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Abstract 

Accurate characterization of genetic diversity is essential for understanding population demography, 

predicting future trends and implementing efficient conservation policies. For that purpose, molecular 

markers are routinely developed for non-model species, but key questions regarding sampling design, 

like calculation of minimum sample sizes or the effect of relatives in the sample, are often neglected. 

We used accumulation curves and sibship analyses to explore how these two factors affect marker 

performance in the characterization of genetic diversity. We illustrate this approach with the analysis of 

an empirical dataset including newly optimized microsatellite sets for three Iberian amphibian species: 

Hyla molleri, Bufo calamita and Pelophylax perezi. We studied 17-21 populations per species (total n 

= 547, 652 and 516 individuals, respectively), including a reference locality in which the effect of 

sample size was explored using larger samples (77-96 individuals). As expected, FIS and tests for 

Hardy-Weinberg equilibrium and linkage disequilibrium were affected by the presence of full sibs, and 

most initially inferred disequilibria were no longer statistically significant when full siblings were 

removed from the sample. We estimated that to obtain reliable estimates, the minimum sample size 

(potentially including full sibs) was close to 20 for expected heterozygosity (HE), and between 50 and 

80 for allelic richness (AR). Our pilot study based on a reference population provided a rigorous 

assessment of marker properties and the effects of sample size and presence of full sibs in the 

sample. These examples illustrate the advantages of this approach to produce robust and reliable 

results for downstream analyses. 

 

Keywords: Accumulation curves, Allelic richness, Diversity profile, Expected heterozygosity, Minimum 

sample size, Sibship analysis. 
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Introduction 

Accurate characterization of genetic diversity is a key step towards understanding the ecological and 

evolutionary histories of populations and, consequently, to predict future trends and implement 

efficient conservation measures (Hamilton 2009; Habel et al. 2015). The continuous improvement of 

molecular techniques and computation power, associated with the development of model-based 

statistical analysis methods, are greatly expanding our ability to estimate demographic parameters 

and the universe of hypotheses that can be tested about genetic processes (Excoffier and Heckel 

2006; Buckley 2009; Guichoux et al. 2011). As a consequence, complex questions regarding the 

detection of cryptic diversity, quantification of gene flow and population status assessment have 

become approachable in recent times (Broquet and Petit 2009; Segelbacher et al. 2010; Luikart et al. 

2010; Marko and Hart 2011; Arntzen et al. 2013; Fahey et al. 2014). In a scenario of global 

biodiversity loss, the possibility of early identification of genetically impoverished and/or isolated 

populations is paramount for informing management policies (Tallmon et al. 2004; Scherer et al. 

2012). Thus, accurate evaluation of the amount and spatial distribution of genetic diversity is essential 

for research and conservation issues. For that purpose, new molecular markers are routinely 

optimized for non-model species (Guichoux et al. 2011; Gallardo et al. 2012; Habel et al. 2014). 

However, questions of sampling design with potential consequences on the reliability of inferences, 

like calculation of the minimum sample size or the effect of excessive relatives in the sample, are often 

neglected.  

Different indexes are commonly used to summarize genetic diversity. Most of these indexes 

rely either on allele counts, like allelic richness (AR), or on allelic frequencies, like observed and 

expected heterozygosity (HO and HE). Indeed, AR and HE represent two particular cases of a 

potentially continuous diversity measurement profile, in which rare alleles are more or less accounted 

for (Chao and Jost 2015). While AR can be more useful to evaluate the evolutionary potential of 

populations (Petit et al. 1998; Leberg 2002; Pruett and Winker 2008), accurate estimation of allelic and 

genotypic frequencies is more important for many other downstream analyses (Allendorf and Phelps 

1981; Cornuet and Luikart 1996; Jones and Wang 2010a). It has been documented that AR is heavily 

dependent on sample size (Banks et al. 2000; Foulley and Ollivier 2006; Miyamoto et al. 2008; Pruett 

and Winker 2008). Comparing AR across populations with different sample sizes is possible by means 

of rarefaction methods (El Mousadik and Petit 1996; Kalinowski 2004; Pruett and Winker 2008), but 
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the accuracy of estimates is still limited by the smallest sample in the dataset. In contrast, 20-30 

genetic samples have proven sufficient for estimating HE in some empirical studies (Miyamoto et al. 

2008; Pruett and Winker 2008; Hale et al. 2012). However, these studies assessed the ‘sufficiency’ of 

sample either visually for separate markers (Hale et al. 2012) or by exploring the approximation to final 

combined multilocus estimates (Miyamoto et al. 2008; Pruett and Winker 2008). To our knowledge, no 

method has been applied to calculate threshold-based minimum sample sizes for individual markers, 

but this information could improve the efficiency of ecological, evolutionary or conservation studies 

(including long-term genetic monitoring programs) by aiding in the process of marker set selection. 

The sufficiency of sample has important implications for the accuracy and precision of genetic 

estimates, but it is difficult to assess empirically (Fitzpatrick 2009; Alex Buerkle and Gompert 2013; 

Chao and Jost 2015). In fact, the minimum sample size is marker-, species-, and even population-

dependent so it should be addressed through pilot studies, but these are often expensive and time-

consuming (Taberlet and Luikart 1999). Alternatively, the performance of genetic markers can be 

supervised by exploring how cumulative curves approach final estimates obtained from a large sample 

of a reference population (e.g., Miyamoto et al. 2008). Different measures can be used to characterize 

the approximation of subsample estimates to final estimates, such as the root mean square error of 

estimates (Miyamoto et al. 2008; Pruett and Winker 2008) or the successive slopes of the 

accumulation curve (Chao et al. 2013). Here we adapt a method originally derived for diversity 

accumulation curves (Ariño et al. 2008) to calculate the minimum sample size required for each 

marker to estimate AR and HE. This method could be routinely performed in reference populations to 

test the suitability of molecular markers to address ecological and conservation questions, and so 

inform marker set choice and sampling design. In this study, we complement this approach with the 

calculation of diversity profile curves as proposed in Chao and Jost (2015). 

Similarly, the presence of excessive relatives in the sample can also bias population 

inferences. All natural populations contain relatives, so including relatives is necessary for 

representative sampling. Unfortunately, knowing the exact proportion of relatives of each class in a 

wild population is practically impossible. Therefore, it is difficult to assess whether a sample, even with 

known or inferred genealogical relationships among individuals, represents the population from which 

it was drawn (Waples and Anderson 2017). In samples with an excess of relatives, alleles present in 

large (or small) families might be over- (or under-) represented, thus leading to inaccurate estimation 
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of population allelic frequencies (Jourdan-Pineau et al. 2012). An excess (compared to random 

sampling) of relatives in the sample is a frequent problem when tissue sampling is performed among 

early stage individuals in iteroparous species with overlapping generations, a scenario in which the 

aggregation of single cohort relatives (especially full sibs) is common in many taxa (Goldberg and 

Waits 2010). Estimates obtained from such samples may not be representative of the whole 

population, which can sometimes lead to biased conclusions (Anderson and Dunham 2008; Goldberg 

and Waits 2010; Rodríguez-Ramilo and Wang 2012; Rodríguez-Ramilo et al. 2014). It has been 

suggested that removing siblings from the samples can reduce bias in unsupervised Bayesian 

clustering programs such as STRUCTURE (Anderson and Dunham 2008; Rodríguez-Ramilo and Wang 

2012), although this approach might often be counter-productive in certain circumstances (Waples and 

Anderson 2017). However, the effect of removing full sibs from genetic samples on genetic diversity 

indexes (such as AR and HE) and in commonly employed tests of genotypic proportions such as 

Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) has not been explored in wild 

populations. 

