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Summary 

Objective: 

In the absence of specific metabolic disorders, accurate predictors of response to ketogenic 

dietary therapies (KDT) for treating epilepsy are largely unknown.  

We hypothesised that specific biochemical parameters would be associated with the 

effectiveness of KDT in humans with epilepsy. The parameters tested were β-

hydroxybutyrate, acetoacetate, non-esterified fatty acids, free and acylcarnitine profile, 

glucose and glucose-ketone index (GKI).  

Methods: 

Biochemical results from routine blood tests conducted at baseline prior to initiation of KDT 

and at 3-month follow-up were obtained from 13 adults and 215 children with KDT response 

data from participating centres. 132/228(57%) participants had some data at both baseline 

and 3-months; 52/228(23%) had data only at baseline; 22/228(10%) had data only at 3-

months; 22/228(10%) had no data. KDT response was defined as ≥50% seizure reduction at 

3-month follow-up.  



Results: 

Acetyl carnitine at baseline was significantly higher in responders (p<0.007). It was not 

associated with response at 3-month follow-up. There was a trend for higher levels of free 

carnitine and other acylcarnitine esters at baseline and at 3-month follow-up in KDT 

responders. There was also a trend for greater differences in levels of propionyl carnitine 

and in β-hydroxybutyrate measured at baseline and 3-month follow-up in KDT responders. 

No other biochemical parameters were associated with response at any time point. 

Significance: 

Our finding that certain carnitine fractions, in particular baseline acetyl carnitine, are 

positively associated with greater efficacy of KDT is consistent with the theory that 

alterations in energy metabolism may play a role in the mechanisms of action of KDT.  
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Key point box 

 Pre-diet acetyl carnitine is associated with ketogenic diet response. 

 There is a trend for higher levels of free carnitine and other acylcarnitine esters in 

responders. 

 Acetyl carnitine is reversibly converted to acetyl-CoA. Acetyl-CoA may enter the citric 

acid cycle or be used to produce ketones.  

 Alterations in mitochondrial energy metabolism may play a role in the anti-seizure 

effects of ketogenic diets. 



Introduction 

Ketogenic dietary therapies (KDT) can be an effective treatment for people with drug-

resistant epilepsy 1-4. Despite the effectiveness of these therapies, in the absence of specific 

metabolic disorders (glucose transporter type 1 deficiency syndrome and pyruvate 

dehydrogenase complex deficiency 5) patient characteristics that accurately predict 

differential response are largely unknown. Evidence for association of favourable response, 

for example, in younger patients, those with higher pre-diet seizure frequency or specific 

EEG parameters, is inconsistent 6. High response rates have been observed in certain 

epilepsy syndromes 7 and individuals with focal malformations 8,9, but these are merely 

indications; there are still non-responders within these groups and the question remains 

whether other patient demographics or clinical parameters allow response to KDT to be 

predicted. Prior to commencing KDT, individuals are screened with biochemical testing of 

blood and urine for disorders of fatty acid metabolism and organic acidurias. Blood levels of 

various vitamins, minerals and electrolytes (depending on local practice) are also measured 

and monitored throughout treatment. 

Previous studies have examined potential associations between KDT response and β-

hydroxybutyrate (BHB), the primary circulating ketone body in response to starvation 

and/or KDT 10 but results have been inconsistent 11-13.  Other biochemical parameters that 

are already measured as part of routine clinical practice could theoretically be associated 

with KDT response based on their role in fat and carbohydrate metabolism. For example 

acetoacetate, akin to BHB, can be converted back to acetyl-CoA for entry into the citric acid 

cycle and thus used as an energy source; non-esterified fatty acids (NEFA) are precursors of 

ketone bodies and flux to the liver is increased in individuals following KDT 14; carnitine and 



acylcarnitine esters (measured by the acylcarnitine profile) are essential for mitochondrial 

uptake of long-chain fatty acids; reduced glucose levels (but stable and within physiological 

range) are a natural consequence of consuming a low-carbohydrate diet and are necessary 

for ketone production, which occurs in response to reduced hepatic glycogen stores. The 

relationship between glucose and BHB levels may also be important for KDT response: a 

lower glucose-ketone index (GKI), the ratio of blood glucose to ketones, has been found to 

be associated with greater efficacy of ketogenic diets (or calorie restriction) for brain 

tumour management in mice and humans 15. 

