmlc2:GFP), and Tg(wt1b:GFP)) and imaged 

outgrowths using fluorescence microscopy to identify the population of migrated cells 
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(Figure 52B). No GFP signal was detected in the outgrowths from Tg(fli1a:GFP) or 

Tg(cmlc2:GFP) apices strongly indicating that the outgrowths do not contain endothelial 

cells or cardiomyocytes (Figure 52B). GFP positive cells were evident in the outgrowths 

from Tg(wt1b:GFP) zebrafish ventricle apices (Figure 52B), confirming that the method 

yields an epicardial population.  

To confirm the identity of the outgrowing cell population, I immunostained the samples 

for Raldh2 and found that all cells were Raldh2 positive (Figure 53 green panel upper 

row), further validating their epicardial identity. In Tg(wt1b:GFP) apices, the degree of 

GFP expression was heterogeneous, all cells showing some GFP expression, but only a 

proportion of outgrowing cells were strongly GFP-positive (Figure 53 green panel, 

second row); this is consistent with previous reports showing that only a subpopulation 

of epicardial cells express wt1b after cardiac damage (Manuel Gonzalez-Rosa et al., 

2011; Peralta et al., 2014). Staining of F-actin cytoskeletal filaments was used to 

highlighted the epicardial cell morphology, a cobblestone-like appearance was observed 

and the cells grow as a monolayer, similar to that described by Kim et al. (2012) (Figure 

53). F-actin staining also revealed the cells are in close contact between each other, 

characteristic epithelial cell monolayers (Figure 53). Taken together, these results 

strongly indicate that the outgrowths consist primarily of an epicardial cell population.

  

I also examined Nrp1 expression in these epicardial outgrowths and observed that all 

cells were Nrp1 positive (Figure 53), which is in line with immunofluorescence images of 

heart sections, described earlier (see 4.3.3),showing Nrp1 positive epicardial cells in 

both cryoinjured and sham operated hearts in vivo. These observations support the 

conclusion that Nrp1 is expressed in epicardial explants and that this model would allow 

me to examine the functional role of Nrp1 in epicardial cells. In zebrafish epicardial cell 

outgrowths, Nrp1 was localised predominantly to the perinuclear region, but also within 

the cytoplasm and at the membrane as suggested from its co-localisation with F-actin 

(white arrows, Figure 53).  
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Figure 52 Epicardial outgrowth in vitro assay validation 

(A) Schematic representation of epicardial cell in vitro culture. The ventricle apex 
is placed into a tissue culture well onto a fibrin gel matrix (ensuring epicardium 
contact with matrix). Once adhered, culture medium is added and  epicardial cells 
migrate radially onto the matrix away from cardiac tissue. An optional cover glass 
slip can be inserted into the gel for histological assays. (See 2.5.1 for detailed 
assay description). Star indicates damaged area. image modified from Kim et al. 
(2012). (B) Epicardial outgrowths from Tg(fli1a:GFP) (upper row), Tg(cmlc2:GFP) 
(middle row), and Tg(wt1b:GFP) (bottom row) cryoinjured fish after 7 days in 
culture. Outgrowths are displayed under phase light (left column), GFP 
fluorescence (middle column) and overlaid images (right column), black dotted 
lines indicate outgrowth boundary.  Scale bar 500µm. 
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Figure 53 Epicardial outgrowth immunofluorescent cytochemistry 

Ventricle apices were collected 5 dpci and cultured in vitro for 7 days from wild type (first 
and third row), Tg(wt1b:GFP) (second row), and nrp1asa1485/sa1485 (bottom row) fish. 
Epicardial outgrowths were immunostained for either Raldh2 (first row) (n = 3), GFP 
(second row) (n = 2) or NRP1 (third (n = 4) and fourth (n = 2) row) (green) and phalloidin 
conjugated to Alexa-555 to identify F-ACTIN cytoskeleton (red). DAPI (blue) staining was 
applied to help locate individual cells and overlaid with green and red channels (third 
column). White arrows indicate regions of colocalisation. Scale bar 20 µm. 
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Epicardial outgrowth morphology and Nrp1 expression were also examined in explants 

from nrp1asa1485/sa1485 mutant hearts (Figure 53 bottom row). Nrp1 showed that Nrp1 

expression was much weaker in the mutant compared to wild-type hearts, (Figure 53 

bottom row), indicating that Nrp1a is the Nrp1 isoform predominantly expressed in 

epicardial outgrowths. It was also observed that, although the nrp1asa1485/sa1485 mutant 

epicardial cells presented a cobblestone morphology, however, the F-actin staining 

pattern was altered, suggestive of discontinuous cell-cell adhesions, possibly due to 

disruption of tight junctions. 

 Cryoinjured heart epicardial expansion 

Injury-induced epicardial activation, proliferation and migration (Lepilina et al., 2006) 

results in increased epicardial expansion from resected hearts compared with sham 

operated hearts as previously reported (Kim et al., 2012). Nevertheless, there has been 

no previous description of the effect of cryoinjury on epicardial outgrowths in vitro, thus 

I compared the outgrowths of cryoinjured hearts against sham-operated hearts (Figure 

54A). I quantified the epicardial expansion area from the apex circumference and found 

that cryoinjured samples expanded to approximately double the area (3.9 ± 0.37 mm2) 

of outgrowths from sham-operated apices (2.01 ± 0.23 mm2) (Figure 54 B). The 

significant increase (p = 0.0003) in epicardial outgrowth following cardiac damage 

supports previous observations in resected hearts (Kim et al., 2012). Additionally, I 

assessed the extent of epicardial activation in sham and cryoinjured outgrowths from 

Tg(wt1b:GFP) apices (Figure 54A). A clear trend for increased fluorescence in cryoinjured 

hearts was observed, however, a single outlier in both treatment groups caused large 

variation, and thus, the data recorded was not statistically significant (p = 0.0713, n = 4) 

(Figure 54C). Increasing the number of experimental repeats may lead to statistically 

significant GFP signal increase.  
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Figure 54 Cryoinjury induces epicardial expansion and activation. 

(A) The apices of Tg(wt1b:GFP) zebrafish ventricles were collected 5 days post sham 
surgery or cryoinjury and cultured on fibrin gels for 7 days. Preparations were imaged 
under phase and green-fluorescence microscopy, then overlaid to visualise GFP-
positive epicardial outgrowth (white arrows). Scale bar 500µm. (B) Epicardial 
outgrowths from sham (white bar) and cryoinjury (grey bar) surgeries in wild-type 
zebrafish hearts were quantified. Data are represented as mean outgrowth areas in 
mm2 ± S.E.M ***p ≤ 0.0005 (p = 0.0003), n = 10-12. (C) Epicardial outgrowth GFP-
positive signal was measured in explants from sham (white bar) and cryoinjured (grey 
bar) Tg(wt1b:GFP) zebrafish hearts. Data are represented as mean GFP-positive areas 
in mm2 ± S.E.M (p = 0.0713), n = 4 (D) Lysates obtained from sham-operated (Sh) and 
cryoinjured (CI) in vitro epicardial outgrowths from wild-type zebrafish hearts were 
immunoblotted for Nrp1 and Gapdh n = 2  
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Following 7 days in vitro culture, sham-operated and cryoinjury epicardial samples were 

harvested and protein lysates examined by Western blot analysis. The lysates were 

immunoblotted for Nrp1, using Gapdh as a loading control (Figure 54D).  Epicardial 

lysates obtained from cryoinjured samples expressed increased Nrp1 levels compared 

with sham-operated samples. However, statistical analysis of the Western blot data was 

not possible due to the insufficient number of experimental replicates. Observations 

from immunofluorescence images that displayed increased Nrp1 levels in the 

epicardium after cardiac damage (see Figure 32 and Figure 40) would support higher 

Nrp1 expression in cryoinjured outgrowth lysates; however, I could not draw a definitive 

conclusion from the current n numbers. 