Here we introduce a method for calculating the minimum sample size required to assess the 

genetic diversity at each individual marker in a dataset, and explore the effect of full sibs on genetic 

diversity characterization. We used specifically optimized microsatellite markers to score multilocus 

genotypes for three co-distributed pond-breeding amphibians: the Iberian treefrog (Hyla molleri), the 

Natterjack toad (Bufo calamita) and the Iberian green waterfrog (Pelophylax perezi). These three 

species are iteroparous, with overlapping generations, and molecular protocols are required to obtain 

information about their demography, mating system and genetic structure. We estimated several 

genetic diversity indexes in 17-21 populations per species and assessed the effect of the presence of 

full sibs in the samples by comparing results including or excluding full sibs. We also used large 

samples (n = 77-96 individuals) in a reference population where the three species co-occur to explore 

the effect of sample size on single-locus AR and HE estimates and to calculate minimum required 

sample sizes for each marker. We discuss the benefits of this approach for establishing efficient 

sampling design protocols in conservation genetics studies. 

 

Materials and methods 
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Tissue sampling 

Between 2010 and 2015 we collected larval tissue samples of H. molleri (n = 547), B. calamita (n = 

652) and P. perezi (n = 516) in 17-21 localities per species along both slopes of Sierra de 

Guadarrama, in the Iberian Central System, encompassing different habitat types and with altitudes 

ranging between 875 and 1720 m.a.s.l. (see Table 1 and Fig. 1). In one of the localities (Valdemanco) 

we collected 77 to 96 tadpoles of each of the three species. In the remaining locations, 19 to 36 

tadpoles per locality were collected (Table 1). For each species in each locality, we used nets to 

sample larvae from the same year cohort. Surveys were performed uniformly throughout the water 

surface and samples included individuals of different body sizes, to minimize potential sampling biases 

arising from the aggregative behavior of full sib tadpoles. Small tadpoles were euthanized and 

preserved in absolute ethanol. In the case of large tadpoles, tail tips were clipped and stored in 

absolute ethanol for subsequent DNA extraction, and larvae were released back in the same pond of 

capture. 

 

DNA extraction and genotyping 

Two enriched partial genomic libraries, one for H. molleri and another for B. calamita, were prepared 

at the Sequencing Genotyping Facility, Cornell Life Sciences Core Laboratory Center (CLC) (New 

York, NY) following the method described in Gutiérrez-Rodríguez & Martínez-Solano (2013). They 

were generated from DNA of one tadpole of H. molleri collected in Arzila, Portugal (40.20º N, 8.65º W) 

and one adult male of B. calamita collected in Valdemanco, central Spain (40.85º N, 3.64º W). From 

each of the two libraries, 60 loci containing microsatellite motifs (30 trimers and 30 tetramers) between 

5 and 12 repetitions long were selected for further screening. Although some tri-nucleotides might be 

under selection, we don’t expect that it would dramatically affect our results, except if selection was 

very strong, which is highly unlikely. This notion was further supported by the similar polymorphism 

and diversity profiles shown by the tri- and tetra-nucleotide loci in this work (see Table 2 and 

Supplementary Information), and also by other demographic analyses performed with different 

subsets of loci (data not shown). For DNA purification, optimization of multiplex reactions, genotyping 
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and allele scoring, we followed the methods described in Sánchez-Montes et al. (2016). Final sets of 

markers consisted of 18 and 16 newly developed microsatellite loci for H. molleri and B. calamita, 

respectively (see Supplementary Material), and 15 previously optimized markers for P. perezi 

(Sánchez-Montes et al. 2016). These sets of markers were used to genotype the samples of each 

species. We selected a subsample for repetition of the DNA amplification process (between 3.7% and 

17.8% of the sample in each species) to check for consistency of genotype calling.  

 

Characterization of genetic diversity and effect of full sibs 

For characterization of genetic diversity, allelic richness (AR), observed (HO) and expected (HE) 

heterozygosity and FIS were calculated for each locus in each population using GENALEX 6.5 (Peakall 

and Smouse 2006). Tests for departures from HWE and evidence of LD were performed with GENEPOP 

v.4.3 (Raymond and Rousset 1995; Rousset 2008), with 10,000 dememorisation steps, 1,000 batches 

and 10,000 iterations per batch. The Bonferroni sequential correction was applied to account for 

multiple testing (Rice 1989). The presence of null alleles was assessed with MICRO-CHECKER v.2.2.3 

(Van Oosterhout et al. 2004). We calculated the information content of the markers by means of their 

informativeness for genetic relationship (R Info) using the software KININFOR (Wang 2006). The other 

information indexes calculated by the program were highly correlated with R Info in the three species 

(data not shown). Sibship analyses were performed in COLONY (Jones and Wang 2010b) to identify full 

sibs in each locality and to infer mistyping rates due to allele dropout and false allele scoring. All 

analyses for genetic diversity characterization were conducted both on the original genotype data 

(referred to as the complete samples) and on the data after excluding all but one of the identified full 

sibs in every full sib family from each population (referred to as the reduced samples). 

 

Effect of sample size 

We explored the effect of sample size on the estimates of AR and HE for each locus in the locality with 

the highest total sample size for the three species (i.e., the complete samples from locality 

Valdemanco, see Table 1). In order to compute approximate 95% confidence intervals for final AR and 

HE estimates (i.e., for the estimates obtained with the complete samples), we randomly produced 
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10,000 bootstrap samples for each locus, each with the same number of individuals as the whole 

sample. We calculated Simpson’s complementary diversity index in PAST v. 3 (Hammer et al. 2001); 

this index is identical to HE (HE  1-DS, where DS is Simpson’s dominance). We also quantified the rate 

of approximation to final AR and HE obtained by the molecular markers with increasing sample size, 

using 10,000 jackknifed subsamples of one, two, three...n individuals of the total sample, and obtained 

AR and HE accumulation curves for each locus. We used diversity functions in ESTIMATES (v.9.1.0, 

Colwell 2013, http://purl.oclc.org/estimates); this software provides expected S that is identical to AR, 

and 1/DS that we converted to HE.  

We used R (R Development Core Team 2008) to inspect the accumulation curves looking for 

asymptotic stabilization of AR and HE (see Supplementary Figures S1-3). Our criterion for defining 

“sufficient samples” was to minimize a Type-II (β) error (Snedecor and Cochran 1989) by selecting the 

first point along the section of curve that would persistently exceed the lower bound of the 

(bootstrapped) confidence interval of the final estimate, while no further points would consistently fall 

below. We summarized in boxplots the observed minimal sample sizes for each locus necessary to 

approximate final estimates of AR and HE. For comparison with our results, we also obtained empirical 

and Chao’s diversity profiles for each marker for values 0 ≤ q ≥ 3, by adapting the R script in Chao and 

Jost (2015, Appendix 8). The parameter q defines the sensitivity of the diversity estimate to the rarest 

categories in the sample, and most of the variation in the diversity profile is expected to be comprised 

within the interval q = [0,3] (Chao and Jost 2015). The empirical profile at q = 0 corresponds to AR 

measured as the total number of alleles (analogous to species richness 'S' in Chao and Jost 2015), 

and at q = 2 it approximates the Simpson’s diversity index (Chao, Ma and Hsieh 2015), which is 

complementary to HE, as stated above. 

 

Results 

 

Characterization of genetic diversity and effect of full sibs 

Almost all microsatellite markers were polymorphic in nearly all sampled populations (see 

Supplementary Tables S4-S6). The only exception was Hmol3.7, which was monomorphic in all 
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populations except for CAN (see Supplementary Table S4). This marker might result more informative 

at larger-scale studies and so we decided to describe it within the multiplex, although neither average 

FIS, nor minimum sample sizes could be calculated for this locus. Genetic diversity measures obtained 

with the reduced samples were very similar to those obtained with the complete samples (see 

Supplementary Tables S4-6), although FIS estimates changed slightly (see Table 2 and 

Supplementary Appendix S1). FIS and the allelic dropout rate (inferred from COLONY analyses) were 

highly correlated in the three species (H. molleri: Spearman’s rho = 0.57, p = 0.015; B. calamita: rho = 

0.85, p < 0.001; P. perezi: rho = 0.70, p = 0.005) although the trend was clearer in B. calamita, which 

showed the highest variance in the values of both FIS and allelic dropout rate (see Supplementary 

Figure S7). However, FIS was not correlated with false allele rate in any of the three species. 