There is very limited evidence suggesting lack of association between carnitine (unclear 

whether measured at baseline or follow-up) 13 and KDT response; evidence regarding KDT 

response and glucose, including measures at baseline, follow-up and differences between 

the two time points, is conflicting 16-19.No studies have examined the possible association 

between acylcarnitine esters, acetoacetate, NEFAs, or calculated GKI and the effectiveness 

of KDT in humans with epilepsy. We hypothesised that these parameters are associated 

with response to KDT. 

Methods 

Ethics and recruitment 

Biochemical data were obtained from participants of a study investigating the genetic basis 

behind response to KDT (20,21). The project gained ethical approval through relevant ethics 

committees or institutional review boards. Written informed consent was obtained from all 

study participants or from their parents/carers in the case of minors or adults with 

intellectual disability. 



Participants were recruited for the study from April 2011-December 2012 from the 

following sites: Great Ormond Street Hospital for Children, London; National Hospital for 

Neurology and Neurosurgery, London; Evelina Children’s Hospital, London; St George’s 

Hospital, London; Young Epilepsy (including Matthew’s Friends clinics for Ketogenic Dietary 

Therapies), Surrey; Birmingham Children’s Hospital, Birmingham; Addenbrooke’s Hospital, 

Cambridge; Alder Hey Children’s Hospital, Liverpool; Bristol Royal Hospital for Sick Children, 

Bristol, all in the UK. 

Criteria for study inclusion were: individuals aged ≥3months who were either following KDT 

or who had followed KDT in the past for epilepsy. Exclusion criteria were: individuals who 

discontinued KDT before the 3-month point due to lack of tolerability (those who 

discontinued KDT before the 3-month point due to lack of response or seizure increase were 

included), individuals with progressive myoclonic epilepsies or other progressive 

neurological diseases. 

Data collection 

All participants underwent electroclinical phenotyping to establish seizure type and epilepsy 

syndrome. This involved evaluation of medical history, seizure semiology, examination and 

review of EEG and imaging studies. Demographic data were obtained from medical records. 

Biochemical results for BHB, acetoacetate, NEFA, free- and acylcarnitine profile and glucose 

conducted at baseline (prior to initiation of KDT) and at 3-month follow-up (three months 

after KDT was started) as part of routine clinical care were obtained from medical records 

and NHS Trust databases. The GKI was calculated using the GKI calculator using glucose and 

BHB levels measured at baseline and at 3-month follow-up 15. 



KDT response was defined as a function of seizure frequency, as previously published (20,21). 

Response was estimated in 28 day epochs prior to starting the diet (baseline) and prior to 3-

month follow-up after the start of KDT. Clinic letters and seizure diaries, where already used 

as part of clinical monitoring, were used to estimate seizure frequency at each time point. 

The calculation used to determine percentage reduction in seizure frequency was: [(a-

b)/a]*100, where a = number of seizures in the 28 days prior to KDT initiation; b = number 

of seizures in the 28 days preceding the 3-month point. A case/control observational study 

design was adopted. Those with ≥50% seizure reduction were classified as ‘responders’; 

those with <50% seizure reduction were ‘non-responders’. Seizure freedom achieved at 3-

month follow-up was also documented.  

Statistical analyses 

The effect of demographic parameters between groups with biochemical data at various 

time points (either with no biochemical data, some data at baseline and 3-month follow-up, 

data only at baseline, or data only at 3-month follow-up) was assessed using Fisher’s exact 

or Kruskal-Wallis tests. The effect of demographic parameters on KDT response was 

assessed using Fisher’s exact or Kruskal-Wallis tests.  

Parametric tests were conducted to assess the relationship between KDT response at 3-

month follow-up and blood test results that had ≥50 data points in each response group. 

Non-parametric analyses were used for blood test results with <50 data points in each 

response group. Analyses were conducted with biochemical results from baseline, at 3-

month follow-up and also using the difference between the biochemical results taken at 

these two time points.  



A significance threshold of 0.05 was applied, as this was an exploratory analysis. The 

Bonferroni-corrected significance threshold to account for the multiple testing of 14 tests  

was α=0.004. Note that this correction is too conservative, as our tests are not independent 

of each other.   

All statistics were performed in Stata v13.1 (Stata Statistical Software: Release 13. College 

Station, TX: StataCorp LP). 

