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ABSTRACT
BACKGROUND: Serious and debilitating symptoms of anxiety are the most common mental health problem
worldwide, accounting for around 5% of all adult years lived with disability in the developed world. Avoidance
behavior—avoiding social situations for fear of embarrassment, for instance—is a core feature of such anxiety.
However, as for many other psychiatric symptoms the biological mechanisms underlying avoidance remain unclear.
METHODS: Reinforcement learning models provide formal and testable characterizations of the mechanisms of
decision making; here, we examine avoidance in these terms. A total of 101 healthy participants and individuals with
mood and anxiety disorders completed an approach-avoidance go/no-go task under stress induced by threat of
unpredictable shock.
RESULTS: We show an increased reliance in the mood and anxiety group on a parameter of our reinforcement
learning model that characterizes a prepotent (Pavlovian) bias to withhold responding in the face of negative
outcomes. This was particularly the case when the mood and anxiety group was under stress.
CONCLUSIONS: This formal description of avoidance within the reinforcement learning framework provides a new
means of linking clinical symptoms with biophysically plausible models of neural circuitry and, as such, takes us
closer to a mechanistic understanding of mood and anxiety disorders.
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Avoidance is a core feature of anxiety (1,2) and plays a central role
in psychological strategies for the treatment of anxiety (3), but its
underlying neural and cognitive mechanisms are unknown. Avoid-
ance can be adaptive: if an individual perceives a situation as
stressful then it makes sense to avoid that stressor in the future.
However, excessive avoidance can result in a pathological down-
ward spiral. The more one avoids a situation, the less opportunity
there is to learn that the situation is not as bad as feared, and a
vicious cycle of avoidance and impaired extinction learning
emerges, which in turn promotes further anxiety (1). For example,
an individual who fears social embarrassment might ultimately end
up housebound, avoiding all social interaction.

The diathesis-stress model of mood and anxiety disorders (4)
proposes that maladaptive avoidance should be greatest during
periods of environmental stress in vulnerable individuals. This idea
has clear face validity and is supported by clinical anecdotes but is
largely derived from retrospective, subjective self-reports. This is
because quantifying avoidance under stress in an experimentally
controlled yet ecologically valid manner in humans is methodo-
logically challenging. In this study we address this challenge using
1) a translationally validated [i.e., comparable behavioral responses
can be elicited across human and animal models (5)] threat-of-
shock procedure to induce stress (6,7); 2) a cognitive task that has
been shown to reliably index avoidance behavior in healthy
individuals (1); and 3) a computationally precise method of defining
of avoidance.
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Specifically, we operationalize avoidance as a behavioral
bias toward withholding action (no-go [i.e., inhibition]) in the
face of potentially negative outcomes. This powerful prepotent
reflexive (or Pavlovian) bias has been observed consistently in
humans and animals (8–11) and is so profound that it can
disrupt instrumental goal-directed behavior (8–11). This is
known as Pavlovian-instrumental transfer (12), and we harness
it here to measure the degree to which individuals rely on their
prepotent avoidance biases. Given that both induced stress
(13,14) and pathological anxiety have been associated with
increased inhibitory control, it seems plausible that a combi-
nation of stress and anxiety will increase reliance on Pavlovian
inhibitory avoidance biases (15) [in contrast with depression
alone, which might plausibly be associated with reduced
reliance on Pavlovian approach biases (16)].

Reinforcement learning algorithms can provide parameter-
izations of avoidance behavior that offer insight into both
optimal behavior when set correctly (17) and to dysfunction
and pathology when set incorrectly (18). Critically, reinforce-
ment learning models enable us to parameterize the influence
of Pavlovian avoidance biases on task performance in a
formal manner. A large body of work has applied these
models to healthy humans (8–10) and they form the basis
of human-level artificial intelligence (17), but to date they
have not been applied to individuals with mood and anxiety
disorders.
f Biological Psychiatry. This is an open access article under the
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We therefore tested individuals with mood and anxiety
disorders and healthy individuals completing an approach-
avoidance go/no-go task under stress, which was induced by
threat of shock. Avoidance was defined and parameterized
within a reinforcement learning framework. We predicted that
the mood and anxiety group would show high reliance on
avoidance bias and that this avoidance bias would be
exacerbated by stress.

