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A B S T R A C T

The presence of a network of areas in the parietal and premotor cortices, which are active both during action
execution and observation, suggests that we might understand the actions of other people by activating those
motor programs for making similar actions. Although neurophysiological and imaging studies show an
involvement of the somatosensory cortex (SI) during action observation and execution, it is unclear whether
SI is essential for understanding the somatosensory aspects of observed actions. To address this issue, we used
off-line transcranial magnetic continuous theta-burst stimulation (cTBS) just before a weight judgment task.
Participants observed the right hand of an actor lifting a box and estimated its relative weight. In
counterbalanced sessions, we delivered sham and active cTBS over the hand region of the left SI and, to test
anatomical specificity, over the left motor cortex (M1) and the left superior parietal lobule (SPL). Active cTBS
over SI, but not over M1 or SPL, impaired task performance relative to sham cTBS. Moreover, active cTBS
delivered over SI just before participants were asked to evaluate the weight of a bouncing ball did not alter
performance compared to sham cTBS. These findings indicate that SI is critical for extracting somatosensory
features (heavy/light) from observed action kinematics and suggest a prominent role of SI in action
understanding.

Introduction

When we observe somebody lifting a box, we can typically judge if
the load is heavy or light. What are the brain mechanisms supporting
this computation? Years of research on the mirror system, areas of the
brain active both when we perform an action and when we observed a
similar action performed by another individual, suggest the mirror
mechanism as a possible basis for action understanding (Rizzolatti and
Sinigaglia 2010, 2016). Motor mirroring engages a system of recipro-
cally connected cortical motor areas, including the inferior frontal
cortex (IFC) and inferior parietal lobule (IPL) (di Pellegrino et al.,
1992; Gallese et al., 1996; Keysers and Perrett, 2004; Fogassi et al.,

2005; Gazzola and Keysers, 2009; Casile, 2013; Bonini, 2016). Lesion
and transcranial magnetic stimulation (TMS) studies provide evidence
for the functional relevance of IFC and IPL to action perception. For
instance, as a consequence of a brain damage affecting the IFC, people
become less accurate at detecting errors in action videos (Pazzaglia
et al., 2008), ordering pictures of actions in temporal sequences (Fazio
et al., 2009), and identifying what action was performed in point-light
displays (Saygin, 2007). Also, lesions of the IPL impair detection of
spatio–temporal errors in action sequences (Buxbaum et al., 2005;
Weiss et al., 2008; Kalénine et al., 2010; see Urgesi et al. (2014) for a
meta-analysis). Non-invasive transcranial stimulation of IFC and IPL
transiently affects the discrimination of observed actions (Urgesi et al.,
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2007; Candidi et al., 2008; Cattaneo, 2010; Cattaneo et al., 2010, 2011;
Tidoni et al., 2013; Michael et al., 2014; Jacquet and Avenanti, 2015;
Avenanti et al., 2017), and particularly relevant to our study, Pobric
and Hamilton (2006) found that TMS interference with IFC reduced
participants' ability to judge the weight of a box when seen lifted (see
Avenanti et al., 2013b for a review).

Mounting functional magnetic resonance imaging (fMRI) and
neurophysiological evidence suggests that the somatosensory cortices
are also consistently activated when people observe the actions of
others (Rossi et al., 2002; Avikainen et al., 2002; Raos et al., 2007;
Gazzola et al., 2007a, 2007b; Hihara et al., 2015; McGregor et al.,
2016; Valchev et al., 2016; see Keysers et al., 2010 for a review). Based
on the observation that activity of the somatosensory cortices is
strongly increased when seeing hands grasping objects (Pierno et al.,
2009; Gazzola and Keysers, 2009; Caspers et al., 2010) or extreme joint
stretching (Costantini et al., 2005), we proposed that while the parietal
and premotor nodes of the mirror system could encode motor aspects
of the observed actions, somatosensory regions might encode the
intensity of the proprioceptive and tactile feedback experienced by
that person (Avenanti et al., 2007; Gazzola and Keysers, 2009; Keysers
et al., 2010). The work of Kim et al. (2015) supports this idea by
showing a direct evidence for a multimodal integration of propriocep-
tive and tactile information in all compartments of SI. However,
empirical evidence for whether and how the robust activation of SI
during action observation contributes to the perception of an observed
action remains scarce.

Indirect evidence for the relevance of SI to ‘social’ perception stems
from studies reporting somatosensory activation when participants
view others’ tactile or painful bodily states (Keysers et al., 2004;
Bufalari et al., 2007; Lamm et al., 2007, 2011; Schaefer et al., 2008,
2012; Valeriani et al., 2008; Holle et al., 2013; Kuehn et al., 2013).
More direct evidence stems from Bolognini et al. (2011) who showed
that TMS perturbation over SI makes people less accurate at judging
whether an observed hand was touched or not (see also Bolognini et al.,
2013, 2014). Additionally, Jacquet and Avenanti (2015) repeatedly
showed participants movies displaying an actor performing one of two
different goal-directed hand actions. A TMS pulse over the hand
representation in SI (or IFC) facilitated the recognition of repeated
goals (via matching to a test picture) suggesting a role of SI in the
perception of action goals. Finally, Adolphs et al. (2000), showed that
lesions of the somatosensory system impair the ability to perceive facial
expressions, and Paracampo et al. (2016) showed that repetitive TMS
over SI (and IFC) disrupts the ability to infer amusement authenticity
from observed facial movements. Although these studies suggested a
causal role for SI in processing touch and high-level aspects of observed
actions (i.e., the goal of an action or the emotion underlying a facial
expression), it remains untested whether SI contributes to the percep-
tion of proprioceptive aspects of observed actions such as weight.

The goal of the present study was to test the functional relevance of
SI to perceiving this proprioceptive information from observed actions
using off-line TMS. To test the accuracy of weight perception from
observed actions we used the paradigm developed by Pobric and
Hamilton (2006) in four new TMS experiments. Participants had to
estimate the weight of a box by observing it being lifted. The task was
performed in two counterbalanced sessions carried out immediately
after active or sham continuous theta-burst stimulation (cTBS; Huang
et al., 2005) over the target area. The cTBS protocol was used to alter
neural activity of the stimulated areas for several minutes after
stimulation (Huang et al., 2005, 2011; Franca et al., 2006; Bertini
et al., 2010), and test its critical role on the ability to judge the weight
of a box from observed actions. In the first three experiments, we
targeted SI to test its critical role in action understanding, and two
neighboring sensorimotor regions, M1 and SPL, to test for anatomo-
functional specificity (Chouinard et al., 2009; Eidenmüller et al., 2014).
Both M1 and SPL, possess functional and reciprocal connections with
SI, and are found to respond to action execution (Vigneswaran et al.,

2013; Bonini, 2016; Lloyd et al., 2002; Gazzola and Keysers, 2009;
Keysers and Gazzola, 2009). In the fourth experiment, we applied cTBS
over SI before participants judged the weight of a bouncing ball, to test
for SI specificity to weight estimation when the action of a human agent
is involved. Our results extend those of Bolognini et al. (2011, 2013,
2014) by showing that in addition to processing purely tactile
information, SI also contributes to the processing of more propriocep-
tive information derived from action kinematics to infer weight; and
those of Pobric and Hamilton (2006) by showing that weight judgment
by observation requires SI in addition to IFC, supporting a behavioural
relevance for the functional interplay between motor and somatosen-
sory regions/representations in action perception suggested by our
combined fMRI/TMS study (Valchev et al., 2016). Lastly, our results
expand those of Jacquet and Avenanti (2015), Adolphs et al. (2000)
and Paracampo et al. (2016) by showing that SI is critical not only for
goal inference, but also for inferring proprioceptive qualities from
observed kinematics.