Results 

Response data could not be collected for 4/232(2%) participants which is a small enough 

proportion to safely ignore dropout without fear of biasing our results. 117/228(51%) 

participants (113 children and 4 adults [aged ≥18 years at start of diet]) had ≥50% seizure 

reduction after 3 months of following KDT, of whom 10 were seizure-free (all aged < 18 

years); 111/228(49%) (102 children and 9 adults) had <50% seizure reduction. There was no 

statistically significant difference in response between children and adults (Fisher's exact 

test p = 0.16). 

132/228(58%) participants with KDT response data had some data at both baseline and 3-

months; 52/228(23%) had data only at baseline; 22/228(10%) had data only at 3-months; 

22/228(10%) had no data available. 

A summary of the clinical and demographic parameters of the cohort are given in 

Supplementary Table 1. No participants received carnitine supplementation either at 

baseline or during KDT. 

There was no difference in demographic parameters between groups with biochemical data 

at various time points, as shown in Supplementary Tables 2-9. No analyses were conducted 



for cause of epilepsy or for epilepsy syndrome as, for most participants, the cause was 

‘unknown’ and they had no syndromic diagnosis.  

There was no difference in any demographic parameter between responders and non-

responders to KDT when response was defined as 50% seizure reduction, as shown in 

Supplementary Table 10.  

There was a trend for lower age at diet start in those who achieved seizure freedom 

compared to those who did not become seizure-free (median age=3.4 years in those who 

became seizure free; median age=5.7 years in those who did not achieve seizure freedom; 

p=0.02). There was no difference in any other demographic parameters when response was 

defined as seizure-freedom, as shown in Supplementary Table 10.  

Acetyl carnitine at baseline was higher in KDT responders (uncorrected p<0.003; Table 1). 

This is significant, even when applying a Bonferroni-corrected significance threshold 

(p<0.004). 

Acetyl carnitine data at baseline ranged from 2.74-40.7μmol/L for responders and 3.59-

32.5μmol/L for non-responders. Figure 1 shows a trend for higher acetyl carnitine levels at 

baseline in responders although, at the lower end of the scale (acetyl carnitine levels 

approximately <7μmol/L), there is some overlap between responders and non-responders. 

There were trends for higher free, propionyl, octanoyl and palmitoyl carnitine and β-

hydroxybutyrate at baseline in KDT responders (p<0.05 but >0.004; Table 1), higher 

palmitoyl carnitine at 3-month follow-up in KDT responders (p<0.05 but >0.004; *p-values 

derived from t-tests 



 
Table 2), and greater differences in levels of propionyl carnitine and in BHB measured at 

baseline and 3-month follow-up in KDT responders (p<0.05 but >0.004; *p-values derived 

from t-tests 

 
Table 3). 

There was a trend for higher NEFA levels at 3-month follow-up and a greater difference in 

BHB levels at baseline and at 3-month follow-up in participants who achieved seizure 

freedom at 3-month follow-up compared to those who were not seizure-free (p<0.05 but 

>0.004). These data are presented in Supplementary Tables 11-13.  

 

Discussion 

We have found that acetyl carnitine at baseline was significantly higher in KDT responders 

compared to responders, although the effect size is small and potential clinical significance 

unknown. This result is supported by a trend for higher levels of free carnitine and other 

acylcarnitine esters in KDT responders at baseline, 3-month follow-up or the difference in 

levels measured at these two time points. We are not aware of previously published reports 

of a relationship between acetyl carnitine, or any other acylcarnitine esters, and KDT 

response. 

Our finding that higher blood acetyl carnitine levels are associated with greater 

effectiveness of KDT is consistent with our knowledge of biochemistry: carnitine is needed 

to transport long-chain fatty acids into hepatic mitochondria to produce ketones and acetyl 

carnitine and acetyl coenzyme A (acetyl-CoA) plays a critical role in mitochondrial energy 



metabolism. There is an equilibrium between acetyl carnitine (acetyl coA + carnitine) and 

acetyl-CoA. Acetyl carnitine is reversibly converted to acetyl-CoA by carnitine 

acetyltransferase (CAT) enzymes 22 (see Figure 2). This maintains acetyl-CoA levels for 

production of ketone bodies (acetyl carnitine then leaves the mitochondria with the 

ketones) and also for entry of acetyl-CoA into the citric acid cycle. Levels of acylcarnitines, 

including acetyl carnitine, are increased in patients following KDT 23. These metabolic 

adaptations, triggered by PPARα, serve to favour the use of ketones as fuel 24.  

