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Abstract 

 

Background 

Surgery launches a systemic inflammatory reaction that reaches the brain and associates with 

immune activation and cognitive decline. While animal and cell studies have detailed this 

periphery-to-brain signaling pathway, we lack information on changes in human brain 

immune activity after surgery and their relation to the peripheral inflammatory response. This 

study examines the long-term impact on the human brain immune system in relation to blood 

immune reactivity, plasma inflammatory biomarkers and cognitive function.  

Methods 

Eight males undergoing prostatectomy under general anesthesia were included. Prior to 

surgery, at postoperative day 3-4 and after 3 months, patients were examined using 

[11C]PBR28 brain PET to assess immune cell activity. Concurrently, systemic inflammatory 

biomarkers, ex vivo blood tests on immunreactivity to LPS stimulation and cognitive function 

test scores were obtained. 

Findings 

Patients showed a global down-regulation of grey matter [11C]PBR28 binding (VT) of 

26±26% (mean±SD) at 3-4 days postoperatively compared to baseline (p=0·023) with a 

uniform decrease in VT  within four brain regions of relevance for cognitive function. 

[11C]PBR28 binding recovered after 3 months, with higher binding shown in four individuals 

compared to baseline values.  Simultaneous LPS-induced release of TNF-α in whole blood 

displayed a marked reduction (41±39%) on the 3-4th postoperative day, corresponding to 

simultaneous changes in [11C]PBR28 VT. Changes in Stroop color word cognitive test 



between day 3-4 and 3 months were correlated to changes in [11C]PBR28 binding (p=0.027). 

There was no association between [11C]PBR28 binding and levels of plasma inflammatory 

mediators.  

Interpretation 

This study translates animal data on changes in the brain immune system after surgery to 

humans, and suggests an interplay between the human brain and peripheral innate immunity 

to modulate the inflammatory response to surgical trauma. These processes may be related to 

post-surgical impairments of cognitive function 
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Background 

A growing body of evidence suggests that surgical trauma launches a systemic inflammatory 

reaction that ultimately reaches and activates the intrinsic immune system of the brain1-4. 

Triggered by surgery-induced damage-associated molecular patterns (DAMPs), an array of 

proinflammatory mediators and activated blood borne immune cells orchestrate a rapid spread 

of this systemic response, allowing for detection of immune activation in the central nervous 

system (CNS) within 12 hours 4,5. In rodent models of surgery this periphery-to-brain pathway 

seems critically dependent on NF-κB- and pro-inflammatory cytokine signaling (e.g. 

interleukin-1 (IL-1)) leading to a short-lasting disruption of blood brain barrier (BBB) 

integrity, a process that most likely involve both inflammatory and anesthetic drug-induced 

impact on BBB function2,3,6. This process is accompanied by migration of peripheral 

macrophages into the CNS and potentially subsequent hippocampal neuronal dysfunction6. In 

addition to the transient syndrome of sickness behavior, including fatigue, anorexia and fever, 

surgery-induced immune activation is associated with prolonged impairments in learning, 

memory and concentration, that may correspond to the clinical syndrome postoperative 

cognitive dysfunction6-8.  

In patients, inflammatory molecules appear in cerebrospinal fluid within 12 hours after major 

surgery4,9-11. While such clinical observations in the human CNS are in line with a series of 

experimental animal studies2,3,6 the time course pattern beyond the initial post surgery phase 

of immune activation within the human CNS, how it relates to the biphasic pro- and anti-

inflammatory response pattern in peripheral blood12-14, the reactivity of the innate immune 

system and later changes in cognitive performance is largely unknown. 

 



The use of positron emission tomography (PET) and radioligands for the translocator protein 

(TSPO) provides an opportunity for translational studies exploring the brain immune activity 

after surgery. In brain parenchyma, TSPO is primarily expressed in microglia and the protein 

is thus viewed as a marker for CNS immune activity (REF här?). TSPO is typically elevated 

in several acute and chronic CNS disorders involving the immune system, including infection, 

stroke, neurodegenerative, autoimmune diseases and psychiatric disorders15-19 as well as in 

animal models of acute inflammation20 or stroke21. With regard to periphery-to-brain 

interactions, LPS-induced acute systemic inflammation is followed by a rapid and transient 

activation of the brain immune system as demonstrated using the TSPO radioligand 

[11C]PBR28 in non-human primates22 and in humans23. 