Materials and methods

Participants

A total of 91 students from the University of Bologna took part in
one of four TMS experiments (67 participants, 35 females, mean age ±
S.D: 23.3 y ± 1.9; see Table 1 for sample details) or in two psychophy-
sical pilot studies (Pilot study 1: 12 participants, 8 females, mean age
22.8 y ± 2.0; Pilot study 2: 12 participants, 6 females, mean age 26.6 y
± 2.2). All participants provided written informed consent. All of them
were right-handed (as assessed by verbal report of their manual
preference) with normal or corrected to normal vision. None of them
had neurological, psychiatric, or other medical problems, or had any
contraindication to TMS (Rossi et al., 2009). The protocol was
approved by the local ethics committee at University of Bologna and
was carried out in accordance with the ethical standards of the 1964
Declaration of Helsinki. No discomfort or adverse effects during TMS
were reported or noticed.

Weight estimation task

Participants watched 4.4 s movies showing either (i) a human hand
lifting a box to place it on a shelf, or (ii) a ball falling from the top of the
screen to then bounce at the bottom until it stops (no hand throwing
the ball was visible) (Fig. 1A). The task consisted in judging, after each
video, the weight of either the box or the ball by answering the question
"How heavy is the box (or ball)?" on a 5 points scale, with 1
corresponding to the lightest and 5 to the heaviest weight estimation.
Five different movies, representing 5 different box (or ball) weights
were shown to the participants in a randomized order. Each movie was
presented 12 times, 6 for each block, for a total of 30 movies per block.
For both the box and ball task, each video was preceded by a 1 s
fixation cross, and participants answered by pressing one of 5 keys with
the left hand (ipsilateral to the stimulation site) to indicate a number
from one to five. They were instructed to answer as quickly and
accurately as possible. Participants wore headphones providing white
noise to eliminate auditory information during task performance.

Visual stimuli

All the video stimuli came from previous experiments (Pobric and
Hamilton, 2006; Hamilton et al., 2007). Briefly, the five different
videos of the hand lifting a box (Experiment 1–3) were generated by
down sampling a single high-speed movie of a lifting hand to create the
perception of 5 different box weights, ranging from approximately 50 g
to 850 g. Since they all derived from the same video, they are very well
controlled for visual differences not relevant for the task. The videos of
the bouncing balls were generated using Matlab (www.mathworks.
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com/) as in previous research (Pobric and Hamilton 2006). The
perception of 5 different weights was created by modifying two
parameters which affect the elasticity of the ball, thus creating the
perception of observing balls of different weights. All movies were
presented using custom-made software written in Matlab (www.
mathworks.com/) at a resolution of 512×480 pixels and 30 frames
per s on a 17 in. monitor. For both the box and the ball videos, we thus
attributed value of 1, 2, 3, 4 or 5 to the ‘weight’ of the box or ball, based
on these prior studies. These values were then directly compared
against the reported weight (from 1 to 5) from the current study to
yield accuracies (see below).

Experimental design and procedure

The study included two pilot and four TMS experiments, in which
participants had to estimate the weight of the box or the ball (Fig. 1A).

The first pilot experiment was conducted on 12 volunteers (8
females, mean age 22.8 y ± 2.0) not participating in the TMS experi-
ments to check if the accuracy in judging the weight of the ball was
comparable to that of the box. Participants were asked to complete the
box and ball weight estimation tasks in two separate sessions whose
order was counterbalanced across subjects. Each session started with
60 practice trials, and continued with two blocks of 30 experimental
trials each.

The box and ball task might not only differ in difficulty, but also
have a different susceptibility to TMS interference. The second pilot
experiment, on 12 additional volunteers (6 females, mean age 26.6 y ±
2.2), was therefore performed to test whether the box and ball weight
estimation tasks presented comparable sensitivity to external inter-
ference. To this aim, we experimentally manipulated stimulus visibility
in both tasks by visually masking the phases critical to the estimation of
the box's and ball's weight. The informative time window (IFT) for the
box weight estimation's videos started from the frame in which the
hand touched the cube before lifting it, and lasted until the frame in
which the hand released the cube. The IFT for the ball weight
estimation's videos started from the frame in which the ball touched
ground for the first time and ended with the frame in which the ball
stopped. For each video, we applied two static masks of different
duration (15% and 30% of the IFT), starting at 6 different onsets (at 0-
10-20-30-40-50% of IFT duration), which were obtained by freezing
the very last frame before mask onset. At the end of the mask, the video
resumed showing the remaining frames. In this way, we obtained 60
new movies (2 masks×6 onsets×5 weights) for each task. Participants
in the pilot study performed the box and ball weight estimation tasks in
two separate sessions whose order was counterbalanced across sub-
jects. For each task, the original version of the videos (0% of the IFT)
and the two masking conditions (15–30% of the IFT) were presented in
separate blocks. Each session started with 60 practice trials, and
continued with the three blocks of 60 experimental trials (180
experimental trials in total). By using the masking manipulation, we
provide an independent measure of task sensitivity that can be used to
better interpret the results of the TMS experiments. A similar
sensitivity in the two tasks will make it less likely that the changes in
performance induced by TMS in one of the tasks could be simply
explained by differences in sensitivity to external manipulation.

All four TMS experiments were composed of three parts: a
preparatory, an active and a sham cTBS session (Fig. 1B). The order
of the active and sham cTBS sessions was counterbalanced across
participants. Additionally, active and sham cTBS sessions were sepa-
rated by 90 min to ensure that no cTBS effects were carried over from
one session to the other. During these 90 min participants were asked
to remain relaxed and seated on a comfortable chair. Participants were
randomly assigned to the different experiments.