Our findings may point to a targetable alteration in energy metabolism and acetyl CoA 

buffering/availability. Whilst the mechanisms responsible for this observation are unknown, 

this result may relate to our recent reports that decanoic acid, a component of the medium 

chain triglyceride (MCT) KD, is able to increase citrate synthase activity in both cultured 

neurons and fibroblasts 25,26. This enzyme utilises acetyl CoA and catalyses the first reaction 

of the citric acid cycle (the condensation of acetyl-CoA and oxaloacetate to form citrate). We 

may have identified a subset of patients that responded to KDT due to improvement in 

mitochondrial energy metabolism. The fact that acetyl carnitine at 3-month follow-up was 

not associated with response to KDT in our study may reflect the fact that these patients’ 

‘deficiencies’ in mitochondrial bioenergetics have been ‘corrected’ through use of KDT. One 

could infer that acetyl carnitine is important for successfully starting KDT, but once ketosis 

has been achieved and/or mitochondrial energy metabolism is altered, carnitine levels are 

no longer associated with seizure control. However, it is unknown whether the serum 

biochemical parameters looked at in our study reflect cerebral energy metabolism.  

One study previously investigated the relationship between carnitine (it is unclear whether 

this was free or total carnitine) and KDT response 13; no statistically significant relationship 



was found. Correlations have been identified between KDT response and other biochemical 

markers not usually measured as part of routine management in the UK. For example, 

responders to KDT were found to have larger absolute decreases in plasma phospholipid 

fatty acid 18:0 and smaller increases in 24:1 during dietary treatment 27 than non-

responders; there are also reports of a positive correlation between reduction in seizure 

frequency and elevation in serum total arachidonic acid compared to pre-diet levels 28, 

higher serum palmitoleic acid in responders after one month, lower serum arachidonic acid 

in responders after one month, and lower serum arachidonic and docosahexaenoic in 

responders at 3-month follow-up 29. However, no difference has been found in levels of 

other plasma fatty acids 27, monoamine or HVA/5HIAA 30, linoleic acid or alpha-linolenic acid 

29, octanoic or decanoic acid 31 between responders and non-responders.  

We found a trend for association between KDT response – both defined as ≥50% seizure 

reduction and seizure-freedom – and the difference in blood BHB levels at baseline and 3-

month follow-up. This is a novel approach to analysing the relationship between BHB and 

KDT effectiveness. Some studies have previously reported a correlation between improved 

seizure control at various follow-up points and higher blood BHB levels in children 11,12,32,33, 

adolescents 11,12 and adults 12 following KDT. Others have found no correlation, either with 

blood BHB or urinary ketosis  in all KD variants, with use of the classical diet, MCT diet, 

Modified Atkins diet/Modified Ketogenic Therapy and the Low Glycaemic Index Treatment 

(see 6 for a comprehensive list of references). BHB has been shown to have direct 34 and 

indirect 35 neuroprotective and/or anticonvulsant effects, and ketone esters have displayed 

anticonvulsant properties in animal seizure models 36-38, which supports the premise that 

the production of ketones is necessary for effectiveness of KDT. On the other hand, recent 

studies found that medium chain fatty acids, specifically decanoic acid, displayed anti-



seizure activity (although this has not yet been tested in humans), whereas BHB did not  

25,26,39, pointing towards alternative therapeutic mechanisms of KDT. We also found a trend 

for higher NEFA levels at 3-month follow-up in participants who achieved seizure freedom at 

3-month; no other studies were found assessing the relationship between total NEFA and 

KDT response. 

We did not find that GKI, either at baseline or at 3-months, was associated with KDT 

effectiveness. We hoped to investigate the difference in the GKI values taken at the two 

time points, but the baseline results were much higher; thus, it would have mainly reflected 

the effect of the baseline values. Furthermore, no relationship was seen with glucose alone, 

showing that the GKI trends are driven by BHB levels. A more accurate and consistent 

measurement of GKI could be obtained by measuring blood glucose and BHB twice a day, 2-

3 hours post-prandially, at approximately the same time of day for each patient, as 

suggested in the manuscript that originally discussed the concept of GKI 15.  

Our findings are not affected by differences in demographic parameters between KDT 

responders and non-responders, nor between groups with biochemical data at various time 

points. Age at diet start was lower in those who achieved seizure-freedom, but there were 

only 10 participants in this group, compared with 218 who did not achieve seizure-freedom. 

