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S U M M A R Y

Background: Understanding of humoral immune responses in tuberculosis (TB) is gaining interest, since
B-cells and antibodies may be important in diagnosis as well as protective immune responses. High-
content peptide microarrays (HCPM) are highly precise and reliable for gauging specific antibody
responses to pathogens, as well as autoantigens.
Methods: An HCPM comprising epitopes spanning 154 proteins of Mycobacterium tuberculosis was used to
gauge specific IgG antibody responses in sera of TB patients from Africa and South America. Open source
software for general access to this method is provided.
Results: The IgG response pattern of TB patients differs from that of healthy individuals, with the
molecular complexity of the antigens influencing the strength of recognition. South American individuals
with or without TB exhibited a generally stronger serum IgG response to the tested M. tuberculosis
antigens compared to their African counterparts. Individual M. tuberculosis peptide targets were defined,
segregating patients with TB from Africa versus those from South America.
Conclusions: These data reveal the heterogeneity of epitope-dependent humoral immune responses in TB
patients, partly due to geographical setting. These findings expose a new avenue for mining clinically
meaningful vaccine targets, diagnostic tools, and the development of immunotherapeutics in TB disease
management or prevention.
© 2017 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Description of the study cohorts from Africa and South America.

Continent TB status Number Mean age (SD) M:F ratio

Africa Positive 89 37.6 (�15.2) 2.0
Negative 140 40.2 (�16.2) 0.8

Total 228 39.2 (�15.8) 1.1
South America Positive 72 33.9 (�12.7) 1.2

Negative 67 41.5 (�15.6) 0.6
Total 139 37.6 (�14.6) 0.9

TB, tuberculosis; SD, standard deviation; M, male; F, female.
Introduction

The quest to discover novel antigenic targets for the differential
diagnosis of active and latent tuberculosis (TB) presents a
challenging task. Although efforts are manifold and performed
on a global scale, biological markers derived from Mycobacterium
tuberculosis that can precisely distinguish between the various
stages of M. tuberculosis infection and disease remain elusive.1

Several field-based studies published in recent years have indeed
provided valuable information while enriching the knowledge
base pertinent to TB immunodiagnostics and clinically relevant
immune responses.2,3 Nevertheless, predominant factors, such as
geographical setting of the study locations, socio-economic status
of the study populations, and risk and rate of exposure to various
strains of M. tuberculosis therein, in addition to the intricate biology
of the pathogen itself, inevitably represent confounding factors.4 In
this regard, multiplatform analysis of immune responses in
patients with TB, as well as individuals harbouring latent TB
infection (LTBI), has initiated great interest due to the wealth of
information made accessible to the global TB community.1

Identifying specific M. tuberculosis-derived antigenic determi-
nants of adaptive immune responses (orchestrated by T- and B-
cells), especially in individuals with LTBI, is clinically relevant since
it will impact on patient treatment regimens. Due to the immense
volume of data that is subsequently generated, stringent quality
control measures are required in order to obtain a more true-to-life
picture of pertinent immune responses.

M. tuberculosis epitope mining of 12-mer linear peptides
derived from M. tuberculosis antigens, displayed on a microarray
slide, has been reported previously.5 This technology is based on
the recognition and binding of antigen-specific human serum IgG
to the respective cognate epitope. Differential antigen recognition
patterns were observed between patients with pulmonary TB and
healthy individuals from Armenia.5 This method was further
validated using soluble human leukocyte antigen (HLA) class II
molecules, which could form complexes after binding to their
respective peptides (derived from 61 different M. tuberculosis
proteins) on the slide, thus providing additional information on the
allelic restrictions for HLA-based presentation of immunogenic M.
tuberculosis epitopes to CD4+ T-cells.6 Three M. tuberculosis
proteins first discovered to be immunologically relevant using
this platform were evaluated among Honduran TB patients and
healthcare workers exposed to M. tuberculosis,7 as well as
Belarussian patients with pulmonary TB.8 The present study
group is currently evaluating all three proteins as vaccine
candidates in preclinical studies.

In this study, the serum antibody responses of patients with
pulmonary TB from two different geographical regions with a high
disease burden (Africa and South America) were evaluated using
the peptide microarray platform. The recognition of specific M.
tuberculosis epitopes in patients with active TB (TB + ), as well as
those without clinical disease (TB�), was assessed to generate an
overall humoral immune response landscape. This information
allowed the exact epitopes of immunogenic M. tuberculosis
antigens that elicit measurable immune responses to be uncovered
for the first time, and furthermore, the pattern of this response in
health and disease, using immune recognition surfaces, by
describing the chemical composition of antibody recognition
independent of the biological nature of the respective M.
tuberculosis antigen.

Materials and methods

Study subjects

Serum samples were provided by the Public Health Research
Institute (PHRI), New Jersey, USA, and stored at �70 �C. Volunteers
(TB patients and healthy individuals) classified under two
geographically distinct cohorts were involved in this study: Africa
(n = 228) and South America (n = 139). After matching by age and
sex, only 120 patients (30 individuals per cohort) were included in
the final analysis. The cohort description is provided in Table 1.

Slide production, scanning, and analysis

The peptide arrays were custom-manufactured by JPT (Berlin,
Germany) as reported previously.9 Slides consist of three identical
sub-arrays, each with 6720 spots arranged in 16 blocks of 420
spots. Of the 6720 spots, 485 are negative ‘empty’ control spots,
271 are positive control spots (144 peptide controls, as described in
Ngo et al.10), and 5694 are unique peptides generated from 154 M.
tuberculosis proteins (listed in the Supplementary Material,
Table S3) as 15-mers overlapping by five amino acid residues.