During the preparatory session the optimal scalp position and the
resting motor threshold were evaluated by means of motor-evoked
potentials (MEPs) recording (see Transcranial magnetic stimulationT
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paragraph for more details). Once the target site was individuated
(Fig. 1C), it was marked on the scalp, and Talairach coordinates were
estimated using the neuro-navigation system (see Target sites and
neuro-navigation paragraph for more details; Table 1). Participants
were then familiarized with the experimental task by performing a
practice block of 60 trials. At the end of the practice, there was a 10 min
rest period in which participants were required to remain in front of the
computer.

During the active cTBS session the experimenter administered 40 s
of off-line continuous theta-burst stimulation over the target site, by
placing the intersection of the coil tangentially to the scalp with the
handle pointing backward and laterally at a 45° angle away from the
midline (Balslev et al., 2004; Azañón and Haggard, 2009; Jacquet and
Avenanti, 2015). Two blocks of 30 trials (~5 min duration each) were
performed at five and twelve minutes after the stimulation (Fig. 1B).
Between blocks and trials, participants were asked to rest. Active cTBS
is known to disrupt functions related to the target area for about 30–
60 min (Huang et al., 2005, 2011; Franca et al., 2006; Bertini et al.,
2010; Wischnewski and Schutter, 2015). Since the task was completed
within 20 min after active cTBS administration, performance should
reflect the influence of active cTBS over the stimulated site. The sham
cTBS session was exactly the same as the active cTBS session except
that the coil was positioned, over the target site, perpendicular to the
scalp, so that no current was induced in the brain.

In Experiments 1–3, participants performed the weight lifting task
on the box videos after receiving stimulation over the left SI, left M1
and left SPL respectively (Fig. 1C). In Experiment 4, stimulation was
delivered over the left SI and participants performed the weight
estimation task on the falling ball videos. The number of trials was
the kept the same throughout Experiments 1 to 4.

Transcranial magnetic stimulation protocol

The cTBS protocol lasted 40 s and consisted of bursts of 3 TMS
pulses delivered at 50 Hz, with each train burst repeated every 200 ms
(5 Hz) for a total of 600 pulses (Huang et al., 2005). Stimulation was
administered with a 70 mm figure-eight stimulation coil connected to a
Magstim Rapid2 (The Magstim Company, Carmarthenshire, Wales,
UK).

Previous studies have suggested that motor experience before or
after the administration of cTBS may alter its effect on cortical
excitability (Iezzi et al., 2008, 2011; Todd et al., 2009), possibly leading
to large inter-individual differences in the cTBS effect. To minimize the
influence of motor activity before task execution, participants rested for
at least 10 min before active cTBS in all the TMS experiments. After
active cTBS, they rested for 5 min before performing the task to allow
the active cTBS’ effect to reach its maximum level (Huang et al., 2005).
To minimize the influence of motor activity after cTBS, participants
performed the weight estimation task using their left hand, ipsilateral
to the stimulated sites. To be consistent, the same rest periods were
included in the sham cTBS sessions.

Pulse intensity was set at 80% of the resting motor threshold (rMT)
and was comparable in the four experiments (F3,63=0.003, P > 0.99;
Table 1). In those participants with rMT> 64% of maximum stimulator
output (2, 3, 3 and 3 participants in Experiment 1, 2, 3 and 4
respectively) the intensity was set at the maximum allowed by the
stimulator (51%; on average this intensity corresponded to 76%± 3 of
rMT; Bertini et al., 2010). The rMT evaluation was performed by
recording motor-evoked potentials (MEPs) induced by single-pulse
TMS of the left motor cortex. MEPs were recorded from the right first
dorsal interosseous (FDI) by means of a Biopac MP-150 electromyo-

Fig. 1. (A) Experimental weight estimation tasks, with frames extracted from one of the box and ball presented videos. (B) Experimental design for the four TMS experiments. (C) TMS
targeted regions of interests for Experiments 1 to 4.
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graph (Biopac Corp, Goletta, CA.). EMG signals were band-pass filtered
(20 Hz to 1.0 kHz, sampled at 5 kHz), digitized and displayed on a
computer screen. Pairs of silver/silver chloride surface electrodes were
placed over the muscle belly (active electrode) and over the associated
joint of the FDI muscle (reference electrode). A ground electrode was
placed on the ventral surface of the right wrist. The optimum scalp
position (OSP) was chosen so as to produce maximum amplitude MEPs
in the FDI muscle. The rMT was defined as the lowest level of
stimulation able to induce MEPs of at least 50 µV with 50% probability
(Rossini et al., 1994, 2015).

Target sites and neuronavigation

In Experiment 1 and 4 scalp locations corresponding to the left SI
were targeted by moving the coil 2.5 cm back with respect to the OSP
(corresponding to the M1 hand area). TMS studies that successfully
targeted the somatosensory hand area positioned the coil 1–4 cm
posterior to the motor hotspot (Avenanti et al., 2007; Harris et al.,
2002; Balslev et al., 2004; Merabet et al., 2004; Fiorio and Haggard,
2005; Azañón and Haggard, 2009; Jacquet and Avenanti, 2015). We
therefore assumed that positioning the coil 2.5 cm from the previously
marked optimal scalp position (OSP) for activation of the right FDI
muscle would interfere with the activity of the hand representation area
of SI with minimum effects on M1. To test this assumption directly, we
checked that TMS pulses at 105% rMT with the coil in the above
position did not elicit any detectable MEPs.

To directly test the anatomical and functional specificity of the
effect of cTBS on SI activity, in Experiments 2 and 3, we applied cTBS
over M1 and SPL, two brain areas recruited during action observation
(Keysers and Gazzola, 2009; Casile, 2013; Bonini, 2016), respectively.
In Experiment 2, left M1 was stimulated by placing the coil over the
OSP, corresponding to the scalp projection of motor cortex hand area
(Rossini et al., 1994, 2015). In Experiment 3, left SPL was stimulated
by moving the coil 5 cm back with respect to the OSP (Balslev et al.,
2004). Thus, stimulation of M1 and SPL occurred 2.5 cm forward and
backward to SI, respectively.

In all the TMS experiments, we only stimulated brain regions (SI,
M1 or SPL) in the left hemisphere. This choice was dictated by several
factors including: (i) being able to directly compare our results with
those of previous studies, which also stimulated the left hemisphere
(Pobric and Hamilton, 2006; Cattaneo, 2010; Cattaneo et al., 2010,
2011; Tidoni et al., 2013; Jacquet and Avenanti, 2015; Avenanti et al.,
2017; Valchev et al., 2016); (ii) the use of right-hand actions in the box
videos; (iii) the inclusion of right-handed participants in our sample.
Indeed, although responses to action observation is bilaterally dis-
tributed (van Overwalle and Baetens, 2009; Grosbras et al., 2012;
Borgomaneri et al., 2015), studies have shown a gradient of lateraliza-
tion which depends on the laterality of the body part involved in the
observed action, as well as the observers’ hand preference. In parti-
cular, during observation of right hand actions, activations of right-
handers tend to be stronger (Aziz-Zadeh et al., 2002; van Schie et al.,
2004; Shmuelof and Zohary, 2005; Gazzola and Keysers, 2009; Cabinio
et al., 2010; Caspers et al., 2010) in the left, relative to the right,
hemisphere, and some studies showed that stimulation of the left
hemisphere is more effective than the right hemisphere to modulate
perception of observed right hand actions (Avenanti et al., 2017; but

see Urgesi et al., 2007). Thus, by targeting the left hemisphere, we
could test whether performance in the box weight estimation task was
affected by interference with observer's sensorimotor regions repre-
senting the very same hand shown in the action movies.