METHODS AND MATERIALS

Participants

All data, task scripts, and code to recreate the figures in this
article are freely available online (https://figshare.com/articles/
Avoidance_Anxiety_Materials/3860250). A total of 101 partic-
ipants were included in the study. Healthy participants (n 5 58
[originally n 5 62 but 4 individuals were excluded because
they failed to follow task instructions]; 36 men [62.1%]; age
range 5 18–57 years; mean 6 SD age 5 26.7 6 7.1 years) and
unmedicated individuals with pathological mood and anxiety
symptoms (n 5 43; 27 men [62.8%]; age range 5 18–53 years;
mean 6 SD age 5 28.8 6 8.8 years) were recruited from online
advertising and institutional subject databases. The primary
difference between the groups in initial recruitment was that
only the pathological group self-defined as experiencing
distress from mood/anxiety symptoms. We recruited a mixed
sample of anxiety and depression diagnoses because they are
highly comorbid with overlapping symptoms and may not
therefore represent truly distinct pathologies. Healthy partic-
ipants responded to an advertisement asking for healthy
individuals with no psychiatric symptoms. A phone screen
confirmed no history of psychiatric, neurological, or substance
use disorders. The mood and anxiety group responded to an
advertisement for individuals suffering from low mood, anx-
ious, or depressive symptoms. Following an initial phone
screen, individuals who met criteria for mood or anxiety
disorder symptomatology according to a face-to-face Mini-
International Neuropsychiatric Interview (19) were included.
According to the Mini-International Neuropsychiatric Interview,
the majority of participants (n 5 27) met criteria for both
generalized anxiety disorder and major depressive disorder
(MDD) (n 5 9 with additional panic disorder), generalized
anxiety disorder (n 5 8; n 5 3 with panic disorder, n 5 1 with
agoraphobia), panic disorder and MDD (n 5 2), and MDD
alone (n 5 6; Supplemental Table S1). The average number of
depressive episodes was 5 6 7. The average duration of
episodes was 7 6 8 months (excluding one participant who
reported a continuous episode since adolescence). Further
details are provided in the Supplement.

Manipulation

State anxiety was induced via threat of unpredictable electric
shocks delivered with two electrodes attached to the non-
dominant wrist using a Digitimer DS5 Constant Current
Stimulator (Digitimer Ltd., Welwyn Garden City, United King-
dom). A highly unpleasant (but not painful) subjective shock
level was established using a shock work-up procedure prior
to testing. No more than five (to avoid habituation) shocks with
gradual increasing shock level were administered. Participants
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rated each shock on a scale from 1 (barely felt) to 5
(unbearable). Shock level was matched at a level of four
across participants. The experimental task was programmed
in Psychtoolbox-3 (http://psychtoolbox.org) for MATLAB
R2014b (version 8.4.0.1) (The MathWorks, Inc., Natick, MA),
presented on a laptop and administered under alternating safe
and threat blocks. During the safe block, the background color
was blue and preceded by a 4000-ms message stating, “You
are now safe from shock.” During the threat block, the
background color was red and the message stating “Warning!
You are now at risk of shock” was presented for 4000 ms.
Participants were told that they might receive a shock only
during the threat condition but that the shocks were not
dependent on their performance. In practice, a single shock
was delivered at a pseudorandom time point during one
third of threat blocks (a total of four shocks across 480
trials). Note that it is the anticipation of these shocks, not
the shocks themselves, that constitutes the manipulation
(see the Supplement). At the end of each experimental task,
participants retrospectively rated how anxious they felt
during the safe and threat conditions on a 10-point Likert-
type scale with responses ranging from 1 (not at all) to 10
(very much so).

Approach-Avoidance Task

The task was based on the design of a previous probabilistic
go/no-go reinforcement learning task (10,20) modified to
incorporate the threat manipulation. The prepotent Pavlovian
bias to a win is a go response (approach), and the prepotent
Pavlovian response to a loss is a no-go (avoid) response. As
such, the task comprised four experimental conditions where
action (go/no-go) was crossed with valence (reward/punish-
ment): 1) go to win reward, 2) go to avoid losing (GA), 3) no-go
to win reward (NGW), and 4) no-go to avoid losing. On each
trial, participants were presented with one of four fractal cues
per condition, followed by a target detection task and sub-
sequently by a probabilistic outcome (Figure 1; more task
detail in the Supplement).

