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We propose a scheme to realize the fractional quantum Hall system with atoms confined in a two-

dimensional array of coupled cavities. Our scheme is based on simple optical manipulation of atomic

internal states and intercavity hopping of virtually excited photons. It is shown that, as well as the

fractional quantum Hall system, any system of hard-core bosons on a lattice in the presence of an arbitrary

Abelian vector potential can be simulated solely by controlling the phases of constantly applied lasers.

The scheme, for the first time, exploits the core advantage of coupled cavity simulations, namely, the

individual addressability of the components, and also brings the gauge potential into such simulations as

well as the simple optical creation of particles.
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The achievement of trapping ultracold atomic gases in a
strongly correlated regime has prompted an interest in
mimicking various condensed matter systems, thereby al-
lowing one to tackle such complex systems in unprece-
dented ways [1]. A major class of simulable systems, dis-
tinct from the Hubbard model and spin systems, is that in a
gauge potential, such as the fractional quantum Hall (FQH)
system. The FQH effect arises when a two-dimensional
(2D) electron gas is in the presence of a strong perpendi-
cular magnetic field at a low temperature. The Hall resist-
ance of such a system exhibits plateaus when the Landau
filling factor � takes simple rational values [2]. The FQH
effect at fundamental filling factors � ¼ 1=m for odd in-
tegers m (even integers for bosons) is accounted for by
Laughlin’s trial wave function (in the symmetric gauge) [3]

�mðfzjgÞ ¼ e
�ð1=4ÞP

j
jzjj2Y

j<k

ðzj � zkÞm; (1)

where zj ¼ xj þ iyj is the 2D position of the jth electron in

unit of the magnetic length lB � ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p
, with B being the

magnetic field. The elementary excitation of this state is a
quasihole (quasiparticle), which has a fractional charge
þe=m (� e=m) and obeys the anyonic statistics [4]. To
simulate such a system in trapped atoms, a major challenge
is to create an artificial magnetic field as the atoms in
consideration have no real charge. This is done with con-
siderable difficulties, for instance, by rapidly rotating the
harmonic trap [5], by exploiting electromagnetically in-
duced transparency [6], or by modulating the optical lattice
potential [7,8]. Additionally, FQH systems are also simu-
lable in Josephson junction arrays [9].

Recently, coupled cavity arrays (CCAs) [10–12] have
emerged as a fascinating alternative for simulating quan-
tum many-body phenomena, supported by diverse technol-
ogies, such as microwave stripline resonators, photonic
crystal defects, microtoroidal cavity arrays, and so forth
[13–15]. CCAs have complementary advantages over op-

tical lattices, such as arbitrary many-body geometries and
individual addressability [16]. Recently, theoretical works
have shown that the Mott-superfluid phase transition of
polaritons [10,11] and the Heisenberg spin chains [12] can
be realized in CCAs. These works, however, relied only on
globally addressing lasers and thus could not highlight the
key advantage of CCAs, namely, the individual address-
ability, in the sense that already they can be done similarly
or better in optical lattices [17]. Moreover, simulating
altogether distinct classes of systems such as those of
itinerant particles in a gauge potential still remains open,
and this will be especially arresting if the particles them-
selves can be created by a purely optical means. In this
Letter, we bring the Abelian gauge potential into the realm
of many-body simulations using CCAs. We achieve this by
actively exploiting the individual addressability, which
eventually enables great versatility which has not been
attainable in optical lattices.
As a concrete example, we introduce a way of simulat-

ing FQH systems in CCAs. To be more specific, we con-
sider a FQH system of bosonic particles confined in a 2D
square lattice of spacing a in the presence of a perpendicu-
lar and uniform artificial magnetic field B. Noninteracting
free bosons in a single Bloch band are described by the
Hamiltonian

H0 ¼ �t
X

hj;ki
cyj ck exp

�

�i
2�

�0

Z k

j
AðrÞ � dl

�

; (2)

where cj denotes a boson annihilation operator at site j and

�0 � h=e is the magnetic flux quantum. The summation
runs over nearest neighbor pairs. If we take a Landau
gauge, this Hamiltonian is written as