Brain surface Talairach coordinates corresponding to projection of
the stimulated sites in SI (Experiments 1 and 4), M1 (Experiment 2) or
SPL (Experiment 3) were identified on each participant's scalp with the
SofTaxic Navigator system (Electro Medical Systems, Bologna, Italy) as
in previous research (Avenanti et al., 2007, 2013a, 2017; Bertini et al.,
2010; Serino et al., 2011; Tidoni et al., 2013; Jacquet and Avenanti,
2015; Paracampo et al., 2016). Skull landmarks (nasion, inion, and two
preauricular points) and about 100 points providing a uniform
representation of the scalp were digitized by means of a Polaris Vicra
digitizer (Northern Digital Inc., Ontario, Canada). An individual
estimated magnetic resonance image (MRI) was obtained for each
subject through a 3D warping procedure fitting a high-resolution MRI
template with the participant's scalp model and craniometric points.
This procedure has been proven to ensure a global localization accuracy
of roughly 5 mm, a level of precision closer to that obtained using
individual MRIs than can be achieved using other localization methods
(Carducci and Brusco, 2012). Coordinates of target regions in Talairach
space (corresponding scalp projections on brain surface) were auto-
matically estimated by the SofTaxic Navigator from the MRI-con-
structed stereotaxic template and later transformed to the MNI space
for better visualisation (Table 1). For illustrative purpose, spherical rois
of diameter 4 mm around the mean target point from each TMS
experiment were created using Marsbar (Brett et al., 2002) running in
MATLAB 7.5 (Mathworks Inc., Sherborn, MA, USA) and then overlaid
on the MNI brain template from MRIcron (http://www.cabiatl.com/
mricro/mricron/index.html; Fig. 1C).

Data analysis

In all experiments, separately for each session, we calculated
participants’ performance as the sum of squared errors (SSE), which
was calculated on the difference between the subjects’ reported weight,
and the weight associated with the stimulus based on Pobric and
Hamilton (2006) and Hamilton et al. (2007). SSE was preferred to the
R2 measure used in previous studies (e.g. Pobric and Hamilton, 2006)
for two reasons. First, by subtracting averages, R2 ignores possible
differences in the mean values between reported and stimulus weights,
and thus fails to capture systematic shifts in reports. Second, while R2

is good at estimating linear relationships between reported and
stimulus weights, it does not necessarily reflect performance. For
instance, a participant reporting values of 1 1 1 1 5 to stimuli with
assigned values of 1 2 3 4 5, would receive R2=0.5; one reporting 1 2 1
1 5, R2=0.4. Hence, the latter reporting 3 weights correctly would have
a performance lower than the former, reporting only 2 weights
correctly. The SSE does not suffer from these limitations, as it directly
sums the deviations from the stimulus weights (for the two examples
above SSE(11115)=14, and SSE(12115)=13). Importantly, all our partici-
pants performed the exact same number of trials, which is why sums
can be directly compared.

A paired t-test was used in the first pilot study to compare the
performance (SSE) in estimating the box weight to that of the bouncing
ball. In the second pilot study a Task (hand, ball)×Masks (0%, 15%,

Table 2
Average perceived weight and SSE for each % of masking for the box and ball weight estimation task, from the second pilot. Standard error of the mean is indicated within brackets.

Box Ball

0% 15% 30% 0% 15% 30%

Mean weight ( ± s.e.m.) 3.02 ( ± 0.08) 3.14 ( ± 0.04) 3.03 ( ± 0.09) 2.92 ( ± 0.09) 2.97 ( ± 0.07) 3.04 ( ± 0.08)
Mean SSE ( ± s.e.m.) 45.17 ( ± 3.86) 53.33 ( ± 3.11) 59.17 ( ± 2.05) 46.08 ( ± 3.14) 52.25 ( ± 3.37) 59.92 ( ± 3.23)
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30%) repeated measures ANOVA was used on the SSE (Table 2) to
compare the effect the different masks had on the performance in the
different conditions.

The effect of cTBS on our regions of interest, SI, was directly tested
by using a paired t-test on the SSE. Site- and task-specificity of the
observed effects were then tested by examining the interaction term of
a general linear model implementation of mixed models ANOVAs with
factor Conditions (SI box, M1 box, SPL box, SI ball) and cTBS (sham,
active), i.e. by examining if the cTBS effect on performance was
different depending on condition or site. To further understand the
interaction, we used two series of Duncan post-hoc tests. The first
series, fully exploratory, compared performance after sham vs active
cTBS across the four conditions. The second series compared the sham-
active contrast across the 4 conditions to test whether the cTBS effect,
as measured using the sham-active difference, varied across conditions.
This directly follows up on the significant interaction.

To confirm that a parametric test was suited for analyzing our SSE
values, we checked for normality. A Lilliefors tests on our SSE
differences did not reveal a deviation from normality for any of our
condition (all p > 0.2). To maximize the power to detect deviation from
normality we also pooled all but the SI box conditions (as their means
did not differ), but even in this case the Lilliefors test found no evidence
to reject normality (p > 0.5). We also repeated the normality analysis
using the ChiSquare goodness of fit, which confirmed the Lilliefors test
results.

The same analyses (paired t-tests and ANOVAs) used for our main
outcome measure were performed on other indices of task perfor-
mance, namely the Pearson R2 (to keep the comparability of current
results with that of Pobric and Hamilton (2006)), mean weight
estimation values and response times (RTs). Only one participants in
Exp. 1 had values above 2 SD for both SSE (SSEP17=125;
SSEgroup=67.2 ± 25.38 SD) and RTs (RTP17=2.18; RTgroup=0.63 ±
0.06 SD) during the sham cTBS condition, indicating the possibility
of being an outlier. Because the relatively contained sample size for
each group, which limits the confidence of identifying outliers, the
significance of the ANOVAs are reported first excluding that partici-
pant, then including the participant.

Results

Behavioral pilot experiments

In the first pilot experiment a t-test confirmed that performance
was indeed comparable in the box (mean SSE ± s.e.m.=86.92 ± 8.5)
and ball (93.58 ± 14.77) weight estimation tasks (t11 < 1, p=0.48).