This correlation may have been related to epilepsy syndrome; many participants did not 

have a syndromic diagnosis and, for those who did, the numbers within each syndrome 

group were too small for statistical analysis. Although some studies have reported a more 

favourable response in younger children or infants, the majority have found that age makes 

no difference (see 6 for a detailed list of references).  



We may have been underpowered to detect the small effect sizes of certain biochemical 

parameters (in particular other acylcarnitine esters, BHB and NEFA), leading to non-

significant results when accounting for multiple testing. Although large effect sizes would be 

more beneficial when considering translation into clinical practice, factors with small effect 

sizes may provide insight into the mechanisms of action of KDT. There were missing data in 

our cohort and very few participants achieved seizure-freedom. Missing data may have 

been because some blood tests were performed at local hospitals and were not recorded on 

participating centres’ databases. Despite missing data, with 56 responders and 56 non-

responders with baseline acetyl carnitine data, any concentration error estimates in the 

laboratory values should be spread evenly within the two groups. Our results are worth 

following up in a larger cohort, particularly with a larger number of seizure-free patients.  

Another limitation of the study is that KDT response data were collected retrospectively, 

predominantly from clinic letters. Ideally, seizure diaries would be used throughout the 3-

month period to allow for the natural variability of seizures over time, rather than relying on 

28 day epochs. Seizure recording throughout the entire follow-up period may be crucial for 

individuals whose seizures occur in weekly/monthly clusters; seizure reduction on the diet 

may not be accurately reflected by using 28 day epochs, as the cluster may occur just before 

the 28 days prior to baseline and so, according to the seizure diary, the patient would be 

seizure-free before starting the diet. This was not an issue for any of our participants, as 

they all had seizures in the 28 days prior to baseline.  Completion of a seizure diary for any 

prolonged length of time, however, can be burdensome for patients and/or carers. A 3-

month baseline period before starting KDT may also be prohibitively long for some patients. 

Prospective data collection may have resulted in fewer missing data points and have 

allowed the possibility of ensuring a more consistent procedure for timing of blood 



collection - this would be particularly important for glucose and BHB levels. However, this 

would be difficult to achieve in an outpatient setting.  

There are possible analyses that could be performed in a follow-up study. If seizure diaries 

were used for all participants, we could use percentage seizure frequency change directly as 

a response variable; much information is lost when using binary outcomes. We could also 

perform a multivariable regression of our biochemical markers, as many of our 

measurements were correlated. 

Conclusion 

We have found a previously-unreported relationship between acetyl carnitine at baseline 

and KDT response. This provides supporting evidence for the role of altered mitochondrial 

energy metabolism in the mechanisms of action of KDT. We also report a trend for 

association with free- and other acylcarnitine esters – some at baseline, others at 3-month 

follow-up, or the difference between results at the two time points. Our findings also add to 

the conflicting evidence that blood BHB levels are associated with KDT response. These 

results are worth following-up in a larger cohort; although the relationship between 

baseline acetyl carnitine and KDT response is significant, the effect size is small and thus the 

finding has limited clinical meaning until followed up with a more controlled prospective 

study. Confirming the association would aid our understanding of the mechanisms of action 

of KDT and could potentially be used to target resources towards patients who are more 

likely to response favourably to KDT. 
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Table 1: Relationship between KDT response at 3-month follow-up with biochemical 
parameters at baseline 
 

 Non-responders 
(<50% seizure 
reduction) 

Responders 
(≥50% seizure 
reduction) 

p-
value 

Acetoacetate (mmol/L) N=16 Median 0.03 N=18 Median 0.036 0.82 
Glucose (mmol/L) N= 47 Median 4.5 N= 60 Median 4.5 0.85 
β-hydroxybutyrate (mmol/L) N= 61 Median 0.07 N= 65 Median 0.09 0.028* 
Glucose-ketone index N=35 Median 84 N=41 Median 62.96 0.06 
Non-esterified fatty acids 
(mmol/L) 

N= 56 Median 0.303 N= 59 Median 0.4 0.40* 

Free carnitine (μmol/L) N= 70 Median 29.5 N= 72 Median 34 0.03* 
Acetyl carnitine (μmol/L) N= 56 Median 12.15 N= 56 Median 15.05 0.003* 
Propionyl carnitine (μmol/L) N= 39 Median 0.78 N= 50 Median 1.08 0.018 
Butyryl carnitine (μmol/L) N= 39 Median 0.22 N= 50 Median 0.25 0.70 
Isovaleryl carnitine (μmol/L) N=39 Median 0.16 N = 49 Median 0.17 0.48 
Hexanoyl carnitine (μmol/L) N=32 Median 0.06 N=44 Median 0.07 0.47 
Octanoyl carnitine (μmol/L) N=40 Median 0.075 N=50 Median 0.09 0.046 
Tetradecenyl carnitine (μmol/L) N=29 Median 0.07 N=40 Median 0.07 0.63 
Palmitoyl carnitine (μmol/L) N=31 Median 0.6 N=44 Median 0.8 0.02 