Four markers of the H. molleri set and five markers of the P. perezi set showed significant 

deviations from HWE in more than one population in the complete samples (Table 2). However, after 

removing full sibs from the samples, no locus departed from HWE in more than one population (out of 

20 and 17 total localities of H. molleri and P. perezi, respectively, see Table 2 and Supplementary 

Tables S4 and S6). Only one marker (out of 18 total loci) in the H. molleri set (Hmol3.15) and four loci 

(out of 15 total loci) in the P. perezi set (Pper4.7, Pper3.1, Pper3.23 and Pper4.24) showed evidence 

of null alleles in more than one population (three populations at most), and these effects mostly 

remained after removing full sibs from the sample (see Supplementary Tables S4 and S6, 

respectively). In contrast, almost all loci in the B. calamita set were found to be out of HWE in some 

populations when using the complete samples. Five of them (Bcal4.6, Bcal4.14, Bcal4.2, Bcal3.26 and 

Bcal3.19, out of 16 total loci) still showed departures from HWE in 4-11 populations after removing full 

sibs from the samples (Table 2 and Supplementary Table S5). According to MICRO-CHECKER results, 

these five loci, as well as Bcal4.21, showed evidence of null alleles in many populations (see 

Supplementary Table S5).  

A few pairs of loci showed evidence of linkage disequilibrium (LD) across some populations in 

the complete datasets after applying the Bonferroni correction. One, three and three pairs of loci were 

in LD in more than 20% of the populations in the H. molleri, B. calamita and P. perezi sets 

respectively. The most widespread disequilibrium involved markers Bcal4.20 and Bcal3.26, which 

were in LD in 14 populations. However, none of these disequilibria remained significant in the reduced 

samples (data not shown). 
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Effect of sample size 

Minimum sample sizes required for approaching final estimates of AR and HE in each locus are 

summarized in the boxplots of Fig. 2. Median values ranged between 50 and 80 individuals for 

characterization of AR in each species, while less than 20 individuals were sufficient to estimate HE. 

Minimum sample sizes required for estimation of HE were highly correlated with marker polymorphism, 

measured as AR, in the three species (H. molleri: Spearman’s rho = 0.79, p < 0.001; B. calamita: rho 

= 0.67, p = 0.005; P. perezi: rho = 0.74, p = 0.002, see Fig. 2). In contrast, minimum sample sizes 

required for estimation of AR were negatively correlated with marker AR, although only significantly in 

the case of B. calamita (H. molleri: rho = -0.28, p = 0.270; B. calamita: rho = -0.61, p = 0.013; P. 

perezi: rho = -0.09, p = 0.738, see Fig. 2). Loci in the three marker sets showed different diversity 

profiles (see Supplementary Figures S4-6). The least polymorphic loci in each set showed flat profiles, 

but the most polymorphic loci showed a more or less decreasing function along the range of q. Profiles 

obtained following Chao’s correction for sampling bias were very similar to empirical profiles in most 

cases, although some highly polymorphic loci showed some differences at q = 0, like Hmol4.8 (15 

observed alleles vs. 23 alleles estimated by Chao’s correction), Bcal4.26 (42 vs. 45) or Pper4.7 (20 vs. 

28, see Supplementary Figures S4-6).  

 

Discussion 

A thorough empirical assessment of marker polymorphism and performance is a key step to evaluate 

their adequacy for genetic diversity characterization and therefore to inform marker set choice for 

future studies (Matson et al. 2008; Queirós et al. 2015). The moderate to high polymorphism observed 

in our marker sets (Table 2) suggests that a high power of resolution could be obtained by combining 

a subset of the most polymorphic markers in a single (or two) multiplex reaction(s), which might be 

useful e.g. for management purposes (Cornuet and Luikart 1996; Holleley and Geerts 2009; Harrison 

et al. 2013; Queirós et al. 2015). However. in studies including genetically impoverished regions, for 

instance near range borders (Rowe et al. 1999; Edenhamn et al. 2000; Allentoft et al. 2009), more loci 

could be necessary to obtain similar power of resolution, and these loci could be selected from each 
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set after testing their degree of polymorphism in the area of interest. Marker set composition should 

therefore be informed before addressing the study, to guarantee unbiased comparison among 

populations (i.e., using the same marker set for all sampling localities) while also avoiding problems 

caused by insufficient marker information. Mistyping rates are also essential to assess the practical 

utility of newly developed markers, but this information is often overlooked (Pompanon et al. 2005; 

Lampa et al. 2013). Inferred error rates in our markers rarely exceeded 0.05, except for the six 

markers of B. calamita in which we also detected evidence of null alleles (Supplementary Tables S1-

3). These markers showed dropout rates between 0.09 and 0.32 (Supplementary Table S2). In all 

three species, dropout rates inferred by COLONY were highly correlated with FIS, but this trend was 

more obvious in the case of B. calamita than in H. molleri and P. perezi, because larger variance was 

observed in the former species (Supplementary Fig. S7). These results highlight the usefulness of 

pedigree reconstruction in COLONY for the estimation of error rates since they are in agreement with 

HWE tests, which are based on FIS (Waples 2015). 

Our analyses of marker genotypes across many populations allowed assessing the effect of 

sampling full sibs on estimates of genetic diversity, which may be problematic when pedigree 

information is not available (Allendorf and Phelps 1981; Goldberg and Waits 2010). We identified full 

sibs in each population after reconstruction of one- or two-generation pedigrees (Jones and Wang 

2010a) and found that samples from some localities were mostly composed of full sibs (see Table 1), 

thus potentially misleading some downstream analyses (Anderson and Dunham 2008; Jourdan-

Pineau et al. 2012; Rodríguez-Ramilo and Wang 2012). However, removing all relatives from the 

sample is not always a good solution, because the degree of nonrandomness (with respect to sibship 

frequency) in empirical samples is unknown (Waples and Anderson 2017). More theoretical work, 

coupled with empirical data, is needed to derive guidelines about how best to account for this factor. 

Here we report some preliminary conclusions drawn from both theoretical (see Supplementary 

Appendix S1) and empirical work, with consistent results across species and populations. 

The presence of full sibs in our samples did not significantly affect estimates of genetic 

diversity (AR, HO and HE), although there were slight variations in FIS estimates (Table 2). 

Theoretically, full sibs in the sample are expected to affect the genotype distributions (see 

Supplementary Appendix S1). For this reason, FIS, HWE and LD are most affected, although the 

pattern of change is complex and dependent on the mating system (Goldberg and Waits 2010). As 
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expected, tests for HWE and LD were strongly affected by the presence of full sibs in the samples 

(Waples 2015), and most initially inferred disequilibria were no longer significant after removing full 

sibs (Table 2). While this could also be caused by the lower statistical power in some reduced 

samples due to reduced sample sizes, some consistent departures from HWE were still detected in 

many reduced samples of B. calamita (see Supplementary Tables S4-6). Five loci (Bcal 4.6, Bcal4.14, 

Bcal4.2, Bcal3.26 and Bcal3.19) departed from the expected HWE in more than 15% of populations in 

the reduced samples. Disequilibria in these five loci, as well as in Bcal4.21, were probably due to the 

presence of null alleles, as indicated by analyses with MICRO-CHECKER (Supplementary Table S5). 

These six markers are highly informative and can be useful in some analyses accounting for 

genotyping errors (such as sibship analyses in COLONY), but otherwise they should only be used when 

downstream analyses are robust to violation of HWE assumptions. Altogether, these results suggest 

that genetic diversity indexes (AR, HO, HE) are not affected by the presence of close relatives in the 

sample, at least in the absence of strongly unbalanced data structure (i.e. when there are not very 

large families combined with unrelated individuals in the same sample), such as in our case (see also 

Waples and Anderson 2017). In contrast, the presence of close relatives in the sample strongly affects 

the results of tests of HWE and LD, especially in small samples/populations. 