 Epicardial outgrowth is impaired in the absence of nrp1a  

I next examined the epicardial outgrowths in wild type and nrp1a mutant fish apices 

following sham surgery and cryoinjury (Figure 55A-D). Epicardial outgrowths were 

observed in nrp1a mutant fish samples from both surgical procedures (Figure 55B and 

D). Epicardial outgrowth area quantification revealed no increase in epicardial 

expansion following cryoinjury in mutant zebrafish (p = 0.859), whereas a significant 

increase was displayed by explants from wild type cryoinjured hearts as compared with 

sham-operated hearts consistent with data in Figure 54 (Figure 55E; p = 0.0061). Wild 

type and mutant epicardial expansions from sham-operated explants were similar (p = 

0.9732). Furthermore, a significant decrease in cryoinjury-induced epicardial expansion 

was observed in mutants when compared with wild type (p = 0.0203): wild type 

outgrowth area (4.35 ± 0.53 mm2) was almost two times greater than that of mutants 

(2.65± 0.46 mm2). These observations indicate that cryoinjury-induced epicardial 

expansion is severely impaired in the absence of full-length Nrp1a, but that under basal 

conditions, Nrp1a activity is dispensable for epicardial outgrowth in vitro. The data 

indicate a role for Nrp1a in either epicardial migration or proliferation after cardiac 

damage. 
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Figure 55 Epicardial migration is impaired in nrp1a mutants 

The apex of wild type (A, C) and nrp1asa1485/sa1485 (B, D) zebrafish ventricles were collected 5 days post sham surgery (A, B) or 
cryoinjury (C, D) and cultured on fibrin gels for 7 days. Epicardial cells migrate into the fibrin gels (dotted black lines). Scale bar 
1 mm. (E) Epicardial outgrowths were measured for each condition after 7 days culture, data are represented as mean 
outgrowth ± S.E.M (n = 5-12) *p < 0.05, **p < 0.001 
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 Epicardial proliferation is unaffected by Nrp1a 

To investigate whether the lack of injury-induced epicardial expansion observed in nrp1a 

mutants is due to impaired proliferation or migration, I assessed epicardial cell 

proliferation in heart sections. Samples obtained from WT and mutant hearts 7 dpci 

were immunostained for proliferative cell nuclear antigen (PCNA) and Raldh2 (expressed 

in activated endocardium and epicardium following injury)(Figure 56A). Raldh2 positive 

cells of the epicardium were counted, and the proportion of PCNA positive cells 

calculated. Quantification showed no significant difference in epicardial proliferation 

between WT and nrp1a mutant cryoinjured hearts (p > 0.999) (Figure 56B). These 

observations suggest that Nrp1a does not play a role in injury-induced epicardial 

proliferation, and that, therefore, the impaired expansion is likely a result of 

compromised migration and/or EMT that enhances the migratory potential of the 

epicardium.  
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Figure 56 Epicardial proliferation in nrp1a mutants 

(A) Immunofluorescence of wild type and mutant hearts 7 dpci 
immunostained for PCNA and Raldh2. White dotted line demarcates 
Raldh2 positive epicardium border, arrows indicate PCNA positive 
epicardial cells. IA‐ injured area. (B) Percentage of PCNA positive 
epicardial cells in WT versus mutant hearts 7dpci. n=3 where each n is 
a mean of 3 fields of view from one heart. p>0.05  
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 Rat epicardial cell in vitro studies 

Reagents and pharmacological inhibitors specific to zebrafish are limited. Additionally, 

the culture of epicardial cells is an intricate procedure and requires a minimum of 3 to 5 

hearts to generate sufficient protein lysate usable for Western blotting. Therefore, to 

better understand the role of NRP in the regulation of candidate signalling pathways in 

the epicardium, I carried out in vitro experiments using adult rat epicardial cells (these 

cells were a generous gift from Dr Nicola Smart and were previously described in Wada 

et al. (2003)). Cells were infected with adenovirus containing either scrambled (Scr) or 

NRP1 targeted (Sh1) short hairpin (Sh) RNA (shRNA) (viruses were generated as 

described in Pellet-Many et al. (2015)). Upon stimulation by growth factors, cells were 

lysed and immunoblotted for ERK phosphorylation. 

VEGF is a well characterised ligand for NRP1 (Soker et al., 1998) and has been associated 

with mammalian embryonic epicardial EMT (Tomanek et al., 2006) and migration (Tao 

et al., 2013). Therefore, I assessed the effect of NRP1 knockdown on epicardial VEGF 

response. There was a trend for an increased ERK phosphorylation following VEGF 

stimulation (Figure 57A), but this did not reach statistical significance (p = 0.1179, n = 3) 

(Figure 57B). Similarly, a trend for reduced VEGF response was observed after NRP1 

knockdown (Figure 57A), but was not found to be statistically significant (p = 0.5122). 

These experiments are in the process of being repeated using siRNA, which may lend 

greater statistical weight to the results generated so far and decipher whether VEGF 

signalling is being mediated by NRP1 in the epicardium. 

Pdgfbb was demonstrated to mediate epicardial EMT via Pdgfrβ following ventricular 

resection essential for cardiac repair in zebrafish. PDGF is also a recognised NRP1 ligand 

(Banerjee et al., 2006; Dhar et al., 2010; Pellet-Many et al., 2011). Thus, I examined rat 

epicardial cell responses to PDGFBB. I assessed the phosphorylation of one of the PDGF 

downstream targets, ERK, following PDGF stimulation. PDGFBB clearly increased ERK 

phosphorylation indicating that rat epicardial cells respond to PDGF and target the 

MAPK/ERK pathway (Figure 57C). PDGFBB stimulation induced a significant increase in 

ERK phosphorylation when compared with serum free (SF) conditions (p = 0.0367) 



 

214 

 

(Figure 57D). NRP1 knockdown showed reduced ERK phosphorylation after PDGFBB 

stimulation when compared with scrambled RNA in 2 out of the three repeated 

experiments (Figure 57C). However, a large variation in protein band quantification and 

the low number of repeat experiments resulted in no clear trend or overall effect after 

NRP1 knockdown on PDGFBB in rat epicardial cells (p = 0.1529) (Figure 57D). 

It has been previously reported that Fgf signalling in the epicardium is essential for 

zebrafish epicardial EMT to mediate neovascularisation of the injured area (Lepilina et 

al., 2006); moreover, FGF is implicated as a NRP1 ligand (West et al., 2005). Therefore, I 

further examined rat epicardial cell responses to FGF. Both Scr and Sh1 treated rat 

epicardial cells demonstrated a robust increase in ERK phosphorylation upon FGF 

stimulation (Figure 58A). This demonstrated that ERK is a downstream target of FGF 

signalling in epicardial cells, as previously characterised in proepicardial cells (van Wijk 

et al., 2009; Vega-Hernandez et al., 2011). Indeed, FGF stimulation induced a significant 

increase in ERK phosphorylation when compared with serum free (SF) conditions (p 

≤0.0001). NRP1 knockdown did not affect ERK phosphorylation after FGF stimulation 

when compared with Scr-treated rat epicardial cells (p = 0.3770 n = 3) (Figure 58) 
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Figure 57 Rat epicardial signalling in vitro 

Western blot analysis of rat epicardial cells infected with adenovirus containing either 
scrambled (Scr) control or NRP1 (Sh1) short hairpin RNA and stimulated with VEGF (A) or 
PDGFBB (C). Quantification of band intensities are represented as phosphorylated ERK/total 
ERK ratios ±S.E.M (B and D). White bars represent scrambled samples; grey bars represent 
Sh1 samples. Solid fill bars represent non-stimulated cells (SF- serum free) and striped bars 
represent growth factor stimulated samples. n= 3 *p ≤ 0.05 
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Figure 58 Rat epicardial FGF signalling in vitro 