Here we examined the impact of major surgery on the human brain immune system by a 

series of PET examinations of TSPO binding in patients undergoing abdominal surgery and 

how changes in brain immune activity relates to the systemic inflammatory response and 

higher brain function of cognition. 

 



Material and Methods 

Patients 

The study was approved by the Regional Ethics Committee on Human Research at Karolinska 

Institutet and the local Radiation Safety Committee, Karolinska University Hospital, 

Stockholm, Sweden. The protocol conformed to the standard of the Declaration of Helsinki, 

Finland and has been registered at the US National Institutes of Health NCT01881646 

(ClinicalTrials.gov). 

Eight otherwise healthy male patients, the American Society of Anesthesiologists (ASA) 

physical status 1-2 scheduled for a robot-assisted radical prostatectomy entered the study after 

oral and written informed consent. For exclusion criteria see appendix. Demographic data are 

presented in Table 1.  

Each subject was examined on three separate occcasions, i.e. 1-3 days prior to surgery, on 

postoperative day 3-4 and at 3 months postoperatively. At each occasion, we obtained PET 

measurments on TSPO binding in brain, blood and plasma biomarkers of inflammation and 

neuronal injury, ex vivo blood tests on immunreactivity to LPS stimulation, and 

measurements of cognitive function. 

On the day of surgery, anesthesia was induced between 08.00-11.00 a.m. with thiopentone 

and maintained with desflurane and a continuous intravenous infusion of remifentanil. 

Propofol was not used as this drug may affect [11C]PBR28 binding24. For further details on 

perioperative procedures and postoperative care, see appendix.  

 



Positron emission tomography (PET) imaging  

For each subject, the three PET examinations were conducted either in the morning/before 

lunch or after lunch/afternoon to avoid a possible influence of diurnal differences, with one 

exception when this was not possible due to scheduling conflicts. [11C]PBR28 was prepared 

and injected as described previously25-27. The average radioactivity administered was 435±50 

MBq (mean±SD); with a specific radioactivity of 229±82 GBq/µmol; and an injected mass of 

0.77±0.38 µg. PET data were acquired for 63 minutes and arterial blood was sampled 

throughout the examination as described in appendix. All patients were genotyped for the 

genetic polymorphism of rs6976 which affects binding of TSPO radioligands, including 

[11C]PBR28, both in vitro and in vivo25,28,29. Six of the subjects were high-affinity binders 

(HAB) and one mixed-affinity binder (MAB), whereas for one subject the genotype could not 

be determined.  

PET image analysis 

Image processing and the definition of regions of interest (ROI’s) definition was performed as 

described previously25,26. The primary ROI was brain grey matter (GM) and in addition a 

composite volume was defined for white matter (WM), we also obtained values for regional 

binding in hippocampus (HIP), lateral frontal cortex (LFC), lateral parietal cortex (LPC), and 

putamen (PUT), i.e. regions known to be relevant for cognitive functions. For each PET 

examination, a parametric image of the distribution volume (VT) was generated using the 

stationary wavelet aided parametric imaging (WAPI) approach30. WAPI analysis of TSPO 

binding has previously shown to be sensitive to within-subject changes in VT
31, and data based 

on 63 minute acquisition have shown good reliability25. To assess individual rate constants of 

k1, k2, k3 and k4, an additional analysis was performed using the two-tissue compartment 

model (2TCM). For additional considerations regarding quantification, see appendix. 



Ex vivo LPS challenge and systemic inflammatory molecules 

Immediately prior to each PET examination, five mL of blood was drawn from the arterial 

catheter and instantly applied for ex vivo LPS challenge. Another 10 mL of blood was 

sampled and directly centrifuged and plasma was frozen for later analysis. The inflammatory 

molecules analyzed included IL-1β, IL-6, IL-8, IL-10, TNF-α, TNF-receptor 1, C-reactive 

protein (CRP), and serum amyloid A (SAA). In addition two neuronal injury markers, 

neurofilament light chain (NFL) and Tau were measured in plasma samples using 

ultrasensitive single molecule array (Simoa) technology32,33.  