On the other hand, accounting for the minimum sample size required for genetic diversity 

characterization is crucial for the accuracy of results and the efficient design of monitoring programs 

(Wang 2002). Here we have adapted methods based on diversity accumulation curves (Ariño et al. 

1996; Ariño et al. 2008) by observing the rate at which jackknifed subsamples approach the 

confidence interval of bootstrapped replicates of the entire dataset and can no longer be statistically 

separated from each other at a pre-specified significance level (see Supplementary Figs. S1-3). Our 

threshold criterion was useful for defining a realistic minimum sample size in most markers, although it 

was dependent on the width of the 95% confidence interval (CI) of final estimates. As a consequence, 

in the case of markers with very narrow 95% CI, large sample sizes were required to reach the lower 

bound of the 95% CI. This resulted in an artificially inflated minimum sample size for AR estimation in 

some markers (see, for example, Hmol3.3, Bcal3.19 or Pper3.24 in Supplementary Figs. S1-3). 

Conversely, for some indexes with a very wide 95% CI, inferred minimum sample sizes were artificially 

low (e.g., HE curves for Hmol3.9, Bcal3.22 or Pper3.22 in Supplementary Figs. S1-3). Too wide (or 

narrow) 95% CIs in highly (or very little) polymorphic loci probably caused the negative relationship 
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between AR and the minimum sample size for AR estimation (Fig. 2). These problems associated with 

the calculation of minimum sample sizes are in essence caused by the potentially continuous diversity 

measurement profile (i.e., the parameter q), in which choosing a particular threshold value (e.g. 

choosing between AR or HE to characterize genetic diversity) necessarily involves some degree of 

arbitrariness. 

Furthermore, although our total sample sizes in Valdemanco can be considered large enough 

to characterize genetic diversity in pond-breeding amphibian populations, our final estimates cannot 

be taken as actual population parameters. As a consequence, these minimum sample sizes cannot be 

regarded as generally applicable to other systems. Rather, our goal is double: to encourage the 

general use of a simple method to explore the rate of approximation to final genetic diversity estimates 

with cumulative sample size (such as those applied in Miyamoto et al. 2008, Pruett and Winker 2008, 

Hale et al. 2012, Chao and Jost 2015, or in this paper), and to empirically calculate minimum sample 

size. Our method could be easily adapted to sequential sampling schemes where additional 

individuals are genotyped, and their alleles added to the pool at each step. Thus, additional sampling 

is no longer necessary when the added individual(s) do not significantly improve the estimates of AR 

and HE. This way, minimum sample sizes can be defined when required (e.g., for the design of 

sampling protocols). Nevertheless, since AR and HE are two particular cases of the continuous 

diversity measurement, we also followed Chao and Jost (2015)’s proposal of reporting the continuous 

diversity profile at the most relevant values of q. As expected, the most polymorphic loci in our 

datasets also showed more rare alleles and, as a consequence, their diversity profile varied through 

the range of q. In contrast, the profiles of the least polymorphic loci were largely flat (Supplementary 

Figs. S4-6). This is in agreement with the observed positive correlation between marker polymorphism 

and the minimum sample size required for HE estimation (Fig. 2). Empirical profiles were markedly 

similar to Chao’s profiles in most markers, suggesting that our empirical accumulation curves of AR 

and HE did not dramatically underestimate diversity (Supplementary Figs. S4-6). However, some 

differences arose between both profiles in some markers with alleles at low frequencies, like Hmol4.8, 

Bcal4.2, Bcal4.26 or Pper4.7 (Supplementary Figs. S4-6), which concordantly showed wide 95% CIs 

in their corresponding accumulation curves for AR estimation (Supplementary Figs. S1-3). Highly 

polymorphic loci are usually associated with rare alleles, and therefore higher sample sizes are 

required to estimate AR (but not necessary HE) with this markers. These results support the 
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usefulness of our method for reliable minimum sample size calculation and also for detecting possible 

diversity underestimations caused by loci with rare alleles. 

Our results highlight that the presence of full sibs can slightly alter FIS estimates and affect 

tests of HWE and LD. We proved that some disequilibria are no longer significant after removing full 

sibs from the samples, therefore allowing detection of truly problematic markers (e. g. those 

presenting null alleles). The minimum sample size is dependent on the marker(s) selected and should 

also be assessed in each case for the configuration of the final marker set (Harrison et al. 2013). The 

required sample size for genetic diversity characterization can be optimized from an exhaustively 

sampled population by means of accumulation curves and some threshold criterion. This methodology 

is easy to apply to any empirical dataset and can be readily used to help design sampling protocols for 

genetic monitoring studies. These two aspects are basic for the efficient design of ecological studies 

aiming to obtain reliable and comparable inferences about demography and genetic diversity 

distribution in non-model species. 
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Table 1. List of localities included in the present study. For each locality, the abbreviation (Abr), 
geographic coordinates and sample sizes for each species including (and excluding) full sibs are 
displayed.  

 

aIn Cabanillas de La Sierra, three samples of P. perezi were obtained in different years (2010 / 2013 / 

2014).

Locality 
 

Abr 
 

Coordinates 
 

H. molleri 
 

B. calamita 
 

P. perezi 
 

Alameda del Valle ALA 40.91º N 3.85º W - 24 (13) - 

Arcones ARC 41.13º N 3.73º W 30 (27) - 19 (14) 

Berrocal BRC 41.06º N 3.98º W - 30 (6) - 

Boceguillas BOC 41.31º N 3.66º W - 20 (1) - 

Bustarviejo BUS 40.85º N 3.68º W 30 (29) 28 (19) 30 (17) 

Cabanillas de la Sierraa CAB 40.85º N 3.65º W 22 (19) 30 (26) 20 (20) / 27 (20) / 30 (15) 

Cerceda CER 40.72º N 3.96º W 20 (16) 30 (14) 23 (18) 

Collado Hermoso HER 41.05º N 3.93º W 23 (7) - 32 (28) 

Colmenar Viejo COL 40.69º N 3.83º W 21 (18) 30 (7) - 

Dehesa de Roblellano ROB 40.86º N 3.63º W 30 (20) 36 (33) 23 (4) 

El Berrueco BER 40.93º N 3.57º W 21 (18) 29 (3) 20 (8) 

Fuenterrebollo FUE 41.33º N 3.93º W 20 (12) - 20 (10) 

Gargantilla del Lozoya GAR 40.95º N 3.72º W - 30 (27) - 

Gascones GAS 41.01º N 3.65º W 21 (19) - - 

La Pradera de Navalhorno PRA 40.88º N 4.03º W 22 (9) 30 (11) 23 (19) 

Lozoyuela LOZ 40.92º N 3.65º W - 28 (17) - 

Medianillos MED 40.76º N 3.68º W 21 (9) - 25 (20) 

Muñoveros MUN 41.20º N 3.95º W - 32 (16) - 

Navafría NAV 41.06º N 3.83º W - 30 (10) - 

Navalafuente NVL 40.81º N 3.68º W - 30 (5) - 

Puerto de Canencia CAN 40.87º N 3.76º W 25 (22) 28 (26) 22 (19) 

Puerto de La Morcuera MOR 40.84º N 3.83º W 30 (24) 20 (11) 22 (15) 

Puerto del Medio Celemín CEL 40.88º N 3.66º W - 30 (21) - 

Rascafría RAS 40.85º N 3.91º W 20 (18) - 22 (20) 

Santo Tomé del Puerto STO 41.19º N 3.59º W - 30 (8) 21 (17) 

Sauquillo de Cabezas SAU 41.19º N 4.06º W 20 (12) - 22 (10) 

Soto del Real SOT 40.76º N 3.80º W 20 (18) 30 (14) - 

Torrecaballeros TOR 41.00º N 4.02º W 34 (28) - - 

Turrubuelo TUR 41.32º N 3.59º W 21 (19) - 21 (15) 

Valdemanco VAL 40.85º N 3.64º W 96 (88) 77 (27) 94 (58) 
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Table 2. Mean (and standard deviation) of several indexes averaged across all sampled populations for 
every marker in each species. For those measures affected by the presence of full sibs in the sample (FIS, 
HW), estimates obtained in the reduced samples are also displayed for comparison. AR = allelic richness, 
HO and HE = observed and expected heterozygosity. HW: number of populations in which significant 

departures from Hardy-Weinberg equilibrium were detected in each marker.  