(A) Western blot analysis of rat epicardial cells infected with adenovirus containing either 
scrambled (Scr) control or NRP1 (Sh1) short hairpin RNA and stimulated with FGF (B) 
Quantification of band intensities are represented as phosphorylated ERK/ERK ratio ±S.E.M. 
White bars represent scrambled samples; grey bars represent Sh1 samples. Solid fill bars 
represent non-stimulated cells (SF- serum free) and striped bars represent growth factor 
stimulated samples. n= 3 ****p < 0.0001, ***p ≤ 0.0001 
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6.2 Discussion 

 Epicardial cells are cultured in vitro from ventricle apices  

Because the heart contains a heterogeneous population of cells, I used three transgenic 

GFP reporter lines to confirm the identity of the outgrowth cell population from 

cryoinjured ventricle apices. Outgrowth GFP signal was exclusively detected in 

cryoinjured Tg(wt1b:GFP) samples in agreement with data showing that Wt1b is 

expressed by a subpopulation of activated epicardial cells in vivo after injury (Peralta et 

al., 2014). Wt1b encodes a transcription factor that drives expression of EMT markers 

such as snai1 and N-cadherin in mammals (Martinez-Estrada et al., 2010).  

Retinaldehyde-specific dehydrogenase type 2 (Raldh2) is a cytosolic enzyme that 

produces the hormone, retinoic acid. In zebrafish, it is expressed in the epicardium and 

endocardium during cardiogenesis and re-expressed after cardiac damage (Keegan et 

al., 2005; Kikuchi et al., 2011b). Epicardial outgrowths from cryoinjured hearts displayed 

uniform cytoplasmic Raldh2 protein expression, indicating they are made of cells of 

epicardial lineage (Figure 53). Raldh2 is also expressed in the endocardium after injury 

(Kikuchi et al., 2011b), therefore Raldh2 positive cells could also originate from the 

endocardium. Nevertheless, given the absence of GFP signal from Tg(fli1a:GFP) apices 

(Figure 52B,) and by ensuring that only the ventricle apex outer surface is in contact with 

the fibrin gel matrices, it is unlikely that the Raldh2 positive cells represents an 

endocardial-derived population. Though it cannot be ruled out that some minimal cell 

contamination by other cell types, such as fibroblasts, might be present. The 

‘cobblestone’ monolayer morphology of the explant outgrowths was strongly indicative 

of an epicardial phenotype, and did not suggest contamination by mesenchymal cells. 

Together, these data validated the presence of epicardial cells in the outgrowths, 

demonstrated the induction of Wt1b expression after cryoinjury in the in vitro heart 

explant setting, and confirmed that this was a useful model for examining the role of 

Nrp1 in epicardial outgrowth and associated cell functions.   
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 Epicardial expansion is increased in cryoinjured ventricle apices in vitro 

The finding in this chapter that cryoinjured explants undergo significantly larger 

epicardial expansions compared to shams agrees with observations from the authors 

who developed the cardiac explant protocol using resected hearts. In resection, as in 

cryoinjured hearts, the epicardium proliferates extensively and, a subpopulation 

delaminates from the epicardial layer to migrate into the subepicardial fibrin scar 

(Lepilina et al., 2006; Poss et al., 2002). The injury-induced increase in epicardial 

expansion observed in vitro cultures likely recapitulates the epicardial cell behaviour, 

exhibiting a migratory phenotype following injury. These cells move into the fibrin gel 

that mimics the subepicardial fibrin scar tissue produced following cardiac damage. It is 

interesting to note that epicardial cells migrate outwards, in the direction of the matrix, 

whereas in vivo they migrate into the sub epicardial space. The cardiac tissue is present 

throughout the protocol, yet the epicardial cells migrate into the matrix. Endogenous 

paracrine signals that direct epicardial cells into the underlying damaged region may 

compete with the culture medium growth factors or external gel fibrin to influence 

epicardial cells to migrate into the gel.  

Given that the epicardial cells of damaged hearts exhibit a migratory phenotype, it is 

intriguing that cells also migrate from sham-operated hearts. Indeed, the epicardium 

initiates a robust response after extensive cardiac damage, but sham operations have 

also been demonstrated to elicit an epicardial response, though to a lesser extent (Itou 

et al., 2014). Therefore, the epicardium is likely partially activated during the sham-

operation following tissue handling and the opening of the chest cavity during the 

preparation of the sham protocol. Furthermore, the process of making explants and 

culturing them will likely induce some degree of activation and outgrowth. As sham 

surgery inflicts less extensive tissue damage in comparison with cryoinjured samples, 

the epicardium is only mildly activated and expands to a lesser extent than injured heart 

epicardial cells. This is supported by observations of sham versus cryoinjured hearts 

from Tg(wt1b:GFP) fish. A clear increase of GFP signal was detected in cryoinjured 

explant outgrowths when compared with shams, indicating greater epicardial activation 
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following cardiac damage. This system provides a good model to study epicardial 

activation whereby cells exhibit a similar physiological response to injury in vitro.  

 Epicardial cells express Nrp1 in vitro 

All epicardial cells from the zebrafish cardiac explants were Nrp1 positive and were 

localised to the cytoplasm, the perinuclear region and at the membrane. Epicardial cells 

derived from nrp1asa1485/sa1485 mutant hearts were immunostained with an antibody 

specific for the NRP1 C-terminus. Nrp1 signal from immunostained mutant epicardial 

cells was notably decreased in comparison with WT hearts. Moreover, Nrp1 signal 

localised at the membrane and perinuclear region observed in WT outgrowths, was no 

longer evident in the mutants. This suggests that Nrp1a localises, at least, to the 

membrane and perinuclear region in zebrafish epicardium, and also likely within the 

cytosol. The data also implies that the most predominantly expressed Nrp1 isoform in 

zebrafish epicardial cells is Nrp1a. This observation is also supported by Western blot 

experiments that showed a stronger Nrp1a band in epicardial cell lysates (Figure 54D) 

and strong nrp1a mRNA localisation in the epicardium using ISH (see Figure 32).  

Nrp1a mutant epicardial outgrowths displayed abnormal F-actin filament morphology 

that could point to a role for Nrp1a cell-cell or cell-ECM interactions. 

Immunofluorescence demonstrated co-localisation of Nrp1 with F-actin at the cell-cell 

contact edges of membranes. Additionally, NRP1 is implicated in cytoskeleton regulation 

and focal adhesion turnover activity, via p130Cas and synectin interactions (Naccache 

et al., 2006; Seerapu et al., 2013). An abnormal F-actin cytoskeleton was observed twice 

in the two experiments performed. Nevertheless, it cannot be ruled out that the fibrin 

gel in these preparations was distorted and that this affected cytoskeleton organisation. 

Further experiments are required to determine whether the cytoskeleton of nrp1a 

mutant fish consistently display abnormal morphology. Additional staining with tight 

junction markers present in the epicardium such as E-cadherin and Zonula occuldens-1 

(ZO-1) could be carried out to obtain a clearer tight junction structure. A role for Nrp1a 

in epicardial cell integrity and cytoskeletal function could provide explanation for the 

abnormal epicardial phenotype occasionally observed in vivo (see Figure 50). 
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 Nrp1a is required for injury-induced epicardial activation 

Under basal conditions nrp1a does not affect in vitro epicardial migration suggesting 

alternative pathways, or that compensation by Nrp1b is sufficient to mediate epicardial 

expansion from sham operated apices. As described in section 6.2.2, following 

cryoinjury, the epicardium becomes activated, thus enhancing the migratory response 

of epicardial cells. This injury-induced increased epicardial expansion does not occur in 

nrp1asa1485/sa1485 outgrowths, suggesting a requirement for Nrp1a in injury-induced 

epicardial activation. Outgrowth occurs via epicardial cell migration and proliferation. 