 Cognitive testing 

Cognitive function was assessed prior to each of the three PET examinations using a 

standardized cognitive test battery as previously described8 (appendix). Changes in cognitive 

performance were calculated for each of seven test variables and corrected for practice effects 

and variability using data from an age-matched control group who underwent testing using 

the same battery and with the same intervals8. To quantify the change from preoperative test 

to the postoperative tests and between the two postoperative test occasions a Z-score was 

calculated for each variable8.   

Statistics 

All statistical analyses relating to PET data below were performed using IBM SPSS statistics 

version 22. Changes of the distribution volume (VT) for [11C]PBR28 binding in grey matter, 

hippocampus, lateral frontal cortex, lateral parietal cortex and putamen were analysed with 

repeated measures ANOVA. Post-hoc analyses for individual regions of interest were 

performed using paired t-tests (preoperative, postoperative day 3-4 and 3 months, 

respectively. Due to the exploratory nature of the regional analysis and the main focus on 

global changes no correction for multiple comparisons was performed. Percent change of VT 



between three time points (baseline vs postop, baseline vs 3 months, and postop vs 3 months) 

was calculated and related to corresponding changes in cognitive test variables and blood 

biomarkers of inflammation using Pearson´s correlation analysis. Because the purpose of the 

analysis was to investigate within-subject changes, and as TSPO binding class has been 

demonstrated to not influence test-retest reproducibility25 the binding class was not included 

in the analysis. 

Statistical analyses of cytokine changes were performed using R ver. 2.9.2. The preoperative 

levels of leucocyte count-normalized cytokines obtained after LPS-challenge (TNF-α and IL-

1β), and the systemic inflammatory markers (IL-6, IL-8, IL-10, TNF-α and HMGB1), as well 

as NFL and Tau were compared to levels either at 3-4 days or 3 months after surgery using 

paired t-test. Due to the exploratory nature of the analysis, no correction for multiple 

comparisons was performed.  

The relative changes (%) in plasma TNF-α, IL-6 and IL-10 were related to corresponding 

relative change (%) in [11C]PBR28 binding in grey matter. Absolute and relative differences 

in LPS-induced TNF-α release and the corresponding change in [11C]PBR28 binding in GM 

were analysed using Spearman rank tests. Relative changes in global and regional 

[11C]PBR28 binding was related to corresponding changes in cognitive test scores by 

comparing [11C]PBR28 binding in the hippocampus to visual verbal learning tests 

(cumulative and delayed recall) and [11C]PBR28 binding in the lateral frontal cortex to tests 

of executive function (Letter digit coding and Stroop color word test).  

 

Results 



PET imaging 

All patients (n=8) participated in the study according to the protocol. Quantitative PET data 

for one subject at baseline was not available due to problems with blood sampling at that 

occasion. Representative parametric images for the series of three PET examinations are 

shown in Figure 1.   

Patients showed a global down-regulation of TSPO-binding within the brain after surgery as 

demonstrated by a decrease in [11C]PBR28 binding (VT) to TSPO in grey matter (GM) by 

26±26% compared to baseline ((F=5.465; p=0.023).  Comparing changes in GM regions, 

there was a uniform decrease in VT in all four selected brain regions having relevance for 

cognitive function (Fig 2A, paired t-tests). 

On the third occasion 3 months after surgery, four of the seven individuals had numerically 

higher [11C]PBR28 binding as compared to baseline values, although the group difference 

was not statistically significant (p>0.05) (Fig 2A-B).  

There were no statistically significant differences in the free fraction of [11C]PBR28 in plasma 

between the three time points (preoperative: 6.15±1.08, postop day 3-4: 6.19±2.29 and 3 

months postoperatively: 5.06±1.73; n.s.), nor any difference in the individual rate constants as 

derived using the 2TCM (Supplementary Table 1, p>0.05).  

 

 

Ex vivo whole blood LPS-challenge and systemic plasma biomarkers 

There was a marked reduction (41±39%) in whole blood LPS-induced release of TNF-α on 

the 3-4th postoperative day as compared to preoperative control levels. This reduction had 

returned to preoperative levels at 3 months after surgery (Fig 3A). During the study period, 



changes in IL-1β release were considerably smaller and did not reach statistical significance.  