Sera were diluted 1:100 in 300 ml buffer (phosphate buffered
saline (PBS), 3% foetal calf serum (FCS), 0.5% Tween 80; Sigma
Aldrich, St Louis, MO, USA) and added to microarray chips for 16 h
of incubation in a humid chamber at +4 �C. The slides were then
washed with buffer twice and sterile distilled water three times.
This was followed by secondary incubation with 300 ml diluted
(1:500) Cy5-labelled mouse anti-human IgG monoclonal antibody
IgG secondary antibody (catalogue number 6561-100; Abcam, UK)
for 1 h at room temperature (RT) and then washing as before. The
slides were then spun dry in a slide centrifuge (DJB Labcare,
Newport Pagnell, UK).
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Each slide was scanned with the GenePix 4000 B microarray
scanner (Molecular Devices) at a wavelength of 635 nm, and the
resulting images were saved in high-resolution format. Image
analysis was performed using GenePix 7.0 image analysis software
(Molecular Devices) and the GenePix Array List (GAL) file with the
peptide location information for each spot as supplied by the
manufacturer (JPT, Berlin, Germany). The detectable spots not
internally uniform were flagged as ‘bad’ (i.e., unreliable). This is
efficiently estimated using the following criteria (described in
detail in Perez-Bercoff et al.11): ([F635 Mean] > (1.5*[F635 Medi-
an])) AND ([F635 Median] > 40), which identifies the spots with a
mean foreground value different from the spots exhibiting median
fluorescence intensity values. The spots were visually inspected
after flagging and corrected as necessary. The results for each sub-
array were saved separately.

Data mining and statistical analyses

Software
All of the methods described here were implemented using the

open source R language and packages from Bioconductor
project.12,13

Data pre-processing
GenePix results files were read and an R dataset was created.

Digital images of background and foreground intensities were
produced for every sub-array to detect and exclude potential signal
artefacts. Signals were corrected for background noise by
computing the index value (log2 foreground/background14). All
spots or areas not representing a high quality signal were not
analysed. Further quality controls included scatter plots (index vs.
log2 background) for each slide to remove outliers and abnormal
values and also scatter plots (average index vs. average log2
background) for all slides in each group to address the efficacy of
the negative and positive controls. A detailed control of flag
distribution proportions (�100, �75, �50, 0) was done for the
whole dataset and separately for each group analysed. Potential
false-positives were identified14: all spots showing a response on
the buffer plus secondary antibodies slides were labelled and
removed from the analysis.

Normalization
The normalization process was performed separately for each

geographical group (Africa and South America) using the linear
model described previously9: I = slidei + subarrayj + blockk + e, where
I is the measured intensity; slidei is the slide effect, i.e., the portion
of the signal intensity due to the presence of the spot on the slide i;
subarrayj is the sub-array effect, i.e., the portion of the intensity due
to the presence of the spot at one of the sub-arrays in the slide;
blockk is the block effect or the effect on the intensity due to the
position of the spot in one of the blocks in the sub-array; e is the
Figure 1. Visualization of the 3D plotting methods for (a)
residual, composed from biological interaction and slide and sub-
array interaction (slidei * subarrayj). Data were fitted into the linear
model and the estimated slide, sub-array, and block effects
removed. The quality of the normalization was assessed by visual
inspection of the normalized data plot in all of the study groups.

Differential recognition
The differential recognition was performed using the empirical

Bayes moderated t-statistics function contained in the R/Bio-
conductor package limma.15 Peptide p-values were adjusted using
the Benjamini–Hochberg method (control of FDR (false discovery
rate)) available in the same package. For the African cohort, the
data first underwent a filtering procedure to reduce the
heterogeneity within groups. Peptides with very high coefficient
of variation (CV) within groups or very low CV between groups did
not enter the analysis. Group outlier slides (top or bottom 5% of the
cohort) were also removed from the differential recognition
analysis.

Pept3D: surface regression and three-dimensional visualization
The normalized data were visualized on a three-dimensional

(3D) surface according to different methods (Figure 1). The base
functions are BP3D, Pos3D, and additionally Diff3D, and provide
base coordinates for surface plots based on (1) amino acid
characteristics (i.e. bulkiness/polarity plot, Figure 1a); (2) the
peptide response along ranked proteins (i.e., proteins plot, Figure
1b); (3) the surface of the difference in the immune response
between either (1) or (2), respectively. For each of these functions,
an R script was produced and made available in the package
Pept3D (downloadable at http://ki.se/en/people/davval).

BP3D. For each of the peptides included in the analysis, two
values are computed:

Relative peptide bulkiness ðRPBÞ ¼

Xn

i¼1

bi

nbMAX

where bi is the bulkiness value of the ith amino acid in the peptide
sequence,16 bMAX is the maximum theoretical bulkiness value
(21.670, from tryptophan, in the bulkiness amino acid scale by
Zimmerman et al.16), and n is the number of amino acids in the
peptidic sequence. The bulkiness values for each amino acid are
reported in the Supplementary Material (Table S1).