My data implicate a role for Nrp1a in the migration of epicardial cells rather than in their 

proliferation, since the latter was shown to be unaffected in the absence of Nrp1a in 

vivo. Several reports have associated NRP1 activity with EMT and cell migration in 

mammalian cells (Chu et al., 2014; Evans et al., 2011; Pellet-Many et al., 2011; Tao et 

al., 2013; Tomanek et al., 2006), two mechanisms key to the epicardial response to 

cardiac damage. It is unclear, at this stage, whether Nrp1a plays a role in epicardial EMT 

initiation and/or migratory potential. Thorough characterisation of the expression of 

EMT and mural cell markers (such as snail, slug, N-cadherin and alpha fibronectin, 

smooth muscle actin), and of components of signalling pathways involved in migration, 

both in cultured epicardial cells and in vivo in WT and nrp1a mutant fish, will be 

necessary to clarify Nrp1 cellular and molecular mechanisms involved in epicardial 

migration and/or EMT.  

 Candidate signalling pathways mediated by NRP1 in rat epicardial cells 

Unfortunately, more extensive studies using the rat epicardial cells were prevented due 

to time constraints and difficulties with reproducibility during protocol optimisation 

(virus titres and availability). Nevertheless, the data hint at a role for NRP1 in the 

regulation of epicardial cell VEGF and PDGFBB responses. NRP1 not does not appear to 

modulate FGF-induced MAPK/ERK signal pathway in rat epicardial cells. FGF2 was used 

in this study as it has been previously characterised to induce an epicardial response in 

vitro (van Wijk et al., 2009), whereas Fgf17b was identified as the isoform required for 

zebrafish heart regeneration in vivo (Lepilina et al., 2006); thus the different FGF 
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isoforms may induce differential pathway stimulation and vary in their NRP1 

dependence. 

Further analysis of the rat epicardial cells stimulated with other candidate signal 

molecules (such as TGF) could shed light on molecular pathways activated in zebrafish 

epicardial cells during regeneration. I examined solely the MAPK/ERK signal pathway, 

however, this is only one of the many downstream pathways triggered following growth 

factor stimulation. The MAPK/ERK signal pathway is associated with cell proliferation. 

From my previous observations in zebrafish heart sections, it seems unlikely that NRP1 

is required for epicardial proliferation; hence, the lack of significant effect on ERK 

phosphorylation following NRP1 knockdown in rat epicardial studies support these data. 

The role of Nrp1a in zebrafish injury-activated epicardium was deduced to be more likely 

due to modulation of EMT and/or migration; therefore, it would be important to study 

candidate downstream targets associated with EMT (such Snail and Vimentin) and 

migration (such as p130Cas, Focal adhesion kinase and Paxillin). Lastly, NRP1 is a co-

receptor, and likely enhances the RTK ligand interaction response, and may facilitate 

receptor autophosphorylation. Therefore, examining the extent of receptor 

phosphorylation in the NRP1-depleted cells may give an indication as to whether NRP1 

plays a direct role in receptor activation. 

The rat immortalised epicardial cell line was derived from embryonic samples (Wada et 

al., 2003), and will likely model the embryonic-profile adopted by epicardial cells 

following cardiac damage. In vitro studies in zebrafish epicardial cells present several 

problems. First of all, the number of zebrafish hearts required for epicardial protein and 

signalling analysis is impractically large due to the small cell numbers generated from a 

single apex. Additionally, pharmacological reagents and antibodies specific to zebrafish 

are limited, but more readily accessible for mammalian samples. As the rat epicardial 

cell line is immortalised, signalling data can be obtained at high throughput and at a 

greater scale. On the other hand, a cell line does not exactly recapitulate the behaviour 

of primary cells. The intention was to take the data collected from rat epicardial 

signalling studies and validate them in zebrafish epicardial physiology. Although 
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conservation of key signal pathways amongst vertebrates seem largely conserved, it is 

uncertain whether the rat epicardial cell line initiates the same signal pathways that 

would occur in vivo in the zebrafish.  

6.3 Summary  

In this chapter I have demonstrated that: 

 I can successfully carry out an in vitro assay to culture epicardial cells from adult 

zebrafish heart explants 

 Cryoinjury increases the rate of in vitro epicardial expansion 

 Epicardial cells express Nrp1 in the perinuclear region, cytosol and at the 

membrane and its expression increases after cardiac damage 

 Nrp1a is required for injury-induced epicardial expansion, likely linked to 

migration and cell-cell junction regulation.  

 NRP1 may be important for the mammalian epicardium response to PDGFBB and 

VEGF, but current data is too limited to be able to draw firm conclusions. 
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7 Discussion 

The candidate pathways and molecular mechanisms that govern zebrafish heart 

regeneration remain poorly characterised. It is recognised that during regeneration, the 

heart adopts a more embryonic profile and that cell signals produced by 

cardiomyocytes, inflammatory cells, endocardium and the epicardium co-ordinate many 

key cellular responses essential to regeneration  (de Preux Charles et al., 2016a; Evans 

et al., 2013; Kikuchi et al., 2011b; Lepilina et al., 2006). Amongst the cardiac repair-

promoting cytokines are Vegfaa, Pdgfbb, Tgfβ and Fgf, required to orchestrate epicardial 

activation, neovascularisation and cardiomyocyte proliferation, key aspects of 

regeneration (Chablais and Jazwinska, 2012; Kim et al., 2010; Lepilina et al., 2006; Marin-

Juez et al., 2016). All of these growth factors are implicated as neuropilin ligands (Glinka 

and Prud'homme, 2008; Pellet-Many et al., 2011; Soker et al., 1998; West et al., 2005). 

Neuropilins are multifunctional co-receptors initially identified for axonal guidance and 

vascular development, and have since been linked to regulation of other physiological 

processes (Kawasaki et al., 1999; Kitsukawa et al., 1995; Takashima et al., 2002). 

Neuropilins have not previously been investigated in the context of zebrafish heart 

regeneration, and neuropilin activity in the zebrafish heart is poorly characterised. To 

build upon current knowledge of the regenerative response, I set out to characterise the 

expression and function of neuropilins during zebrafish heart regeneration. The key 

findings of this PhD study are as follows: 

 Neuropilin isoforms are upregulated within the injured area of the ventricle. 

 Nrp1 localises to the active endocardium and epicardium, neovasculature and 

migrating subepicardial cardiomyocytes during the regenerative process. 

 Mutant nrp1a zebrafish, lacking full length Nrp1a, are viable and present no 

morphological phenotype, but display a delayed and aberrant regenerative 

response. 
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 I have identified a novel role for Nrp1a in the epicardial activation associated 

with zebrafish heart regeneration. 

7.1 Relevance and quantification of the zebrafish cryoinjury model  

I chose to perform the cryoinjury model of cardiac damage in the zebrafish because, 

unlike the resection model (another very commonly used regeneration technique), 

cryoinjury damages the heart in a localised region without the removal of cardiac tissue. 

However, thermal shock-induced cardiac damage by the cryoinjury model does not 

exactly recapitulate the ischemic injury and the pathophysiological mechanisms of 

myocardial infarction (MI)-induced cardiac damage in humans. Both result in 

inflammation and a similar fibrotic tissue composition, and cause necrosis and apoptosis 

of cardiomyocytes amongst other cardiac cell types (Christia et al., 2013; Dobaczewski 

et al., 2010; Manuel Gonzalez-Rosa et al., 2011). Coronary vessel occlusion would be the 

most appropriate procedure to induce cardiac damage, however this is technically 

impossible to achieve in the zebrafish. The zebrafish heart is very small, approximately 

1 mm in width, location and ligation of the major coronary vessels would be technically 

challenging and difficult to create a reproducible injury. Moreover, the zebrafish heart 

is highly trabeculated, therefore the coronary vasculature is not the only means by 

which the cardiomyocytes have access to oxygen which could diffuse from the blood 

present in the ventricle.  

