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ABSTRACT
We constrain the average halo ellipticity of ∼2600 galaxy groups from the Galaxy And Mass
Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the
overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of
the stacked lensing signal around seven different proxies for the orientation of the dark matter
distribution, as it is a priori unknown which one traces the orientation best. On small scales,
the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to
a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to
adopt a model density profile. We derive new expressions for the quadrupole moments of the
shear field given an elliptical model surface mass density profile. Modelling the signal with an
elliptical Navarro–Frenk–White profile on scales R < 250 kpc, and assuming that the BCG is
perfectly aligned with the dark matter, we find an average halo ellipticity of εh = 0.38 ± 0.12,
in fair agreement with results from cold dark matter only simulations. On larger scales, the
lensing signal around the BCGs becomes isotropic and the distribution of group satellites
provides a better proxy for the halo’s orientation instead, leading to a 3σ–4σ detection of a
non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of
stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter
within that radius, which has also been observed in hydrodynamical simulations.

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical –
galaxies: groups: general – galaxies: haloes.

1 IN T RO D U C T I O N

Simulations based on cold and warm dark matter models predict
that dark matter collapses into anisotropic, approximately triax-
ial dark matter haloes, which appear elliptical in projection (e.g.
Jing & Suto 2002; Macciò et al. 2013). Direct measurements of
halo ellipticities therefore constitute a powerful test of the cur-
rent cosmological paradigm, and serve as a test bed for modified
gravity models, as some of these predict different halo ellipticity
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distributions (e.g. Hellwing et al. 2013, who studied the impact
of a so-called fifth force), while others such as modified Newto-
nian dynamics (MOND; Milgrom 1983) generally predict a more
axisymmetric gravitational potential at larger distances from the
galaxy where there are no baryons. Self-interacting dark matter
models, on the other hand, lead to rounder haloes at small scales
(Peter et al. 2013). Therefore, halo ellipticity measurements as a
function of scale have the potential to constrain the cross-section of
dark matter.

To constrain dark matter halo ellipticities, one could use visi-
ble tracers of the gravitational potential, such as the distribution
and kinematics of satellite galaxies (e.g. Brainerd 2005; Bailin
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et al. 2008), tidal streams of satellites (e.g. Ibata et al. 2001;
Vera-Ciro & Helmi 2013), HI observations (e.g. Olling 1995;
Peters et al. 2017), planetary nebulae (e.g. Hui et al. 1995; Napoli-
tano et al. 2011), strong lensing (e.g. Kochanek 1991; Caminha
et al. 2016) combined with stellar dynamics (e.g. van de Ven
et al. 2010) and X-ray observations (e.g. Fabricant, Rybicki &
Gorenstein 1984; Donahue et al. 2016). Most of these methods
require assumptions on the relation between the dynamical state
of the visible tracer and the dark matter in order to constrain halo
ellipticities, which may lead to biases. In addition, tracers may not
always be present in sufficient numbers at the scales of interest,
for example towards the outer edges of the halo where dark mat-
ter dominates the total matter budget. These complications can be
avoided with a different method: weak gravitational lensing.

Weak lensing directly measures the total projected matter density
around galaxies. A triaxial dark matter halo causes an azimuthal
variation in the lensing signal; the amplitude is enhanced along
the projected major axis and decreased along the minor axis. This
variation can be extracted from the lensing signal by applying a
weight that varies with the angle between the image position vector,
as measured from the lens centre and the major axis of the matter
distribution.

The signal-to-noise ratio of weak lensing measurements for a
single lens in typical wide-field surveys is far below unity for all
but the most massive objects in the Universe. This is commonly
dealt with by stacking the lensing signal around lenses of the same
type. In order to coherently stack the anisotropic part of the lensing
signal, we need to adopt a proxy for the major axis of the total matter
distribution, as that is not known for individual lenses. Most studies
to date used the observed major axis of the lens galaxy, relying on
the assumption that galaxies and their haloes are aligned. In the
extreme case that their orientations are uncorrelated, the anisotropy
in the lensing signal is completely washed out.

Most numerical simulations suggest a fairly large mean misalign-
ment angle of ϕmis ∼ 30◦ between the galaxy and the dark matter
halo, although the scatter between reported values is large (van den
Bosch et al. 2002; Okumura, Jing & Li 2009; Bett et al. 2010;
Deason et al. 2011; Bett 2012; Li et al. 2013; Tenneti et al. 2014).
Hydrodynamical simulations show that this misalignment angle de-
pends on baryonic physics (Tenneti, Gnedin & Feng 2017), which
make halo ellipticity constraints from weak lensing an interesting
probe of baryonic feedback processes. A large misalignment would
explain the reduction in the observed intrinsic alignment signal
of luminous red galaxies compared to predictions from �CDM
(Faltenbacher et al. 2009; Okumura et al. 2009), and could also ex-
plain why the weak-lensing-based halo ellipticity measurement of
galaxy-scale haloes only reached tentative detections to date (Man-
delbaum et al. 2006; van Uitert et al. 2012; Schrabback et al. 2015).
Recent hydrodynamical simulations, however, report that the mis-
alignment angle decreases towards higher mass (Tenneti et al. 2015;
Velliscig et al. 2015). In addition, N-body simulations have shown
that more massive haloes are more elliptical on average (e.g. All-
good et al. 2006; Despali, Giocoli & Tormen 2014; Bonamigo
et al. 2015). Indeed, for group-scale haloes and galaxy clusters,
significant detections of anisotropy of the lensing signal have been
reported (Evans & Bridle 2009; Oguri et al. 2010; Clampitt &
Jain 2016). Hence, these massive objects appear to be the optimal
targets for lensing studies of halo ellipticity.

This motivates us to measure the halo ellipticity of galaxy groups
from the Galaxy And Mass Assembly (GAMA) survey (Driver
et al. 2009, 2011; Liske et al. 2015), using the imaging data from
the Kilo Degree Survey (KiDS; de Jong et al. 2013). GAMA is

a highly complete spectroscopic survey with r < 19.8, which en-
abled the construction of a high-fidelity group catalogue (Robotham
et al. 2011). KiDS is an ongoing imaging survey optimized for weak
lensing studies that includes complete coverage of GAMA. The
combination of these two data sets is therefore perfectly suited for
the task.

Working with galaxy groups also has the advantage that we can
measure the lensing signal anisotropy exclusively around group
centrals only. Stacking the signal of central and satellite galaxies, as
was presented in previous works on galaxy-scale haloes, also poten-
tially dilutes the signal and certainly complicates the interpretation.
Another advantage of galaxy groups is that we can adopt various
proxies for the orientation of the halo; not only can we use the major
axis of the group central, but we can also use proxies based on the
distribution of satellites, which also trace the dark matter (Kang
et al. 2007; Wang et al. 2008, 2014; Agustsson & Brainerd 2010;
Dong et al. 2014), or the vector connecting the group central to
particular satellite galaxies. This enables us to investigate which
proxy traces the dark matter orientation best.

The outline of the paper is as follows. In Section 2, we outline
the various estimators used to extract the average halo ellipticity
from the lensing measurements. In Section 3, we discuss the data
sets and outline the various proxies for the orientation of the dark
matter distribution. The lensing measurements and the average halo
ellipticities are presented in Section 4. We conclude in Section 5.
Throughout the paper, we assume a standard �CDM cosmology
with �� = 0.73, �M = 0.27 and h = 0.7 the dimensionless Hubble
parameter, which is consistent with the best-fitting cosmological
parameters from WMAP9 (Hinshaw et al. 2013). We only explicitly
write the Hubble parameter dependence of parameters in figures as
a reminder. All distances are in physical (not comoving) units.

2 M E T H O D O L O G Y

Weak gravitational lensing induces a small, coherent distortion in
the shapes of background galaxies in the direction perpendicular
to the separation vector between lens and source (see Bartelmann
& Schneider 2001, for a thorough introduction). This distortion is
extracted by measuring the tangential projection of the observed
ellipticities of background galaxies in concentric rings around the
lens, the tangential shear:

εt = −ε1 cos(2φ) − ε2 sin(2φ), (1)

where (ε1, ε2) are the two components of the observed galaxy
ellipticity, which form an estimator of the gravitational shear
(γ 1, γ 2) and φ is the angle between the x-axis and the lens–source
separation vector. The azimuthally averaged tangential shear is a
useful quantity to measure as it is directly related to the differential
mass profile of the lens:

〈εt〉(R) ≈ 〈γt〉(R) = 
�(R)

�crit
, (2)

with R the projected separation between the lens and the source,

�(R) = �̄(< R) − 〈�〉(R) the difference between the mean pro-
jected surface mass density inside R and the azimuthally averaged
surface mass density at R. �crit is the critical surface mass density,
which contains the geometric scaling of the lensing signal:

�crit = c2

4πG

DS

DLDLS

, (3)
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where DS, DL and DLS are the angular diameter distances to the
source, to the lens, and between the source and the lens, respectively;
c is the speed of light and G the gravitational constant.

The cross component of the shear is commonly measured as
well:

ε× = ε1 sin(2φ) − ε2 cos(2φ). (4)

Weak gravitational lensing does not produce cross shear once az-
imuthally averaged. The cross shear is therefore commonly used as
a null test to check for the presence of systematics. Elliptical mass
profiles, however, can produce an azimuthally varying cross shear.

2.1 Anisotropic lens models

Triaxial dark matter haloes cause an azimuthal variation in the
lensing signal, which we want to extract. To relate that to a halo
ellipticity, we have to adopt a lens model. We consider a mass
distribution with confocal elliptical isodensity contours of axis-ratio
q ≤ 1,

κ(θ) = 〈κ〉
⎛⎝√

qθ2
1 + θ2

2

q

⎞⎠, (5)

with κ = �/�crit the convergence, where we choose coordi-
nates such that the major axis lies along the θ1-direction. This
parametrization ensures that the mass inside a isodensity contour κ

is independent of q. Defining the ellipticity of this distribution as
εh = (1 − q)/(1 + q) and expanding κ in terms of εh yield

κ(θ) = 〈κ〉 (θ ) − εh θ 〈κ〉′ cos(2ϕ) + O (
ε2

h

)
=: 〈κ〉 (θ ) + εh κ2(θ ) cos(2ϕ) + O (

ε2
h

)
, (6)

where in the final step we define κ2(θ ); here, θ and ϕ are the
polar coordinates of θ . In the following, we will neglect higher
order terms in εh; in this approximation, 〈κ〉(θ ) is the azimuthally
averaged density profile of the lens.