Reinforcement Learning Models

Reinforcement learning modeling proceeded in the same way
as described in a prior article (10). Briefly, we built seven
parameterized reinforcement learning models to fit to the
behavior of the subjects. All models were adapted Rescorla-
Wagner models. We use the term “standard” to denote the
six-parameter winning model from Guitart-Masip et al. (10) and
either add or subtract parameters to test model fits for seven
separate models (see Table 1 for a parameter specification
summary).

Learning Models. All the models assigned a probability to
each action at on trial t based on an action weight and the
current stimulus. The action weights were constructed accord-
ing to a simple Rescorla-Wagner–like update equation with a
learning rate. Reinforcements were coded as 11 for a reward,
–1 for a punishment, and 0 for no feedback. A sensitivity
parameter determined the effective size of reinforcements for a
subject. For the majority of models the sensitivity parameter
could take on different values for the reward and punishment
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Figure 1. Experimental paradigm.
The trial sequence for each trial-type
condition under threat (red) and safe
(blue) conditions. There were equal num-
bers of go to win, go to avoid, no-go to
win reward, and no-go to avoid losing
trials within each safe and threat block,
and these were randomly ordered within
each block (note that safe sequence
proceeds in the same way as the threat
sequence but is curtailed here for
brevity). The prepotent Pavlovian bias
to a win is a go response (approach) and
the prepotent Pavlovian response to a
loss is no-go (avoid); hence in go to win
reward and no-go to avoid losing, the
bias and task instructions are aligned,
but in go to avoid losing and no-go to
win reward participants have to learn to
overcome their avoidance and approach
biases, respectively. The safe and threat
blocks were presented in alternating
order, counterbalanced across partici-
pants. A different set of fractal cues
was used for the safe and threat blocks,
counterbalanced across participants.
At feedback, a face (happy 110 points,
fear –10 points) was shown 80% of the
time, and no points (i.e., a yellow bar
[not shown in the figure]) was shown
20% of the time.
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trials. For one model (standard 1 2 approach-avoid – 1 sense)
there was only one sensitivity parameter per subject, thus
assuming that failure to obtain a reward was as aversive as
obtaining a punishment. The initial value for the go action was
set to zero, and the action weight was modified to include a
static general action bias parameter, which denoted overall go
tendency (with the exception of one model [standard – action
bias] in which this was not included). The Pavlovian approach-
avoid bias parameter (excluded for one model [standard –

approach-avoid]) inhibited the tendency to go in proportion to
the negative value of the punishment stimulus, while it similarly
promoted the tendency to go in proportion to the positive
Table 1. Model Specification

Model Name NP

Standard – Action Bias 5 Reward
sensitivity

Punishment
sensitivity

Standard – Approach-Avoid 5 Reward
sensitivity

Punishment
sensitivity

Standard 1 2 Approach-Avoid – 1
Sense

6 Sensitivity

Standard 6 Reward
sensitivity

Punishment
sensitivity

Standard 1 2 Approach-Avoid 7 Reward
sensitivity

Punishment
sensitivity

Standard 1 2 Learning Rates 7 Reward
sensitivity

Punishment
sensitivity

Rewar
lear

Standard 1 2 Approach-Avoid 1 2
Learning Rates

8 Reward
sensitivity

Punishment
sensitivity

Rewar
lear

NP, number of parameters.
value of the reward stimulus. For the model with two
approach-avoid parameters (standard 1 2 approach-avoid),
there were two parameters, updated separately for rewarded
and punished trials. For the models with two learning rates
(standard 1 2 approach-avoid 1 2 learning rates or standard
1 2 learning rates), there were separate learning rates for
rewarded and punished trials. In sum, for a given action (a 5

go or no-go), stimulus (s 5 go to win reward, GA, NGW, or no-
go to avoid losing), or reinforcement (r 5 11, –1, or 0) on each
trial t:

Qt at ;stð Þ 5 Qt21 at ;stð Þ1LearningRateU SensitivityUrtð Þ2Qt21 at ;stð Þ
� �

(1)
Parameter

Learning rate Lapse — Approach-avoid bias

Learning rate Lapse General
action bias

—

Learning rate Lapse General
action bias

Approach
bias

Avoidance
bias

Learning rate Lapse General
action bias

Approach-avoid bias

Learning rate Lapse General
action bias

Approach
bias

Avoidance
bias

d
ning rate

Punishment
learning rate

Lapse General
action bias

Approach-avoid bias

d
ning rate

Punishment
learning rate

Lapse General
action bias

Approach
bias

Avoidance
bias
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Valuet stð Þ 5 Valuet21 stð Þ1LearningRate