Relative peptide polarity ðRPPÞ ¼

Xn

i¼1

pi

npMAX

where pi is the polarity value of the ith amino acid in the sequence
(the polarity scale of Grantham17 was chosen), pMAX is the
 the bulkiness–polarity plot, and (b) the protein plot.

http://ki.se/en/people/davval


Table 2
Eight protein antigens of Mycobacterium tuberculosis found to be differentially recognized by serum antibodies from African and South American TB patients.

Peptide M. tuberculosis protein (Rv
number)

Remarks Ref.

GAIPGGWWLTFGQIL PPE32 (Rv1808) Gene expression induced by restricted Mg2+ bioavailability during in vitro nutrient starvation 30

NKPVLVDFWATWCGP Thioredoxin C, TrxC (Rv3914) Biologically active sulphide reductase involved in hydroperoxide, dinitrobenzene, and ROI degradation 41,42,47

MFSGFDPWLPSLGNP PPE2 (Rv0256c) A secreted protein that may block nitric oxide production by activated macrophages 27

VYVAQKRKISDGDKL RNA polymerase Beta
subunit (RpoB) (Rv0667)

Mutant forms of this enzyme are associated with resistance to rifampicin 48

GGLFGIGGAGGGCGS PE-PGRS41 (Rv2396) Linked to PhoP regulation due to stark down-regulation of Rv2396 gene expression in PhoP-deficient M.
tuberculosis H37Rv, and very strong binding site in chromosomal vicinity of Rv2396

30,32

IPIPGLPDIPGLPDF EspE (Rv3864) Associated with ESX-1 secretion system; localized in Mycobacterium marinum and M. tuberculosis H37Rv
cell wall capsule; strongly recognized in sera of patients with cavitary TB

35,36

TRYSSAYELEGAVKR TB43 (Rv2780) 43-kDa cell-bound protein first identified as a pyridine nucleotide transhydrogenase; later recognized as a
40-kDa mature protein with alanine dehydrogenase activity crucial for peptidoglycan turnover

44,45

ARTISEAGQAMASTE ESAT-6 (Rv3875) Important secreted antigen with pore-forming characteristics found in M. tuberculosis and other
pathogenic mycobacteria; used in immunodiagnostics for the detection of latent TB infection

37

ROI, reactive oxygen intermediate.
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maximum theoretical polarity value (13.00, from aspartic acid),
and n is the number of amino acids in the peptide sequence (values
are provided in the Supplementary Material, Table S2).

The values of peptide relative polarity, relative bulkiness, and
normalized signal intensity are then plotted on a 3D graph as x, z,
and y coordinates, respectively, using a non-parametric smoothing
regression technique and surface plot provided by the R function
sm.regression, included in the package sm.18 The drawn surface is
coloured according to the values of the y-axis (signal intensities).

Pos3D. Complete amino acid sequences of the source proteins for
the peptides (based on Uniprot and NCBI protein identifiers/
accession numbers) were retrieved using the R function getSeq in
the package annotate in the Bioconductor project. Protein
identifiers are usually provided by the slide manufacturer. The
start and end positions of each peptide along the amino acid
sequence of the corresponding protein are determined, followed
by computation of the percentile of the protein sequence marking
the centre point of the peptide. The source proteins are then ranked
and numbered according to their biological function in relation to
immunological significance (Supplementary Material, Table S3).
The default ranking system is based on alphabetical ordering of the
adopted protein reference code (i.e., accession number), but users
can specify their ranking system of choice. Next, the peptide centre
points (x), corresponding protein rank numbers (y), and the
normalized signal intensities (z) are plotted in the 3D graph using
the sm.regression function as for BP3D. In addition, the smoothed
regression bi-dimensional curve for a specific selected protein can
also be plotted (Plot2D function).

Diff3D. This additional function allows the difference in the
immune response of two individuals (or groups) in two different
clinical conditions, or one individual at two different time points,
to be estimated and this information to be plotted according to the
coordinates obtained from the BP3D and Pos3D methods described
above. This is done by computing the relative peptide difference
(RPD) between two vectors of peptide intensities, x and y:

Relative peptide difference ðRPDÞx;y ¼ x� � y�

y�
� 100

where x* and y* are computed as:

x� ¼ x þ jmin ðx; yÞj
y� ¼ y þ jmin ðx; yÞj
in order to always have positive input values for the relative
differences computation. The original normalized values may in
fact be negative, since they are calculated as residuals from the fit
of the linear model described above. In addition to this, the
computed RPDs may have extreme outliers, which, as experimen-
tally verified, can decrease the readability of the plot by adding
isolated spikes on the surface. The function thus includes an outlier
detection and removal procedure, where the user can specify the
borderline value for the detection through a k parameter (how
many times the interquartile range has to be distant from the
upper or lower quartile). The RPDs are then plotted according to
the desired set of coordinates, computed by either BP3D or Pos3D.