  Complete samples  Reduced samples 

Species Marker AR HO HE FIS HW FIS HW 

         

H. molleri Hmol3.7 1.05 (0.22) 0 (0.01) 0 (0.01) - 0 - 0 

 Hmol3.28 3.95 (1.1) 0.71 (0.15) 0.61 (0.11) -0.17 (0.23) 2 -0.18 (0.23) 0 

 Hmol4.2 2.75 (0.64) 0.5 (0.12) 0.45 (0.1) -0.12 (0.15) 0 -0.14 (0.18) 0 

 Hmol3.9 2.95 (0.94) 0.32 (0.19) 0.31 (0.16) -0.01 (0.22) 0 -0.02 (0.25) 0 

 Hmol3.3 3.05 (0.6) 0.37 (0.15) 0.35 (0.12) -0.04 (0.17) 0 -0.02 (0.23) 0 

 Hmol4.12 10.8 (3.09) 0.86 (0.12) 0.81 (0.1) -0.06 (0.12) 1 -0.05 (0.13) 0 

 Hmol4.16 8.5 (2.69) 0.83 (0.11) 0.78 (0.08) -0.05 (0.1) 0 -0.09 (0.12) 0 

 Hmol4.1 7.6 (2.19) 0.79 (0.09) 0.75 (0.07) -0.06 (0.09) 1 -0.06 (0.1) 0 

 Hmol4.9 4.3 (1.08) 0.65 (0.12) 0.6 (0.08) -0.09 (0.17) 0 -0.05 (0.18) 0 

 Hmol4.10 9.05 (2.93) 0.86 (0.09) 0.81 (0.06) -0.06 (0.07) 2 -0.05 (0.08) 0 

 Hmol3.22 6.3 (1.26) 0.8 (0.12) 0.75 (0.07) -0.07 (0.13) 1 -0.06 (0.15) 0 

 Hmol4.22 2.05 (0.39) 0.34 (0.18) 0.3 (0.15) -0.1 (0.18) 0 -0.1 (0.17) 0 

 Hmol3.15 3.85 (0.67) 0.61 (0.14) 0.59 (0.06) -0.02 (0.2) 0 -0.03 (0.22) 0 

 Hmol4.27 3.3 (0.73) 0.55 (0.2) 0.57 (0.11) 0.06 (0.26) 2 0.05 (0.26) 0 

 Hmol3.8 4.05 (1.05) 0.57 (0.15) 0.55 (0.13) -0.04 (0.2) 1 -0.07 (0.21) 1 

 Hmol4.11 2.15 (0.49) 0.27 (0.15) 0.27 (0.14) -0.02 (0.21) 0 -0.01 (0.23) 0 

 Hmol4.8 10.25 (3.18) 0.88 (0.09) 0.82 (0.06) -0.07 (0.1) 1 -0.07 (0.11) 0 

 Hmol4.29 10.35 (3.33) 0.86 (0.12) 0.83 (0.07) -0.04 (0.13) 3 -0.06 (0.11) 0 

         

B. calamita Bcal4.21 7.43 (2.09) 0.58 (0.17) 0.75 (0.07) 0.22 (0.21) 12 0.19 (0.19) 1 

 Bcal4.20 16.48 (5.65) 0.96 (0.04) 0.89 (0.04) -0.08 (0.08) 10 -0.11 (0.22) 0 

 Bcal4.8 15.57 (5.9) 0.89 (0.12) 0.86 (0.08) -0.04 (0.11) 5 -0.08 (0.25) 0 

 Bcal4.29 7.81 (1.72) 0.86 (0.08) 0.8 (0.07) -0.09 (0.16) 2 -0.13 (0.24) 0 

 Bcal4.16 4.38 (1.07) 0.61 (0.12) 0.57 (0.11) -0.09 (0.14) 0 -0.05 (0.21) 0 

 Bcal4.18 7.05 (1.32) 0.85 (0.07) 0.79 (0.05) -0.07 (0.12) 2 -0.1 (0.26) 0 

 Bcal4.3 9.76 (3.22) 0.82 (0.1) 0.81 (0.09) -0.02 (0.09) 6 0 (0.1) 0 

 Bcal4.6 7.05 (1.63) 0.65 (0.16) 0.77 (0.1) 0.15 (0.24) 11 0.17 (0.25) 4 

 Bcal4.14 9.05 (2.69) 0.57 (0.18) 0.82 (0.05) 0.3 (0.24) 18 0.28 (0.36) 9 

 Bcal4.2 16.81 (7.15) 0.71 (0.19) 0.88 (0.05) 0.2 (0.23) 20 0.11 (0.42) 11 

 Bcal3.26 12.76 (4.6) 0.63 (0.18) 0.85 (0.08) 0.25 (0.23) 17 0.23 (0.36) 11 

 Bcal4.24 8.95 (2.56) 0.87 (0.1) 0.82 (0.05) -0.07 (0.13) 4 -0.11 (0.24) 0 

 Bcal3.4 5.38 (1.56) 0.7 (0.19) 0.67 (0.18) -0.06 (0.11) 2 -0.08 (0.16) 0 

 Bcal3.29 4.24 (1.37) 0.44 (0.14) 0.48 (0.13) 0.08 (0.21) 3 0.03 (0.31) 0 

 Bcal3.19 6.57 (1.96) 0.43 (0.18) 0.73 (0.13) 0.42 (0.21) 15 0.37 (0.34) 8 

 Bcal4.26 21.14 (9.67) 0.95 (0.07) 0.9 (0.05) -0.06 (0.09) 12 -0.09 (0.23) 0 

         

P. perezi Pper4.25 13.16 (5.11) 0.88 (0.09) 0.86 (0.08) -0.03 (0.09) 2 -0.06 (0.13) 0 

 Pper4.15 8.79 (2.64) 0.81 (0.13) 0.8 (0.08) -0.01 (0.11) 0 -0.05 (0.11) 0 

 Pper4.28 4 (1.63) 0.55 (0.17) 0.52 (0.12) -0.06 (0.21) 0 -0.07 (0.2) 0 

 Pper3.9 6.21 (1.55) 0.71 (0.14) 0.69 (0.1) -0.02 (0.13) 0 -0.05 (0.1) 0 

 Pper4.5 3.11 (0.46) 0.64 (0.09) 0.63 (0.04) -0.02 (0.14) 0 -0.03 (0.16) 0 

 Pper4.16 7.95 (2.3) 0.81 (0.1) 0.79 (0.06) -0.03 (0.12) 0 -0.01 (0.16) 0 

 Pper3.24 6.21 (1.65) 0.77 (0.17) 0.74 (0.12) -0.04 (0.16) 1 -0.06 (0.17) 1 

 Pper4.20 2.05 (0.23) 0.39 (0.16) 0.4 (0.12) 0.05 (0.32) 1 0.06 (0.32) 0 

 Pper3.22 3.68 (1.16) 0.44 (0.12) 0.42 (0.11) -0.05 (0.11) 0 -0.05 (0.12) 0 

 Pper4.13 9.58 (3.61) 0.82 (0.13) 0.81 (0.13) -0.02 (0.08) 1 -0.04 (0.15) 0 

 Pper4.7 11.63 (4.76) 0.83 (0.21) 0.84 (0.08) 0.03 (0.22) 5 0.02 (0.21) 1 

 Pper3.1 5.74 (1.79) 0.7 (0.15) 0.72 (0.07) 0.02 (0.2) 4 0.01 (0.24) 1 

 Pper4.29 6.05 (1.9) 0.76 (0.18) 0.67 (0.14) -0.13 (0.11) 1 -0.14 (0.12) 0 

 Pper3.23 4.89 (1.05) 0.67 (0.16) 0.67 (0.07) -0.01 (0.23) 2 0.03 (0.27) 1 

 Pper4.24 9.21 (2.8) 0.82 (0.16) 0.81 (0.09) -0.01 (0.18) 2 0 (0.2) 1 



21 
 

           



22 
 

 

Figure 1. Topographic map showing location of the study area in the Iberian Peninsula and sampling 

localities. See Table 1 for abbreviations. 
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Figure 2. Minimum sample sizes (i.e., minimum number of individuals) required to obtain final 

estimates of HE (grey) and AR (white) in the complete samples from Valdemanco. Scatterplots in the 

top panel show the minimum sample sizes (y-axis) required to estimate each parameter for each 

marker individually (grey dots: HE, white dots: AR), while each marker is represented in the x-axis by 

the polymorphism (AR) shown in Valdemanco. Minimum sample sizes required for estimation of HE 

were highly correlated with marker polymorphism, measured as AR, in the three species (H. molleri: 

Spearman’s rho = 0.79, p < 0.001; B. calamita: rho = 0.67, p = 0.005; P. perezi: rho = 0.74, p = 0.002). 