H0 ¼ �t
X

p;q

ðcypþ1;qcp;qe
�i2��q þ cyp;qþ1cp;q þ H:c:Þ; (3)

where the positions of lattice sites are represented by
aðpx̂þ qŷÞ, with a being the spacing of the lattice. Here
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� � Ba2=�0, the number of magnetic flux quanta through
a lattice cell, plays a crucial role in characterizing the
energy spectrum, whose self-similar structure is known
as the Hofstadter butterfly [18]. In addition to this non-
interacting Hamiltonian, we consider a hard-core interac-
tion between bosons, which limits the number of particles
that can occupy one site to a maximum of one. In this limit,
if we also take a continuum limit� � 1, the Laughlin state
(1) is a very accurate variational ground state, where the
filling factor � corresponds to the ratio of the number of
bosons to the number of magnetic flux quanta.

In order to realize the above situation, we consider a
two-dimensional array of coupled cavities, each confining
a single atom with two ground levels, which will be repre-
senting an s ¼ 1

2 spin. First, we notify that, aside from the

additional phases, the Hamiltonian (3) in the hard-core
limit corresponds to that of an s ¼ 1

2 spin lattice system

with XX interaction, where the creation-annihilation op-
eration of the zero and one boson states is analogous to the
spin flip operation of the spin-down and -up states. This
natural realization of the hard-core limit is contrary to the
case of optical lattices, wherein it is achieved in the limit of
strong on-site repulsion [7,8]. Moreover, as will be seen
later, every aspect of the system is optically controlled:
Bosons are created by simple optical pulses, and the phases
in the Hamiltonian are adjusted simply by controlling the
phases of applied lasers. This optical control of the system
would greatly simplify the experiments, compared to the
previous schemes involving mechanical modulations of the
system. Although in this work we mainly consider the FQH
systems, another great advantage is that, unlike the pre-
vious schemes for optical lattices, any Abelian vector
potential on a lattice can be also simulated simply by
adjusting the laser phases in accordance with the formula
(2). The creation of a quasiexcitation, which is achieved by
adiabatically inserting a flux quantum through an infinitely
thin magnetic solenoid piercing the 2D plane [3], again
reduces to the matter of adiabatically changing the laser
phases accordingly. It can be moved along the lattice cells
by modulating the laser phases, which would be useful for
testing the fractional statistics.

Schemes for realizing the spin exchange Hamiltonian in
an array of coupled cavities have been established in recent
papers [12]. In these schemes, the spin exchange is medi-
ated by intercavity hopping of virtually excited cavity
photons. An important difference in the present case is
that the spin exchanges are associated with phase changes
depending on their locations and directions, which obvi-
ously cannot be excluded by local phase transformations.
For this reason, we introduce an asymmetry in the 2D
geometry of coupled cavities, as shown schematically in
Fig. 1, where two orthogonal cavity modes along the x̂ and
ŷ directions have different resonant frequencies. Realizing
this geometry would be viable in several promising models
for coupled cavities, such as photonic band gap micro-
cavities [13] and superconducting microwave cavities

[14]. We assume the frequency difference between the
two modes is much larger than the atom-cavity coupling
rates. In this way, either direction of the spin exchange can
be accessed individually by choosing the laser frequency.
We note, however, that the above asymmetry is, in fact, not
essential for our purpose. For example, an array of micro-
toroidal cavities [15], in which case realizing such a ge-
ometry is nontrivial, can be also used by involving more
lasers in the scheme. We discuss this point later.
We consider a simple atomic level and transition scheme

as shown in Fig. 2. The atom has two ground levels j0i and
j1i and an excited level jei. There are two cavity modes
along the x̂ and ŷ directions, whose annihilation operators
are denoted by aX and aY , respectively. The atom interacts
with these cavity modes with coupling rates gX and gY and
with detunings �X and �Y , respectively. Two classical

fields with (complex) Rabi frequencies �Xe�i�X and

�Ye�i�Y are applied, respectively, as in the figure. In the
rotating frame, the Hamiltonian reads

H ¼ X

�¼X;Y

X

j¼ðp;qÞ
½g�e�i��ta�j ðjeih0jÞj

þ��e�i�
�
j e�i��tðjeih1jÞj þ H:c:�

�X

p;q

ðJXaXypþ1;qa
X
p;q þ JYaYyp;qþ1a

Y
p;q þ H:c:Þ; (4)

FIG. 1. Schematic representation of a two-dimensional array
of coupled cavities. Each atom is confined in the intersection of
two orthogonal cavity modes, which are adjusted to have differ-
ent resonant frequencies.