The time course of changes in [11C]PBR28 binding to TSPO  was aligned to the time course 

of peripheral blood immunoactivity as assessed by LPS-induced release of TNF-α and change 

in [11C]PBR28 binding (Table 2). At the postop time point, percent change in LPS-induced 

IL-1β showed a trend to a positive relationship to change in [11C]PBR28 binding (VT) (p=0.1).  

Systemic plasma levels of TNF-α, IL-6, IL-10, TNF-R1, CRP, SSA and NFL were 

significantly increased at postop day 3-4 compared to preoperatively, while plasma-IL-1ra 

was reduced. There were only minor changes in plasma HMGB1 at the two postoperative 

time points (Fig 3B) while plasma levels of Tau remained largely unchanged in all patients at 

the two postoperative time points. All systemic inflammatory mediators and neuronal injury 

biomarkers had returned to baseline values at 3 months (Fig 3B-C).  

There were trends towards negative relationships between percent change in [11C]PBR28 

binding (VT) and plasma IL-6 between all-time points but none reached statistical significance 

(Baseline: p=0.11; postop: p=0.18; 3 months: p=0.24;) There were no evidence for 

relationships between changes in [11C]PBR28 binding in brain and relationship to either 

plasma IL-10 nor TNF-α (p>0.05).   

PET imaging and cognition 

Only minor changes (n.s.) in the combined Z-scores for cognitive test results between the 

three test occasions were seen. However, changes in performance of the Stroop color word 

interference cognitive test from postoperative day 3-4 to 3 months correlated with changes in 

GM [11C]PBR28 binding (p=0.027) (Table 2). No other cognitive function test showed any 

statistically significant relationships to regional changes in [11C]PBR28 binding (p>0.05) 

(Table 2). 

 



 

Discussion 

This study uncovers a transient yet profound down-regulation of the human brain immune 

system in the early postoperative period after major peripheral surgical trauma. The 

dampening of the brain immune system coincided with a distinct, time limited reduction of 

immunoreactivity in peripheral blood cells. This early postoperative downregulation was 

followed by recovery at 3 months after surgery, and in four of seven patients, even signs of 

upregulation of the brain immune system were evident. In contrast to the recorded early 

immune suppression in blood cells, plasma levels of several inflammatory mediators were 

increased at the same early time point. Additionally, we found changes in cognitive function 

that corresponded to these late changes in brain immunoreactivity. The study is the first to 

translate results from surgical animal models to humans after major surgical trauma and 

suggests an interplay between the human brain and the systemic biphasic peripheral 

inflammatory response of the innate immune system to peripheral surgical trauma and with 

possible relation to cognitive function. 

 

While series of experimental studies in surgical animal models have outlined the periphery-to-

brain signaling pathway of the inflammatory cascade1-3,6, the impact of acute systemic 

inflammation due to surgical trauma on the human brain immune system and subsequent 

neuroinflammation is poorly understood. The natural biphasic time course of an acute 

inflammatory event (e.g. infection or trauma) consists of a rapid initial systemic pro-

inflammatory phase triggered by local release of damage-associated molecular patters 

(DAMPs). This initial phase is followed by a distinct anti-inflammatory phase characterized 

by a depressed immune system associated with release of anti-inflammatory molecules and 



proceeds ultimately to the resolutional phase critically important for healing12.  Upon reaching 

the brain, the pro-inflammatory signals interact with the resident brain immune system (e.g. 

microglia and astrocyte populations)3,6,22 causing a short lasting (< 24 hours) 

neuroinflammatory reaction and subsequent neuronal dysfunction, including in brain regions 

of relevance for higher cognitive functions, as described in experimental animal models of 

surgery1-4. Using plasma tau and NFL as markers of acute neuronal injury32,33, we tested the 

hypothesis that changes in brain immune response and cognition following the procedure 

would be associated with frank neuronal injury. The detected increase in plasma NFL 

concentrations could indicate such an injury but might also be the result of peripheral nerve 

injury during the surgical procedure. The latter interpretation is supported by the stable 

plasma tau concentrations over time suggesting that no or very limited central nervous system 

neuronal injury occurred and that the inflammatory response and changes in brain immune 

activity may have functional rather than structural consequences. Alternatively, tau measured 

in peripheral blood may be a less sensitive marker than NFL for this type of neuronal injury. 