The physiology of the zebrafish heart differs to mammalian hearts, they have a two-

chambered heart that beats at a lower pressure and higher frequency than typically 

observed in humans, however these parameters are comparable considering the 

differences in organism size (Tsai et al., 2011). These functional differences could 

contribute to conditions that favour regeneration in the zebrafish over that of adult 

mammals. Additionally, although the zebrafish heart is proportional for its size, the 

number of cardiomyocytes lost after cardiac damage in the zebrafish is minimal in 

comparison to humans after MI. The sheer number of cardiomyocytes required to 
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replenish cardiac damage in humans may also contribute to the limited regenerative 

response, whereas zebrafish have less cardiomyocytes overall to replace.  

In this study, heart regeneration was measured using sections of several different 

hearts; this required the sacrifice of each fish before analysing the cardiac damage, 

rather than monitoring regeneration of the same heart in a longitudinal study. This 

means that variations between surgeries may not be accounted for, although initial 

analysis of my surgical technique showed that I could injure the heart in a reproducible 

manner. One way to monitor regeneration the zebrafish longitudinally would be to use 

optically clear fish, such as the TraNac, expressing a cardiomyocyte reporter, such as 

cmlc2: GFP and capture heart fluorescence of the same fish at different time points 

following the injury. However, as the heart is beating in the live animal, an algorithm 

would have to accurately image and quantify fluorescence.   

I selected 6 serial sections that span across the entire heart to quantify overall injury 

size. It would be possible quantify injury of all sections of the entire heart, however, in 

order to comply with the principles of the 3Rs (Replacement, Reduction and 

Refinement), I used some of the serial heart sections for other staining procedures, such 

as immunofluorescence and in situ hybridisation. Therefore, injury size may not be 

exact, but will be an accurate representation of the percentage of the heart damaged. 

Although software plugins are available to quantify scar tissue in an automated manner, 

the quantification was carried out manually because it is technically more accurate. As 

a result, some small degree of bias may inadvertently have been introduced, as I was 

not fully experimentally blinded for the quantification of the heart injuries. 

Nevertheless, I have discussed the quantification method with Prof Nadia Mercader, 

who first established the model, and followed the technique reported in the literature. 

I did not specifically and systematically record additional measurements for every single 

fish used in the study. For example, the length and weight of each fish was not recorded 

for each corresponding heart collected and the exact size of the heart before sectioning 

was not recorded. Heart size is correlated to animal size; therefore, some animals may 
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sustain different extents of injury due to natural variations in size. Nevertheless, we used 

animals of similar ages and sizes. Overall anatomical features and comparison of heart 

size were recorded and analysed for a representative sample of individuals (WT and also 

mutant fish) and we did not find any difference between the groups of animal used. 

Finally, I did not record fish density in the tank following the surgeries. The number of 

fish in the tank would affect how much food each of them receive as a similar ration is 

given to each tank regardless of fish density. It is not known if nutritional access affects 

regenerative capacity.  

Quantification of the cryoinjuries showed that, although the size of the injured area 

reduced over time, 100% of hearts did not fully recover and on average at 60 dpci 2% of 

the ventricle mass remained with a scar. This is a minimal scar; however, it does highlight 

that the extent of some injuries may have been more severe than others or that the 

regenerative capacity of fish varies slightly between animals. Previous studies on 

zebrafish heart regeneration report complete regeneration between 60 and 130 dpci 

depending on extent of lesion and injury method (Manuel Gonzalez-Rosa et al., 2011; 

Poss et al., 2002)  

7.2 Neuropilins are upregulated after cardiac damage 

Neuropilin expression has been characterised in the embryonic zebrafish heart 

(Bovenkamp et al., 2004; Martyn and Schulte-Merker, 2004; Yu et al., 2004). In this 

project I provide the first description of neuropilin expression in the uninjured and 

regenerating injured adult zebrafish heart at both the mRNA and protein levels. Data 

gathered throughout this study show that several cells types are Nrp-positive pre- and 

post-cardiac damage (Table 9). Evidence for a possible homeostatic role of nrp1a and 

nrp2b in the normal uninjured heart is provided by expression of these isoforms in 

uninjured hearts. Following cardiac damage all nrps exhibited localised expression 

adjacent to or within the injury, indicating an injury-induced response and a likely 

positive role of Nrps in heart regeneration.  
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I have demonstrated for the first time that 3 of the 4 neuropilin isoforms are upregulated 

in the zebrafish ventricle within the first three days of cryoinjury. The first three days 

following cardiac damage mark the inflammatory phase of regeneration. During the 

inflammatory response after cardiac injury, leucocytes infiltrate the injured area 

(Chablais and Jazwinska, 2012; de Preux Charles et al., 2016a; Fang et al., 2013); 

concomitantly,  neovessels invade the lesion (Marin-Juez et al., 2016), and the 

epicardium is activated (Kikuchi et al., 2011b; Wang et al., 2013b), these events are 

essential to propagate subsequent regenerative processes. Neuropilins have been 

implicated in the innate and adaptive immune response (Dejda et al., 2014; Fantin et al., 

2010) and could serve to modulate Vegf signals secreted by and leucocytes and hypoxic 

cells at the inflammation site (Leibovich et al., 1987; Yoshida et al., 1997). Furthermore, 

NRP is associated with vascular permeability increase in a VEGF- dependent and 

independent manner (Roth et al., 2016; Wang et al., 2003). These reports support a 

possible link of the neuropilin contribution to the inflammatory component of cardiac 

damage via response to locally secreted Vegf, that facilitate leucocyte migration and 

extravasation from circulating blood through Nrp1 positive endocardium.  

Furthermore, neovascularisation, which commences within 15 hours of cardiac damage, 

has recently been shown to depend on Vegfaa signalling (Marin-Juez et al., 2016). 

Immunofluorescence imaging of Tg(fli1a:GFP) zebrafish hearts at 1 dpci revealed that 

neovessels infiltrating the injured area express Nrp1. NRPs form holoreceptors with 

VEGF and VEGFRs to mediate angiogenesis (Soker et al., 1998; Takashima et al., 2002) 

and have been shown to regulate vessel development in the zebrafish embryo (Martyn 

and Schulte-Merker, 2004). These reports support the potential role of Nrps in 

mediating neovascularisation in the injured area in response to VEGF.  

Over 600 genes are differentially expressed after cardiac damage in the zebrafish heart  

(Lien et al., 2006). Of the selected genes examined through qPCR in this study, vegfc was 

one of the most strikingly upregulated. Increase of VEGFC in ischaemic tissue has also 

been previously identified in other species (Witzenbichler et al., 1998). Interestingly my 

mRNA analysis showed that the temporal patterns of nrp2a and vegfc expression 
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paralleled each other. Convincing evidence exists for NRP2 in VEGFC-mediated 

lymphangiogenesis and EMT (Gemmill et al., 2017; Jeltsch et al., 1997; Kawakami et al., 

2002; Parker et al., 2015) and could point to Vegfc/Nrp2-mediated lymphangiogenesis 

via the VEGF-C receptor, vegfr3, though the latter was not measured. Re-establishment 

of lymphatic vessels is necessary for draining excess fluid after inflammation and aids 

cardiac recovery (Klotz et al., 2015). It is possible Vegfc could form a complex with Vegfr3 

and Nrp2 to replenish lymphatic vessel supply to the injury lesion in zebrafish heart 

regeneration to aid cardiac repair.  In zebrafish hearts, both vegfc upregulation and 

neovascularisation are stimulated within a day of the injury, concomitantly with nrp2a 

expression. Furthermore, VEGF-C stimulates endothelial PDGFbb expression to regulate 

capillary integrity (Onimaru et al., 2009). An additional function of Vegfc in zebrafish 

response to cardiac damage could be to enhance Pdgfbb secretion that induces 

epicardial EMT and cardiomyocyte migration.
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Table 9 Cellular expression of nrps in adult zebrafish heart 

 Basal Cardiac damage 

Cell type Nrp1 Nrp2 Nrp1 Nrp2 

Cardiomyocytes - + + + 

Endocardium + - ++ - 

Epicardium + - ++ ++ 

Leucocytes ? ? ? + 

Fibroblasts ? ? ? ? 