The deflection potential ψ corresponding to the mass distribution
of equation (6) reads (Schneider & Weiss 1991; Adhikari, Chue &
Dalal 2015)

ψ(θ, ϕ) = ψ0(θ ) + εhψ2(θ ) cos(2ϕ), (7)

with

ψ0(θ ) = 2

(
ln θ

∫ θ

0
dϑ ϑ 〈κ〉 (ϑ) +

∫ ∞

θ

dϑ ϑ ln ϑ 〈κ〉 (ϑ)

)
, (8)

and

ψ2(θ ) = −1

2

(
1

θ2

∫ θ

0
dϑ ϑ3κ2(ϑ) + θ2

∫ ∞

θ

dϑ

ϑ
κ2(ϑ)

)
. (9)

Since in the case considered here, κ2(θ ) = −θ 〈κ〉′(θ ), the expres-
sion for ψ2 can be simplified; using integration by parts, we obtain

ψ2(θ ) = − 2

θ2

∫ θ

0
dϑ ϑ3 〈κ〉 (ϑ). (10)

This equation shows that the quadrupole term in the potential is
affected only by the mass distribution inside the isodensity contour
considered. In fact, it is known that the potential of lenses with
elliptical isodensity contours depends only on the mass distribution
inside an isodensity contour (Bray 1984), generalizing a corre-
sponding result for axisymmetric mass distributions. This property

is preserved in all orders of the expansion of κ (see equation 5)
in εh.1

One can check that this deflection potential satisfies the Poisson
equation ∇c∇∗

c ψ = 2κ , where we defined ∇c = ∂/∂θ1 + i ∂/∂θ2.
Rewriting the differential operator in polar coordinates,

∇c = eiϕ

(
∂

∂θ
+ i

θ

∂

∂ϕ

)
, (11)

we find for the Laplacian of ψ

∇c∇∗
c ψ = ∂2ψ

∂θ2
+ 1

θ

∂ψ

∂θ
+ 1

θ2

∂2ψ

∂ϕ2

= ψ ′′
0 + ψ ′

0

θ
+ εh

(
ψ ′′

2 + ψ ′
2

θ
− 4ψ2

θ2

)
cos(2ϕ). (12)

To show that this equals 2κ , we use

ψ ′
0

θ
= 2

θ2

∫ θ

0
dϑ ϑ 〈κ〉 (ϑ) = κ̄(θ ), (13)

the mean surface mass density inside θ , and ψ ′′
0 = 2〈κ〉 − κ̄ .

Furthermore, ψ ′
2(θ ) = −2ψ2(θ )/θ − 2θ〈κ〉(θ ) and ψ ′′

2 (θ ) =
6ψ2(θ )/θ2 + 2 〈κ〉 (θ ) − 2θ 〈κ〉′ (θ ). With these relations, and
using κ2 = −θ〈κ〉′, it is readily shown that ∇c∇∗

c ψ = 2κ .
The shear caused by the mass distribution of equation (6) is

obtained in Cartesian coordinates as

γ = γ1 + i γ2 = 1

2
∇c∇cψ, (14)

and its transformation to the tangential and cross components of the
shear relative to the lens centre is defined as

γt + i γ× = −e−2iϕγ, (15)

yielding2

γt = 1

2

(
−∂2ψ

∂θ2
+ 1

θ

∂ψ

∂θ
+ 1

θ2

∂2ψ

∂ϕ2

)
; γ× = 1

θ2

∂ψ

∂ϕ
− 1

θ

∂2ψ

∂θ∂ϕ
.

(16)

Decomposing the shear into the monopole and quadrupole contri-
butions,

γt(θ, ϕ) = 〈γt〉 (θ ) + εhγt,2(θ ) cos(2ϕ),

γ×(θ, ϕ) = εhγ×,2(θ ) sin(2ϕ), (17)

– note that the cross component has no monopole contribution – we
find that

〈γt〉 (θ ) = κ̄(θ ) − 〈κ〉 (θ ),

γt,2(θ ) = −6ψ2(θ )

θ2
− 2 〈κ〉 (θ ) + θ 〈κ〉′ (θ ),

γ×,2(θ ) = −6ψ2(θ )

θ2
− 4 〈κ〉 (θ ). (18)

This is a simpler result than the one derived in Adhikari et al. (2015),
as in order to calculate these shear functions, one only needs to solve
a simple integral over a finite interval for ψ2.

1 From equation (6), it is not obvious that this property also applies to the
monopole term; however, as we shall see later, the derivatives of ψ0(θ ) only
depend on 〈κ〉(θ ′) for θ ′ ≤ θ and an additive constant of ψ0 is arbitrary
anyway.
2 We note that the equations 2.9 and 2.10 of Adhikari et al. (2015) are
missing a factor of 2.
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The functions 〈γ t〉(θ ), γ t,2(θ ) and γ ×,2(θ ) are obtained from the
shear components as

〈γt〉 (θ ) = 1

2π

∫ 2π

0
dϕ γt(θ, ϕ),

εhγt,2(θ ) = 1

π

∫ 2π

0
dϕ γt(θ, ϕ) cos(2ϕ),

εhγ×,2(θ ) = 1

π

∫ 2π

0
dϕ γ×(θ, ϕ) sin(2ϕ). (19)

We now consider the estimators

γ̂t,0(θ ) =
∑

i wi εt,i∑
i wi

,

γ̂t,2(θ ) =
∑

i wi εt,i cos(2ϕi)∑
i wi cos2(2ϕi)

,

γ̂×,2(θ ) =
∑

i wi ε×,i sin(2ϕi)∑
i wi sin2(2ϕi)

, (20)

where the sum extends over all image ellipticities within a given θ

bin, and the wi are the shape measurement weights of the source
galaxies. Furthermore, we drop the assumption that the major axis
of the lens is aligned with the θ1-axis, by interpreting the ϕi as the
polar angle difference between a source galaxy’s location and the
lens major axis. Since the expectation value of εi is E(εi) = γ (θ i,
ϕi), we readily find from equation (17), assuming that the source
galaxy images have random polar angles ϕi, that

E
(
γ̂t,0(θ )

) = 〈γt(θ )〉 ,

E
(
γ̂t,2(θ )

) = εh γt,2(θ ),

E
(
γ̂×,2(θ )

) = εh γ×,2(θ ). (21)

The convergence κ(θ) and shear γ (θ ) of a lens depend on the
distances of lens and source, due to the scaling of the phys-
ical surface mass density �(R) with the critical surface mass
density �crit. Defining the distance-independent shear quantities
�x(R) = �crit γx(DLθ ), where x denotes the various components of
the shear, we can now combine the lensing signal of lenses and
sources at different redshifts by defining the estimators

�̂t,0(R) =
∑

i wi �−1
crit,i εt,i∑

i wi �−2
crit,i

, (22)

�̂t,2(R) =
∑

i wi �−1
crit,i εt,i cos(2ϕi)∑

i wi �−2
crit,i cos2(2ϕi)

, (23)

�̂×,2(R) =
∑

i wi �−1
crit,i ε×,i sin(2ϕi)∑

i wi �−2
crit,i sin2(2ϕi)

, (24)

where the sum extends over all source–lens pairs with transverse
separation R within a given bin. The weights are multiplied with a
factor �−2

crit , which downweighs lens–source pairs that are close in
redshift. These estimators have expectation values

E
(
�̂t,0(R)

)
= �t,0(R) = 
�(R),

E
(
�̂t,2(R)

)
= εh �t,2(R),

E
(
�̂×,2(R)

)
= εh �×,2(R). (25)

The �x(R) can be calculated for any given parametrized mass model
�(R), and these parameters, together with εh, can be determined by
fitting these models to the estimators �̂x(R).3

If the shape of the lens and the background sources are cor-
related, for example because of a spatially varying point spread
function (PSF) pattern that is not fully corrected or due to lensing
by foreground structures (i.e. cosmic shear), εh becomes biased if it
is estimated from equation (23) only. Equation (24) is affected sim-
ilarly by such a correlation but with an opposite sign, such that the
sum of equations (23) and (24) is nearly unaffected (Mandelbaum
et al. 2006; van Uitert et al. 2012; Schrabback et al. 2015). Hence,
by fitting the average halo ellipticity to this sum, we can estimate the
impact that lens–source alignments (either physical or systematic)
have on our results. Our fiducial approach, however, is to fit these
equations separately. We assess the difference in Section 4.1.

To model the data and determine εh, we adopt an elliptical NFW
profile to predict 
�NFW, �NFW

t,2 and �NFW
×,2 . We adopt a fixed mass–

concentration relation from Duffy et al. (2008):

cNFW = 5.71

(
M200

2 × 1012h−1 M

)−0.084

(1 + z)−0.47, (26)

with M200 the mass inside a sphere with radius r200, the radius
where the density is 200 times the critical density ρc. Our results
are not sensitive to the adopted mass–concentration relation, as
shown in Section 4.1. Hence, we are left with two fit parameters,
the halo mass and the average halo ellipticity, M200 and εh. We fit the
isotropic (equation 22) and anisotropic (equations 23 and 24) part
of the lensing signal simultaneously. We note that εh can become
negative, which implies that the dark matter distribution is oriented
perpendicular to the major axis proxy. Also, as we have ignored
terms of O(ε2

h ) in equation (6), the εh we obtain becomes increas-
ingly biased towards larger ellipticities (see fig. 2 of Schrabback
et al. 2015).

2.2 Alternative estimator

We also implement the estimator of Clampitt & Jain (2016), who
propose to use the Cartesian components of the shear as the observ-
ables, which are defined in the reference frame where the x-axis is
aligned with the major axis of the lens:

γ1,2(θ, ϕ) = −γt,2(θ, ϕ) cos(2ϕ) + γ×,2(θ, ϕ) sin(2ϕ), (27)

γ2,2(θ, ϕ) = −γt,2(θ, ϕ) sin(2ϕ) − γ×,2(θ, ϕ) cos(2ϕ). (28)

The advantage of these estimators compared to the ones defined in
equations (23) and (24) is that a spurious, systematic alignment of
lenses and sources only affects γ 1, 2, but not γ 2, 2, where it averages
out (Clampitt & Jain 2016).