Serial sampling of CSF from humans undergoing peripheral surgery have consistently shown 

a similar initial rapid increase in CSF biomarkers within 12 hours related to pro-inflammation 

and signs of impaired BBB integrity4,10,11. The present study extends this knowledge by 

uncovering simultaneous effects in brain and systemic immune system after peripheral 

surgery beyond the initial proinflammatory time interval. 

 

TSPO is a mitochondrial protein expressed in immune cells in both brain and blood34,35. 

Animal studies have shown that the TSPO signal in brain is mainly derived from 

microglia36,37 with a smaller contribution from astrocytes21. Apart from these resident immune 

cell populations, peripherally derived myeloid cells in the form of infiltrating or perivascular 

macrophages may also contribute to the signal35,38.  In primates, systemic LPS exposure has 



been shown to cause a significant increase in TSPO-binding within 1-4 hours, and post-

mortem immunohistochemistry confirm a correspondence to microglia/macrophage cells 

whereas co-localization of TSPO and astrocyte markers was low22.  Notably, the initial (< 4 

hours) increase in global [11C]PBR28  binding was followed by a profound decrease in 

[11C]PBR28 binding at 22 hours post-injection as measured in a subset of animals. In the 

present study, we observed a uniform and marked decrease in [11C]PBR28 binding 3-4 days 

after surgery which arguably corresponds to this later time point. Guided by available 

preclinical information, our results may indicate lower levels or lower activity of microglia 

and/or other myeloid cells in brain in the early postoperative period. 

In direct conjunction with [11C]PBR28 PET examinations, serial ex vivo LPS stimulations 

were performed to assess temporal changes in immune reactivity of blood borne immune cells 

after surgery-induced triggering of the innate immune system. Immune activation by DAMPs 

is mainly mediated by receptors like TLR4 and shared between DAMPs and pathogen-

associated molecular patterns (PAMPs) such as LPS. This overlapping utilization of receptors 

by DAMPs and PAMPs allowed us to apply the robust system of ex vivo LPS challenge in 

order to assess the temporal responsiveness of the leukocyte-derived immune response 

previously only reported for a single time point5,13,14.  Our finding that the release of TNF-α in 

LPS-stimulated blood cultures were markedly reduced at day 3-4 post surgery and recovered 

at 3 months after surgery, corresponds to the PET data and suggests a suppressed 

inflammatory phenotype in the immediate postoperative period. This temporal association 

between the suppressed immune activity within the brain and the suppressed peripheral 

immune reactivity in blood is in line with recent observations of strong correlations between 

[11C]PBR28 binding in brain and peripheral blood26 and adds to an accumulating body of 

evidence indicating communication between the brain and peripheral immune cells22,23,39-41.  



Interestingly, an anti-inflammatory reflex pathway between the brain and periphery has been 

described and includes the vagal nerve, peripheral macrophages, acetylcholine- secreting 

CHAT-positive T-cells and alpha-7 subtype nicotinic acetylcholine receptor-dependent 

signaling within the spleen42,43.  The purpose of this leukocyte-specific anti-inflammatory 

reflex would be to avoid harmful activation of adaptive immunity to avoid autoimmune 

reactions towards trauma-induced release of endogenous proteins, while still allowing 

induction of healing and subsequent return to homeostasis. Results from the present results 

support a regulatory role for the CNS immune system in controlling the biphasic acute 

inflammatory response in addition to autocrine peripheral regulation. This neuro-

immunological pathway after surgery would thus act sideways with the previously described 

peripheral immune cell tolerance, typically triggered after endotoxin exposure by 

inflammatory mediators such as IL-10 and PGE2 causing dampening of peripheral immune 

cell reactivity with a duration of up to five days after the pro-inflammatory triggering 

event13,44-47. 

The comparison of [11C]PBR28 binding and cognitive data revealed an association between 

the increase in brain immune activity and reduction in performance of the highly sensitive 

cognitive Stroop color word test. This observation is in line with results from earlier animal 

models2-4 and support the hypothesis that the postoperative cognitive dysfunction syndrome is 

related to surgery-induced activation of the brain immune system2-4.  