Endothelium + - + - 

Lymphatic vessels ? ? ? ? 

Nerves ? ? ? ? 

Mural cells ? ? ? ? 
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7.3 Regeneration is delayed in Nrp1a mutant  

I established a homozygous nrp1a mutant fish line and confirmed that the mutation 

resulted in the loss of full length Nrp1a. No morphological abnormalities were identified 

upon superficial examination of mutants, and growth and behaviour were similar to 

those of wild type fish. However, it was noted that nrp1a mutant survival to adulthood 

was approximately half that seen in wild types. Therefore, homozygous inheritance of 

the nrp1asa1485/sa1485 mutation is not embryonic lethal in zebrafish, but does compromise 

survival to maturation, possibly suggesting some effect on development. The mutation 

is global; therefore, all tissues in the nrp1asa1485/sa1485 zebrafish express the truncated 

Nrp1a. It is possible that other organ systems, that require nrp1a, don’t fully mature 

until adulthood such as the nervous system and adaptive immune system, but these 

were not investigated in this study. Depending on the mutagenesis method employed 

and gene targeted, disruption of one allele in a zebrafish may result in clear phenotypes, 

or does not induce deleterious phenotypes due to genome duplication and redundancy 

(Kok et al., 2015; Postlethwait et al., 1998; Schulte-Merker and Stainier, 2014). Despite 

the presence of nrp1b in the nrp1asa1485/sa1485 mutants there must be underlying late 

stage developmental events that require nrp1a and cannot be compensated for by 

nrp1b, resulting in premature mortality. Further investigations are required to 

understand why survival to adulthood is diminished in the nrp1a mutant zebrafish.  

Following cardiac damage, the mutants demonstrated delayed compact layer recovery 

and scar resolution when compared with wild types. This is, to my knowledge, the first 

report of an impairment of heart regeneration resulting from ENU mutagenesis of a 

single allele. At this stage, it is not certain how regeneration is delayed, nor were there 

any indications as to why the delay does not cause mortality. It could be postulated that 

Nrps are required for efficient signal interpretation and enhanced sensitivity to growth 

factors to mediate heart regeneration, thus loss of Nrp1a causes regeneration to take 

place over a longer duration. It is interesting to note that while in situ hybridization of 

wild type hearts revealed overlapping nrp isoform expression in the first 3 days following 

cardiac damage, only nrp1a remained expressed in the epicardium proximal to the 
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lesion at 14 dpci, coincident with the time at which nrp1a mutants begin to present 

delayed regeneration. It could be possible that overlapping expression by other nrp 

isoforms in the early stages of cardiac repair can compensate for full length Nrp1a loss. 

Upon the time point by which nrp1a is exclusively expressed in the epicardium, a 

phenotype arises due to lack of other nrp isoforms available to carry out compensatory 

mechanisms.  

It is also plausible that evolutionarily genetic drift between Nrp1a and Nrp1b has 

resulted in loss of gene redundancy. The two genes diverged over 100 million years ago 

(Postlethwait et al., 1998) and have since acquired different post-translational 

modifications that have resulted in distinct protein mass and  present differential 

developmental tissue expression. During cardiac regeneration, the isoforms do not 

display identical localisation, exemplified by their differential expression in epicardial 

cells. Moreover, Nrp1b is not upregulated in response to loss of full-length Nrp1a. These 

differences point to divergent physiological roles for the two Nrp1 ohnologs, and could 

potentially lead to an inability to fully compensate for one another.  

Nrp1a mutants presented impaired compact myocardium recovery following cardiac 

damage. After cryoinjury, new myocardium is derived from pre-existing spared 

cardiomyocytes at the periphery of the lesion. The cardiomyocytes dedifferentiate, 

proliferate and invade the subepicardial fibrin deposits to enclose the collagen scar 

tissue and heal the compact myocardium (Jopling et al., 2010; Kikuchi et al., 2010). 

According to immunofluorescence co-staining generated in this study, cardiomyocytes 

are for the most part Nrp1 negative, and Nrp1 expression was observed exclusively in 

the migrating cardiomyocytes in the subepicardial space. It was more recently shown 

that cardiomyocytes migrate toward PDGF signals produced by endocardial progenitor 

cells during embryonic development (Bloomekatz et al., 2017). Furthermore, Pdgfbb 

signalling is essential for zebrafish heart regeneration, perturbed cardiomyocyte 

recovery and wound closure impairment were reported in the absence of PDGF signals 

(Kim et al., 2010). NRP is a co-receptor for PDGF and has been demonstrated to 

modulate chemotaxis in response to PDGF in smooth muscle cells and metastatic breast 
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cancer cells (Banerjee et al., 2006; Pellet-Many et al., 2011). Zebrafish cardiomyocytes 

adopt an embryonic profile after cardiac damage (Jopling et al., 2010) and therefore 

likely recapitulate developmental cardiomyocyte behaviour during regeneration. 

Therefore I present a model whereby the dedifferentiated migrating subepicardial 

cardiomyocytes express Nrp1 in order to enhance PDGF-induced chemotaxis (Figure 59A 

and B). In nrp1a mutants the loss of full-length Nrp1a impedes this mechanism and limits 

efficient cardiomyocyte migration, and results in delayed wound closure observed in the 

mutants.  

 

Pdgfbb 

Migration

cytoskeleton

Pdgfrβ

Nrp1

Epicardium and 
endocardium  

secreted Pdgfbb

Injury-activated epicardium

Cardiomyocyte 
chemotaxis

Subepicardial space 
fibrin matrix

lesion

cardiomyocyteA) B)

p130Cas?
synectin?

Figure 59 Pdgf-induced cardiomyocyte migration 

Schematic representation of (A) Pdgf signalling in Nrp1-positive dedifferentiated 
cardiomyocytes. Pdgfbb form holoreceptor complexes with Pdgfrβ and Nrp1. The signal is 
propagated by Nrp1 via intracellular docking protein p130Cas and synectin to rearrange 
cytoskeleton and focal adhesions to (B) mediate cardiomyocyte chemotaxis in the direction 
of Pdgfbb gradient. Activated endocardium and epicardium proximal to injury lesion secrete 
Pdgfbb and direct migrating cardiomyocytes through the fibrin matrix into the underlying 
subepicardial space leading to the recovery of compact myocardium and wound closure.  
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7.4 Novel Nrp1 role in epicardium 

Epicardial activation is a central mediator of cardiac repair paracrine and autocrine 

signals that coordinate cardiomyocyte proliferation, revascularisation and induce 

epicardial EMT (Lepilina et al., 2006). The epicardial in vitro studies carried out in this 

study report previously undescribed neuropilin expression in the adult zebrafish 

epicardium, and the first description of neuropilin expression in the epicardium of any 

adult species. A novel neuropilin role in the injury-activated response is supported by 

impaired epicardial outgrowth after cardiac damage in the absence of full-length Nrp1a. 

These data also for the first time identify a perturbed epicardial function resulting from 

a single allele mutation.  