3 Comparing this to the lensing signal anisotropy model from Schrabback
et al. (2015),

γt = 〈γt〉(θ )[1 + 4frel(θ )εhcos(2ϕ)],

we identify 4〈γ t〉(θ )frel(θ ) = −6ψ2(θ )θ−2 − 2〈κ〉(θ ) + θ〈κ〉′(θ ),
while for the azimuthally varying cross term, we find
−4〈γ t〉(θ )frel, 45(θ ) = −6ψ2(θ )θ−2 − 4〈κ〉(θ ). We have checked that
frel(θ ) and frel, 45(θ ), which are plotted in fig. 2 of Mandelbaum et al.
(2006) for an elliptical Navarro–Frenk–White (NFW; Navarro, Frenk &
White 1996) profile and which were kindly provided to us in table format,
satisfy these equations.
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These estimators are averaged in regions where cos (4θ ) (for γ 1, 2)
and sin (4θ ) (for γ 2, 2) have the same sign:

γ +
1,2(θ ) =:

1

π

3∑
n=0

∫ 3π/8+nπ/2

π/8+nπ/2
dϕ γ1,2(θ, ϕ), (29)

γ −
1,2(θ ) =:

1

π

3∑
n=0

∫ π/8+nπ/2

−π/8+nπ/2
dϕ γ1,2(θ, ϕ), (30)

γ +
2,2(θ ) =:

1

π

3∑
n=0

∫ π/2+nπ/2

π/4+nπ/2
dϕ γ2,2(θ, ϕ), (31)

γ −
2,2(θ ) =:

1

π

3∑
n=0

∫ π/4+nπ/2

0+nπ/2
dϕ γ2,2(θ, ϕ). (32)

These integrals are estimated from the data as

�̂
+/−
1,2 (R) =

∑
i wi�

−1
crit,i[−εt,i cos(2ϕi) + ε×,i sin(2ϕi)]∑

i wi�
−2
crit,i

, (33)

�̂
+/−
2,2 (R) =

∑
i wi�

−1
crit,i[−εt,i sin(2ϕi) − ε×,i cos(2ϕi)]∑

i wi�
−2
crit,i

, (34)

with the sum running over sources that fall inside a particular radial
and azimuthal bin.

We verified with mock elliptical NFW profiles that the halo ellip-
ticity obtained with these estimators is the same as with our fiducial
one (described in the previous section).

3 DATA

This paper is one in a series that exploits the overlap between a
highly complete spectroscopic survey, GAMA, and a deep optical
imaging survey used for weak lensing, KiDS. Earlier work fo-
cused at the isotropic lensing signal to derive halo masses of galaxy
groups, satellites in galaxy groups, galaxies as a function of stellar
mass and as a function of cosmic environment (Sifón et al. 2015;
Viola et al. 2015; Brouwer et al. 2016; van Uitert et al. 2016a, re-
spectively). These works were based on 109 KiDS tiles that overlap
with GAMA, from the first and second public data release to ESO
(de Jong et al. 2015; Kuijken et al. 2015). In this work, we use
the full overlap between KiDS and GAMA in the three equatorial
patches (180 deg2 in total). The shape and photometric redshift cat-
alogue we use is a subset of the much larger KiDS-450 catalogue
(Hildebrandt et al. 2017).

3.1 GAMA

GAMA is a highly complete spectroscopic survey that targeted
galaxies with a Petrosian rAB < 19.8 over roughly 286 deg2 (Driver
et al. 2009, 2011; Liske et al. 2015). In this work, we only use
data in three 12 × 5 deg2 patches near the equator, the so-called
G09, G12 and G15 patches, for which a group catalogue has been
made, G3Cv7 (Robotham et al. 2011). This group catalogue was
constructed using a friends-of-friends algorithm that uses the pro-
jected and line-of-sight separation between galaxies, and has a high
fidelity due to the completeness of GAMA (Robotham et al. 2011).
We use version 7 of that catalogue. We only use groups with five
or more members, as a comparison with mock data has shown that
an increasing fraction of groups is affected by interlopers towards
lower group multiplicity (Tankard-Evans 2015).

The group catalogue contains three different group centres: the
brightest group/cluster galaxy (BCG), an iterative centre, which
is obtained by computing the group centre of light and removing
the galaxy furthest away from the centre iteratively and the group

centre of light. We adopt the BCG as the central galaxy as our
fiducial setup.

We measure the shape of the BCG with the KSB method (Kaiser,
Squires & Broadhurst 1995; Luppino & Kaiser 1997; Hoekstra
et al. 1998) on the KiDS data (described in Section 3.2), using
the implementation described in Hoekstra et al. (1998) and Hoek-
stra, Franx & Kuijken (2000). KSB determines the ellipticity of a
galaxy using the higher order moments of its brightness distribution.
KSB is, as any shape measurement method, affected by noise bias
(Melchior & Viola 2012; Refregier et al. 2012), which depends
on the brightness of the sample (Hoekstra et al. 2015). Our BCGs
are bright and large, however, and this bias should be small. Fur-
thermore, the ellipticity estimates of the BCGs are mainly used to
determine the major axis of the lens light, and the impact of noise
bias on that is very small. Hence, we do not apply a multiplicative
bias correction to the ellipticities of the BCGs. As we discuss below,
we measure the shapes of the source sample with a different shape
measurement method, namely lensfit (Miller et al. 2007; Kitching
et al. 2008). Since the PSF is modelled using different prescriptions,
any lens–source shape alignment due to inaccurate PSF modelling
is less likely to be correlated, and hence suppressed. Furthermore,
since the BCGs are very large and bright in the KiDS imaging data,
the PSF has only a small impact on their shapes, which further re-
duces the chance of a spurious lens–source alignment. We visually
inspect all BCGs with a shape measurement that fall inside a KiDS
mask. Roughly a quarter of those are close to a bright star or affected
by image artefacts and are excluded, but the others are kept in the
analysis.

In addition to the major axis of the BCG, we can use various
other proxies for the orientation of the projected dark matter distri-
bution that might be better aligned with it, based on the positions
of the satellite galaxies in each group. We start with defining the
quadrupole moments of the cluster member distribution:

Qij =
∑

k

(
θi,k − θBCG

i

) (
θj,k − θBCG

j

)
w(Rk)∑

k w(Rk)
, i, j ∈ {1, 2},

(35)

where the sum runs over the satellites in the group, (θ1, k, θ2, k)
is the position of satellite k in the image plane and (θBCG

1 , θBCG
2 )

is the position of the BCG in the image plane. w(Rk) is a radial
weight function that depends on the projected separation between
the BCG and the satellite. We adopt this weight function to suppress
noise caused by potential field galaxy interlopers at large distances
from the BCG. We try two weight functions: a Gaussian with a
projected scale radius of Rw = 300 kpc (roughly equal to 0.5 r200)
and a Gaussian with a projected scale radius of Rw = 600 kpc, as
it is not a priori clear how to best suppress the effect of possi-
ble interlopers. It potentially also allows us to explore whether the
satellites near the group centre, or the ones near the edge, trace the
dark matter distribution better. From these moments, we form
the complex ellipticity of the group member distribution:

εsat = Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

. (36)

We address the noise bias due to the use of a relatively small number
of satellites below. Note that this estimator is similar to the one
adopted in Evans & Bridle (2009), with the exception of the weight
function. In the absence of interlopers, equation (36) is biased low
compared to the true ellipticity of the group member distribution,
because of the use of a weight function. This weight function should
therefore be included in any comparison with simulations.
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Table 1. Halo ellipticity constraints around different proxies for the orientation of the dark matter distribution. The first column contains the name of
the proxy, the second column a brief description, the third column the number of lenses used and the fourth to sixth column the constraints on the halo
ellipticity, obtained by fitting an elliptical NFW profile over different radial ranges.

Axis name Preferred axis Nlens εh εh εh

40 kpc < R < 250 kpc 40 kpc < R < 750 kpc 250 kpc < R < 750 kpc

AX1 BCG orientation 2355 0.38 ± 0.12 0.24 ± 0.08 0.05 ± 0.13
AX2 sat. dstr. (Rw = 300 kpc) 2672 −0.04 ± 0.11 0.17 ± 0.08 0.49 ± 0.13

AX3 sat. dstr. (Rw = 600 kpc) 2672 0.05 ± 0.11 0.19 ± 0.08 0.42+0.13
−0.12

AX4 sat. dstr. (Rw = 300 kpc, red) 2051 0.03 ± 0.11 0.18+0.08
−0.07 0.39+0.12

−0.11

AX5 vector BCG – brightest sat. 2672 0.25 ± 0.11 0.25 ± 0.08 0.27+0.13
−0.12

AX6 vector BCG – second brightest sat 2672 −0.09 ± 0.11 −0.10 ± 0.08 −0.11 ± 0.12
AX7 vector BCG – third brightest sat 2672 −0.12 ± 0.11 −0.05 ± 0.08 0.06 ± 0.12

Red satellite galaxies are more clustered around the major axes
of central galaxies than blue satellites (e.g. Yang et al. 2006; Huang
et al. 2016). The distribution of red satellites may therefore be a
better tracer of the orientation of the projected dark matter distri-
bution. Hence, we also use the distribution of red group members
exclusively as another proxy, selected using their rest-frame (u − r)
colours derived from the spectral energy distribution fits to the pho-
tometry to estimate stellar masses (Taylor et al. 2011). We adopt
(u − r) > 1.8, which roughly corresponds to the bimodality scale
in the colour–magnitude relation. Approximately 70 per cent of the
satellites are red according to this criterion. We only use groups with
three or more red members, which is the minimum number required
for the moments in equation (35) to be independently determined.
∼23 per cent of the groups have fewer than three red members and
they are not used when we adopt this estimator. The proxies are
listed in Table 1.

The low number of satellites per group makes the satellite distri-
bution a noisy proxy of the orientation of the dark matter distribu-
tion, even if satellites perfectly trace the dark matter. To estimate
the misalignment distribution purely due to sampling variance, we
sample from a 3D NFW profile with a range of axis ratios, where
the sampling probability is proportional to the density. The BCG
is placed at the centre of the halo. We compare the axis ratio of
the projected dark matter distribution to the one estimated from the
sampled satellites. The axis ratios are determined without a radial
weight function, which has virtually no effect as there are no in-
terlopers in these simulations. The result is shown in Fig. 1: the
distribution of satellites is a noisy proxy for the halo’s major axis
when the halo is round and when the number of satellites is low.
We use the observed distribution of group multiplicities and axis
ratios to determine the mean standard deviation of the misalignment
distribution, which we need in order to estimate how much the halo
ellipticity estimates are diluted by this sampling variance. For AX2
and AX3 (the major axis of the satellite distribution determined
using a weight function with a scale radius of 300 kpc and 600 kpc,
respectively; see Table 1), the minimum number of satellites that
we use is four, while for AX4 (the major axis of the distribution of
red group members) the minimum number is three. The mean stan-
dard deviations σ (ϕAX

mis ) are 21.◦0, 18.◦5 and 23.◦0 for AX2, AX3 and
AX4, respectively, with an estimated error of 1.◦0 due to the random
sampling of the haloes (i.e. due to simulating a finite number of
haloes).