The lack of relationship between simultaneous changes in systemic cytokines and brain 

[11C]PBR28 binding are in agreement with a recent human study showing no correlation 

between changes in TSPO and systemic cytokine levels after LPS infusion23. It may be argued 

that measured plasma levels of inflammatory mediators reflect the net balance of production 

and degradation during a prolonged timespan and is the combined production from multiple 

cell types, including stromal cells e.g. endothelial cells and hepatocytes as well as blood borne 



immune cells). 

Conclusions 

This is the first study describing a profound downregulation of the brain immune activity in 

the early postoperative period with a related dampening of the immunoreactivity of peripheral 

blood. This downregulation is followed by a normalization or upregulation of the brain and 

peripheral immune systems at 3 months after surgery. Our findings suggest an interplay 

between the human brain and peripheral innate immunity to modulate the inflammatory 

response after surgical trauma. These processes may be related to post-surgical impairments 

of cognitive function. 
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Figures 

 

Figure 1 

 

 

Figure 1. Representative parametric images of [11C]PBR28 binding at three occasions 

(preoperatively, day 3-4 postoperatively and after 3 months) in a patient undergoing major 

abdominal surgery 

 

 



 

Figure 2A 

 

Figure 2A: Changes in VT across regions preoperatively (white), day 3-4 postoperatively 

(grey) and after 3 months (black). Paired t-test, *p<0.05, **p<0.01, ***p<0.001       

     



 
Figure 2B.  

 

 

Figure 2B: Individual changes of VT in GM across the three time points: preoperation, 3-4 

days postoperatively, and 3 months.  



 
Figure 3A 

 

 

 

Figure 3A. Ex vivo cytokine production. The cytokine responses were measured by TNF-α 

and IL1β protein levels after LPS + ATP stimulation of whole blood preoperatively, 

postoperatively day 3-4 and after 3 months. Protein levels were normalized to number of 

leukocytes (TNF-α or IL1β/Leucocyte particle count (top panels). The TNF-α response is 

dampened four days post-surgery despite an increase in leukocytes, but has returned to normal 



3 months after surgery. Although similar trends were present for TNF-α and IL1β in 

unstimulated blood samples (bottom panels), the differences did not reach statistical 

significance. 

Protein levels measured preop were compared to levels at postop 3-4 days and postop 3 

months using paired t-test and significant differences are indicated by * and the p-value. Bars 

indicate median value and box indicates second and third quantiles. 

 

 

 

 

 



 



Figure 3B 



 

Figure 3C 

 

Fig 3B-C 

Plasma cytokine, HMGB-1, CRP, SAA, NFL and Tau concentrations following major 

abdominal surgery in eight male surgical patients. Data are presented as preoperatively, 

postoperatively day 3-4 and after 3 months. Statistical significance are indicated by * with 

corresponding p-value (paired t-test). Bars indicate median value and box indicates second 



and third quantiles.



 

Tables 

 

Table 1. Demographic data for eight male patients undergoing robot-assisted prostatectomy under 

general anesthesia. 

Age yrs 61 ± 7 

Height cm 176 ±5 

Weight kg 82 ± 5 

Body mass index  26 ± 2 

Duration of surgery hrs 3.1 ± 0.8 

Blood loss mL 105 ± 77 

Length of stay days 2.4 ± 1.0 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Correlations of % change [11C]PBR28 VT vs Cognitive Z-scores 

  Test Region 

   GM HIP LFC 

Visual verbal learning, cummulated -0.534 -0.54 - 

Visual verbal learning, delayed recall 0.150 0.211 - 

Letter digit coding -0.147 - -0.283 

Baseline vs Postop (n=7) 

Stroop test, part 3, time -0.216 - -0.342 

Visual verbal learning, cummulated 0.154 -0.012 - 

Visual verbal learning, delayed recall -0.018 0.226 - 

Letter digit coding 0.385 - 0.334 

Baseline vs 3 months (n=7) 

Stroop test, part 3, time 0.582 - 0.531 

Visual verbal learning, cummulated -0.051 -0.114 - 

Visual verbal learning, delayed recall -0.221 -0.017 - 

Letter digit coding 0.208 - 0.186 

Postop vs 3 months (n=8) 

Stroop test, part 3, time 0.650 - 0.736* 

Showing Pearson Correlation with significance levels at *p<0.05 (2-tailed) 

 



 

Supplementary Table 1. Individual rate constants from two-tissue 

compartment model.  