Loss of full-length Nrp1a impaired epicardial expansion, but did not alter epicardial 

proliferative capacity. Given that NRPs influence cell migration and EMT in other 

physiological settings (Chu et al., 2014; Evans et al., 2011; Frankel et al., 2008; Pellet-

Many et al., 2011), I propose that Nrp1a enhances migratory signals from the underlying 

injured tissue and facilitates directed epicardial cell movement (Figure 60). Furthermore 

it is possible that epicardial EMT governed by FGF and PDGF require Nrps to act as a co-

receptor for these signals (Figure 60).   
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Figure 60 Nrp1a function in the epicardium 

Diagrammatic representation of hypothesised epicardial neuropilin functions in zebrafish 
quiescent and injury-activated epicardium. Nrp1a is endogenously expressed in the 
epicardium of uninjured hearts to regulate cardiac homeostasis. Upon injury, activated 
epicardium increase Nrp1a (and Nrp2a) in order to enhance epicardial sensitivity to paracrine 
signals and increase EMT potential. Nrp1a facilitates epicardial derived cell (EPDC) chemotaxis 
into underlying subepicardial space towards neovessels and mediate transdifferentiation to 
pericytes to support vessel maturation. It is unclear at this stage whether Nrp1a may induce 
EPDC transdifferentiation to cardiac fibroblasts to produce extracellular matrix (ECM) that 
provide scaffolding for neomyocardium.  
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7.5 Future directions 

I have characterised neuropilin expression patterns in the adult zebrafish heart under 

basal conditions and during regeneration. I then followed on to describe regenerative 

phenotypes observed in mutants lacking nrp1a. I was unable to fully define the 

molecular pathways Nrps modulate and what roles Nrps mediate in the cell types 

identified to express them during regeneration. Taking into consideration the data 

gathered throughout my thesis, several questions remain and additional experiments 

could help further characterisation of the role of neuropilins in zebrafish heart 

regeneration.   

 Neuropilin mutant lines  

To understand neuropilin functions in zebrafish heart regeneration, I used nrp1a 

mutants, primarily due to availability of this line. Data generated in this project with in 

situ and qPCR support previous studies that document differential expression patterns 

of all four nrps (Bovenkamp et al., 2004; Martyn and Schulte-Merker, 2004; Yu et al., 

2004), and point to distinct nrp isoform physiological functions. Generating fish with 

functional mutations in the nrp1b gene could provide complementary information and 

help to define the nrp1 ohnolog-specific contribution to zebrafish heart regeneration. A 

nrp1bfh278 fish is now available for purchase from the Zebrafish International Resource 

Center (ZIRC) ENU project. A point mutation induces in a non-sense mutation codon at 

amino acid 116 resulting in a premature stop in the a1 (first CUB) domain in the 

nrp1bfh278 mutant allele. This will likely yield non-functional soluble Nrp1b fragments 

that cannot interact with known Nrp1 ligands. I began to establish the nrp1bfh278 mutant 

fish line towards the end of my project; however, identification of a homozygous mutant 

was not achieved before my studies concluded. Availability of the nrp1bfh278 line creates 

the possibility to generate nrp1a and nrp1b double mutants, although complete nrp1 

deletion will likely cause lethality as seen in nrp1 mammalian mutants (Takashima et al., 

2002) and morpholino knockdown (Martyn and Schulte-Merker, 2004). However, if the 

zebrafish survive to adulthood in the absence of both nrp1 ohnologs, it would also be 

interesting to study regenerative mechanisms in Nrp1-/- fish, which would likely cause 
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a more robust phenotype and better reflect a mammalian NRP1 null physiological 

response. 

Due to fish line availability and antibody compatibility, nrp1 was the primary focus of 

this study; however, nrp2 isoforms also show regulated expression in the adult zebrafish 

heart after cardiac damage. Additionally, nrp2b is the dominantly expressed isoform of 

all four nrps in the cardiac tissue under healthy and injured conditions, consistent with 

developmental cardiac expression of nrp2b (Bovenkamp et al., 2004). Moreover, nrp2b 

was not upregulated in qPCR, but showed clear redistribution of expression to the 

endocardium and within the lesion using in situ hybridisation. Nrp2a was strikingly 

upregulated at 1 and 3 dpci in the qPCR and at 3 dpci nrp2a was exclusively epicardial in 

expression. This presents another example of likely differential roles of nrp ohnologs; it 

appears that nrp2b may constitutively regulate cardiomyocyte activity, whereas nrp2a 

plays a role in injury-activated epicardium. Publications describing NRP2 activity in the 

adult myocardium and epicardium have not been described, other than in development, 

where NRP2 is expressed by a sub-population of cardiovascular precursors that can 

differentiate to endothelial, smooth muscle and cardiomyocyte cell types (Ding et al., 

2015). Mutant fish for nrp2a are now available to purchase through ZIRC, but a mutant 

for nrp2b is still unidentified. I attempted to generate nrp2b mutant zebrafish using 

CRISPR technology but was unsuccessful at inducing disruption of the genomic DNA 

sequence. Compelling evidence suggests a role for nrp2 in zebrafish heart development, 

adult homeostasis and regenerative processes, its role in heart regeneration warrants 

investigation. I predict a phenotype would arise from the disruption of the nrp2 genes 

that would present cardiac deformities and altered function in the absence of nrp2b, 

and lymphatic vessel supply and epicardial EMT may also be impaired without nrp2a.  
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 Role of neuropilins in specific cells types 

Neuropilins were identified in several cardiac cell types in the zebrafish heart during this 

study (Table 9); however the Nrp functions in these cells remain to be elucidated. 

Further validation of the nrp1a mutant phenotypes could be performed with rescue 

experiments. For example, in the in vitro epicardial outgrowth assay, transfection of cells 

with nrp1a transcript could be performed. If injury-induced epicardial expansion is 

restored upon exogenous nrp1a mRNA delivery in nrp1asa1485/sa1485 mutants, it would 

confirm Nrp1a a key regulator of this process.  

To extend my current observations in the nrp1a mutant it would be beneficial to 

generate cell-type specific reporter lines in the mutants or carry out immunofluoresence 

with cell-type specific markers. Nrp1 was shown to be constitutively expressed by 

endocardium and coronary vessels and likely plays a role in angiogenesis after cardiac 

damage. Using a Tg(fli1a:GFP):nrp1a mutant or immunostaining for endothelial-specific 

markers such as Tie2 or ERG would enable me to visualise vessels. Quantification of 

neovessels would allow me to compare vascular density in the injured area at varying 

timepoints in both wild type and mutant hearts, and conclude whether Nrp1a is 

necessary for revascularisation. These studies have been commenced, but are currently 

at a preliminary stage. 

Cardiomyocyte proliferation and migration could also be assessed in the mutants and 

compared with wild type. I hypothesise Nrp1a to play a role in dedifferentiated 

subepicardial cardiomyocyte migration towards Pdgfbb gradient in the injury (Figure 

59). To test this hypothesis, I could generate a nrp1a mutant that expresses the 

Tg(cmlc2:GFP) and isolate and culture primary cardiomyocytes in vitro (Figure 

61)(Sander et al., 2013). They could then be stimulated with different growth factors 

and their cell movements tracked by images captured at regular intervals using a tissue 

incubator installed with a fluorescent microscope (such as the Incucyte Zoom, Essen 

Bio). The imaging software could then calculate rates of migration and compare 

different treatments. I have carried out the cardiomyocyte in vitro culture as 

demonstrated in Figure 61, but no functional studies have commenced using this model. 
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I could support in vitro observations with tropomyosin immunostaining of regenerating 

wild type and mutant heart sections; these data could then be used to calculate and 

compare subepicardial cardiomyocyte numbers in the different genotypes. Moreover, 

an in vitro model of myocardial infarction in zebrafish cardiomyocytes has been 

developed using hypoxic chambers: hypoxia stimulates cardiomyocyte proliferation 

(Sander et al., 2013). I could investigate how loss of Nrp1a affects cardiomyocyte 

proliferation in response to ischemic stress. 