U SensitivityUrtð Þ2Valuet21 stð Þ
� �

(2)

ActionWeightt a;sð Þ

5
Qt a;sð Þ1ActionBias1AppAvoBiasUValuetðsÞ a 5 go

Qt a;sð Þ a 5 nogo

(

(3)

Observation Model. For action selection, the probability of
each action was passed through a squashed softmax function
with the addition of an irreducible lapse parameter (referred to
as “noise” in earlier papers, but renamed “lapse” here to avoid
confusion with temperature noise parameters), which was free
to vary between zero and one.

ActionProbabilityðat ;stÞ 5
expðActionWeighttðat ;st ÞÞP
a0expðActionWeightt a0 ;stð ÞÞ

� �

U 12Lapseð Þ1Lapse
2

(4)

Parameter Estimation

We used a hierarchical type II maximum likelihood expect-
ation–maximization procedure to fit the parameters across all
subjects and conditions. These procedures are identical to
those used by Huys et al. (12). Briefly, the top level of the
hierarchical model specified distributions over the parameters
for the subjects (see below). At each iteration, the current top-
level distributions were used as a prior for a Laplace approx-
imation to the intermediate-level posterior distribution of
the parameters for each subject (the E-phase). These
intermediate-level distributions were then used to determine
the next iteration of the top-level distributions (the M-phase).
The algorithm was initialized with maximum likelihood values
of all the parameters for the subjects; the Laplace approx-
imation was based on the use of fminunc in MATLAB, using
multiple random initial values at each iteration of optimization
to help avoid local minima. Four different population distribu-
tions were tested:
1.
4

Four distributions: one for anxious individuals under threat,
one for controls under threat, one for anxious individuals
under safe, one for controls under safe. This is the most
relaxed procedure and serves to pull all parameters apart.
2.
 Two distributions: one distribution for threat and one
distribution for safe. This fitting procedure was blind to
the existence of group.
3.
 A single distribution for all participants and conditions (i.e.,
each participant was included twice within the distribution;
once for the safe condition and once for the threat
condition). This fitting procedure was blind to the existence
of both group and threat condition, and serves to pull all
parameters closer together.
4.
 Two distributions: one distribution for anxious individuals
and one distribution for control subjects. This fitting
procedure was blind to the existence of induced anxiety.
Biological Psychiatry ], 2017; ]:]]]–]]] www.sobp.org/journal
the integrated Bayesian information criterion (iBIC). The iBIC is

The fit of each model and distribution was compared using

the integral of the likelihood function over the individual
parameters [for details, see (12)]. Small iBIC values indicate
a model that fits the data better after penalizing for the number
of parameters. The parameter fitting procedure results in one
iBIC per distribution. These are then summed together to
provide a single iBIC to enable model comparison across
distributions. The lowest overall iBIC denotes the winning
model and distribution combination [an approximate
Bayes factor of the comparison of iBIC scores can
be calculated using expðΔiBIC=2Þ:] Note that fitting the
parameters of the winning model using a different hierarchical
Bayesian approach recovered similar parameters (see the
Supplement). During fitting, parameters are constrained to
within meaningful ranges [see (12)]. Exponential transforms are
applied to ensure that approach-avoid and sensitivity param-
eters do not go below zero and sigmoid transform to ensure
that learning rate and action bias parameters are constrained
between zero and one. These transformations mean that
parameters are not normally distributed.

The parameters recovered from the winning model were
then compared across groups and conditions using two-tailed
permutation tests implemented R coin (https://cran.r-project.
org/web/packages/coin/index.html; IndependenceTest, one-
way_test). The recovered p values are comparable to those
derived from standard t tests, but do not require the assump-
tion of normality (critical given the possibility of multimodal
distributions recovered from the model fitting procedure).
RESULTS

Basic Analysis of Symptoms and Behavior

As expected, the mood and anxiety group reported signifi-
cantly higher symptoms of trait anxiety (F1,96 5 69.6, ηp2 5 .4,
p , .001; Figure 2A) and depressive symptoms (F1,90 5 50,
ηp2 5 .4, p , .001) relative to controls (for a breakdown by
subdiagnosis, see Supplemental Table S1; note that as is
commonly observed these measures are highly correlated
across the whole sample [r96 5 .755, p , .001]). Participants
retrospectively reported feeling greater anxiety during the
stress manipulation relative to the matched safe condition
(F1,99 5 166, ηp2 5 .6, p , .001; Figure 2B), which was similar
between groups (main effect of group [F1,99 5 2.0, ηp2 5 .02,
p 5 .16]; group 3 condition interaction [F1,99 5 0.007, ηp2 ,