If we stack the lensing signal around an axis that differs
by ϕmis from the orientation of the dark matter distribution,
the anisotropic part of the lensing signal becomes proportional
to cos (2[ϕ + ϕmis]) = cos (2ϕ)cos (2ϕmis) − sin (2ϕ)sin (2ϕmis).
sin (2ϕ) averages to zero, hence the second term vanishes. The

Figure 1. Standard deviation of the misalignment distribution (top) and
mean of the absolute value of the misalignment angle (bottom) as a function
of the number of satellite galaxies sampling the dark matter distribution.
Various lines correspond to different axis ratios q of the projected dark
matter distribution. The misalignment distribution becomes wider when the
haloes become rounder, and when there are fewer satellites to sample the
matter distribution. The mean of the absolute value of the misalignment
angle has an upper bound of 45◦ (to within the errors) if the angles are
uncorrelated, but the standard deviation can reach values larger than that
(e.g. if the misalignment probability distribution is flat).

lensing signal anisotropy is therefore diluted by a factor cos (2ϕmis).
If the misalignment distribution is Gaussian, the dilution of the av-
erage halo ellipticity is given by

D = 1 −
∫ π

0 dϕmis exp
(
−0.5

[
ϕmis/σ

(
ϕAX

mis

)]2
)

cos(2ϕmis)∫ π

0 dϕmis exp
(
−0.5

[
ϕmis/σ

(
ϕAX

mis

)]2
) , (37)

which has a value of 24 per cent, 19 per cent and 28 per cent
for AX2–AX4, respectively. These numbers are only indicative,
as we did not account for the relative lensing weight of groups
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Figure 2. Illustration of the axes around which we measure the lensing
signal anisotropy. Depicted is a false colour image based on the KiDS u, g,
r, i-band data of GAMA group 200004 at α, δ = (182.3333, −2.2251). The
green ellipse indicates the BCG, the orange circles the group members and
the large dotted ellipse the ellipticity of the group member distribution. The
dashed lines indicate three of the seven axes around which we measure the
lensing signal anisotropy: the green one is defined by the major axis of the
BCG (AX1), the orange one is along the major axis of the group member
distribution (AX2) and the blue one is defined by the separation vector of
the BCG and the third brightest satellite (AX7). The brightest and second
brightest satellite just fall outside the plotted range (towards the bottom left)
and hence AX5 and AX6 are not shown. AX3 and AX4 are also not shown as
they are very similar to AX2. The image roughly measures 10 × 10 arcmin
on a side, which corresponds to 1.8 Mpc at the BCG’s redshift of 0.176.

with different masses, the misalignment distribution may not be
Gaussian, and the assumption that satellites perfectly trace the dark
matter may be incorrect. Hence, we do not correct our results with
these factors, but we note that they should be kept in mind when
comparing results.

The lower panel of Fig. 1 shows the mean absolute misalignment
angle, which is a quantity that is frequently reported in studies of
the satellite distribution of galaxy groups and clusters. The mean
absolute misalignment angle and the standard deviation of the mis-
alignment distribution are complementary as the relation between
the two depends on the misalignment distribution itself.

The final three proxies for the orientation of the projected dark
matter distribution are the separation vectors from the BCG to the
three brightest satellite galaxies. The magnitude we use to rank the
satellites is the rAB Petrosian apparent magnitude from SDSS.

In total, we use seven different proxies for the orientation of the
dark matter distribution. We illustrate the difference between some
of the proxies in Fig. 2 and list all of them in Table 1. The total
number of lenses used for the AX1 and AX4 samples is slightly
lower than the rest. For AX1, the reason is that not all BCGs have
reliable shape measurements. For AX4, some groups have fewer
than three red satellites and are therefore excluded.

We show the distribution of relative angles between the various
major axis proxies in Fig. 3. The first column shows the distribu-
tion of angles between the major axis of the BCG and the various
proxies based on the distribution of satellites. It shows that satellites
preferentially reside near the major axis of the BCG. We report the

Figure 3. Distribution of the absolute values of the angles between the
axes around which we measure the lensing signal anisotropy, as defined in
Table 1. The horizontal axis of each panel shows the angle between the two
axes in degrees, the vertical axis the number of times this angle is observed
in the GAMA groups with Nfof ≥ 5 (normalized to unity). The red numbers
in each panel correspond to the axes names (see Table 1). Black lines are
for all groups with Nfof ≥ 5, green lines are for groups with Nfof ≥ 10.

mean absolute angle (not the standard deviation of the misalignment
distribution) in Table 2. The quoted errors on the average angle are
the standard error of the mean. The mean absolute angle between the
major axis of the BCG and the one of the distribution of satellites,
estimated using equation (36), is ∼41.◦7 ± 0.◦5, and is insensitive
to the scale radius of the weight function. This agrees well with
previous results reported in the literature (see e.g. Yang et al. 2006;
Wang et al. 2008; Huang et al. 2016).

This result, together with Fig. 1 and the corresponding mean
absolute misalignment angles, shows that the major axis of the
BCG and the major axis of the satellite distribution cannot both trace
the orientation of the dark matter distribution well, as the average
absolute angle is much larger than the contribution from sampling
variance. Our measurements of the lensing signal anisotropy will
reveal which one is the better tracer of the orientation of the halo.

The other panels of Fig. 3 and Table 2 also contain a wealth of
information about the satellite distribution. We will explore this in
a future study, as this is outside the scope of this work.

3.2 KiDS

KiDS is a currently ongoing, large, optical imaging survey specifi-
cally designed for weak lensing studies. The survey will eventually
map 1500 deg2 of sky in four optical bands (u, g, r and i) to a depth
of 24.3, 25.1, 24.9 and 23.8 (5σ in a 2 arcsec aperture), respectively.
Additional coverage in five infrared bands from the VISTA Kilo-
degree Infrared Galaxy (VIKING) survey (Edge et al. 2013) will
enable exquisite photometric redshifts estimates as well as stellar
mass estimates for millions of galaxies. The lensing measurements
are performed on the r-band exposures, which are taken under the
most stringent seeing condition (<0.8 arcsec).
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Table 2. Mean absolute angle between the axes of the different proxies around which we measure the lensing signal anisotropy.
The first set of rows shows the results for groups with Nfof ≥ 5, and the second set is for groups with Nfof ≥ 10.

Axis name AX2 AX3 AX4 AX5 AX6 AX7

Nfof ≥ 5

AX1 41.7 ± 0.5 42.0 ± 0.5 40.8 ± 0.6 42.6 ± 0.5 43.1 ± 0.5 41.3 ± 0.5
AX2 – 7.4 ± 0.2 9.2 ± 0.3 26.3 ± 0.4 27.9 ± 0.5 28.0 ± 0.4
AX3 – – 13.8 ± 0.4 26.0 ± 0.5 27.8 ± 0.5 28.3 ± 0.5
AX4 – – – 26.4 ± 0.5 28.4 ± 0.5 29.7 ± 0.5
AX5 – – – – 37.8 ± 0.5 38.3 ± 0.5
AX6 – – – – – 39.8 ± 0.5

Nfof ≥ 10

AX1 39.9 ± 1.2 40.4 ± 1.1 39.5 ± 1.1 41.4 ± 1.1 42.2 ± 1.1 39.2 ± 1.1
AX2 – 10.8 ± 0.6 10.1 ± 0.6 28.3 ± 1.0 30.6 ± 1.0 30.9 ± 1.0
AX3 – – 15.7 ± 0.7 27.1 ± 1.0 29.8 ± 1.0 30.8 ± 1.0
AX4 – – – 28.0 ± 1.0 31.5 ± 1.0 31.5 ± 1.0
AX5 – – – – 38.0 ± 1.1 40.0 ± 1.1
AX6 – – – – – 40.3 ± 1.1

In this work, we used the KiDS-450 catalogue (Hildebrandt
et al. 2017), which superseded the KiDS-DR1/2 catalogues
(de Jong et al. 2015; Kuijken et al. 2015). As detailed in Hilde-
brandt et al. (2017), the KiDS-450 catalogues have improved in
various ways compared to the KiDS-DR1/2 catalogues. An up-
dated, ‘self-calibrating’ version of the shape measurement method
lensfit (Miller et al. 2007; Kitching et al. 2008) has been employed
(Fenech Conti et al. 2016) to measure the shapes of the source galax-
ies, which has an average multiplicative bias of only ∼1 per cent for
galaxies in the range 0.1 < zB ≤ 0.9, with zB the Bayesian point es-
timate of the photo-z. Furthermore, the KiDS-450 catalogues do not
contain the redshift probability distribution of individual galaxies
as estimated from BPZ (Benı́tez 2000; Hildebrandt et al. 2012), as
those were found to be biased. Instead, the total source N(z) is esti-
mated through a weighted direct calibration technique based on the
overlap with deep spectroscopic samples (Hildebrandt et al. 2017).
We determine the N(z) for every lens redshift separately, by select-
ing all galaxies in the spectroscopic sample with a zB larger than
zlens + 0.1 and determining their spectroscopic redshift distribution.
The same source redshift cut is applied in the lensing analysis (see
below). To determine �crit for a given lens redshift, we integrate
over this N(z). Since we multiply the lensfit weights with a fac-
tor �−2

crit in equations (22)–(24), we effectively upweigh groups at
lower redshift. The KIDS-450 catalogues have a source density of
neff = 8.53 galaxies arcmin−2, significantly higher than in the KiDS-
DR1/2 catalogues due to the implementation of improved galaxy
deblending criteria.

The quality of the lensing catalogues has been thoroughly as-
sessed in Hildebrandt et al. (2017) and was found to be sufficient
for cosmic shear measurements. A number of additional, galaxy–
galaxy lensing specific tests have been performed (Dvornik et al.,
in preparation). As shown there, the lensing signal around random
points is consistent with zero on the scales of interest in this work
(<1 Mpc). Hence, we do not subtract the signal around random
points to correct for systematics. Secondly, the KiDS-450 cata-
logues contain a small but non-negligible additive bias. If both the
lens and source galaxy are affected by a similar additive bias, the
lensing anisotropy measurements become biased, which can be cor-
rected for by fitting to the sum of equations (23) and (24). However,
since the shapes of our lenses are measured with an independent
pipeline that uses a different PSF model, it is unlikely that the
additive biases are strongly correlated. Finally, Fenech Conti et al.

(2016) report a remaining multiplicative bias of the order of a per-
cent in the shape measurement catalogues. Since this bias does not
affect the relative scaling of the isotropic and anisotropic part of
the lensing signal (which constrains the halo ellipticity), nor does
it affect the azimuthal dependence of the lensing signal, we do not
correct for it.

To remove source galaxies that are physically associated with the
galaxy groups, we apply a redshift cut based on zB. As mentioned
before, we require zB(source)>zlens + 0.1. To maximize the source
number density, we do not apply an upper limit to the source red-
shifts of zB ≤ 0.9, as recommended in Hildebrandt et al. (2017).
As a result, our N(z) may be somewhat biased, and in addition, the
average multiplicative bias may be somewhat larger than ∼0.01,
but since this affects the isotropic and anisotropic part of the lens-
ing signal equally, our constraints on halo ellipticity should not be
biased as they effectively depend on the ratio of the two. The halo
masses we report might be biased, but they only serve as a nuisance
parameter in the fit. Reliable estimates of the halo masses of these
groups can be found in Viola et al. (2015). A small, secondary effect
is that the scale radius of the NFW profile that we use in the fit might
be slightly biased. To test if that affects the results, we fit the data
using a different normalization of the mass–concentration relation
and find this has no significant effect (see Section 4.1).