Detection of IgG in patient sera using high-affinity human IgG ELISA
Streptavidin-coated 96-well plates (Thermo Fisher, MA, USA)

were adsorbed with 1 mg/ml of biotinylated M. tuberculosis
peptides prepared in PBS (Table 2). An 8-point serial dilution
(1:2 ratio) of recombinant human IgG standard (Sigma Aldrich)
was prepared from a 15 000 ng/ml stock solution in PBS, and each
dilution was added in duplicate to the assay plate. The plates were
incubated for 1 h at 37 �C and washed thoroughly with PBS–0.05%
Tween 20 (PBST20) buffer, followed by blocking with assay buffer
(PBST20 + 0.1% bovine serum albumin (BSA)) at RT for 1 h. After
washing with PBST20 buffer, serum samples diluted at 1:100 in
assay buffer were added to the assay plate and incubated at RT for
2 h. After washing the plate with PBST20 buffer, alkaline
phosphate-conjugated anti-human IgG detection monoclonal
antibody (Mabtech, Stockholm, Sweden) diluted at a ratio of
1:1000 in assay buffer was added to all wells, followed by
incubation for 1 h at RT. The assay plate was washed with PBST20
buffer post-incubation, followed by the addition of the substrate
solution (p-nitrophenyl phosphate tablets (PNPP; Thermo Fisher,
MA, USA) dissolved in 1 � diethanolamine substrate buffer
(Thermo Fisher, MA, USA)). After incubating the assay plate at
RT in the dark for 20–30 min, the enzymatic reaction was stopped
with 1 N NaOH, and the optical density measured at 405 nm using a
VMax Kinetic ELISA Microplate Reader (Molecular Devices, CA,
USA).

Results

Differential recognition analysis

Peptide microarrays revealed differential recognition of M.
tuberculosis proteins by serum IgG in TB patients and healthy
individuals from two regions comprising high-burden countries
for TB, namely Africa and South America.19 Based on initial
screening with the peptide microarray platform, geographical
location represented a major confounding factor, and the differ-
ences in peptide recognition between TB+ and TB� individuals
were much more evident after data stratification by the
geographical area. The peptide microarray differential recognition
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analysis (TB+ (patients) vs. TB� (healthy individuals)) was
performed separately for these two cohorts. Analysis of the
African cohort identified six differentially recognized peptides
(five highly recognized and one poorly recognized) (Supplemen-
tary Material, Table S4), representing four different proteins (three
peptides from the same protein, PPE2 (proline-proline-glutamic
acid)). Conversely, differential recognition in the South American
cohort showed 18 differentially recognized peptides, plus four
with a borderline adjusted p-value (12 highly recognized and 10
poorly recognized) (Supplementary Material, Table S5).
Figure 2. Immune response surface for peptides across proteins in African TB+ an
Pept3D immune recognition surfaces

Protein curves
The Pos3D curves for peptide-specific IgG responses spanning

entire M. tuberculosis protein sequences in African TB+ and TB�
individuals are shown in Figure 2 (Figure 2A and B). A common
response pattern was found to exist between the TB+ and TB�
groups, respectively; i.e., peptides belonging to the first half of the
ranked proteins (vicinity of PPE45–PPE55) elicited more robust
antibody responses than the second half (Supplementary
Material, Table S3). Although not strikingly visible, some differ-
ences were present and detectable in the corresponding Diff3D
curve of the relative differences between the two groups. A marked
difference in response was detected at the very beginning of the
d TB� individuals (a and b), and surface analyses recognition differences (c).



Figure 3. Relative differences in peptide responses (dots) and smoothed regression curve (plot 2D) for three selected TB proteins in the African cohort. Resulting peptides
from the TB+ vs. TB� comparison are highlighted.
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ranked protein list, corresponding to the first set of PPE proteins.
Other ‘hotspots’ of recognition were present in the second part of
the ranked protein list, particularly.

As a paradigm, two-dimensional (2D) curves were created for
some of the proteins relative to the peptides identified with the
differential recognition analysis (Figure 3). The peptide values
were reported alongside the smoothed regression curve, thus
highlighting the significantly differentially recognized peptides. All
of the differentially recognized peptides with limma analysis
corresponded to the highest (or lowest, when poorly recognized)
peaks of the curve illustrated using this model.

The immune recognition surfaces for the South American
cohort reaffirmed that the IgG response profiles of TB+ and TB�
individuals, respectively, between the two cohorts were generally
similar, although the South American individuals appeared to
mount an overall more intense response compared to their African
counterpart groups (Figure 4A and B). Differential peptide
recognition between South American TB patients and healthy
individuals revealed more robust responses by the former group to
the PPE, as well as the other M. tuberculosis peptides tested,
compared to the African TB patients (Figure 4C).

In addition, 2D plots of the peptides identified with the
differential recognition analysis in the South American cohort
emerged at the highest peaks in the curves (Figure 5).



Figure 4. Immune response surface for peptides across proteins in South American TB+ and TB� individuals (a and b), and surface of the differences (c).
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Bulkiness–polarity 3D curves
The humoral immune response landscape based on biochemi-

cal characteristics of the peptides (protein bulkiness and polarity
dependent on amino acid composition; Supplementary Material,
Tables S1 and S2) was constructed for both the African and South
American cohort (Figures 6 and 7). This visualization clearly
identified a characteristic shape: among TB+ and TB� individuals
in both geographical groups, the immune response landscape
showed that with increasing protein bulkiness (and to some extent
with decreasing polarity � thus increasing molecular complexity),
the response becomes less pronounced (Figure 6A and B, Figure 7A
and B). Conversely, the immune response landscape of TB+ patients
compared to TB� individuals in both cohorts (Fig. 6C and 7C)
indicated enhanced recognition with increasing molecular com-
plexity and diminishing polarity. Thus, TB patients are more likely
to mount a stronger response to more complex protein antigens.
Antigen-specific serum IgG ELISA