FIG. 2. Involved atomic levels and transitions. There are two
independent Raman transitions mediated by an excited level jei
between two ground levels j0i and j1i, represented by super-
scripts X and Y, respectively.
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where JX (JY) denotes the intercavity hopping rate of the
photon along the x̂ (ŷ) direction and the subscript ðp; qÞ
represents the cavity site. As mentioned above, we assume
�X � �Y � gX; gY and also assume �� � g� �
��; J�. This requires the strong atom-cavity coupling in
that g� � J�. In this regime, the atomic excitation is
suppressed, and adiabatic elimination leads to an effective
Hamiltonian

H ¼ X

�¼X;Y

X

j¼ðp;qÞ
½��a�y

j a�j ðj0ih0jÞj

þ!�ðei��j a�j �þ
j þ H:c:Þ�

�X

p;q

ðJXaXypþ1;qa
X
p;q þ JYaYyp;qþ1a

Y
p;q þ H:c:Þ; (5)

where �� ¼ ðg�Þ2=��, !� ¼ g���=��, and �þ ¼
j1ih0j. Here we have ignored the ac Stark shift induced
by classical fields, which is negligible in our regime (or it
may be compensated by other lasers). Again, we assume
�� � J� � !�, which can be satisfied, along with the
above condition, when

g�=�� � J�=g� � ��=��: (6)

In this regime, the cavity photon is suppressed, and adia-
batic elimination can be applied once more. We extend the
method in Ref. [19] to keep up to the third-order terms and
take only the subspace with no cavity photon. The effective
Hamiltonian, in the rotating frame, can then be derived as

H ¼ �t
X

p;q

½�þ
pþ1;q�

�
p;qe

ið�Xpþ1;q��Xp;qÞ

þ �þ
p;qþ1�

�
p;qe

ið�Y
p;qþ1

��Yp;qÞ þ H:c:�; (7)

where the parameters are chosen such that t ¼
JXð!X=�XÞ2 ¼ JYð!Y=�YÞ2. It is easy to see that this
Hamiltonian reduces to the Hamiltonian (2) if we adjust
the phases of the classical fields as

�Xp;q ¼ 2�

�0

Z p;q

0;q
AðrÞdl; �Yp;q ¼ 2�

�0

Z p;q

p;0
AðrÞdl: (8)

The FQH Hamiltonian (3) is obtained if we adjust these
phases as �Xp;q ¼ �pq2�� and �Yp;q ¼ 0. Note that the

classical fields for �Yp;q can be replaced by one global field.

In order to check the validity of the adiabatic approxi-
mation from Hamiltonian (5)–(7), we have performed a
direct numerical diagonalization of Hamiltonian (5). We
take a set of parameters ��=10 ¼ 10!� ¼ J�, which
corresponds to a case where ��=1000 ¼ g�=100 ¼
�� ¼ J�. To eliminate the edge effects within a limited
computational capability, we consider a periodic boundary
condition (i.e., a torus). We consider a 4� 4 lattice with
� ¼ 1=4 and two bosons, hence four flux quanta in total,
and the filling factor � ¼ 1=2. In view of the fact that the
cavity photon is suppressed, we restrict our calculation to
the subspace wherein the maximum number of excitations

in a cavity is limited to one, i.e., haXyp;qaXp;q þ aYyp;qaYp;q þ
ðj1ih1jÞp;qi � 1. Up to the modification due to the torus

geometry and a different gauge [20], the ground state
should be close to the Laughlin state (1) with m ¼ 2.
From our numerical diagonalization, the fidelity between
the Laughlin state j�2i and the numerical ground state
j�Gi is found to be FG ¼ jh�2j�Gij2 ¼ 0:976. We note
that, when the ideal Hamiltonian (3) is diagonalized for the
same 4� 4 lattice, the fidelity of the ground state is found
to be 0.989. The fidelity FG converges to this value as
��=J� and J�=!� increase, which, however, demands
more strong atom-cavity coupling. Note also that the non-
unit fidelity is partly due to the finite �, which makes the
effect of the lattice geometry non-negligible. The ground
state fidelity of the Hamiltonian (3) increases close to 1 as
� decreases [8].
In experiments, the ground state could be prepared by