The photometric redshift probability distribution of individual
source galaxies is broad, and a significant fraction of sources
will be physically associated with the lenses even after applying
zB(source)>zlens + 0.1. This biases the shear measurements as a
function of projected radius, which would bias our results if un-
accounted for. To correct for this, we determine the overdensity
of source galaxies around the lens, and multiply this ‘boost fac-
tor’ with the shear measurements (e.g. Mandelbaum et al. 2006;
van Uitert et al. 2011). We use the same lens–source pair weights
when we compute the overdensity, that is the product of the lensfit
weight of the source galaxy and �−2

crit . The boost factor reaches a
maximum of ∼1.1 around 75 kpc, and decreases with projected
radius to values below 1.05 at ∼200 kpc. Since we are interested in
the azimuthal variation of the lensing signal, we check whether the
boost factor has an azimuthal dependence. We present this test in
Appendix A. We do not find a significant azimuthal variation in the
boost correction.

Since we are only interested in the lensing signal on <1 Mpc
scales, we use a bootstrapping technique to determine the
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Figure 4. Correlation matrix of the lensing measurements. Bin number 1–
10 corresponds to the 10 radial bins of 
�, bins 11–20 to the measurements
of �̂t,2 and bins 21–30 to �̂×,2. The blue, red and green squares highlight
the auto-correlation of the signal for the radial bins that are used in the
40 kpc < R < 250 kpc fits, while the black squares show the cross-correlation
between the measurements. There are no clear off-diagonals visible. The
inset shows the ratio of the error on the lensing measurements determined
using shape noise only and the error from bootstrapping. The blue solid line,
red dashed line and green dot–dashed line correspond to 
�, �̂t,2 and �̂×,2,
respectively. The error estimates agree well.

covariance matrix of our measurements. We measure the lensing
signal on square patches of 1 deg2; there are 180 non-overlapping
patches in total. Next, we randomly select 180 of these patches with
replacement and stack the signals to generate an approximate real-
ization of the data. We repeat this procedure 105 times; the scatter
between the bootstrap realizations approximates the measurement
error. We show the correlation matrix in Fig. 4. We cannot discern
significant off-diagonal terms, which is expected for a shape-noise-
dominated measurement. The inset of Fig. 4 shows the ratio of the
error computed from shape noise over the bootstrap error. The ratio
is close to unity, suggesting that cosmic variance is not important

on the scales that we probe. Therefore, we use the shape noise er-
rors throughout and assume that the covariance matrix is diagonal,
which enables us to use a much finer radial binning. A similar result
was obtained in Viola et al. (2015) for the isotropic lensing signal
around the GAMA groups using the KiDS-DR1/2 catalogues. Note
that we use this bootstrapping method to compute the errors of the
boost correction, which are much smaller than the errors on the
lensing measurement and therefore ignored.

4 R ESULTS

We measure the lensing signal around the BCGs of GAMA groups
with Nfof ≥ 5 in the three equatorial patches, 2355 of which have a
reliable shape measurement. Their average redshift is 0.22. We first
adopt the major axis of the BCG as the proxy for the orientation
of the halo. The lensing signal is measured in 50 logarithmically
spaced bins between 30 kpc and 1100 kpc, enabling us to exactly
probe the radial range of interest, and is shown in Fig. 5. For clarity,
we rebin the measurements in the figures. We fit an elliptical NFW
profile with a fixed mass–concentration relation to the isotropic and
anisotropic part of the signal. We perform the fit in three different
regimes: first, on scales between 40 kpc and 250 kpc, conserva-
tively restricting the fit to the inner part of the halo (roughly up to
0.5 r200). Secondly, we use the range between 40 kpc and 750 kpc,
which is approximately up to 1.5 times r200. We choose this upper
bound as 750 kpc roughly corresponds to the location where the
lensing signal from neighbouring haloes becomes important (see
e.g. van Uitert et al. 2016b), including their signal would com-
plicate the interpretation. For completeness, we also fit on scales
between 250 kpc and 750 kpc. We analyse the inner and outer parts
of the haloes separately, as Despali et al. (2017) found in N-body
simulations that the outer part of haloes is on average rounder and
misaligned with respect to the inner part due to continuous merging
events, which we can test. We note that the choice of which scale
defines the inner halo is somewhat arbitrary, but we test how our
results depend on it (see Fig. 7).

The best-fitting elliptical NFW model for the fit on small scales
is shown in Fig. 5. The right-hand panel shows the 1σ , 2σ and
3σ contours of the two fit parameters, the average halo mass
and the average halo ellipticity. The marginalized constraints are
M200 = 1.50+0.25

−0.24 × 1013 M and εh = 0.38 ± 0.12, respectively.
The halo ellipticity is therefore detected with � 3σ . The reduced

Figure 5. Isotropic weak lensing signal (left) around the brightest group members of the GAMA groups with a multiplicity of Nfof ≥ 5, and the weak lensing
signal anisotropy (middle) around the major axes of the same BCGs (AX1). In the middle panel, black circles are for �̂t,2 and red squares for �̂×,2. The dashed
vertical lines indicate the lower and upper limit of the fit range, 40 kpc and 250 kpc, respectively. Solid lines are the best-fitting elliptical NFW profile. The
right-hand panel shows the 
χ2 surface as a function of the two fit parameters, M200 and εh. The 1σ , 2σ and 3σ contours are indicated with black lines and
the best-fitting model with the blue dot.
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Figure 6. Constraints on the average halo ellipticity for three out of seven
proxies of the orientation of the dark matter distribution that we adopt in
this work. The horizontal bars with arrows show the radial range used in
the fit, while the vertical error bars show the 68 per cent confidence interval
of the halo ellipticity. The results for AX5 are slightly offset horizontally
for clarity. Not shown are the halo ellipticity constraints for AX3 and AX4,
which are similar to the one of AX2, and the constraints for AX6 and AX7,
which are consistent with zero on all scales.

chi-squared of the best-fitting model is χ2
red = 68.3/(75 − 2)

= 0.94 (3 × 25 data points, two fit parameters), so the model pro-
vides a good fit to the data.

At scales >250 kpc, �̂×,2 becomes negative, possibly indicating
a fairly abrupt change in the orientation of the matter distribution,
which pulls εh down if it is included in the fit. When fitting an
elliptical NFW profile at scales 250 kpc < R < 750 kpc, the average
halo ellipticity is consistent with zero, as can be seen in Fig. 6
and read off from Table 1. We quantify this further by measuring
εh (<R), that is we adopt a fixed lower bound of 40 kpc, but vary
the upper bound. We keep the NFW mass fixed to its best-fitting
value. The result is shown in Fig. 7. εh (<R) is roughly constant up
to 250 kpc, but makes a fairly sudden drop to values of ∼0.25 at
500 kpc, after which it remains constant towards larger scales.

An underprediction of �̂×,2 towards large radius with respect to
an elliptical NFW model was also observed in the Millennium Sim-
ulation analysis in Schrabback et al. (2015), which was interpreted
as being caused by shape–shear correlations (Hirata & Seljak 2004).
However, a simultaneous increase of �̂t,2 was observed there as well,
for which we find no clear evidence in our data. Hence, it remains
unclear whether or not shape–shear correlations contribute to the
measurements at these scales.

We have ignored the contribution from the stellar mass associated
with the BCG to the lensing signal anisotropy. To verify whether
this is justified, we matched our BCG sample to the publicly avail-
able single-Sérsic fit catalogue based on GAMA-DR2, version 7
(Kelvin et al. 2012). The average r-band effective radius of our
BCGs is 3.6 arcsec, which corresponds to 12.8 kpc at the mean
lens redshift. Most of the stellar mass is therefore contained within
40 kpc, the minimum scale we adopt in the fit. Even if this stellar
mass component is highly elliptical, it does not affect the lensing
signal anisotropy at larger scales much: the contribution of a finite
mass component that is confined to small scales, drops off as ∝θ−4

and becomes rapidly insignificant, as can be seen from equations
(10) and (18).

4.1 Sensitivity analysis

So far, we have not accounted for a potential alignment of the shapes
of lenses and sources by directly fitting to equations (23) and (24).

Figure 7. Constraints on the average halo ellipticity for the lensing signal
anisotropy measurements of AX1, determined using all radial bins larger
than 40 kpc up to the one of interest. The blue area shows the 68 per cent
confidence regime for the fit to �̂t,2 and �̂×,2, while the dashed contour
corresponds to the 68 per cent confidence regime for the fits to �̂t,2 + �̂×,2.
The vertical dotted lines indicate 250 kpc and 750 kpc. Note that the NFW
mass was held fixed to the nominal best-fitting value.

A spurious alignment could be caused by coherent errors in the
PSF models and by cosmic shear. Since we measured the shapes
of lenses and sources with two different pipelines (with completely
independent PSF models), and since the BCGs are large and bright to
begin with and their shapes therefore not much affected by the PSF,
we do not expect that the PSF can have a large effect. The impact
of cosmic shear has been addressed with simulations in Schrabback
et al. (2015). In their fig. 6, they show the impact of cosmic shear
on the lensing signal anisotropy for lenses with a stellar mass in
the range 10.5 < log10(M�) < 11 and redshifts 0.2 < z < 0.4. The
average impact in the range <250 kpc is a few per cent at most.
Since our lens sample is more massive and at a lower redshift, the
impact will be even smaller and can thus be safely ignored.

However, we can test whether spurious lens–source alignments
have an impact by fitting a model to (�̂t,2 + �̂×,2) instead, which
removes the effect of spurious alignments altogether. As can be
seen in Fig. 7, the resulting constraints on εh are fully consistent
over all scales. The halo ellipticity between 40 kpc and 250 kpc is
εh = 0.37 ± 0.15. As a test for our model implementation, we also
fit the halo ellipticity in the traditional way, as outlined in section 4
of Mandelbaum et al. (2006); we obtain fully consistent results. This
shows that potential lens–source alignments do not significantly bias
our results. A second indication that this is the case is that lens–
source alignments increasingly affect the lensing signal anisotropy
towards larger projected radius (Howell & Brainerd 2010; van Uitert
et al. 2012; Schrabback et al. 2015), which would have caused an
increasing difference between the two fits when including larger
scales. The small, observed increase in the difference between the
results towards large scales is insignificant.