Four differentially recognized peptides per cohort (one peptide
per protein, in total eight peptides representing eight proteins)
were selected for high-affinity human IgG ELISA, which detects the
presence of antigen-specific IgG antibodies in serum (Table 2).
Contrary to expectations, no significant differences in recognition
of the eight M. tuberculosis peptides were found between patients
with TB and healthy individuals (Supplementary Material,
Fig. S1). However, it was striking to notice that antibody
recognition of PE-PGRS41 by TB patients from South America
was more pronounced than that of ESAT-6 (early-secreted
antigenic target 6 kDa) (Supplementary Material, Fig. S2). In
the African cohort, the strongest serum IgG reactivity was found to
be directed against rpoB (RNA polymerase b-subunit), between
patients with TB and healthy individuals alike. Other antigens



Figure 5. Relative differences in peptide responses (dots) and smoothed regression curve (plot 2D) for three selected TB proteins in the South American cohort. Resulting
peptides from the comparison TB+ vs. TB� are highlighted.
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tested for in this cohort were PPE32, PPE2, and trxC � all with
implications in mycobacterial stress resistance.

Discussion

Previously, the detection and quantification of antigen-specific
antibody responses in a given clinical condition was obtainable
only via single-plex ELISA (antibodies specific for only one
antigen), which is both cumbersome and time-consuming. Peptide
microarrays enable the assessment of the entire expanse of an
individual’s humoral immune response to a given pathogen, or
mutated self-antigens (such as in cancer) on a single chip.
Additionally, results from peptide microarray studies reveal the
various epitopes that are most commonly recognized by individu-
als as a means to provide ‘hotspots’ of immune recognition and
epitope focus in a specified clinical context. This warrants faster
data turnover, as well as accurate fishing of relevant antigenic
targets for further validation. The necessity to provide open access
to source software tools for applying the methods used in this
study is evident.

The curves produced using the Pos3D and Diff3D methods have
been introduced briefly in previous studies.20–22 Detailed descrip-
tions of these methods are provided here for the first time, and the
2D representation of data is introduced. In addition, a novel
method based on amino acid biochemical characteristics (bulki-
ness and polarity), BP3D, is presented. These biochemical
characteristics of the M. tuberculosis peptides shown in the 3D
and 2D curves directly influence the likelihood and frequency of
recognition by serum antibodies � reflective of antigen processing
and presentation in the host. The proposed methods therefore give
a ‘photographic snapshot’ of the immune response of an individual
(or groups of individuals), as well as the variation between tested



Figure 6. Immune response surface for peptide biochemical characteristics (bulkiness vs. polarity) in African TB+ and TB� individuals (a and b), and surface of the differences
(c).
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conditions (in this case, TB+ and TB� individuals, although the
application of these methods stretch far and beyond). In addition,
they can aid better visualization of the results obtained with other
peptide analysis techniques for a better appreciation of the
immune response and heterogeneity therein. This method
captured the underlying biology reflected in humoral immune
responses to M. tuberculosis antigens in two different continents,
while acknowledging that the results observed are jointly
influenced by a high number of factors, i.e., genetic differences,
environmental pressure, socio-economic status, and co-morbid-
ities, to name a few.

To the best of the authors’ knowledge, this is the first time that
‘peptide-level’ information has been combined with ‘protein-level’
information to allow an insight into humoral immune responses
not only to isolated sub-protein spots (single epitope), but across
the entire protein molecule. Although the 3D structure of an
antigen is important for its activity and recognition by the immune
system, visualization of the peptides within a protein that evoke
specific antibody responses in various clinical scenarios promises a
wealth of information for vaccine development and diagnostics. In
addition, the peptide microarray platform allows the detection of
molecules that undergo conformational changes specific to disease
conditions such as in prion disease, as well as mutated neoantigens
in cancer.23,24 Moreover, for the first time, a different view of
peptide microarray results relative to their biochemical character-
istics is proposed. The amino acid sequences in antigenic epitopes
dictate their polarity, thus affecting their processing and presen-
tation to T-cells, as well as binding to antibodies. For example, the
presence of glutamine and glutamic acid in epitopes reduces their
affinity for antibody binding, while an abundance of tyrosine and



Figure 7. Immune response surface for peptide biochemical characteristics (bulkiness vs. polarity) in South American TB+ and TB� individuals (a and b), and surface of the
differences (c).
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tryptophan have the reverse effect.25 Furthermore, epitopes with a
higher antibody binding ratio are more likely to activate the major
histocompatibility complex (MHC)-I and MHC-II pathways, allow-
ing concerted T- and B-cell responses.25 Therefore, the polarity of
antigens may potentially influence the clinical relevance of
ensuing adaptive immune responses in the host.

A summary of the eight M. tuberculosis proteins that were
differentially recognized by TB patients in the African and South
American cohorts is provided in Table 2. The antibody responses
directed against these M. tuberculosis proteins are of important
clinical significance, since they may protect against or perpetrate
pathology in TB. In terms of mycobacterial physiology, M.
tuberculosis H37Rv constitutively up-regulates PPE2 gene expres-
sion when subjected to various physicochemical treatments.26
Also, murine macrophages infected with PPE2-deficient M.
tuberculosis CDC1551 were able to generate more nitric oxide
compared to their wild-type counterparts.27 Gene expression
studies with M. tuberculosis H37Rv revealed that PPE32 was highly
expressed upon treatment with hydrogen peroxide for 40 min, as
well as in the stationary phase of growth.28 In addition, sodium
dodecyl sulphate treatment of M. tuberculosis H37Rv also induces
PPE32 expression.29 PPE32 expression was up-regulated in PhoPQ-
deficient M. tuberculosis H37Rv during in vitro growth in medium
with limited Mg2+ supply.30 Therefore, current evidence suggests
that the PPE proteins may play a role in the stress response and
intracellular survival of M. tuberculosis within macrophages,
although this hypothesis requires further investigation.26
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Proteins belonging to the polymorphic CG-repetitive sequences
(PGRS) family have been used as beacons for molecular epidemio-
logical studies performed on clinical isolates of M. tuberculosis.31