the adiabatic transformation, in a similar manner as in
Ref. [8]. To show this, we consider the above 4� 4 lattice
system and deliberately add an energy shift ��½ðj1i�
h1jÞ0;0 þ ðj1ih1jÞ2;2�, which can be done in experiments

by applying lasers at those sites to induce ac Stark shifts.
When the energy shift � is sufficiently large, the ground
state is simply j1i0;0j1i2;2 with all other atoms in state j0i.
In Fig. 3, we plot the energy gap from the ground state to
the nine lowest excited states with respect to the amount of
the energy shift �. The degeneracy of the ground state in
the absence of the energy shift is due to the ambiguity of
the center of mass in the torus geometry, which disappears
in the plane geometry [20]. Aside from this degeneracy, the
excited states have finite energy gaps which allow an
adiabatic transformation. From this figure, it is apparent
that the Laughlin ground state can be prepared by the
following procedure: (i) Prepare the atoms in state j1i at
sites chosen evenly in agreement with the filling factor �,
with all other atoms prepared in state j0i. Initially all lasers
are turned off. (ii) Apply lasers at the chosen sites to induce
an ac Stark shift ��j1ih1j, with � chosen moderately, e.g.,

0

 0.4

 0.8

 1.2

0  0.4  0.8  1.2

E
N

E
R

G
Y

 G
A

P
 / 

t

ε / t

FIG. 3. Energy gap from the ground state to the nine lowest
excited states for a 4� 4 lattice in the periodic boundary
condition in the presence of energy shift ��j1ih1j applied at
two sites chosen evenly. The filling factor is � ¼ 1=2.
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as the desired value of t. This energy shift does not change
the atomic state. (iii) Gradually increase the Rabi frequen-
cies �X and �Y to reach the desired value of t.
(iv) Gradually decrease the energy shift � to zero.

The quasiexcitation of the Laughlin state is generated
when one magnetic flux quantum is adiabatically inserted
through an infinitely thin solenoid piercing the 2D plane
[3]. In the present system, we can choose the position of the
quasiexcitation inside a lattice cell. Recalling that the

vector potential outside a solenoid is given by ~As ¼
�0=2�r’̂, where r is the distance from the solenoid and
’̂ is the azimuthal vector, the effect of the solenoid can be
easily reflected in the phases of Eq. (8). Generation of the
Laughlin state and the existence of the fractionally charged
quasiexcitation (in the present case, fractionally excited
bosons) could be examined by directly measuring the
individual atoms: for example, by measuring the pair cor-
relation functions [21]. Before the measurement, one may
turn off all lasers so as to isolate the state from further
evolution and decoherence.

Although the atomic excitation is highly suppressed, the
atomic spontaneous decay is yet a prominent source of
decoherence. If we denote by 	 the spontaneous decay rate
of an atom, the effective decay rate of the whole system
due to the atomic decay is estimated asNb	ð�=�Þ2, where
Nb denotes the total number of bosons in the system (we
omit superscript X or Y for simplicity). On the other hand,
the energy scale t in the Hamiltonian is given by Jð�=gÞ2.
In view of the condition � � g, the former is still much
smaller than the latter for moderate Nb if we assume 	 &
J. However, since the excitation gap is smaller than t, the
attainable system size would be restricted in the experi-
mental realization. Although the effective decay rate is
decreased by increasing �, this in turn requires more
stronger atom-cavity coupling rate g so as to satisfy the
condition (6).

Finally, we stress the point that the asymmetric geome-
try introduced in Fig. 1 is not essential. That is, when the
two orthogonal cavity modes have the same resonant fre-
quency, one can also obtain the Hamiltonian (7) in the
following way: We apply lasers with the same frequency,
say, !1, in every second row so that they produce the spin
exchange to the x̂ direction, while applying lasers with a
different frequency !2 in the other rows, which also pro-
duce the spin exchange to the x̂ direction. If we choose
those frequencies so that j!1 �!2j 	 ��, they do not
produce the spin exchange to the ŷ direction. In the same
manner, we apply lasers with frequencies !3 and !4 in
every second column to produce the spin exchange to the ŷ
direction. By choosing those four frequencies to be suffi-
ciently detuned, we can adjust the associated phases inde-
pendently for each pair of the spin exchange.
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