We also measure the halo ellipticity using the alternative estima-
tor from Clampitt & Jain (2016). The measurements are shown in
Fig. 8, together with the best-fitting elliptical NFW profile. We fix
the halo mass to M200 = 1.50 × 1013 M and only fit for the halo
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Figure 8. Anisotropic part of the lensing signal around BCGs of the GAMA
groups with Nfof ≥ 5, measured using the alternative quadrupole moment
estimators as defined in equations (29)–(32). The black solid and green
dashed lines in the top (bottom) panel correspond to the best-fitting elliptical
NFW profile for �̂+

1,2 and �̂+
2,2 (�̂−

1,2 and �̂−
2,2), respectively. The hatched

area indicates the scales that are not used in the fit.

ellipticity. We obtain 〈εh〉 = 0.38 ± 0.12. Hence, the results are fully
consistent. We do not expect completely identical results, because
the azimuthal weighing of the lensing measurements is different
and because the measurements are binned differently. The error on
the halo ellipticity of this estimator is similar to the error of our
fiducial method, which shows that it does not matter which method
is used.

To test whether our results depend on the adopted mass–
concentration relation, we vary the normalization of the mass–
concentration relation. The results here and in the remainder of
this work are again obtained by fitting equations (23) and (24),
together with the isotropic part of the lensing signal. When we de-
crease the amplitude of the mass–concentration by 30 per cent, we
obtain εh = 0.30+0.11

−0.10, while if we increase it by 30 per cent we get
εh = 0.42+0.13

−0.12, which are both within the 1σ errors of our fiducial
constraint. By construction, the best-fitting masses also change, but
since they are nuisance parameters in our fit, that is not important.

Another potential contaminant is miscentring: although the BCG
is a better estimator of the group centre compared to, for exam-
ple, the peak of the X-ray emission or the mean position of group
members (George et al. 2012), some BCGs may not be the central
galaxy, or some may be somewhat displaced from the bottom of the
gravitational potential. Miscentring should dilute the lensing signal
anisotropy. If miscentring has an azimuthal dependence (e.g. prefer-
entially along the major axis of the dark matter distribution), which
might be reasonable to expect, it becomes less straightforward to
estimate the impact on halo ellipticity measurements. We address
this issue by attempting to select a better centred sample. First of
all, it is possible that not the brightest galaxy, but the one with
the largest stellar mass, is actually the central galaxy in the group.
Hence, if a satellite has a larger stellar mass than the BCG, we adopt
it as the group centre instead. This happens for 19 per cent of the
groups, but we only replace the BCG if the satellite has a reliable

KSB shape (95 per cent have). We find that this results in εh = 0.38
± 0.11, so no significant difference with our fiducial result.

Secondly, we look at the magnitude gap between the BCG and
the brightest satellite galaxy. The smaller the gap, the more likely it
is that the satellite is actually the central galaxy. Hence, we repeat
the measurements, requiring this gap to be larger than 0.5 mag. The
resulting sample contains roughly half the groups. This leads to
εh = 0.30+0.14

−0.13. Repeating the measurement with the other half of
the sample gives εh = 0.51+0.25

−0.22, which is consistent.
Thirdly, we also measured the signal of red BCGs only, selected

using (u − r) > 1.8. 89 per cent of the BCGs is red according to this
criterion. The resulting halo ellipticity constraint is εh = 0.32+0.11

−0.10.
The observed major axis of BCGs with small ellipticities may

be relatively sensitive to pixel noise, which could be an additional
source of scatter between the light and the dark matter, diluting the
measurements. Therefore, we exclude all BCGs with |e| < 0.05
(13 per cent of the sample) and repeat the measurement. The result-
ing halo ellipticity is εh = 0.38+0.13

−0.12, which shows that these round
galaxies do not dilute the measurements. An alternative way of as-
sessing this is by additionally weighing each lens–source pair by
the lens ellipticity, following Mandelbaum et al. (2006), van Uitert
et al. (2012) and Schrabback et al. (2015). However, this leads to
slightly weaker constraints, with εh = 0.30+0.14

−0.13, a downward shift
of less than 1σ . This result implies that the KSB ellipticity of a
galaxy is not a good indicator of the ellipticity of the projected
dark matter distribution. This is not unexpected. For instance, the
presence of a bulge results in a more compact weight function.
In a face-on galaxy, the resulting ellipticity measurement may be-
come dominated by the bulge shape, which is not expected to be
correlated with the halo ellipticity. Similarly, the ellipticity may be
underestimated in a bulge-dominated edge-on galaxy. The impact
of the choice of weight function will be studied in a future work
(Georgiou et al., in preparation).

We also test the sensitivity of our results on the source redshift
cut. We implement a range of different cuts, compute a new N(z)
and boost correction for each cut, remeasure the lensing signal and
refit the data. The results are presented in Appendix A. Our results
are insensitive to the source redshift cut.

Finally, we tested whether ignoring the off-diagonal terms in
the covariance matrix affected the fit results. To do so, we used
the full covariance matrix (Fig. 4 shows the corresponding correla-
tion matrix), inverted that and applied a correction for the bias that
is introduced when a noisy covariance matrix is inverted (Kauf-
mann 1967; Hartlap, Simon & Schneider 2007). Fitting the signal
using this inverted covariance matrix, our best-fitting halo elliptic-
ity decreased with ∼6 per cent while the 68 per cent confidence
intervals remained unchanged. This decrease might be due to noise
in the covariance matrix. In any case, it shows that replacing
the full covariance matrix with a diagonal one that only includes
shape noise terms does not have a significant impact on our results.

4.2 Alternative proxies for halo orientation

The group catalogue of GAMA enables us to test various proxies
for the orientation of the dark matter halo based on the distribution
of the group satellites. We measure the lensing signal anisotropy
using the six different proxies defined in Section 3.1. The use of
proxies other than the BCG’s major axis has the advantage that the
measurement will not be affected by lens–source alignments due to
systematics in the data such as imperfect PSF models. However, the
first-order lensing effect, the actual displacement of sources rather
than their shape distortion, could cause a similar bias.
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Figure 9. Cartoon of a potential bias in the halo ellipticity measurement
when adopting the major axis of the satellite distribution as proxy of the
orientation of the halo. Imagine a galaxy group whose member distribution
is intrinsically round (dotted circles in the top right). In the presence of a
massive object at a lower redshift than the group, the positions of the group
members are lensed such that the group appears radially squeezed, with its
observed major axis perpendicular to the separation vector. Source galaxies
between the group and the massive object receive an extra shear, but now
appear to reside near the minor axis of the group member distribution. This
causes an apparent anti-alignment between the observed group member
distribution and the inferred dark matter distribution.

Imagine a massive, low-redshift object, next to a galaxy group at
a higher redshift whose member distribution is intrinsically round.
The lensing of this massive object radially squeezes the positions of
the group members on the sky (just like the shape of a background
galaxy is distorted due to shear), such that the observed major axis
of this galaxy group appears perpendicular to the separation vector
to the massive object (see Fig. 9). Background source galaxies are
lensed by the massive object and by the galaxy group, and will
receive an extra shear in the region close to the apparent minor axis
of the group. As a result, one expects to observe an anti-alignment
between the group member distribution and the inferred dark matter
distribution. Since the GAMA groups are at low redshift, there
cannot be many massive structures in the foreground. Furthermore,
the weight function we employ also suppresses this effect. We used
simple mocks to confirm that this is a small effect and we shall
ignore it. In theory, however, one could measure cosmic shear by
correlating the shapes of galaxy groups as traced by their member
distribution, although the signal might be dominated by intrinsic
alignments (i.e. the group member distribution pointing towards
neighbouring structures).

The anisotropic part of the lensing signal is shown in the left-hand
column of Fig. 10. For reference, we also show the signal around
the major axis of the BCG. At small scales, none of the alternative
proxies give an equally clear detection of lensing signal anisotropy
as the BCG’s major axis. The constraints on halo ellipticity are
listed in Table 1.

For AX2–AX4, the detection significance increases when we fit
to 750 kpc. If we fit to large scales only, that is between 250 kpc

and 750 kpc, we find a significant detection of a positive alignment
between the group member distribution and the dark matter distri-
bution. Note that the results for AX2–AX4 are highly correlated,
as the scatter between their position angles is small (see Fig. 3).
The largest signal is obtained for AX2 (the distribution of all group
galaxies, weighed with a Gaussian with scale-radius of 300 kpc), for
which we find εh = 0.49 ± 0.13. Typical halo ellipticities within the
virial radius are ∼0.3 (e.g. Jing & Suto 2002; Allgood et al. 2006),
which is marginally consistent with our results, assuming that the
satellites and the dark matter are well aligned. Our results have not
been corrected for the dilution due to Poisson noise in estimating the
group’s major axes (see the discussion around equation 37), which
would have increased the halo ellipticity by ∼20 per cent. However,
there may also be factors we did not account for that could have
boosted our εh, such as correlated structures along the major axis
of the satellite distribution, hot gas that is aligned with the potential
and the subhaloes of satellites that are anisotropically distributed.
We estimate the impact of the latter in Section 4.2.1 and will address
the other factors with hydrodynamical simulations in a future work.

Taken at face value, our results suggest a scenario in which the
satellite distribution traces the dark matter distribution at large
scales, but on scales � r200, there are effects at play that simul-
taneously and coherently change the distribution of the dark matter
and the orientation of the BCG. Hence, the local distribution of stars
appears to be the best indicator of the local orientation of the dark
matter, which has also been reported in hydrodynamical simulations
(Velliscig et al. 2015). We will discuss this further in Section 4.3.

When we additionally weigh the measurement with the ellipticity
of the group member distribution, the mean ellipticity around AX2
increases to εh = 0.02 ± 0.12, 0.23 ± 0.09 and 0.56+0.15

−0.14 for the
fits on scales 40 kpc < R < 250 kpc, 40 kpc < R < 750 kpc and
250 kpc < R < 750 kpc, respectively, an upward shift of ∼0.5σ .
For AX3, the upward shift of εh is at most ∼0.5σ for 250 kpc
< R < 750 kpc, while for AX4, the halo ellipticities do not change.

AX5 (the vector connecting the BCG to the brightest satellite)
is a compromise between AX1 and AX2 in terms of tracing the
overall dark matter distribution, as it results in a tentative positive
detection of εh on all scales. For AX6 and AX7, the lensing signal is
consistent with being isotropic, implying that the vectors between
the BCG and the second and third brightest satellite galaxies do not
trace the orientation of the underlying dark matter distribution well
on any scale. The average halo ellipticity as a function of fitting
range for AX2 and AX5 is shown in Fig. 6.