The two conditions (hand, ball)×three masks (0%, 15%, 30%) one-
way ANOVA applied to the data from the second pilot experiment
(Table 2) showed a main effect of masks, indicating that the task
became more difficult as the percentage of mask increased
(F2,22=14.55; p < 0.0001), independently of whether participants esti-
mated the weight of a box being lifted or a bouncing ball. No other
significant effects were observed. In particular, there was no interaction
between conditions and masks (F2,22=0.09, p > 0.9), suggesting that the
box and the ball weight estimation tasks were comparably sensitive to
this manipulation.

One may note that performance in the no mask condition of the
second pilot study appears greater than performance in the first pilot
study. Importantly, this between-experiment difference occurred for
both tasks (which in turn did not differ from each other, all p > 0.48),
and is likely due to the difference in total number of experimental trials
(180 experimental trials in Pilot 2, and 60 in Pilot 1) enabling different
levels of learning. Such an effect of trial number is compatible with SSE
during the four TMS experiments, in which participants performed 120
experimental trials, falling between the first and second pilot. Despite
different practice, the two pilot studies confirmed that the box and ball
weight estimation tasks were matched for difficulty and were similarly

Fig. 2. For each experiment (SI box, M1 box, SPL box and SI ball weight estimation
task) we show: (A) the SSE for the active cTBS (in black) and sham cTBS (white with
black contours) sessions (* indicates a significant difference between Sham and Active, +
indicates significant difference between the sham-active contrast across experiments; see
text for p-values); (B) the distribution of SSE differences (sham – active cTBS) for the
four experiments; (C) the mean perceived weights and (D) the mean RTs.
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sensitive to visual interference.

TMS experiments: is SI functionally relevant to weight estimation?

With our experiment, we wanted to test two main questions. First,
we tested if SI carries information relevant to deducing the weight of a
box from the observation of human actions, which we tested by
investigating whether cTBS had an effect in the SI-box condition -
i.e. by directly comparing the SSE in the box weight estimation task
after sham and active cTBS over SI (Experiment 1). A paired t-test
revealed greater SSE values after active relative to sham cTBS and this
difference could be detected regardless of whether the outlier partici-
pant was included in the analysis or not (N16: t15=−3.35, p=0.004;
N17: t16=−2.77, p=0.013; Fig. 2A).

Second, we wanted to know if the observed effect was site- and task-
specific. To this aim we performed a 4 condition (SI box, M1 box, SPL
box, SI ball)×2 cTBS (Sham vs Active) ANOVA. The ANOVA revealed a
significant condition×cTBS interaction (N16: F3,62=3.46, p=0.02; N17:
F3,63=2.88, p=0.04; Fig. 2A). Duncan post-hoc tests indicated that the
SI box condition (Experiment 1) showed the only significant SSE
difference between sham and active cTBS (N16: p=0.02; N17: p=0.04),
whereas no difference between sham and active cTBS were found in the
other three conditions (Experiment 2–4, all paired wise comparisons p
> 0.34). Comparable SSE was found across the sham condition of the
four experiments (all p > 0.88).

Directly comparing sham and active cTBS differences across all
conditions confirmed that this difference was significantly larger in the
SI box condition (Experiment 1) than in the other three conditions
(Experiment 2–4; N16: all p < 0.014; N17: all p < 0.028) which in turn
did not differ from one another (all p > 0.84 for N16 and N17). These
data indicate a selective reduction of performance in the SI box
condition after active cTBS. Fig. 2B shows the distribution of the SSE
differences (sham – active cTBS) for the four experiments. While a
clear disruption could be observed at the group level, the cTBS effect
was variable across participants in the SI box condition (Experiment
1): 11 out of the 17 participants showed larger SSE during active
relative to sham cTBS whereas the remaining 6 participants showed an
opposite trend although smaller in size (average SSE sham-active cTBS
SI box ± s.e.m.=−11 ± 4.0). The SI ball (Experiment 4) and M1 box
(Experiment 2) conditions showed a distribution of SSE values more
centred at zero, with 9 out of 17, and 9 out of 16 participants showing a
decrease in SSE during active cTBS respectively (average SSE sham
-active cTBS SI ball ± s.e.m.=5.29 ± 5.28; average SSE sham-active
cTBS M1 box ± s.e.m.=3.88 ± 5.6). The other condition, PPC box
(Experiment 3), showed greater SSE values during sham compared to
active cTBS in 5 out of 17 participants, little or no changes in 3
participants (i.e., abs SSE changes < ± 3) and greater SSE during sham
relative to active cTBS in the remaining participants (average SSE
sham-active cTBS PPC box ± s.e.m.=4.94 ± 3.76). In sum, there was
behavioural variability in the sham and active cTBS session across the
four experiments. This was also true for Experiment 1 where not all the
participants showed the disruptive effect of SI perturbation that,
nonetheless, could be clearly observed at the group level.

In summary, the SSE performance decreased after active cTBS only
and most for the SI box condition (Experiment 1), indicating a specific
causal role of SI when the weight of an object is deduced from
biological motions.

TMS experiments: control analyses

These findings on SSE were confirmed by the condition x cTBS
ANOVA performed on another index of task performance, namely the
Pearson R2 (as used in Pobric and Hamilton (2006)). This ANOVA
showed a condition×cTBS interaction (N16, F3,62=3.03, p=0.036; N17,
F3,63=2.6, p=0.054). Duncan post-hoc tests indicated SI box condition
as the only condition with a significant R2 difference between sham

and active cTBS (N16, p=0.03). No difference was found between sham
and active cTBS in the other conditions (all p > 0.22). Directly
comparing sham and active cTBS differences across all conditions
using the same Duncan post-hoc procedure confirmed that this
difference was significantly larger in the SI box condition than in the
other three conditions (N16: p < 0.031) which in turn did not differ
from one another (all p > 0.6). As expected, the SSE and R2 measures
were highly and inversely correlated across the four conditions and 2
types of cTBS (all r > .86, all p < .001). Moreover, in Experiment 1,
changes in SSE (sham – active) significantly correlated with changes in
R2 (r > −.74, p < .001), suggesting that disruption of performance
could be similarly detected with the two indices of performance.

