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Abstract

Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be
remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that
additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared
towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary,
we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of
respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in
the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the
changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth
and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of
inhibiting nutrient-demanding anabolism that drives cellular proliferation.
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Introduction

While mitochondria are best known for utilizing nutrients,

including amino acids, for cellular energy production, they also act

as a biosynthetic hub, providing precursors and substrates for

anabolic pathways, such as gluconeogenesis and de novo synthesis of

fatty acids and amino acids. In the case of amino acids,

mitochondria provide oxaloacetate for the manufacture of

aspartate and asparagine, and 2-oxoglutarate for glutamate,

glutamine, and arginine and proline biosynthesis. Thus, mito-

chondria modulate amino acid homeostasis according to the

particular requirements and resources of a cell. Glucose has been

the most intensively studied metabolite, and it has long been

known to influence oxidative metabolism and cell proliferation

[1,2]. Amino acid restriction is also well known to affect cell

proliferation, yet its impact on mitochondrial function remains

largely unexplored, despite the organelle’s well-established role in

amino acid metabolism. Mitochondria are reported to fuse in

response to amino acid starvation, presumably to protect them

from autophagosomal degradation [3,4]. However, whether

amino acid deprivation affects mitochondrial function, and which

mitochondrial proteins and pathways are involved in any such

adaptation, has not been determined.

Mitochondria contain their own DNA (mtDNA) that encodes

essential components of the oxidative phosphorylation (OXPHOS)

system, and the RNA elements necessary for their translation. All

of the proteins required for mitochondrial DNA replication and

gene expression are encoded in nuclear DNA, synthesized on

cytosolic ribosomes and imported into the mitochondria. There-

fore mitochondrial responses to external stimuli, including nutrient

availability, require the cooperation of nuclear and mitochondrial

gene expression, yet the precise mechanisms of inter-genomic

communication are only beginning to be understood [5].

Cells must respond to changes in nutrient availability in order to

survive periods of starvation. The survival program includes

inhibition of anabolic processes, such as protein synthesis in the

cytosol, and activation of protein recycling, via autophagy and

proteosomal degradation. Several kinases act as metabolic switches

that respond to nutrient levels; in particular, the cellular response

to amino acids is controlled by the Target of Rapamycin Complex

1, TORC1. In favorable nutrient conditions, TORC1 stimulates

mRNA translation and ribosomal biogenesis, thereby promoting

cytosolic protein synthesis and cell proliferation [6,7]. Conversely,

when amino acids are scarce, TORC1 activity is inhibited,

resulting in down-regulation of protein synthesis in the cytosol, and

quiescence [8,9]. While many aspects of TORC1 regulation have

been defined, the relationship between TORC1 and mitochon-

drial function is a matter of debate. Rapamycin treatment [10] or

deletion of the TORC1 component Raptor [11], were associated

with mitochondrial perturbations in mouse muscle; and in Jurkat

T cells repression of mTORC1 was reported to decrease

mitochondrial respiration [12]. On the other hand, deletion of

TOR, or its target Sch9, has been shown to increase mitochon-

drial activity in yeasts [13], and mice lacking Raptor in adipose
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tissue display a higher rate of mitochondrial respiration than

controls [14]. Negative regulation of mitochondrial biogenesis by

TOR is also supported by work in flies, where dietary restriction

elevates the level of the translation repressor d4E-BP (the

eukaryotic initiation factor 4E-binding protein), a downstream

target of TOR, thereby stimulating transcription in the nucleus of

genes that encode mitochondrial components. [15].

Therefore, considering the importance of amino acid availabil-

ity for cell proliferation, and the central role of mitochondria in

amino acid metabolism and energy production, we determined the

impact of these nutrients on mitochondria, mtDNA and its

expression in human cultured cells. The findings lead us to

propose that TORC1 activity is inversely correlated with

mitochondrial protein synthesis and respiration, and that cells

starved of amino acids activate catabolic processes in the

mitochondria, which complement the inhibition of cytosolic

protein synthesis, to halt cell proliferation.

Results

Amino Acid Starvation Increases Mitochondrial
Respiration and Mitochondrial Membrane Potential

To determine the extent to which mitochondrial metabolism is

modulated by amino acid availability in proliferating cells, and to

compare and contrast it with glucose availability, we analyzed

human embryonic kidney (HEK) cells grown in the presence or

absence of amino acids for 72 hours, with high (25 mM) or low

(5 mM) glucose, or 5 mM galactose. First, we determined oxygen

consumption as a measure of mitochondrial respiratory chain

capacity. Cells grown in the different conditions displayed similar

basal oxygen consumption rates (Basal OCR, Fig. 1A); however,

after uncoupling respiration from ATP synthesis, cells deprived of

amino acids displayed increased oxygen consumption rates

(Maximal OCR, Fig. 1B), irrespective of the glucose concentra-

tion. Individually the increases in the maximal OCR after amino

acid withdrawal were significant (p,0.05) for low glucose and

galactose, but not high glucose (Fig. 1B), and after conflating all

three results the probability of the differences being due to chance

decreased to p = 0.00065 (Fig. 1B, inset). Respiration drives proton

translocation across the inner mitochondrial membrane, and so we

next measured mitochondrial membrane potential using the

Tetramethyl rhodamine ethyl ester (TMRE) fluorescent probe.