4.2.1 Maximum likelihood tests

To investigate alternative explanations for the observed trends, we
perform a set of maximum likelihood tests. We make mock data sets
using the observed positions and redshifts of the lenses and sources.
For the lenses, we use the spectroscopic redshifts and for the sources
the zB, but we compute the �crit for each lens by integrating over
the N(z) of the sources. We start with assuming that the dark matter
profile of the BCG follows a spherical NFW profile, with a mass
of M200 = 1.50 × 1013 M, the best-fitting mass of our combined
fit to AX1. We predict the shear at the location of the sources
and assign those as their new ellipticities, hence we ignore shape
and measurement noise. Then, we analyse the mock data in the
same way as the real data; that is, we measure the lensing signal
anisotropy around the various proxies for the orientation of the dark
matter distribution. Note that this signal is practically noiseless due
to the absence of shape noise in the mocks, but to ensure that the
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Figure 10. Anisotropic lensing signal for GAMA groups with a multiplicity of Nfof ≥ 5 around various preferred axes. The filled black circles show �̂t,2 and
the open red squares �̂×,2. Solid lines are the best-fitting elliptical NFW profile, fitted to the signal on scales 40 kpc < R < 250 kpc. The hatched area indicates
the regime that is excluded in all fits. The left-hand column shows the measurements, while the other columns show the results from mocks, as described
in Section 4.2.1. The numbers between brackets in each panel indicate the best-fitting halo ellipticities, fitted on scales of 40 kpc < R < 250 kpc, 40 kpc
< R < 750 kpc and 250 kpc < R < 750 kpc, respectively.

relative weighing of the different radial bins is correct when we fit
a model, we assign an error that is five times smaller than the one
of the corresponding radial bin in the real data.

This first set of mock data allows us to test the impact that neigh-
bouring groups have on the halo ellipticity. We show the resulting
signals in the second column of Fig. 10. Each panel also indicates
the best-fitting halo ellipticity. For none of the proxies of the distri-
bution of dark matter do we obtain a detection. Hence, neighbouring
groups contained in the GAMA group catalogue have no impact on
the lensing signal anisotropy.

Next, we test the impact of the subhaloes of satellite galaxies. The
subhaloes cause an increase in the lensing signal along the major
axis of the satellite distribution, which might bias the halo ellipticity
inference of the main halo. Hence, in addition to assigning an NFW
profile with a mass of M200 = 1.50 × 1013 M to the BCG, we assign
an NFW profile with a subhalo mass of M200 = 7.6 × 1011 M
(5 per cent of the group halo mass) to each satellite in the group.

This subhalo mass fraction is a factor of 2 larger than what has been
observed for satellites in GAMA (Sifón et al. 2015) and therefore
exaggerates the effect that subhaloes might have. We reassign source
ellipticities and redo the measurements using the various proxies,
as shown in the third column of Fig. 10. For AX2–AX4, we find a
small but non-zero lensing signal anisotropy. The �̂t,2 signal looks
similar to an elliptical NFW profile, but the sign of the �̂×,2 term
is flipped. The resulting best-fitting halo ellipticities are small but
positive. Hence, the subhaloes may cause a bias of the order of a
few per cent, but the effect is much smaller than the signal measured
around AX2–AX4.

In our third set of mocks, we assign an elliptical NFW profile
to the BCG of the same mass as before with εh = 0.4, perfectly
aligned with the major axis of the BCG. Subhalo masses are set to
zero again. In this case, we obtain a clear signal for AX1, as shown
in the fourth column of Fig. 10. The scatter between this proxy and
the others is so large, that most of the lensing signal anisotropy is
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washed out when we measure the lensing signal anisotropy around
the other proxies. Finally, we create a mock where we addition-
ally assign spherical subhaloes to the satellites with masses of
M200 = 7.6 × 1011 M. Again, as Fig. 10 shows, the most clear
detection comes from adopting AX1, as in the data. Hence, these
mocks show that neighbouring groups and subhaloes of satellites
are unlikely to affect the halo ellipticity estimates, in the scenario
where the major axis of the BCG closely traces the distribution of
dark matter. We also experimented with a subhalo mass fraction
that increases with distance to the BCG, but we could not find a
prescription that mimicked the observed trends.

4.3 Literature comparison and discussion

This work is the first weak lensing study of halo shapes that specif-
ically targets spectroscopically identified galaxy groups. A num-
ber of studies exist in the literature in which the lensing signal
anisotropy of objects with comparable masses is presented. We
shall compare our results to those. It is important to keep in mind,
however, that the object selection between these studies is different,
which makes a detailed comparison impossible.

Clampitt & Jain (2016) measured the lensing signal anisotropy
around a sample of 70 000 luminous red galaxies (LRGs), as well as
around a sample of 2700 clusters from the redMaPPer cluster cat-
alogue (Rykoff et al. 2014), using shape measurement catalogues
from the SDSS. The LRGs have a similar average mass to our lens
sample, while the cluster sample is 10 times more massive. The
adopted proxy for the orientation of the dark matter is the major
axis of the lens galaxy (our AX1). The signal is fitted on scales
of 0.05 < R < 4 h−1 Mpc, hence extending to larger radii than in
our work. For the LRGs, they report 〈εh〉 = 0.24 ± 0.06, while for
the redMaPPer clusters, they find 〈εh〉 = 0.21 with 3σ significance.
To compare this with our results, we measure the lensing signal
anisotropy around AX1 using their original estimators (which cor-
responds to their halo ellipticity definition of (1 − q2)/(1 + q2))
and fit the signal up to 1 Mpc. We obtain 〈εh〉 = 0.52 ± 0.19, which
is ∼1.5σ higher than their results for LRGs.

In Evans & Bridle (2009), a subsample of relatively isolated
clusters of the maxBCG cluster sample (Koester et al. 2007) was
studied. They stack the lensing signal around the major axis of the
satellite distribution, defined as in our equation (36), but without
a radial weight function. This proxy is most similar to our AX3.
In their analysis, they mask the region inside R < 500 h−1 kpc
from the cluster centre, because of concerns about the robustness
of the lensing signal measured at those scales. They fit an elliptical
NFW profile and find an axis ratio of q = 0.48+0.14

−0.09, which corre-
sponds to εh/εmem = 1.37+0.35

−0.26, where εmem is the average ellipticity
of the galaxy member distribution, defined as (1 − q)/(1 + q). If
we fit our AX3 signal with the same lower limit but with an up-
per limit of 1 Mpc, we find εh = 0.74+0.35

−0.30, which corresponds to
εh/εmem = 2.12+1.00

−0.87, which is consistent but noisier, because their
fits extend to larger scales, and because their lens sample is larger
and on average about an order of magnitude more massive than
ours. Also, we should remind the reader that the halo ellipticities
become increasingly biased towards larger values, and εh > 1 is
formally ruled out.

Oguri et al. (2012) constrained the average halo ellipticity of 28
massive strong-lensing clusters from the Sloan Giant Arc Survey
(Hennawi et al. 2008) and the SDSS, using a weak lensing analysis
of follow-up observations from Subaru/Suprime-cam. They used the
position angle from strong lensing as the major axis estimate to stack
the weak lensing signal. Converting their results to our definition of

halo ellipticity, they found εh = 0.31 ± 0.05, determined on scales
<3 Mpc h−1, which agrees well with our constraints on scales
<1 Mpc h−1

70 . The halo ellipticity was also determined on smaller
scales, but this did not significantly affect the best-fitting value.

Schrabback et al. (2015) constrained halo shapes of samples of
galaxies from CFHTLenS (Heymans et al. 2012). The most com-
parable lens sample is comprised of elliptical galaxies in the range
M∗ > 1011, for which they report εh/εg = −0.09 ± 0.38. This im-
plies that the haloes are much rounder than the galaxies, or that a
substantial misalignment exists between these red galaxies and their
dark matter haloes. van Uitert et al. (2012) analysed a sample of
red galaxies in the second Red-sequence Cluster Survey (Gilbank
et al. 2011; van Uitert et al. 2011) and also reported no detec-
tion. Finally, Mandelbaum et al. (2006) measured the lensing signal
anisotropy around galaxies in the SDSS. For their brightest sample
of red lenses, they report εh/eg = 1.7 ± 0.7 by fitting the signal
on scales 40 h−1 kpc to 300 h−1 kpc, hence a weak detection of
a positive alignment. Note that none of these galaxy lens samples
described in the paragraph consisted of central galaxies only.

To summarize the above: the observational evidence for non-zero
halo ellipticities of galaxy-scale haloes is still elusive, possibly be-
cause of a larger level of misalignment between the lenses and their
haloes and possibly also because of satellites in the lens samples di-
luting the anisotropic lensing signal. Several papers including ours,
however, have now reported significant non-zero halo ellipticities
for group- and cluster-scale haloes. These detections imply that the
dark matter distribution is well aligned with the lens light and/or
the distribution of satellites in this mass range.

A change in the orientation and ellipticity of dark matter haloes
as a function of scale has been reported in Despali et al. (2017), who
used cosmological N-body simulations to compare the ellipticities
of dark matter haloes for a range of overdensity criteria. They found
that the outer part of relaxed haloes is rounder than the inner part
due to continuous merging events, and that the typical misalignment
angle between the orientation of the inner part of the halo and the
halo within the virial radius is ∼20◦. We cannot directly compare our
result to these predictions, as we measure the signal at separate radial
scales, while they reported the misalignment angle as a function
of overdensity, which mixes scales. However, it might provide an
explanation for our findings.

Hydrodynamical simulations form another interesting set of re-
sults to compare to, particularly because the misalignment distri-
bution of galaxies and dark matter appears to depend on baryonic
feedback prescriptions (Tenneti et al. 2017), which implies that
halo ellipticity measurements, in combination with predictions from
dark matter only simulations, could be used to constrain baryonic
physics. A number of works have investigated the relation of the
alignment between galaxies and their dark matter hosts. Tenneti
et al. (2015) studied the alignment between galaxies and dark mat-
ter in the MassiveBlack-II simulations (Khandai et al. 2015). They
report that the probability distribution of the miscentring angles be-
tween the stars and the dark matter within R200, the equivalent of our
AX1 measurement, peaks at 0◦ and drops to almost zero at ∼30◦

for massive haloes. This corresponds to a Gaussian misalignment
distribution with a standard deviation of 10◦–15◦, which dilutes
the halo ellipticity by (equation 37) 6–13 per cent. Furthermore,
they report an increased alignment between the stellar component
and the dark matter distribution towards smaller radii, in qualitative
agreement with our AX1 results.

Velliscig et al. (2015) study the alignment between stars and
dark matter in the EAGLE (Schaye et al. 2015) and cosmo-OWLS
(Le Brun et al. 2014) hydrodynamical simulations. They find that
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the misalignment between the stellar distribution inside a given
radius, relative to the overall orientation of the dark matter halo,
increases towards smaller radii, where the two components probe
different scales. However, when both the stellar distribution and
the dark matter are determined as a function of enclosed radius,
they find a very tight alignment between the two components. This
result agrees well with our findings. On small scales, the BCG
dominates the stellar budget, and hence we find it to be a good
indicator for the orientation of dark matter halo inside 250 kpc.
Towards larger scales, the satellites dominate the stellar budget,
hence there, the satellite distribution forms a better tracer of the
orientation of the dark matter. This also agrees with the results
from Shao et al. (2016), who use the EAGLE simulation to study
the distribution of satellites in dark matter haloes. They report that
satellites are better aligned with the entire halo than with its in-
ner part, and that satellites therefore preferentially trace the outer
halo.