.001, p 5 .9]).
Analysis of overall performance accuracy revealed a main

effect of action (F1,99 5 90, ηp2 5 .5, p , .001), qualified by an
action (go/no-go)-by-valence (reward/punishment) interaction
(F1,99 5 94, ηp2 5 .5, p , .001; Figure 2C). As expected, this
was driven by worse relative performance in the conditions
where Pavlovian biases had to be overcome in order to make
the appropriate response (i.e., a loss-driven avoidance bias in
GA and a win-driven approach bias in NGW) as well as an
overall bias toward making go responses (which means that
no-go performance is worse overall likely due to subjects’ prior
belief that they should respond). There was a main effect of
group (F1,100 5 15, ηp2 5 .1, p , .001) driven by worse overall
accuracy in the mood and anxiety group, but there were no
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Figure 2. Self-report anxiety and task performance. Between groups, (A) our mood and anxiety sample reported significantly higher trait anxiety scores
(data missing for two participants in the control group [HC] [green] and one in the mood and anxiety group [ANX] [gray]), while (B) the whole sample reported
increased (induced) anxiety, rated retrospectively, under threat relative to safe (Saf) conditions (violin plots; each point represents a subject, background
shading represents estimated distribution). (C) Collapsed mean accuracy differs as a function of trial type, but this ignores that (D) performance on the task
changed over time, such that the probability of making a response [P(go); as distinct from accuracy in panel (C)] differed as a function of trial type, condition,
group, and time (shading represents SEM). Avo, avoid; Thr, threat.
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other interactions with group or condition (all p values ..5).
However, as apparent in Figure 2D, learning follows a complex
time course that differs by condition (and by individual). We
therefore turned to a computational model-based analysis to
integrate the results across conditions, and thereby examine
these differences at a fine scale. In the Supplement, we exploit
this clearer understanding to show model-agnostic signatures
of the model-based effects.
Reinforcement Learning Model Selection and
Validation

We fitted reinforcement learning models to trial-by-trial choice
behavior using an hierarchical type II maximum likelihood
expectation–maximization approach (12). The most parsimo-
nious model (standard 1 2 approach-avoid 1 2 learning rates;
Table 1; Figure 3E; Methods and Materials) is an adapted
Rescorla-Wagner model (21) identical to the winning model in
prior studies of healthy individuals (8,10), with the exception
that there are separate Pavlovian approach, avoid, and learn-
ing rate parameters for the cases of rewards and punishments.
In other words, this model included an approach bias param-
eter, an avoidance bias parameter, and accommodated sep-
arate speeds of learning about rewards and punishments.

The hierarchical model fitting procedure requires the spec-
ification of population-level priors. This raises an important
conceptual question when it comes to considering multiple
groups. Should we consider mood and anxiety and healthy
groups as being sampled from the same or different popula-
tions? We answered this question through the adoption of a
population-level model comparison approach. We compared
fits for models ranging from four separate prior distributions
for each group and stress condition (Figure 3A) to a single
distribution for all subjects and conditions (Figure 3C). The
best fit for our winning model was achieved by fitting a single
population distribution (Figure 3C), implying that we did not
obtain sufficient evidence to suggest that anxious and healthy
individuals were sampled from different populations. Box plots
and means of the posterior parameter distribution across
subjects (under the type II maximum likelihood expectation–
maximization approach) are shown in Figure 3F; that all
subjects share the same prior implies that the recovered
parameters will be drawn closer together.

We next ran a posterior predictive model with parameters
set to those from the winning model (i.e., having a computer
make decisions as if it were each individual subject). Average
parameters recovered from simulated data were close to those
that were originally observed (Figure 4A), albeit with more
noise for the NGW condition. Average simulated behavior over
time matched closely that of the subjects (Figure 4B; compare
to Figure 2C; see also Supplemental Table S2).