This study revealed that epicardial migration was perturbed in nrp1a mutant 

outgrowths. Understanding the role of full-length Nrp1a in epicardial activation could 

be expanded by generating a mutant that expresses an activated-epicardial reporter 

transgene such as Tg(wt1b:GFP), in which the GFP signal would be detected in activated 

epicardial cells undergoing EMT only. Comparison of activated epicardial-specific GFP 

Figure 61 Zebrafish cardiomyocyte in vitro 
culture 

Image captured of primary cardiomyocyte 
culture derived from Tg(cmcl2:GFP) adult 
zebrafish hearts visualised under green 
fluorescence. Cells can be isolated and cultures 
for several weeks on fibrin gels. Scale bar 
250µm. 
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expression in wild type and nrp1a mutant cryoinjured heart outgrowths would provide 

some evidence as to whether Nrp1a is required for epicardial wt1b expression, and thus 

likely regulate EMT. I would predict that Nrp1a plays a role in EMT and that the GFP 

signal would be reduced in nrp1a mutant outgrowths. Other EMT markers could then 

be analysed using Western Blot or immunofluorescent staining to compare EMT markers 

of the epicardial outgrowths.   

Neuropilins were originally identified in brain and nervous tissue; nerves innervate the 

subepicardial and subendocardial tissue to regulate heart rate according to physiological 

demands (Volders, 2010; Zipes, 2008). After cryoinjury transmural damage causes death 

of all cardiac layers in the affected region; thus nerves will likely need to regenerate in 

the repairing cardiac tissue. During embryonic development semaphorin3a (SEMA3A) is 

expressed in the heart to mediate innervation of cardiac tissue (Chen et al., 2013; Ieda 

et al., 2009). It could be expected that Sema3a will be re-expressed during regeneration 

of the zebrafish heart. Type 3 semaphorins (such as SEMA3A) require neuropilins as 

obligate co-receptors to signal through plexin receptors and mediate axonal guidance 

(Gu et al., 2002; Takahashi et al., 1999). It would be interesting to investigate re-

innervation of cardiac tissue following cryoinjury and monitor nerve induced regulation 

of cardiac electrophysiology in the heart in the absence of nrp isoforms. Furthermore 

SEMA3C has been associated with endothelial to mesenchymal transition during 

embryogenesis (Plein et al., 2015), and its expression could be recapitulated in the 

zebrafish activated endocardium that also undergoes endoMT in response to cardiac 

damage to contribute mural cells and fibroblasts (Kikuchi et al., 2011b).  

 Neuropilin signalling and function in heart regeneration 

Persistent scar, delayed wound closure and impaired epicardial expansion were the 

main functional phenotypes identified during regeneration in the nrp1a mutants. It is 

unclear from my studies whether these would cause impaired cardiac function after 

regeneration in nrp1a-deficient fish. I would like to apply further organ functional assays 

to the mutants such as ECG, echocardiography or MRI to assess cardiac output 

parameters and electrical conductivity after cryoinjury.    
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The ultimate aim of this project was to dissect the mechanisms underlying zebrafish 

heart regeneration. However, the results from this study may have implications for 

human heart regeneration, and therefore future work should seek to test the 

applicability of my findings to humans recovering from MI. It will therefore be important 

to characterise and evaluate mammalian neuropilin expression and function in the adult 

mammalian heart. I’d like to translate the findings of this thesis to mammalian models 

of regeneration. Neonatal mice can regenerate heart tissue up to seven days following 

birth (Porrello et al., 2011) and have shown partial regeneration after cryoinjury 

(Mizutani et al., 2016; Polizzotti et al., 2016; Strungs et al., 2013). I could assess NRP 

expression profiles in neonatal mammals and generate inducible cell type-specific NRP 

knockouts to investigate whether NRP function is important in mammalian heart 

regeneration. 

Functional assays and signalling experiments of adult zebrafish primary epicardial 

cultures is limited due to low cell numbers in outgrowths and lack of reagents specific 

to zebrafish proteins and pathways. One way to circumvent limitations of epicardial in 

vitro zebrafish studies, would be to model epicardial physiology in an established and 

immortalised rat embryonic epicardial cell line (Wada et al., 2003). These studies were 

commenced during the thesis, but it was not possible to generate data supporting 

robust conclusions. The intention of these studies was to identify candidate epicardial 

signal pathways modulated by NRPs using pharmacological agents and transfections. 

Neuropilin expression can be manipulated using siRNA and adenovirus in vitro and 

growth factors can be exogenously supplied into the culture medium to stimulate 

isolated pathways. This permits the opportunity to characterise NRP activity in response 

to specific signals. Additionally, functional assays are possible in the rat epicardial cell 

line. For example, NRPs are regulators of cell migration and the transwell migration 

assay could be applied to epicardial cells in vitro to monitor epicardial cell chemotaxis 

towards a gradient of candidate chemokines (Figure 62) following NRP-knockdown or 

upregulation. The number of migrated cells toward stimulant could help deduce the 

physiological role of neuropilins in epicardial migration. I would expect the chemotactic 
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response to be impaired in the absence of NRPs and provide a mammalian system that 

supports observations in zebrafish epicardial outgrowths.  

 

 Implications for translational research 

Given that Nrp1a and possibly other Nrps are important for cardiac recovery, they could 

serve as therapeutic targets in mammalian cardiac repair post-MI. This would require 

strong pre-clinical evidence for a role of NRPs in mammalian heart regeneration, which 

could be obtained in the neonatal mouse model, and also evidence that NRPs are 

implicated in the human heart following MI. For example, it could be examined whether 

NRP expression changes in human hearts after MI, if samples were available. Direct 

targeting of Nrps to promote a regenerative response would be difficult to achieve 

unless a way could be found specifically to ‘activate’ NRPs. NRP expression could be 

increased by delivery of viral vectors encoding NRPs. However, previous attempts to 

Upper 
chamber 
solution

Transwell
insert

Migrating cells

Lower 
chamber 
solution

Polymer 
membrane 
8µm pores

Tissue culture 
plate well

Figure 62 Schematic representation of transwell migration assay 

An insert containing cells intended for assessment of migration properties in a serum-free 
medium is placed into a tissue culture plate well. The well contains either serum-free medium 
(for control experiments) or serum-free medium supplemented with chemotactic stimuli 
(such as growth factors). Cells that respond to the chemoattractant migrate through the insert 
pores towards the chemotactic signals and adhere to the other side of the membrane.  
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stimulate therapeutic angiogenesis in ischaemic heart disease by over-expressing VEGF-

A, for example, has not produced clear patient benefit (Zachary and Morgan, 2011). 

7.6 Conclusions 

The current models I propose for the role(s) of neuropilins in zebrafish heart 

regeneration are as follows. Nrp1a contributes to quiescent epicardial homeostasis, 

whereas Nrp2b is required for cardiomyocyte maintenance.  Following cardiac damage, 

Nrp1a and Nrp2a are upregulated in the epicardium to increase epicardial sensitivity to 

injured tissue paracrine and autocrine factors. Their targeted expression also serves to 

enhance EMT and mediate chemotaxis of EPDCs into lesions to contribute mural cells 

and facilitate neovasculature maturation. The epicardial EMT response is likely 

recapitulated in the endocardium to promote endothelial to mesenchymal transition 

and this also requires Nrps to detect cellular cues. Invading neovessels require Nrp1 to 

respond to Vegfaa signals that induce angiogenesis to replenish blood supply in the 

injury lesion. Furthermore, Nrp1 expression is implicated in the response of migrating 

cardiomyocytes to mediate Pdgfbb-induced cell migration into the subepicardial fibrin 

matrix to facilitate compact myocardium recovery. Loss of nrp1a results in reduced 

compact myocardium replenishment and dampened epicardial activation and 

outgrowth expansion, which ultimately delay cardiac regeneration.  
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