In contrast, minimum sample sizes required for estimation of AR were negatively correlated with 

marker AR, although only significantly in the case of B. calamita (H. molleri: rho = -0.28, p = 0.270; B. 

calamita: rho = -0.61, p = 0.013; P. perezi: rho = -0.09, p = 0.738). Boxplots summarize the minimum 

sample sizes for the marker set of each species (bottom panel). 
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Table S1. Characterization of the H. molleri microsatellite set, with multiplex combinations, primer sequences, repeated motifs and observed allele size 
ranges (in base pairs). Annealing temperature was 60ºC in all cases. The mean (and standard deviation) percentage of missing data, allelic dropout 
and false allele scoring rates across all sample populations are shown for each marker. R Info: Informativeness for relationship. GB: GenBank 
accession numbers.  

Locus 
Multiplex 
reaction 

Primer sequences 
Repeated 

motif 

Size range 

(bp) 

Missing 

data (%) 

Allele 

dropout 

False 

alleles 
R Info GB 

          

Hmol3.7 1 5' GAAGGAAGGGCATTAAGAGGATG 3' (ACT)7 140 - 149 0.23 (1.02) - - 5.23E-09 

  5' TCCTCTGGATTAACTCAGTAGGG 3'        

Hmol3.28 1 5' TGTACCAGAGCTTCTCCACTTAG 3' (AAT)10 188 - 203 0.5 (1.63) 0 (0.01) 0.06 (0.06) 0.02  

  5' CCTACATTGGTCAGGATTAGGTAC 3'        

Hmol4.2 1 5' GCCGAAACGTAACTCTATGTACC 3' (ACAT)6 283 - 311 1.87 (3.75) 0.01 (0.02) 0.01 (0.02) 0.01  

  5' TGACTTGCACTGGGACTTTAAAC 3'        

Hmol3.9 1 5' AACACAATCACAGTTAGCTTCCC 3' (ACT)7 442 - 451 0.56 (1.39) 0.03 (0.07) 0.01 (0.02) 0.00  

  5' GTTGTCTAGAAGCAGAGTACCAC 3'        

Hmol3.3 2 5' AATAGGACTGAAAGGAACAACGC 3' (AAT)5 136 - 145 0.23 (1.02) 0.02 (0.04) 0.01 (0.02) 0.00  

  5' AAGTGATCTGATCGGCTACTTTG 3'        

Hmol4.12 2 5' CTAAGTCATCTAGTGGTCCCTGG 3' (AGAT)8 228 - 344 2.22 (4.29) 0.01 (0.02) 0.04 (0.05) 0.07  

  5' TTTACAAATGCGACGTTTCAACC 3'        

Hmol4.16 2 5' ATTTACTCAGGGAATGTGCATCC 3' (AGAT)9 147 - 235 0.24 (1.06) 0 (0.02) 0.03 (0.03) 0.05  

  5' TCATGCTAACTGTGTTTATGTTGC 3'        

Hmol4.1 2 5' TGCAATGTATCTATTAGCCTCCAC 3' (AGAT)9 236 - 292 1.66 (2.67) 0.01 (0.04) 0.04 (0.04) 0.04  

  5' GCCCATTTAAGCATACAGTCTAGC 3'        

Hmol4.9 3 5' GGACAACGTTCTGCAAGTTAATC 3' (AGAT)10 165 - 221 0.45 (1.23) 0 (0.01) 0.01 (0.02) 0.02  

  5' TGTCTCTTCATGTTGGTGTGATC 3'        

Hmol4.10 3 5' TATTGCCCATATCCTCCCTTCTC 3' (AGAT)10 103 - 175 0.39 (1.23) 0 (0.01) 0.02 (0.03) 0.06  

  5' ATGACATCACCTCATCAGCCAG 3'        

Hmol3.22 3 5' GACATCCATCATTCACATCCCTG 3' (AAT)10 294 - 324 0.84 (1.74) 0.01 (0.02) 0.04 (0.04) 0.04  

  5' TTCTGCCTTCTCTTCCCATAGAC 3'        

Hmol4.22 4 5' GCTTCATCACCACTTAACCTGAG 3' (AAAC)6 236 - 244 0.73 (3.05) 0.01 (0.05) 0.03 (0.05) 0.00  

  5' TGGACATGATCAGAGACCATTAC 3'        

Hmol3.15 4 5' TTTGTCTAGTGTCAGCCCTCTAG 3' (AAG)5 161 - 169 0 (0) 0.02 (0.03) 0.02 (0.03) 0.02  

  5' AGCATACAGTGGCATATTTCAGC 3'        

Hmol4.27 4 5' GACGTCAATACCAAGTACGCTAG 3' (AGAT)6 204 - 220 1.21 (2.16) 0.06 (0.09) 0.04 (0.05) 0.02  

  5' GTAAGTCAAGGGCCCTGAAGTC 3'        

Hmol3.8 4 5' ATAGTCTTATGCTTGTTGGGCTG 3' (ACT)12 258 - 279 1.36 (5.09) 0.03 (0.07) 0.04 (0.05) 0.02  

  5' TATGGGAAACTGCACCACTCTTC 3'        
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Hmol4.11 5 5' TTAAGCCTGAATGTATGGAATTGG 3' (AGAT)10 276 - 292 2.38 (3.44) 0.04 (0.08) 0.03 (0.03) 0.00  

  5' TTTCGAGCATATTGATCCCTCCC 3'        

Hmol4.8 5 5' GTTGTGCTGACCTTGAAAGTATTG 3' (AGAT)10 384 - 441 2.49 (3.64) 0.01 (0.01) 0.02 (0.03) 0.07  

  5' CTAGGCTTGATAATGGCAGTGTG 3'        

Hmol4.29 5 5' CTTTCCTTGGCTTCTTTATGCAC 3' (AGAT)6 356 - 461 3.58 (6.22) 0.02 (0.07) 0.04 (0.05) 0.07  

  5' GTATGTGAGCTCTTTACTGCCTG 3'        
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Table S2. Characterization of the B. calamita microsatellite set, with multiplex combinations, primer sequences, repeated motifs and observed allele 
size ranges (in base pairs). Annealing temperature was 60ºC in all cases. The mean (and standard deviation, SD) percentage of missing data, allelic 
dropout and false allele scoring rates across all sample populations are shown for each marker. R Info: Informativeness for relationship. GB: GenBank 
accession numbers.  