Pathological Symptoms Are Associated With
Increased Reliance on Avoidance Bias, Especially
Under Stress

We finally performed permutation tests on the posterior parame-
ters to assess the effects of group and threat condition. These
revealed an increased reliance on the avoidance bias parameter in
the mood and anxiety group (effect of group averaged across
threat and safe: ppermutation 5 .042; Figure 4C) and a significantly
greater increase in the avoidance parameter under the threat
condition versus the safe condition in the mood and anxiety group
relative to control subjects (ppermutation 5 .015; Figure 4C) driven by
a significantly greater avoidance in the mood and anxiety group
relative to control subjects under the threat condition (ppermutation 5

.006) but not the safe condition (ppermutation 5 .17) (there was no
significant condition effect within groups [mood and anxiety group
ppermutation 5 .36; control subjects ppermutation 5 .28]).
DISCUSSION

Anxious individuals show strong avoidance behavior that
can be debilitating and self-perpetuating (1,2). Here, using a
Biological Psychiatry ], 2017; ]:]]]–]]] www.sobp.org/journal 5
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Figure 3. Model fitting and comparison. Four different population distributions were tested separated by (A) group and threat condition (four distributions);
(B) by threat condition alone (two distributions); (C) blind to group and threat condition (one distribution); and (D) by group alone (two distributions).
Comparison of models and distributions using integrated Bayesian information criteria (iBIC) scores (colors match distributions throughout figure) revealed a
winning model of standard 1 2 approach-avoid 1 2 learning rates, fit across a single prior distribution (inset zoomed in on the distribution comparison for this
model). Box-and-whisker plots of the recovered parameters from the wining model/distribution are presented in panel (F) separated by group and condition
(red triangles denote means, lines denote medians; based on individual parameter estimates). Log scales are used for the sensitivity and approach-avoidance
parameters to aid visualization of these exponentially transformed parameters. ANX, mood and anxiety group; Ap-Av, approach avoid; Approach, approach
bias; Avoid, avoidance bias; HC, healthy control group; LR, learning rate; Pun, punishment; Rew, reward; Sense, sensitivity; Stand, standard.
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computational approach, we provide evidence that mood and
anxiety disorders are associated with increased reliance on an
avoidance bias (a Pavlovian bias to withhold responding in the
face of punishments) during reinforcement learning. Moreover,
consistent with the diathesis-stress hypothesis, this effect was
exacerbated under stressful conditions in the mood and
anxiety group only.

We provide a potential computational mechanism for this
effect. We show that avoidance behavior—which is currently
measured by retrospective self-report—can emerge at the
Figure 4. Posterior predictive model. Running the estimated parameters for ea
go probabilities for each trial type (sensitivity plots: each marker represents one s
and (B) group-averaged trial-by-trial performance (compare to real data in Figure
mood and anxiety group (ANX). Comparing parameters across group and c
pathological anxiety across conditions as well as greater threat-potentiated a
Saf, safe; Thr, threat.

6 Biological Psychiatry ], 2017; ]:]]]–]]] www.sobp.org/journal
level of stimulus-action associations. Specifically, individuals
with mood and anxiety disorders may show avoidance in the
face of threats because they inhibit their action tendencies
when faced with a perceived negative outcome. This is
consistent with prior work demonstrating increased behavioral
inhibition under stress (13,14), in pathological anxiety (15), and
in high (nonpathological) trait anxiety (22) [although see (23)].
Over time, however, individuals may be ultimately able to learn
to overcome this bias (i.e., promote instrumental override of
Pavlovian bias parameters) if they are given the opportunity to
ch subject through a posterior predictive model recovered both (A) average
ubject under one condition so there are twice as many markers as subjects)
2C). In panel (B) green shows healthy control group (HC) and gray shows

ondition revealed (C) a significantly higher avoidance bias parameter in
voidance in pathological anxiety (error bars represent SEM). Avo, avoid;
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experience outcomes (i.e., NGW go probability is lower at the
end than go to win reward here). However, in the real world,
avoidance means that, by definition, predicted outcomes are
rarely experienced and challenged, there is little opportunity to
learn, and a persistent miscalibration can emerge.