PE_PGRS41 gene expression has been linked to regulation by the
PhoPQ system, thus pathogenicity,30,32 and shares 67% identity
with PE_PGRS81 across 98 amino acids at the N-terminus.33

Importantly, PE_PGRS81 (Rv1759c) has been associated with the
ability to bind fibronectin,34 and was first discovered with an
antibody that recognizes the Mycobacterium bovis antigen 85
complex, the best-described mycobacterial fibronectin-binding
protein.33

The mycobacterial capsular protein EspE has been reported to
facilitate M. tuberculosis interaction with the host macrophage, and
subsequent down-modulation of proinflammatory cytokine re-
lease.35 EspE was also found to be closely associated with humoral
immune responses in patients with active cavitary TB.36 In
addition, EspE is associated with the Esx-1 protein transport
system of M. tuberculosis, the same apparatus responsible for CFP-
10 (culture filtrate protein 10 kDa) and ESAT-6 secretion.37 As such,
EspE could potentially be evaluated as an immunological target.

ESAT-6 is the most immunologically relevant and best
characterized protein listed in Table 2, and also exhibits pore-
forming properties in addition to being involved in granuloma
formation in the host.38 Since ESAT-6 is enriched for human T-cell
epitopes and is not encoded by the bacille Calmette–Guérin (BCG)
vaccine, it is used in standard LTBI immunodiagnosis.37,39 In
addition, several TB vaccine candidates incorporating full-length
ESAT-6 are presently in various stages of clinical evaluation.40

This is the first study to present thioredoxin C (TrxC) as an
immunologically relevant M. tuberculosis target, although its
involvement in mycobacterial detoxification mechanisms has
been reported previously.41–43,47 This likewise applies to TB43,
whose role in M. tuberculosis cell wall maintenance is already
known,44,45 and rpoB, which has long been used as the genetic
marker for M. tuberculosis resistance to rifampicin.46–48 Further
studies are required for validation of these proteins as legitimate
biomarkers. It is also acknowledged that a majority of the
peptides observed in the 3D curves require detailed characteriza-
tion in the context of host–pathogen interaction, as well as their
role in the course of clinical TB. The description of biochemical
properties in antibody recognition allow for data mining for non-
M. tuberculosis-related proteins, yet exhibiting similar biochemi-
cal properties, i.e., the induction of heterologous immune
responses.

In conclusion, the immune response landscape in a cohort
offers the unique opportunity to obtain a global view of the
differential recognition of antigenic peptides by antibodies. This
general picture can be used as a guide to ‘cherry-pick’ nominal
antigenic targets occurring within hotspots of recognition for
further validation. The selective immunogenicity of some peptides
over others, derived from the same protein, can be determined
from the 3D curves presented in this study. This information does
not only enrich our knowledge of the host–pathogen interaction,
but can be equally instrumental in basic and clinical research,
stretching from primary evaluation of peripheral immune
responses to large-scale immune-monitoring during clinical trials
and anti-TB therapy. Analysis of the humoral immune landscape
allows the objective identification of complex antibody recognition
patterns.

Funding

This study was supported by grants from Hjärtlungfonden
(Swedish Heart and Lung Foundation), the FIND Foundation,
Vinnova and Vetenskapsrådet (Swedish Research Council) to MM.
Conflict of interest

The authors report no conflicts of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijid.2017.01.015.

References

1. Maertzdorf J, Kaufmann SH, Weiner 3rd. J3rd.. Toward a unified biosignature
for tuberculosis. Cold Spring Harb Perspect Med 2014;5(1):a018531.

2. Tucci P, Gonzalez-Sapienza G, Marin M. Pathogen-derived biomarkers for
active tuberculosis diagnosis. Front Microbiol 2014;5:549.

3. Nayak K, Jing L, Russell RM, Davies DH, Hermanson G, Molina DM, et al.
Identification of novel Mycobacterium tuberculosis CD4 T- cell antigens via high
throughput proteome screening. Tuberculosis 2015;95:275–87.

4. Marais BJ, Lonnroth K, Lawn SD, Migliori GB, Mwaba P, Glaziou P, et al.
Tuberculosis comorbidity with communicable and non-communicable dis-
eases: integrating health services and control efforts. Lancet Infect Dis
2013;13:436–48.

5. Gaseitsiwe S, Valentini D, Mahdavifar S, Magalhaes I, Hoft DF, Zerweck J, et al.
Pattern recognition in pulmonary tuberculosis defined by high content
peptide microarray chip analysis representing 61 proteins from M tuberculosis.
PLoS One 2008;3:e3840.

6. Gaseitsiwe S, Valentini D, Mahdavifar S, Reilly M, Ehrnst A, Maeurer M. Peptide
microarray-based identification of Mycobacterium tuberculosis epitope binding
to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clin Vaccine Immunol
2010;17:168–75.