Locus 
Multiplex 
reaction 

Primer sequences 
Repeated 

motif 

Size range 

(bp) 

Missing 

data (%) 

Allele 

dropout 

False 

alleles 
R Info GB 

          

Bcal4.21 3 5' CACAGAAGGACAGTAGTTAGACG 3' (AGAT)9 80 - 128 2.61 (3.53) 0.13 (0.12) 0.02 (0.03) 0.04  

  5' AGATCTGCTGGTTTACAAAGTGG 3'        

Bcal4.20 3 5' TGAGCAAATCCTCCAAACATGAG 3' (AAAG)10 238 - 314 1.3 (2.58) 0 (0) 0.03 (0.05) 0.09  

  5' TTTGGCCTTTCAACCTTAATCCC 3'        

Bcal4.8 2 5' GACATCTGTTTGCGTTTCATTGG 3' (AGAT)8 362 - 448 0.38 (1.03) 0.01 (0.04) 0.03 (0.05) 0.08  

  5' GCTAGTGTCATTTACTACAACAGC 3'        

Bcal4.29 2 5' ATGTTGAATGCTAAGCCGAAATG 3' (AGAT)10 122 - 174 0.16 (0.73) 0.01 (0.02) 0.03 (0.04) 0.05  

  5' ACATACCTTCATTTGGCTGTGAG 3'        

Bcal4.16 2 5' GATAGCCCTCCATTCTAGTCTCC 3' (AAAT)5 164 - 184 0 (0) 0.01 (0.01) 0.01 (0.02) 0.02  

  5' ATGGTTATGAACAGACATGCAAC 3'        

Bcal4.18 3 5' CTGGAAAGGTCATTGATTCAGGG 3' (AGAT)8 178 - 214 0.16 (0.73) 0.01 (0.01) 0.01 (0.03) 0.04  

  5' AGACCCTGTGTAGTCATATACCC 3'        

Bcal4.3 2 5' AACAACCACCAGAACTAACATGG 3' (AGAT)6 305 - 357 0 (0) 0.01 (0.01) 0.02 (0.03) 0.06  

  5' TGACGCAGATATGTATACAGTTGG 3'        

Bcal4.6 1 5' AGGGTGTCTGAATACTTTCCGTC 3' (AGAT)10 145 - 181 1.68 (2.39) 0.09 (0.09) 0.01 (0.01) 0.05  

  5' TTGACAAAGGCCTCATTGAGAAG 3'        

Bcal4.14 1 5' TTACTTAGGCCCTGAACAGTGTC 3' (AGAT)8 426 - 476 5.05 (5.27) 0.21 (0.19) 0.03 (0.05) 0.06  

  5' AATTGGCAATGATCAACGGTTTG 3'        

Bcal4.2 1 5' GACTGTTTCCTGGATGTGAATTTC 3' (AGAT)9 311 - 592 5.16 (5.3) 0.16 (0.17) 0.05 (0.09) 0.10  

  5' ACAAGGATGATTACTTTGAGCAGG 3'        

Bcal3.26 2 5' GTGTATGGGCATCTTTAGAATGAG 3' (AAT)7 270 - 323 5.5 (5.96) 0.17 (0.14) 0.02 (0.04) 0.08  

  5' TATCTGCCACTTTGAACGGTTTC 3'        

Bcal4.24 3 5' ATCAGGAGCCACTAGTACTGAAC 3' (AGAT)7 302 - 358 1.1 (1.7) 0.01 (0.02) 0.03 (0.05) 0.05  

  5' ATGCCAGATGACACTACTCTTGG 3'        

Bcal3.4 3 5' TGACTATGGTGGGAAGGGTTAAG 3' (AAC)8 130 - 154 0.16 (0.73) 0 (0.01) 0.02 (0.03) 0.03  

  5' AGGAAATTCTGGGACTCTGAGG 3'        

Bcal3.29 1 5' GCCAGGAATACTTCTTCACTCTG 3' (ACT)7 222 - 240 1.54 (3.47) 0.06 (0.11) 0.02 (0.03) 0.01  

  5' TATCTGTTtGTTGATGGCAGACC 3'        

Bcal3.19 1 5' GCCATCCAATCCACAATCTCATC 3' (ACT)9 234 - 270 9.32 (5.46) 0.32 (0.22) 0.02 (0.03) 0.04  

  5' ACCATTCCATACTTTGTGTGACG 3'        



27 
 

 

  

Bcal4.26 1 5' CGGATCTAACCTTCATGTAACCAC 3' (AGAT)8 155 - 375 1.46 (2.86) 0 (0) 0.03 (0.04) 0.10  

  5' AGAAAGTCTAGCTACACCTTTGG 3'        
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Table S3. Characterization of the P. perezi microsatellite set, with multiplex combinations, primer sequences, repeated motifs and observed allele size 
ranges (in base pairs). Annealing temperature was 60ºC in all cases. The mean (and standard deviation, SD) percentage of missing data, allelic dropout 
and false allele scoring rates across all sample populations are shown for each marker. R Info: Informativeness for relationship. Primer sequences, 
repeated motifs and GenBank accession numbers (GB) from Sánchez-Montes et al. (2016). 

Locus 
Multiplex 
reaction 

Primer sequences 
Repeated 

motif 

Size range 

(bp) 

Missing 

data (%) 

Allele 

dropout 

False 

alleles 
R Info GB 

          

Pper4.25 1 5' TCCCTTCTAGTGCTGTAACTTCG 3' (AGAT)8 183 - 403 0.58 (1.48) 0.01 (0.02) 0.05 (0.05) 0.09 KT166015 

  5' AGTTCATCTGCAGTTCCTACATG 3'        

Pper4.15 1 5' ACATATTGTGCTGCTCCATCAAG 3' (AGAT)8 177 - 249 0.06 (0.24) 0.01 (0.02) 0.03 (0.04) 0.06 KT166016 

  5' AATTTCTTCAGTGCTGTCATGTC 3'        

Pper4.28 1 5' CATGTACAGCTGACTTTAGAGCC 3' (AAGG)5 200 - 260 0.06 (0.24) 0.04 (0.1) 0.04 (0.04) 0.02 KT166017 

  5' TTCTTTCCAATTTGAGACTCGGG 3'        

Pper3.9 1 5' CAACATATCTTCCCGAATGAGGC 3' (AAG)6 191 - 262 0.06 (0.24) 0.02 (0.03) 0.03 (0.03) 0.03 KT166018 

  5' GTTTCTCTCAGTCTAGTTGGTGC 3'        

Pper4.5 2 5' TGTGCGCTATCCTCTGTAGTTAG 3' (AAAC)6 148 - 164 0.16 (0.72) 0.03 (0.06) 0.04 (0.05) 0.02 KT166019 

  5' TGAATCCTGGCATTGTCATCTTG 3'        

Pper4.16 2 5' AGAGCAGATATACCACACTCCAG 3' (AGAT)9 140 - 192 0.22 (0.74) 0.01 (0.02) 0.02 (0.04) 0.05 KT166020 

  5' ACCTCAAGCATTTATAGACCAGC 3'        

Pper3.24 2 5' ATGTGGAGACTATCAGCAGACAG 3' (AAC)7 248 - 278 1.18 (2.81) 0.02 (0.06) 0.05 (0.06) 0.04 KT166021 

  5' CAAGTCTTGACTGTTCATACCGG 3'        

Pper4.20 3 5' TCTTAGCAGTGACAGATGTGAAC 3' (AAGT)6 220 - 228 0 (0) 0.06 (0.18) 0.02 (0.05) 0.01 KT166022 

  5' TCTTAGTGCAGATTAGGGACCTG 3'        

Pper3.22 3 5' ACTGTCATCTGGTCTGGTATCAC 3' (ACT)9 358 - 382 0.42 (1.28) 0.01 (0.03) 0.03 (0.05) 0.01 KT166023 

  5' ACACTAATTGTCCTCCTGTAGAAC 3'        

Pper4.13 3 5' AGAGACCATATATCGGAGCCATC 3' (AGAT)10 425 - 513 0.42 (1.28) 0.01 (0.02) 0.06 (0.07) 0.06 KT166024 

  5' TGGCAAATCACTCCACTTAACAG 3'        

Pper4.7 4 5' TACCTCTTCTGCTGATCTCTTGG 3' (AGAT)9 280 - 364 1.42 (2.8) 0.05 (0.14) 0.02 (0.04) 0.08 KT166025 

  5' AAGCAATTTATCAAGCAGGAGGG 3'        