Rate 

constant 

Time point 

 Preop  4 days postop  3 months postop 

 Mean± SD  Mean± SD Mean± SD 

K1 0.10±0.02  0.08±0.02 0.10±0.02 

k2 0.14±0.03  0.16±0.03 0.13±0.05 

k3 0.13±0.04  0.14±0.06 0.12±0.07 

k4 0.06±0.02  0.05±0.01 0.05±0.01 

Showing mean±SD. Paired t-test with significance level at *p<0.05 (2-

tailed). 

 

 

Supplementary Table 2. 

Panel Protein Time point 

  Preop  Postop 3-4 dya  Postop 3 months 

  Mean±SD  Mean± SD p  Mean± SD p 

LPK  6.6±1.7  10.4±3.2 0.01  6.8±1.5 0.4 

Unstim. TNF 54.1±37  31.1±27.4 0.09  59.1±46 0.9 



WB 

 IL1b 62.8±60.7  39.4±38.9 0.3  112.8±90.

6 

0.4 

LPS + 

ATP WB 

TNF 852±465  415±259 0.04  828±468 0.9 

 IL1b 3587± 

1735 

 2936± 

1547 

0.4  4123± 

2733 

0.7 

Plasma TNF 1.6±0.7  2.7±1.3 0.04  1.6±0.6 0.6 

 TNF R1 389±116  603±321 0.02  437±170 0.1 

 IL-6 0.6±0.4  2.1±0.8 0.0009  0.6±0.2 0.8 

 IL-1ra 1804±771  1076±628 0.02  1684±820 0.4 

 IL-10 0.7±0.3  1.2±0.7 0.1  0.6±0.2 0.7 

 HMGB1 1.3±0.7  1.5±0.4 0.1  2.3±1.1 0.052 

 CRP 898731± 

483890 

 41338910

± 

25013850 

0.002  1673016± 

891551 

0.008 

 SAA 1692109± 

822395 

 19166220

0 

±4479615

0 

0.0000

6 

 2230488± 

1379959 

0.07 

 NFL 9.9±3  20.1±5.4 0.0001  10.1±3.9 0.8 



Chemok. Eotaxin 176±34  151±17 0.04  170±28 0.5 

 IP-10 278±82  310±142 0.5  330±98 0.09 

 MCP-1 51±17  51±16 0.99  58±22 0.4 

 MCP-4 82±24  75±15 0.3  88±30 0.4 

 MDC 985±257  1119±309 0.2  971±144 0.9 

 MIP-1β 62±15  87±51 0.1  66±19 0.4 

 TARC 102±60  121±130 0.7  116±44 0.5 

Cytokines IL-

12/23p40

71±25  83±59 0.5  82±26 0.3 

 IL-15 2±0.6  2.7±1.3 0.1  2.4±2.1 0.5 

 IL-16 141±41  140±44 0.9  156±37 0.2 

 IL-7 3.9±2.1  3.4±1.2 0.5  4.6±2.1 0.4 

 IFN-γ 6±2.3  10.9±15.1 0.4  7.9±4.4 0.2 

 IL-8 4.5±1.1  5.1±1.3 0.3  4.9±1.3 0.4 

 sICAM 238313± 

55248 

 304369± 

104058 

0.054  260272± 

59277 

0.09 

 sVCAM 364864± 

47446 

 404741± 

86753 

0.1  388947± 

58941 

0.1 

Angiogen. bFGF 33±29  26±25 0.4  46±33 0.2 

 PlGF 25±4  30±3 0.003  22±5 0.1 



 Flt-1 58±20  60±17 0.6  59±18 0.5 

 Tie-2 5979±745  4651±333 0.0004  5802±698 0.3 

 VEGF 87±51  70±19 0.3  99±54 0.5 

 VEGF-C 76±56  56±26 0.2  83±30 0.6 

 VEGF-D 609±209  640±174 0.4  635±203 0.07 

 

 