7. Alvarez-Corrales N, Ahmed RK, Rodriguez CA, Balaji KN, Rivera R, Sompallae R,
et al. Differential cellular recognition pattern to M: tuberculosis targets defined
by IFN-gamma and IL-17 production in blood from TB+ patients from
Honduras as compared to health care workers: TB and immune responses in
patients from Honduras. BMC Infect Dis 2013;13:125.

8. Ahmed RK, Rohava Z, Balaji KN, Hoffner SE, Gaines H, Magalhaes I, et al. Pattern
recognition and cellular immune responses to novel Mycobacterium tubercu-
losis-antigens in individuals from Belarus. BMC Infect Dis 2012;12:41.

9. Nahtman T, Jernberg A, Mahdavifar S, Zerweck J, Schutkowski M, Maeurer M,
Reilly M. Validation of peptide epitope microarray experiments and extraction
of quality data. J Immunol Methods 2007;328:1–13.

10. Ngo Y, Advani R, Valentini D, Gaseitsiwe S, Mahdavifar S, Maeurer M, Reilly M.
Identification and testing of control peptides for antigen microarrays. J
Immunol Methods 2009;343:68–78.

11. Perez-Bercoff L, Valentini D, Gaseitsiwe S, Mahdavifar S, Schutkowski M, Poiret
T, et al. Whole CMV proteome pattern recognition analysis after HSCT
identifies unique epitope targets associated with the CMV status. PLoS One
2014;9:e89648.

12. R Core Team. R: a language and environment for statistical computing, R
Foundation for Statistical Computing 2014. Vienna, Austria.

13. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.
Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol 2004;5:R80.

14. Reilly M, Valentini D. Visualisation and pre-processing of peptide microarray
data. Methods Mol Biol 2009;570:373–89.

15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res 2015;43:e47.

16. Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid
sequences in proteins by statistical methods. J Theor Biol 1968;21:170–201.

17. Grantham R. Amino acid difference formula to help explain protein evolution.
Science 1974;185:862–4.

18. Bowman AW, Azzalini A. R package ‘sm’: nonparametric smoothing methods.
University of Glasgow, UK, and Università di Padova, Italy; 2014.

19. World Health Organization. Global tuberculosisreport 2015. Geneva: WHO;
2015 p. 204.

20. Valentini D, Ferrara G, Advani R, Hallander HO, Maeurer MJ. Serum reactome
induced by Bordetella pertussis infection and pertussis vaccines: qualitative
differences in serum antibody recognition patterns revealed by peptide
microarray analysis. BMC Immunol 2015;16:40.

21. Valentini D, Gaseitsiwe S, Maeurer M. Humoral ‘reactome’ profiles using
peptide microarray chips. Trends Immunol 2010;31:399–400.

22. Rao M, Valentini D, Poiret T, Dodoo E, Parida S, Zumla A, et al. B in TB: B cells as
mediators of clinically relevant immune responses in tuberculosis. Clin Infect
Dis 2015;61(Suppl 3):S225–34.

23. Kang HE, Weng CC, Saijo E, Saylor V, Bian J, Kim S, et al. Characterization of
conformation-dependent prion protein epitopes. J Biol Chem 2012;287:37219–
32.

24. Savage PA. Tumor antigenicity revealed. Trends Immunol 2014;35:47–8.
25. Lustrek M, Lorenz P, Kreutzer M, Qian Z, Steinbeck F, Wu D, et al. Epitope

predictions indicate the presence of two distinct types of epitope-antibody-

http://dx.doi.org/10.1016/j.ijid.2017.01.015
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0005
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0005
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0010
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0010
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0015
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0015
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0015
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0020
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0020
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0020
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0020
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0025
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0025
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0025
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0025
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0030
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0030
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0030
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0030
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0035
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0035
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0035
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0035
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0035
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0040
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0040
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0040
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0045
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0045
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0045
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0050
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0050
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0050
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0055
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0055
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0055
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0055
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0060
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0060
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0065
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0065
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0065
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0070
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0070
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0075
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0075
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0075
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0080
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0080
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0085
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0085
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0090
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0090
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0095
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0095
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0100
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0100
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0100
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0100
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0105
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0105
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0110
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0110
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0110
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0115
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0115
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0115
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0120
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0125
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0125


166 D. Valentini et al. / International Journal of Infectious Diseases 56 (2017) 155–166
reactivities determined by epitope profiling of intravenous immunoglobulins.
PLoS One 2013;8:e78605.

26. Deng W, Xie J. Ins and outs of Mycobacterium tuberculosis PPE family in
pathogenesis and implications for novel measures against tuberculosis. J Cell
Biochem 2012;113:1087–95.

27. Bhat KH, Das A, Srikantam A, Mukhopadhyay S. PPE2 protein of Mycobacterium
tuberculosis may inhibit nitric oxide in activated macrophages. Ann NY Acad Sci
2013;1283:97–101.

28. Voskuil MI, Schnappinger D, Rutherford R, Liu Y, Schoolnik GK. Regulation of
the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis 2004;84:256–62.

29. Manganelli R, Voskuil MI, Schoolnik GK, Smith I. The Mycobacterium
tuberculosis ECF sigma factor sigmaE: role in global gene expression and
survival in macrophages. Mol Microbiol 2001;41:423–37.

30. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. The
Mycobacterium tuberculosis PhoPR two-component system regulates genes
essential for virulence and complex lipid biosynthesis. Mol Microbiol
2006;60:312–30.

31. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD.
Comparison of various repetitive DNA elements as genetic markers for strain
differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Micro-
biol 1993;31:1987–95.

32. Solans L, Gonzalo-Asensio J, Sala C, Benjak A, Uplekar S, Rougemont J, et al. The
PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in
Mycobacterium tuberculosis. PLoS Pathog 2014;10:e1004183.

33. Abou-Zeid C, Garbe T, Lathigra R, Wiker HG, Harboe M, Rook GA, Young DB.
Genetic and immunological analysis of Mycobacterium tuberculosis fibronec-
tin-binding proteins. Infect Immun 1991;59:2712–8.

34. Espitia C, Laclette JP, Mondragon-Palomino M, Amador A, Campuzano J,
Martens A, et al. The PE-PGRS glycine-rich proteins of Mycobacterium
tuberculosis: a new family of fibronectin-binding proteins. Microbiology
1999;145(Pt 12):3487–95.

35. Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, van Zon M, et al. Direct
visualization by cryo-EM of the mycobacterial capsular layer: a labile structure
containing ESX-1-secreted proteins. PLoS Pathog 2010;6:e1000794.

36. Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh
VT, et al. Dynamic antibody responses to the Mycobacterium tuberculosis
proteome. Proc Natl Acad Sci USA 2010;107:14703–8.
37. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. ESAT-6 proteins:
protective antigens and virulence factors? Trends Microbiol 2004;12:500–8.

38. Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L.
Tuberculous granuloma induction via interaction of a bacterial secreted
protein with host epithelium. Science 2010;327:466–9.

39. Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, et al. Gamma
interferon release assays for detection of Mycobacterium tuberculosis infection.
Clin Microbiol Rev 2014;27:3–20.

40. Kaufmann SH, Lange C, Rao M, Balaji KN, Lotze M, Schito M, et al. Progress in
tuberculosis vaccine development and host-directed therapies—a state of the
art review. Lancet Respir Med 2014;2:301–20.

41. Akif M, Khare G, Tyagi AK, Mande SC, Sardesai AA. Functional studies of
multiple thioredoxins from Mycobacterium tuberculosis. J Bacteriol
2008;190:7087–95.

42. Zhang Z, Hillas PJ, Ortiz de Montellano PR. Reduction of peroxides and
dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin
reductase. Arch Biochem Biophys 1999;363:19–26.

43. Wieles B, Ottenhoff TH, Steenwijk TM, Franken KL, de Vries RR, Langermans JA.
Increased intracellular survival of Mycobacterium smegmatis containing the
Mycobacterium leprae thioredoxin–thioredoxin reductase gene. Infect Immun
1997;65:2537–41.

44. Deshpande RG, Khan MB, Bhat DA, Navalkar RG. Isolation of a 43 kDa protein
from Mycobacterium tuberculosis H37Rv and its identification as a pyridine
nucleotide transhydrogenase. J Appl Bacteriol 1994;77:639–43.

45. Hutter B, Singh M. Properties of the 40 kDa antigen of Mycobacterium
tuberculosis, a functional l-alanine dehydrogenase. Biochem J 1999;343(Pt
3):669–72.

46. Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium
tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes
Infect 2014;3(3):e17. doi:http://dx.doi.org/10.1038/emi.2014.17.

47. Manca C, Paul S, Barry 3rd CE3rd, Freedman VH, Kaplan G. Mycobacterium
tuberculosis catalase and peroxidase activities and resistance to oxidative
killing in human monocytes in vitro. Infect Immun 1999;67:74–9.

48. McCammon MT, Gillette JS, Thomas DP, Ramaswamy SV, Graviss EA,
Kreiswirth BN, et al. Detection of rpoB mutations associated with rifampin
resistance in Mycobacterium tuberculosis using denaturing gradient gel
electrophoresis. Antimicrob Agents Chemother 2005;49:2200–9.

http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0125
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0125
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0130
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0130
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0130
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0135
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0135
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0135
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0140
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0140
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0145
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0145
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0145
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0150
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0150
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0150
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0150
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0155
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0155
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0155
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0155
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0160
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0160
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0160
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0165
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0165
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0165
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0170
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0170
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0170
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0170
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0175
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0175
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0175
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0180
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0180
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0180
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0185
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0185
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0190
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0190
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0190
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0195
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0195
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0195
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0200
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0200
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0200
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0205
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0205
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0205
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0210
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0210
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0210
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0215
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0215
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0215
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0215
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0220
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0220
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0220
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0225
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0225
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0225
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0230
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0230
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0230
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0235
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0235
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0235
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0240
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0240
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0240
http://refhub.elsevier.com/S1201-9712(17)30018-8/sbref0240

	Immune recognition surface construction of Mycobacterium tuberculosis epitope-specific antibody responses in tuberculosis ...
	Introduction
	Materials and methods
	Study subjects
	Slide production, scanning, and analysis
	Data mining and statistical analyses
	Software
	Data pre-processing
	Normalization
	Differential recognition
	Pept3D: surface regression and three-dimensional visualization
	BP3D
	Pos3D
	Diff3D

	Detection of IgG in patient sera using high-affinity human IgG ELISA


	Results
	Differential recognition analysis
	Pept3D immune recognition surfaces
	Protein curves
	Bulkiness–polarity 3D curves

	Antigen-specific serum IgG ELISA

	Discussion
	Funding
	Conflict of interest
	Appendix A Supplementary data
	References