Pper3.1 4 5' TTGCCAGCAGAAGAGAACATTAC 3' (AGG)9 337 - 376 0.49 (1.35) 0.06 (0.13) 0.04 (0.06) 0.04 KT166026 

  5' TCTCACAGACATCGCATTTGATC 3'        

Pper4.29 5 5' CTGTGCTACGAGGATTGTAATGG 3' (AAAG)7 313 - 357 0.34 (1.03) 0 (0.02) 0.02 (0.03) 0.04 KT166028 

  5' TTCATTCTCTGTGTCGTGAATGC 3'        

Pper3.23 5 5' ACTTGTATCATCTTTCTCTGCGC 3' (ACT)6 154 - 196 0.34 (1.09) 0.03 (0.06) 0.03 (0.04) 0.03 KT166029 

  5' TTTCTGCCCAATTCTACTACTGC 3'        

Pper4.24 5 5' TTTCCCTATTGCCTATGAACTGC 3' (AGAT)10 195 - 339 0.67 (1.62) 0.05 (0.07) 0.05 (0.05) 0.07 KT166030 

  5' AGTGCTATGGTTGGGATTTGAAC 3'        
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Figure S1. Accumulation curves of AR (dark lines) and HE (grey lines) as a function of sample size 
(measured as number of individuals) for each marker in the H. molleri marker set. Jackknifed curves 
were calculated from the complete samples in Valdemanco. Vertical dotted lines show the minimum 
sample size at which the lower bound of the 95% confidence interval of each final estimate (shown as 
horizontal dashed lines) is reached. 
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Figure S2. Accumulation curves of AR (dark lines) and HE (grey lines) as a function of sample size 
(measured as number of individuals) for each marker in the B. calamita marker set. Jackknifed curves 
were calculated from the complete samples in Valdemanco. Vertical dotted lines show the minimum 
sample size at which the lower bound of the 95% confidence interval of each final estimate (shown as 
horizontal dashed lines) is reached. 
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Figure S3. Accumulation curves of AR (dark lines) and HE (grey lines) as a function of sample size 
(measured as number of individuals) for each marker in the P. perezi marker set. Jackknifed curves 
were calculated from the complete samples in Valdemanco. Vertical dotted lines show the minimum 
sample size at which the lower bound of the 95% confidence interval of each final estimate (shown as 
horizontal dashed lines) is reached. 
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Figure S4. Empirical (dotted line) and Chao and Jost (2015) profile (grey solid line) for each marker in 
the H. molleri set. 
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Figure S5. Empirical (dotted line) and Chao and Jost (2015) profile (grey solid line) for each marker in 
the B. calamita set. 
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Figure S6. Empirical (dotted line) and Chao and Jost (2015) profile (grey solid line) for each marker in 
the P. perezi set. 
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Figure S7. Relationship between FIS and error rate estimates (empty dots: allelic dropout rate, solid 
dots: false allele rate) obtained from sibship analyses for each marker in the three species. Note the 
difference in axis scales in the B. calamita graph. 
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Appendix S1: Effect of sampling excessive close relatives on FIS and deviation from HWE 

Wright’s (1931) FIS is the traditional and most popular statistic used in measuring the distribution of 

genetic variation within and among individuals in a population. For a population at Hardy-Weinberg 

equilibrium (HWE), homologous allelic copies are independently distributed within and between 

individuals. In such a situation, FIS = 0. For a population with subdivision (e.g. in social groups) or with 

close relative mating, the two allelic copies within an individual are more probable to be identical in 

state than those in different individuals. In such a situation, the observed homozygosity is higher than 

that expected if the population is at HWE, leading to FIS > 0 (since 𝐹𝐼𝑆 = 1 −
𝐻𝑂

𝐻𝐸
, where HO and HE are 

the observed and expected heterozygosity, respectively. Nei 1977). In contrast, admixture and 

hybridization lead to FIS < 0. 

The FIS of a population is usually unknown, and is estimated by the marker or pedigree data of 

a sample of individuals drawn from the population. Here we show analytically that sampling too many 

close relatives would lead to a reduced FIS estimate. For a large population at HWE in which FIS = 0, a 

sample from it can yield a negative FIS estimate if it contains excessive close relatives. These 

predictions are true no matter whether pedigree or marker data are used in the estimation. 

Denoting the probabilities of identity by descent (PIBD) for two homologous genes drawn at 

random from an individual and between two individuals in a population by α and β, respectively, we 

have 

𝐹𝐼𝑆 =
𝛼−𝛽

1−𝛽
 ,           (1) 

by definition (Cockerham 1969, eqn 41; Weir 1996, p.176). If a random sample (random with regard to 

genealogy) is taken from the population, then unbiased estimates of α, β, and thus FIS estimates 

would be obtained. However, if too many (excessive) close relatives, such as full or half siblings, are 

included in a sample, the PIBD between individuals in the population would be overestimated, from 

the true value β to 𝛽′, while the estimated PIBD within individuals would remain unbiased as α. As a 

result, 𝐹𝐼𝑆 would be expected to be decreased to 

𝐹𝐼𝑆
′ =

𝛼−𝛽′

1−𝛽′
      (2) 

Equation (2) implies that 𝐹𝐼𝑆
′  < 𝐹𝐼𝑆, because 𝛽′ > 𝛽. The larger the increase in PIBD between sampled 

individuals, 𝛽′, due to the inclusion of a greater proportion of close relatives, the smaller will be 𝐹𝐼𝑆
′  

relative to 𝐹𝐼𝑆.  

 For illustration, let’s consider some numerical examples for a dioecious diploid species in a 

large random mating population. It is expected that two homologous genes at an autosomal locus are 

identical by descent with probabilities 0, 0, ¼ when they are in a single individual, in two unrelated 

individuals, and two full siblings respectively. In a random sample of individuals taken from the 

population, the estimated PIBDs are expected to be α = 0, β = 0, and thus the estimated FIS is also 
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expected to be zero. In an inadequately drawn sample of individuals with a proportion of δ full-sib 

pairs, the estimated PIBDs are expected to be α = 0, 𝛽 = (1 − 𝛿) × 0 +
𝛿

4
=

𝛿

4
, and the estimated FIS is 

expected to be 
0−

𝛿

4

1−
𝛿

4

= −𝛿/(4 − 𝛿). Suppose a sample has n=50 individuals, with 10 individuals taken 

from full sib family X, 20 individuals from full sib family Y, and the remaining 20 individuals from 20 

different and unrelated families. The estimated PIBDs are expected to be α = 0, 𝛽 =
10×

9

2
+20×

19

2
+

50×
49

2

×
1

4
=

0.048, and the estimated FIS is expected to be 
0−0.048

1−0.048
= −0.0504. 

  

As it can be seen from the examples, the inclusion of an excessive proportion of relatives (in 

this case, full siblings) in a sample causes a reduction in the estimated FIS. Conversely, including an 

excessively low proportion of full sibs in the sample (relative to the true proportion in the population) 

results in an artificially inflated estimate of FIS. Depending on the values of α and β, this bias may lead 

in some cases to false inferences of negative inbreeding (and the false conclusion that the population 

is affected by admixture (hybridization) or/and avoids close relative matings) or positive inbreeding 

(false conclusion of positive assortative mating or population subdivision). For the same reason, 

removing all but one of the full sibs in every full sib family in the sample does not always eliminate the 

bias caused by unrepresentative proportion of relatives in the sample. In fact, it could lead to an 

underrepresentation of relatives in the sample and thus to the opposite bias, with 𝐹𝐼𝑆
′  > 𝐹𝐼𝑆. 

 As a result, excessive close relatives in a sample cause an apparent decrease in observed 

homozygotes and an apparent increase in observed heterozygotes at each locus (i.e., higher HO/HE 

ratio), and they also cause nonrandom associations between alleles in different loci. This leads to an 

increase in statistically significant deviations from HWE across loci and evidences of LD, which 

disappear when the excess of relatives is removed. 
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