*p-values derived from t-tests 
 
Table 2: Relationship between KDT response at 3-month follow-up with biochemical 
parameters at 3-month follow-up 

 Non-responders 
(<50% seizure 
reduction) 

Responders 
(≥50% seizure 
reduction) 

p-
value 

Acetoacetate (mmol/L) N=10 Median 1.11 N=19 Median 1.06 0.61 
Glucose (mmol/L) N= 37 Median 3.7 N= 51 Median 3.8 0.91 
β-hydroxybutyrate (mmol/L) N= 59 Median 2.56 N= 65 Median 2.82 0.13* 
Glucose-ketone index N= 31 Median 1.27 N= 41 Median 1 0.17 
Non-esterified fatty acids 
(mmol/L) 

N= 53 Median 0.89 N= 61 Median 0.93 0.99* 

Free carnitine (μmol/L) N= 46 Median 29.5 N= 58 Median 38 0.054 
Acetyl carnitine (μmol/L) N= 44 Median 24.15 N= 49 Median 27.2 0.08 
Propionyl carnitine (μmol/L) N= 32 Median 0.51 N =43 Median 0.47 0.74 
Butyryl carnitine (μmol/L) N= 32 Median 0.28 N= 43 Median 0.27 0.49 
Isovaleryl carnitine (μmol/L) N=32 Median 0.16 N=43 Median 0.19 0.77 
Hexanoyl carnitine (μmol/L) N=28 Median 0.09 N=40 Median 0.10 0.75 
Octanoyl carnitine (μmol/L) N=32 Median 0.14 N=43 Median 0.12 0.53 
Tetradecenyl carnitine (μmol/L) N=27 Median 0.10 N=34 Median 0.095 0.47 

Palmitoyl carnitine (μmol/L) N=28 Median 0.80 N = 39 Median 1 0.049 

*p-values derived from t-tests 
 
Table 3: Relationship between KDT response at 3-month follow-up with the difference in 
biochemical parameters at baseline and 3-month follow-up 

 Non-responders 
(<50% seizure 
reduction) 

Responders 
(≥50% seizure 
reduction) 

p-value 

Acetoacetate (mmol/L) N=8 Median 0.66 N=10 Median 1.02 0.20 
Glucose (mmol/L) N=23 Median -0.5 N=32 Median -0.8 0.84 
β-hydroxybutyrate (mmol/L) N=38 Median 2.2 N=45 Median 2.93 0.02 
Non-esterified fatty acids 
(mmol/L) 

N=35 Median 0.51 N= 42 Median 0.415 0.76 

Free carnitine (μmol/L) N=35 Median -2 N=42 Median 2.5 0.99 
Acetyl carnitine (μmol/L) N= 33 Median 10.6 N= 35 Median 11.9 0.54 
Propionyl carnitine (μmol/L) N =24 Median -0.31 N =32 Median -0.69 0.014 
Butyryl carnitine (μmol/L) N = 24 Median 0.075 N = 32 Median -0.015 0.09 
Isovaleryl carnitine (μmol/L) N=24 Median 0.04 N=31 Median 0.02 0.46 
Hexanoyl carnitine (μmol/L) N=22 Median 0.035 N=29 Median 0.03 0.89 
Octanoyl carnitine (μmol/L) N=25 Median 0.05 N=32 Median 0.05 0.99 
Tetradecenyl carnitine (μmol/L) N=21 Median 0.02 N = 27 Median 0.05 0.28 
Palmitoyl carnitine (μmol/L) N=21 Median 0.1 N=29 Median 0.1 0.87 

 
 
Figure 1: Box and whisker plot of acetyl carnitine (μmol/L) at baseline for ketogenic diet 
responders and non-responders 



The box and whisker plot shows the distribution of data for responders and non-responders 
divided into quartiles, highlighting the mean (x), median (-) and outliers 
 
Figure 2: Acetyl carnitine and acetyl CoA, adapted from Figure 1 40 
 