To further explore whether the increase of errors in the SI box
condition (Experiment 1) was due to a systematic change in perceived
weight, or a reduction in the reliability of estimation, we also compared
the mean estimated box weight after sham cTBS (mean weight ± s.e.m:
3.13 ± 0.07 for both N16 and N17) and active cTBS (3.24 ± 0.08 for
N16; and 3.22 ± 0.08 for N17) in the SI box condition (paired t-test, for
N16: p=0.027, and for N17: p=0.074), suggesting a tendency for
perceiving greater weight after active cTBS over SI (Fig. 2C). No
sham-active cTBS differences in box weight estimation was found in
the other conditions (all p < .40). However, the condition×cTBS
ANOVA did not show significant main effects or interaction (N16: all
F < 2.05, all p > 0.11; N17: all F < 1.89, all p > 0.14), suggesting that
changes in the mean estimated weight were less consistent than
changes in SSE. Further t-tests suggested that in all conditions
participants tended to overestimate the box weight (Supplementary
Table 1). Moreover, in Experiment 1, changes in SSE (sham-active)
correlated with changes in the estimated mean box weight (r=.53,
p=0.028). Thus, in Experiment 1, the disruption of performance
induced by active cTBS over SI was at least in part due to an increased
bias toward weight overestimation (a bias that was present in all groups
but increased only after SI perturbation).

The ANOVA on RTs during sham and active cTBS (Fig. 2D) did not
show a significant condition×cTBS interaction (N16: F3,62=1.11,
p=0.35; N17: F3,63=1.3, p=0.28) suggesting that active cTBS over SI
impaired the accuracy in the weight estimation of observed lifted box
and not the speed of the response (as measured by RT). The direct
comparison between the mean RTs for the sham (mean RTs ± s.e.m.:
N16: 514 ms ± 60; N17: 632 ms ± 112) and active cTBS (N16: 601 ms
± 81; N17: 714 ms ± 125) conditions showed a non-significant trend
towards an increase of RTs after active cTBS in the SI box condition
(paired t-test, N16: p=0.09; N17: p=0.06). No similar trend was
observed in the other conditions (all p > 0.64). Importantly, that
cTBS in the SI box condition reduced accuracy (significantly) and
increased RTs (marginally), speaks against the possibility of a speed-
accuracy trade-off. Indeed, there was also a significant correlation
between changes (sham-active) in SSE and RTs (r=0.59, p=0.012),
suggesting that in Experiment 1 greater impairments in accuracy
induced by SI cTBS were associated with slower response.

Discussion

Our results show that, compared to sham stimulation, active cTBS
perturbation of SI selectively worsened participant's ability to estimate
the weight of a box when seen lifted (Experiment 1). In contrast,
participants’ performance after active cTBS remained comparable to
sham stimulation when (i) participants judged the weight of a bouncing
ball (Experiment 4), and (ii) stimulation was applied over the adjacent
M1 (Experiment 2) or (iii) SPL (Experiment 3). Notably, disruption of
performance after active cTBS over SI consisted of a clear reduction in
the accuracy of estimations in the box weight, with an increased
tendency for weight overestimation and slower responses. This sug-
gests SI is a critical part of a system of brain regions sub-serving weight
estimation when a human agent is involved, and supports the idea that
SI may enrich action understanding by providing vicarious representa-
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tions of the proprioceptive consequences of the observed actions
(Gazzola et al., 2007a, 2007b; Avenanti et al., 2007; Raos et al.,
2007; Caspers et al., 2010; Keysers et al., 2010; McGregor et al., 2016;
Valchev et al., 2016).

This extends the network of brain regions necessary for optimal
action perception, as evidence for necessity was so far mostly restricted
to the IFC and IPL, as shown by TMS (Pobric and Hamilton, 2006;
Urgesi et al., 2007; Cattaneo, 2010; Cattaneo et al., 2010, 2011; Tidoni
et al., 2013; Avenanti et al., 2013b; Jacquet and Avenanti, 2015),
transcranial direct current stimulation (Avenanti et al., 2017), and
neurological lesion studies (Tranel et al., 2003; Battelli et al., 2003;
Saygin et al., 2004; Buxbaum et al., 2005; Saygin, 2007; Pazzaglia et al.,
2008; Weiss et al., 2008; Fazio et al., 2009; Kalénine et al., 2010;
Urgesi et al., 2014).

If the effect of cTBS over SI were not the result of a perturbation of
SI but of a spread of the magnetic impulse onto nearby motor or
parietal regions, moving the coil forward or backwards should increase
rather than decrease its detrimental effects on perception. This was not
the case, supporting the conclusion that the effect was indeed mediated
by SI. However, imaging and neurophysiological studies show SI does
not work in isolation during action observation, but is rather part of an
entire network composed of ventral and dorsal premotor, anterior and
posterior parietal cortices activated in both action observation and
execution (Avikainen et al., 2002; Rossi et al., 2002; Hasson et al.,
2004; Caetano et al., 2007; Gazzola et al., 2007a, 2007b; Raos et al.,
2007; Kilner et al., 2009; Pierno et al., 2009; Caspers et al., 2010;
Arnstein et al., 2011; Turella et al., 2012). Indeed, we found that cTBS
over SI alters brain activity in the premotor cortices (Valchev et al.,
2015a, 2016), known also to contribute to weight estimation (Hamilton
et al., 2006; Pobric and Hamilton, 2006). Accordingly, the current
results should not be interpreted to suggest that the impairment of
performance reflects cTBS-induced changes of activity in SI alone, but
rather that disrupting SI activity using cTBS is likely to have disrupted
the functioning of a somatosensory-motor, parieto-frontal network of
which SI is an active element.

Given the importance of both IFC (Pobric and Hamilton, 2006) and
SI (this paper) to weight estimation by observation, as well as the
exchange of information between these regions during action observa-
tion (Kokal and Keysers, 2010; Schippers and Keysers, 2011, Valchev
et al., 2016, McGregor et al., 2016), it is relevant to consider what the
roles of each region may be. TMS studies show that seeing biomecha-
nically possible and extremely overstretching movements facilitates the
corticospinal representation of the muscles involved in the observed
movements (Romani et al., 2005). Notably, rTMS over IFC disrupted
motor facilitation during the observation of possible actions, while
rTMS over SI disrupted the facilitation during observation of over-
stretching movements (Avenanti et al., 2007, 2013a). The IFC could
therefore provide primarily vicarious motor representations derived
from the kinematics that would enable the observer to produce a
similar action, if the movement is biomechanically possible. SI, on the
other side, could primarily contribute vicarious somatosensory (tactile
and/or proprioceptive) action components, that emerge for instance
during observation of overstretching finger movements. The contribu-
tion of SI in mapping somatosensory consequences of observed actions
is supported by the findings that SI activity is increased when seeing
other people grasping or manipulating objects (Keysers et al., 2010) or
when seeing extreme joint stretching movements (Costantini et al.,
2005). Evidence that somatosensory cortices are recruited both when
sensing the body and during perception of others being touched or
painfully stimulated (Bufalari et al., 2007; Valeriani et al., 2008;
Keysers et al., 2010; Lamm et al., 2011), and that rTMS over SI
impairs the ability to detect touch in others (Bolognini et al., 2011,
2014) further supports this interpretation.