To optimize the weak lensing signal anisotropy measurements, it
might therefore be ideal to use as proxy the orientation of the stellar
distribution as a function of enclosed radius, using the light from
the BCG and the other group members.

4.4 Ellipticity of the satellite distribution around BCGs

An alternative way to gain insight in the relative orientation of
BCGs, satellites and dark matter is by measuring the ellipticity of
the satellite distribution with respect to the major axis of the BCGs.
We select all satellites in a concentric ring around the BCGs, ro-
tate the system such that the BCG’s major axis is aligned with the
horizontal axis and determine the ellipticity using equation (36),
but without adopting a radial weight function. If satellites preferen-
tially reside near the BCG’s major axis, ε1, BCG-sat should be positive
while ε2, BCG-sat should be consistent with zero. Note that we added
‘BCG’ to the subscript to make clear that these ellipticities are mea-
sured with respect to the BCG’s major axis. The results are shown
in Fig. 11. To determine the errors, we created bootstrap realiza-
tions of the data by randomly drawing BCGs (with their satellites)
from the total sample with replacement. The scatter between the
bootstrap realizations determines the error. We also implemented
an alternative method to estimate errors, that is, by randomizing the
position angles of the BCGs. Both approaches led to very similar
error bars and covariance matrices.

ε1, BCG-sat appears to become smaller towards larger radii.
To quantify this, we fit a power law of the form εBCG−sat =
Asat × (R/100[kpc h−1

70 ])αsat . We used the full covariance matrix in
the fit which we determined from the bootstrap realizations. For
ε1, BCG-sat, we obtain Asat = 0.044 ± 0.005 and αsat = −0.27 ±
0.11, hence providing weak evidence that the mean ellipticity of the
satellite distribution becomes smaller at larger separations from the
BCG. Such a trend could imply either the distribution changes, or
that the misalignment increases at larger scales. ε2, BCG-sat is con-
sistent with zero as expected. For comparison, the average total
ellipticity of the brightness distribution of the BCGs from KSB
is ∼0.16. It would be interesting to repeat this measurement on
hydrodynamical simulations to investigate to what extent this mea-
surement is sensitive to baryonic physics.

5 C O N C L U S I O N S

We measured the average isotropic and anisotropic part of the weak
gravitational lensing signal around more than 2600 GAMA galaxy
groups with five or more members, using the shape measurement

Figure 11. Ellipticity of the satellite distribution around the major axis
of the BCGs. Solid lines show the best-fitting power laws, while the cyan
regions show the 68 per cent model uncertainty. There is weak evidence that
e1, BCG-sat decreases with radius.

catalogues of KiDS. The anisotropic part of the lensing signal was
measured separately adopting seven different proxies of the a priori
unknown orientation of the dark matter halo, including the major
axis of the light from the BCG, as well as various proxies based on
the distribution of satellites in the group.

On small scales (<250 kpc), we detect a lensing signal anisotropy
around the BCG, but not around the other proxies, which implies
that the BCG’s major axis is the optimal proxy of the orientation
of the dark matter halo on small scales. To relate that to an halo
ellipticity, we have to adopt a model density profile. We derive
new and simple expressions to compute the quadrupole moments
of the lensing signal for any elliptical surface mass density pro-
file. Under the assumption that the alignment between light and
dark matter is perfect and the dark matter follows an elliptical
NFW profile, we derive an average dark matter halo ellipticity of
εh = 0.38 ± 0.12 in fair agreement with predictions of �CDM
based dark matter only simulations (Jing & Suto 2002; Allgood
et al. 2006), which predict typical halo ellipticities of ∼0.3. A nar-
row misalignment distribution between stars and dark matter for
objects of this mass is supported by hydrodynamical simulations
(Tenneti et al. 2015). We verified our results with alternative model
implementations.

On scales >250 kpc, no systematic alignment of the lensing signal
with the orientation of the BCG is discovered. When we stack the
lensing signal around the major axis of the satellite distribution,
however, we find that the lensing signal on those large scales is
anisotropic and consistent with an elliptical NFW profile. The signal
is most significant for our AX2 proxy, which is the major axis of
the group member distribution, determined using a Gaussian weight
function with a projected scale radius of 300 kpc. The resulting halo
ellipticity on those scales is εh = 0.49 ± 0.13.

We investigated various possible explanations for the observed
lensing signal anisotropy. We created mocks based on the data to
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test the impact of neighbouring groups and satellite subhaloes, and
found that their impact is much smaller than what is observed.
Also, our data do not show signs of a spurious lens–source align-
ment, either caused by inaccurate PSF removal in the shape mea-
surement process or caused by cosmic shear. Such an alignment,
if present, would have affected the two components of the lensing
signal anisotropy measurements with opposite sign and with an in-
creasing amplitude as a function of radius, which we do not observe
in our data.

Our results, therefore, point to a scenario in which satellites trace
the large-scale dark matter distribution, but on small scales, physi-
cal effects are at play that change the distribution of dark matter and
simultaneously affect the orientation of the BCG, keeping their rel-
ative alignment intact. This scenario agrees well with results from
hydrodynamical simulations, where it was found that the stellar dis-
tribution enclosed within a certain radius forms a good estimator for
the orientation of the dark matter within the same radius (Velliscig
et al. 2015).

Although not the main focus of this work, we have also reported
results on the distribution of satellites in galaxy groups. We found
that the satellites preferentially reside near the major axis of the
BCG, in line with previous results from the literature. Also, we
measured the ellipticity of the satellite distribution with respect
to the major axes of the BCGs, and found weak evidence that it
decreases towards larger separations.

Our detection of a lensing signal anisotropy for a relatively small
lens sample that covers only a small fraction of the sky highlights the
potential of such measurements with future data sets. With surveys
such as LSST (LSST Science Collaboration et al. 2009) and Euclid
(Laureijs et al. 2011), we can expect weak-lensing anisotropy mea-
surements with percent level precision. Combined with predictions
from dark matter only simulations, the lensing signal anisotropy
becomes a powerful tool to constrain the misalignment distribution,
which itself can be used to constrain different scenarios of bary-
onic feedback during structure formation (e.g. Tenneti et al. 2017).
Additionally, the radial dependence of halo ellipticity will enable
stringent tests of modified gravity models and will enable com-
petitive constraints on the cross-section of the dark matter particle
within a self-interacting dark matter framework.
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A P P E N D I X A : SO U R C E R E D S H I F T
S E L E C T I O N

In our measurements, we apply a source redshift cut to minimize
the contamination of galaxies that are physically associated with the
lenses. The fiducial cut we apply is zB(source)>zL + 0.1, with zB the
Bayesian point estimate of the photometric redshift (Benı́tez 2000).
The probability distribution of individual source redshifts is rather
broad, however, hence we can expect some level of contamination,
even though our lenses are at much lower redshifts than our sources.
Since these physically associated sources are not lensed, they bias
the lensing signal low if unaccounted for.

We measure this contamination by determining the relative den-
sity of source galaxies around the lens with respect to the back-
ground density. The results are shown in the top row of Fig. A1.
The different columns in Fig. A1 show the results for the differ-
ent proxies of the orientation of the dark matter distribution. A
signal larger than unity shows that the source sample contains
galaxies that are associated with the lens. For AX1, we find that
after our fiducial redshift cut, the contamination can be as high as
10 per cent at scales of ∼75 kpc. The overdensity quickly drops
towards larger scales. The contamination can be further suppressed
by applying more aggressive cuts, but this is not ideal as real
source galaxies are removed as well, which decreases the lensing
signal-to-noise ratio.

Contamination biases the lensing signal low by a factor that is
equal to the overdensity; hence, we can correct the lensing signal by
multiplying it with the factors shown in this figure. Hence, contam-
ination is not an issue for this study, as long as it is isotropic. If all
the physically associated galaxies would preferentially reside near
the major axis of the lens, the lensing signal in that direction would
be more diluted, which would bias the lensing signal anisotropy
low. To determine whether that is the case, we also determine the
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Figure A1. The overdensity of the KiDS source galaxies around GAMA galaxy groups with Nfof ≥ 5. The various lines correspond to different redshift cuts
applied to the source sample. Even for a fairly conservative cut of zB(source)>zL + 0.1, we find a residual contamination of group members in the source
sample of up to 10 per cent at 75 kpc for our AX1 sample.

Figure A2. Isotropic and anisotropic part of the lensing signal of the GAMA
groups with Nfof ≥ 5 around AX1, for different source redshift cuts. Units of
the vertical axis of the lower two panels are 106 M pc−1. For each cut, we
account for the different lensing efficiencies and contamination corrections.
The lensing signal anisotropy is robustly measured against changes in the
source redshift cut.

Table A1. Halo ellipticity constraints for various redshift cuts, obtained
from simultaneous fits to the isotropic and anisotropic part of the lensing
signal of the GAMA groups with Nfof ≥ 5 around AX1 on scales 40 kpc
< R < 250 kpc.

Redshift cut εh εh (�̂t,2 + �̂×,2)

no cut 0.38 ± 0.12 0.38 ± 0.15

zS > zL 0.42+0.13
−0.12 0.42+0.16

−0.15

zS > zL + 0.05 0.41+0.13
−0.12 0.40+0.16

−0.15

zS > zL + 0.1 0.38 ± 0.12 0.37 ± 0.15

zS > zL + 0.15 0.36+0.12
−0.11 0.40 ± 0.15

zS > zL + 0.2 0.34+0.13
−0.12 0.39+0.16

−0.15

zS > zL + 0.25 0.34+0.13
−0.12 0.36 ± 0.16

anisotropic part of the contamination correction, shown in the sec-
ond and third row of Fig. A1. Note that the measurements are fairly
correlated, hence the trends that are apparent in some of the panels
of the lower two rows are less significant than they appear. The
azimuthal dependence of the contamination is less than a percent
at all scales, which is much smaller the errors of the lensing mea-
surements of the corresponding bins. Hence, we do not take it into
account in our analysis.

As a robustness test, we repeat the halo anisotropy measurements
around the major axis of the BCG (AX1) for the different source
redshift cuts. For each cut, we recompute the lensing efficiencies
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and the contamination correction. The isotropic and anisotropic
part of the lensing signal are shown in Fig. A2. The lensing sig-
nal anisotropy does not depend on the particular value of the red-
shift cut, from which we conclude that it is robustly measured.
We present the halo ellipticity constraints in Table A1, fitted on
scales 40 kpc < R < 250 kpc. The different redshift cuts do not
lead to significant changes in the results. It is interesting to note
that the errors on the average halo ellipticity in Table A1 do not

depend much on the source redshift cut. Applying a less stringent
redshift cut increases the number of sources and hence decreases
the errors on the lensing measurement, but this is largely canceled
by a larger boost factor, which increases both the lensing signal
and its error.
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