The growing field of computational psychiatry (18) seeks to
use theory-driven approaches to explain psychiatric phenom-
ena. Testable theories are a prerequisite to a clear mechanistic
understanding: here, we have outlined a precise and formal-
ized computational theory about how avoidance emerges in
anxiety under stress. This approach has at least two further
advantages. First, it allows us to reduce a highly dimensional
dataset (here, choices over time) into a small number of
parameters that respect the temporal variability of the data
(unlike responses averaged over time). Second, we can
directly integrate this model into biophysically plausible mod-
els of underlying neural activity (24). Indeed, performance of
this task in healthy individuals has been linked neurocogni-
tively to striatal and midbrain regions associated with network
models of action (9,10) as well as dopaminergic modulation of
this circuitry (25). Striatal regions of this circuitry are also
modulated by the threat of shock technique used here (26),
providing a link between these substrates and stress. This
computational approach therefore holds promise as a means
of unifying complex psychiatric phenomena, such as avoid-
ance, with their underlying neural circuitry.

Such a mechanistic link is critical if we wish to develop
improved treatments. Without mechanistic understanding,
treatment development has to be targeted at downstream
symptoms (e.g., self-reported avoidance). The problem with
this approach can be illustrated by the symptom of cough (27).
Lung cancer, allergies, bronchitis, or tuberculosis all result in a
cough through fundamentally different mechanisms, but the
treatment for one will be ineffective for the others (and indeed
may even cause harm through side effects). Targeting clearly
defined mechanisms, not symptoms, should ultimately
improve the effectiveness of interventions. For example,
extensive work in the development of psychological interven-
tions for mood and anxiety disorders has suggested that
exposure therapy should be paired with behavioral training to
overcome avoidance to be effective (1), but the mechanism is
unclear. The present findings suggest that this may be
because such training encourages an instrumental override
of Pavlovian bias during action selection. One avenue for
future exploration, therefore, is whether training to overcome
bias on GA trials on tasks such as in the present study could
promote instrumental override [cf. (28) but also (29)]. If proven
effective, such speculative task-based interventions (com-
pleted via smartphones, for example) could have enormous
potential value for public health.
Limitations

While our model may provide a mechanism by which avoid-
ance behavior occurs in anxiety and depression, it does not
provide a means of disentangling its relationship with specific
constructs under the broad category of distress (30). Indeed,
symptoms of anxiety and depression are highly comorbid
(mixed MDD and generalized anxiety disorder is the most
common diagnosis in our sample and our self-report measures
of anxiety and depression are highly correlated), so future
work is needed to delineate how, if at all, avoidance processes
map separately onto feelings of anxiety or depression. In this
study we did not find a reliable relationship between the
avoidance parameter and self-reported anxiety symptoms
using a dimensional approach (see the Supplement). One
potential explanation is that our self-report measures are not
optimal for capturing the symptoms measured by our task.
Self-reported avoidance behavior might, for instance, show a
stronger relationship with task performance.

It is also worth highlighting that there is a difference
between passive avoidance and active avoidance, the latter
being where an individual performs an action to avoid harm
(i.e., GA). There are clear individual differences in avoidance
learning strategies (31), so reliance on active versus passive
avoidance may differ across subgroups of anxious individuals.
For instance, active avoidance may be especially prominent in
posttraumatic stress disorder (32), so an interesting question
for future work is whether posttraumatic stress disorder may
be associated with corresponding improved GA performance
and hence improved task performance.

Another important limitation is that while it is possible to see
evidence of the influence of the avoidance parameter when
performance averages are divided into separate time bins (see
Supplement), our nonmodeling analysis is inherently less
sensitive to the avoidance effects because focusing on means
reduces our sensitivity to detect effects that evolve over trials.

Finally, it should be noted that we use a Bayesian frame-
work for evaluating model fit and then use a frequentist
approach to compare output parameters. This approach asks
whether parameters, which were fitted under a single distri-
bution, actually come from separate distributions. This is
highly conservative and will require large effects in order for
differences to be detected. A better approach would be to test
the effect of varying the population priors at the parameter
level. In light of the present data, we would predict that
avoidance bias would be best fit using multiple distributions,
while all other parameters will be best fit under a single
distribution. This would enable inference about group differ-
ences in parameters to be fully confined within the model
comparison framework. We are actively developing tools that
will enable this approach in the future. Relatedly, this is the
first study using this task to report results for a model that
includes separate avoidance and approach parameters. To the
best of our knowledge this model has not previously been
reported, and it is possible that it would also offer the most
parsimonious account of other samples. However, it is also
plausible that the addition of an extra parameter is only
warranted in a sample in which this captures additional
variance (as is the case here, being the only parameter that
differs across groups).
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