While manipulation of biomechanical plausibility may dissociate
somatosensory and motor components during action observation,
typically these two components are tightly interlinked. This is particu-

larly evident when observing somebody else lifting objects. Recently,
Alaerts et al. (2010) found that when participants observe an actor lift
objects of different weights, motor-evoked potentials are facilitated
mainly by two factors: the kinematics of the movement and the degree
of contraction of the hand (see also Tidoni et al. (2013) and Valchev
et al. (2015b)). This facilitation could be the result of the integration in
M1 of motor plans inferred via IFC and proprioceptive/tactile informa-
tion inferred via SI. In our experiments, as the stimuli were generated
by modifying kinematics alone, the source of somatosensory informa-
tion has to be kinematic. Importantly, we propose that SI main
contribution to action perception relates to the extraction of proprio-
ceptive/tactile information derived from observed action kinematics,
rather than to encoding action kinematics per se. On the other hand,
observed kinematics is likely processed in other (visual and/or motor)
brain regions including the IFC. This proposal fits with previous studies
showing impaired recognition of action kinematics following lesion or
interference with the IFC (Avenanti et al., 2013b; Urgesi et al., 2014),
and with the recent study of Jacquet and Avenanti (2015) showing that
visual discrimination of observed hand kinematics (i.e., grip aperture)
was disrupted by IFC but not SI online TMS interference.

Our study supports the notion that SI provides a vicarious
somatosensory representation of seen actions and this representation
is necessary for accurate performance in the box weight estimation
task. However, we argue that the contribution of SI to action under-
standing may be more general. Indeed, studies using causal methods
have shown that SI is critical for recognizing the facial or vocal
emotional expressions of others (Adolphs et al., 2000; Pitcher et al.,
2008; Banissy et al., 2010; Paracampo et al., 2016). While the TMS
adaptation study of Jacquet and Avenanti (2015) suggested no critical
role of SI for accurate perception of action kinematics, the same study
also highlighted a state-dependent effect of SI (and IFC) stimulation in
a task requiring to discriminate between action goals. TMS pulses over
SI and IFC hand representations (but not over control regions)
facilitated the recognition of test pictures showing a repeated (adapted)
action goal, regardless of the kinematics used to perform the action
(Jacquet and Avenanti, 2015). These state-dependent effects suggested
a causal role of SI and IFC in the encoding of action goal. Remarkably,
this role is not in contrast with the proposal that SI and IFC may mirror
somatosensory and motor components of observed actions, respec-
tively (Gazzola et al., 2007; Avenanti et al., 2007; Keysers et al., 2010;
McGregor et al., 2016). Indeed, goal processing may involve the
prediction of both motor and somatic afferent action components
which could be processed in partially separated networks (Christensen
et al., 2007; Etzel et al., 2008; Gazzola and Keysers, 2009).

Our study significantly expands this previous evidence by showing
that disruption of SI with active cTBS impairs performance in the box
weight estimation task (Experiment 1), and this provides strong
evidence that SI is causally essential for accurate action perception.
On the other hand, active cTBS over SI did not affect the ability to judge
the weight of a bouncing ball (Experiment 4). The selectivity of the
cTBS disruption cannot be accounted by a difference in the difficulty
between the box and ball weight estimation tasks. Indeed, the two tasks
were matched for difficulty (as shown in pilot study 1 and 2) and
presented similar sensitivity to external (visual masking) interference
(as shown in pilot study 2). Thus, the selective interference with box
weight estimation by SI perturbation cannot be accounted by con-
founding effects like a different difficulty of the two tasks and rather
suggests that SI is critically involved in inferring somatosensory
qualities (i.e., light/heavy) from human actions and not from non-
human motion.

In all the conditions, participants tended to slightly overestimate
the ‘correct’ weight in the box weight estimation task. Interestingly,
active cTBS over SI tended to further increase such overestimation
relative to sham cTBS, suggesting that the disruption in accuracy was in
part due to a tendency to perceive the weight of the box as heavier.
Thus, altered signals in SI may make people less accurate in judging the
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weight of lifted objects, by biasing their weight judgment. Again, these
effects were specific for human action as no weight bias was induced in
the ball estimation task. Notably, a contribution of SI, IFC and other
sensorimotor regions to perceiving the weight of objects seen to be
lifted was suggested by previous studies showing that: i) lifting a box
influences participant's perceptual judgments of the weight of a box
lifted by others (Hamilton et al., 2004); and, ii) the strength of this
perceptual bias correlated with neural activity in a network of cortical
regions including SI, IFC, M1 and SPL (Hamilton et al., 2006).
However, these methods could not establish whether activity in SI
was necessary for accurate action perception. While previous evidence
showed that IFC is necessary for correct performance in the box weight
estimation task (Pobric and Hamilton, 2006), the present study
provides the first causative evidence that also SI, but not M1 or SPL,
is critical for the social perception of weight.

The lack of a significant effect with M1 stimulation (Experiment 2)
is not surprising. First, although SI and M1 are anatomically close and
highly interconnected, there is physiological and behavioral evidence
that the aftereffect of SI and M1 cTBS can dissociate (Ishikawa et al.,
2007; Mochizuki et al., 2007; Ragert et al., 2008; Schabrun et al.,
2008). Second, although neural activity in M1 may be modulated by
action observation (Nishitani and Hari, 2000; Fadiga et al., 2005;
Caetano et al., 2007; Schütz–Bosbach et al., 2009; Gazzola and
Keysers, 2009; Vigneswaran et al., 2013), it is debated whether such
activity might play a major role in action perception (Lepage et al.,
2008; Pineda, 2008; Bonini, 2016). On the one hand, the activity may
be a simple downstream consequence of the strong reciprocal cortico-
cortical connections, for example with IFC and/or SI (Geyer et al.,
2000; Rizzolatti and Luppino, 2001). Similarly, previous TMS studies
reported that offline inhibition of M1 excitability did not influence
mirror-like motor facilitation (Avenanti et al., 2007), and online M1
interference did not affect perceptual judgments of seen actions
(Cattaneo et al., 2011), whereas these processes were affected by
stimulation of IFC or SI (Pobric and Hamilton, 2006; Avenanti et al.,
2007; Cattaneo et al., 2011; Jacquet and Avenanti, 2015; and present
study). On the other hand, a few recent studies have documented a
disruption of effector recognition (Naish et al., 2016) or body posture
recognition (Borgomaneri et al., 2015) after online TMS of the hand
representation in M1. However, online M1 stimulation may cause
peripheral motor responses and the lack of control area eliciting similar
responses in a different body part or the lack of control task for
assessing nonspecific, distracting effects of online TMS makes the
interpretation of such studies not conclusive. Recently, Palmer et al.
(2016) found no net change in action perception following offline cTBS
over M1, a null result that is in keeping with the present data. However,
Palmer et al. (2016) also showed that the physiological effect of cTBS
was variable across participants, leading to inhibitions of M1 excit-
ability in some and increases in other participants. Interestingly,
participants showing M1 inhibition after cTBS also showed a clear
disruptive effect on action perception. It should be noted that also in
our data, the cTBS effect was variable across participants. Variability
was observed in all the experiments, including Experiment 2 (M1 box
condition) where approximately half of the participants showed
improved performance and the remaining participants showed de-
creased performance, thus resembling the proportion observed by
Palmer et al. (2016). Thus, although current and previous data suggest
no major action perception impairment when M1 is stimulated, further
studies combining cTBS with physiological and behavioral assessment
might test whether effective inhibition of M1 affects performance in the
box weight estimation task. Nerveless, the inconsistency in the effect of
M1 stimulation is at variance with the disruption we found after SI
cTBS (Experiment 1). Although also in this case cTBS effects were
variable, a clear reduction of performance was observed at the group
level, suggesting that SI may be more important than M1 for estimating
weight from seen actions.

The absence of effects after rTMS over SPL (Experiment 3) may be

less expected. The SPL is a high-order multisensory region integrating
visual and somatosensory information about limb position (Lloyd et al.,
2002). Direct stimulation of SPL (area 7) in awake neurosurgery
patients produces sensations on the body but not motor output
(Desmurget et al., 2009). Moreover, rTMS over this region impairs
performance in proprioceptive tasks, although less than rTMS over SI
(Balslev et al., 2004). Also, studies show activation in SPL both during
action execution and observation (Raos et al., 2007; Keysers and
Gazzola, 2009) and that the effect of cTBS over SI spreads to SPL
(Valchev et al., 2016), suggesting a possible role of SPL in action
perception. However, during action observation this region is less
consistently activated relative to other sectors of the parietal cortex
(Van Overwalle and Baetens, 2009). It may thus be that SPL (and in
particular area 7, the target of Experiment 3), plays a role in action
perception that is relatively minor relative to nearby parietal regions,
including SI and IPL that appears more critical for action perception
(Cattaneo et al., 2010; Urgesi et al., 2014; Jacquet and Avenanti, 2015).

Ours is one of the first studies showing that offline transcranial
stimulation can affect action perception. Indeed, most of previous
studies investigating action perception implemented online rTMS
protocols that induce distracting scalp sensations and auditory stimu-
lations (i.e., the coil click) during task performance. Offline protocols
overcome these confounding effects and provide insights into the
plasticity of the targeted areas. In a first study, Michael et al. (2014)
showed that cTBS over the hand and mouth representations of the IFC
slowed recognition of hand and mouth actions, respectively. More
recently, Avenanti et al. (2017) showed that cathodal (inhibitory) and
anodal (excitatory) transcranial direct currents over IFC hindered and
enhanced accuracy in an action prediction task, while leaving un-
affected performance in a non-human motion prediction task. Our
study expands on this previous evidence by showing that offline
transcranial stimulation affects action perception not only when it is
administered over frontal motor areas, but also when SI is targeted.

Yet, it should be noted that the use of offline protocols limits the
number of conditions that can be tested within a single session. Indeed,
cTBS can affect cortical excitability for up to 50 min, but most of the
after-effects likely occur between 5 and 30 min after stimulation
(Huang et al., 2005, 2011; Franca et al., 2006; Bertini et al., 2010;
Wischnewski and Schutter, 2015). Because of these temporal con-
straints, we opted for having the critical sham vs. active cTBS factor as
the only within-subjects factor. We did not systematically test perfor-
mance at both experimental and control tasks across the three tested
areas (SI, M1 and PPC). Rather, we implemented the control task (ball
weight estimation) in a separate experiment (Experiment 4) and
limited this experimental control to the only area (SI) that showed an
effect on action perception across Experiment 1–3.

In our study, we tilted the TMS coil by 90° during sham cTBS.
Although participants could have noted different scalp sensations
between sham and active cTBS, the selectivity of our findings cannot
be simply accounted for by such perceived differences, as participants,
who were naïve to TMS, cannot predict whether the cTBS effect is
supposed to increase, decrease or leave brain activity unaltered. That
we observed a change in performance in Experiment 1 but not in
Experiments 2–4, despite the fact that differences in scalp sensations
between sham and active cTBS would have been shared across all four
experiments, makes such unspecific sensations explanation of our data
unlikely.

Our study does not clarify whether the observed decrease in
performance caused by cTBS on SI was driven by excitatory or
inhibitory modulations. The effect of cTBS is a complex combination
of suppression and excitation (Gentner et al., 2008; Huang et al., 2011;
Iezzi et al., 2008, 2011) and may be highly variable across individuals
(Hamada et al., 2012; Ridding and Ziemann, 2010; Jones et al., 2016).
Indeed, we showed, using fMRI, that cTBS over SI leads to reductions
in BOLD responses to the observation of actions in some and increases
in response in other participants (Valchev et al., 2016). To minimize
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interindividual variability, in the present research we limited motor
activity of participants’ right hand (i.e., the hand contralateral to the
target sites and corresponding to the actor's hand depicted in the
movies) before and after cTBS, possibly leading to a consistent
suppression of neural activity in the stimulated sites (Huang et al.,
2005; Ishikawa et al., 2007; Poreisz et al., 2008). However, even if we
observed a disruptive effect at the group level, the effect of SI cTBS was
variable across participants of Experiment 1 and not all showed a
disruption (see Jones et al., 2016). Additionally, we do not rule out that
either increases or decreases of neural activity could move brain
activity away from its optimal state, and thereby could reduce
behavioural accuracy. Future studies combining brain stimulation
and brain imaging techniques will directly address these issues and
clarify the relationship between physiological and behavioural effects
induced by SI cTBS.

In conclusion, earlier evidence supported the claim that somato-
sensory cortices are activated not only during action execution, but also
during perception of others’ actions, but whether such activation of SI
is necessary to efficiently judge the somatosensory aspects of the
actions of others remained unclear (Gazzola et al., 2007b; Pernigo
et al., 2012; Vannuscorps and Caramazza, 2015). Indirect evidence
came from sensory neuropathy patients that lack a sense of touch on
their own body. These patients showed impaired performance in a task
requiring weight estimation from lifting actions (Miall et al., 2000) and
inference of another's expectation of a weight when seeing him lifting a
box (Bosbach et al., 2005). Our findings, that cTBS over SI negatively
influences the capacity to judge the weight of a box by observing the
action (lifting) of other people, now provides direct evidence that SI is a
crucial part of a system of brain areas necessary for the optimal
perception of at least certain aspects of other people's hand actions.
Together with evidence that SI is also critical for recognizing the facial
expressions of others (Adolphs et al., 2000; Pitcher et al., 2008; Banissy
et al., 2010; Paracampo et al., 2016) and encoding action goals
(Jacquet and Avenanti, 2015), this suggests that SI seems to play a
more important role in action understanding than previously thought.
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