Removal of amino acids from the growth medium caused the

mitochondrial membrane potential to increase by ,60% (610%)

in cells grown in HG or galactose medium (Fig. 1C). Thus,

mitochondrial respiration increases in the absence of exogenous

amino acids leading to elevation of the mitochondrial membrane

potential.

Amino Acid Starvation Enhances Mitochondrial Protein
Synthesis

The mitochondrial capacity is often enhanced via organelle

biogenesis [16], which includes the synthesis of the 13 essential

components of the OXPHOS system encoded by mtDNA.

Mitochondrial protein synthesis might be expected to be repressed

during amino acid starvation owing to the shortage of precursors,

as occurs in the cytosol [6,9]. Contrary to this expectation, the

synthesis of nascent mitochondrial polypeptides was elevated after

72 hours of amino acid deprivation, whether or not amino acids

were present in the labeling reaction (Figs. 2A, 2B, S1). Overall,

the largest increase was the doubling of mitochondrial protein

synthesis in cells cultured in high glucose in the absence of amino

acids, compared to cells grown in high glucose in the presence of

amino acids (Fig. 2C). Amino acid starvation inhibited cell growth

after 30 hours of culture (Fig. 2D), but the increase in

mitochondrial protein synthesis was already evident 6 (not shown)

and 26 hours after starvation (Fig. S2). Hence, the changes in

mitochondrial translation precede the growth arrest.

Next, we examined whether the enhancement of mitochondrial

translation led to changes in the steady-state levels of the

OXPHOS components. None of the five nuclear-encoded

components of the OXPHOS system screened were upregulated

(Fig. 3), and the mitochondrial mass was unaltered, as determined

by the abundance of the outer mitochondrial membrane protein,

TOM20 (Fig. 3). With respect to mitochondrially encoded

proteins, amino acid deprivation induced a marked increase in

the level of a subunit of respiratory complex I (ND1), but no

increase in cytochrome c oxidase subunit II (Fig. 3). These findings

suggest that the enhanced respiration induced by amino acid

starvation is not the result of wholesale mitochondrial biogenesis

but depends on a subset of OXPHOS components.

Amino Acid Deprivation Increases the Levels of Many but
not All Mitochondrial Transcripts

Mitochondrial DNA yields three classes of RNAs, messenger,

ribosomal, and transfer RNAs, increases in any of which might

enhance mitochondrial protein synthesis. Northern analysis of six

mitochondrial mRNAs (ND1, ND2, ND3, COII, COIII, and A6/

A8, the last encoding two subunits of ATP synthase) revealed

increases in the precursors and mature transcripts, with the

exception of COII, as a result of amino acid, but not glucose,

limitation (Figs. 4A, and S3A). Amino acid withdrawal elicited no

such increase in ribosomal RNAs, or in three protein components

of mitochondrial ribosomes (Fig. S3B), whereas the levels of

transfer RNAs increased when the availability of amino acids or

glucose was restricted (Figs. 4B, and S3C). Among selected factors

required for mitochondrial protein synthesis, only the mitochon-

drial translation elongation factor EFTu strictly correlated with

amino acid deprivation (Fig. 4C). Because EFTu facilitates the

insertion of aminoacyl-tRNAs into the A-site of the ribosome [17],

its upregulation could allow for more efficient delivery of charged

tRNAs to mitochondrial ribosomes, potentially making it a key

part of the mechanism by which translation is stimulated in the

absence of exogenous amino acids.

The increases in mature and precursor RNAs indicate that

mitochondrial RNA metabolism responds to amino acid avail-

ability. However, the differences in the level of mature transcripts,

which included increases in ND1-3, COIII and A6/A8, a decrease

in 12S rRNA and unaltered COXII and 16S rRNA, do not fit a

simple model in which amino acid starvation stimulates mito-

chondrial transcription. Moreover, a key mitochondrial transcrip-

tion factor (TFB2M) [18,19] was repressed by amino acid

starvation, and the mitochondrial RNA polymerase was un-

changed (Figs. 4D, and S3D). Thus, the observed increases in

many mature mitochondrial transcripts, owing to amino acid

deprivation, are probably due to reduced RNA turnover, rather

than increased RNA synthesis. Mitochondrial biogenesis induces

increases in mtDNA copy number that are accompanied by

increases in the mtDNA packaging protein TFAM (mitochondrial

transcription factor A) [20]. Although the amount of TFAM

increased in response to amino acid withdrawal (Figs. 4E, and

S3D), there was no change in mtDNA number (Fig. 4F), whereas

others have noted a strict correlation between the two [21].

Amino Acid Starvation Stimulates Mitochondrial Energy Transduction

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93597



Amino Acid Starvation Increases the Capacity of
Mitochondria to Catabolize Amino Acids

Because mitochondria play a major role in amino acid

homeostasis, we next examined this aspect of mitochondrial

function. The withdrawal of exogenous amino acids increased the

capacity of mitochondria to catabolize endogenous amino acids, as

demonstrated by the increased levels of glycine cleavage system

protein H (GCSH), an enzyme involved in glycine degradation,

and DBT, the E2 subunit of branched chain keto-acid dehydro-

genase that breaks down essential branched chain amino acids

(Fig. 5A). Conversely, the expression of asparagine synthetase

(ASNS), a mitochondrial enzyme devoted to the synthesis of

asparagine, was markedly repressed (Fig. 5A). These data suggest

somewhat paradoxically that amino acid starvation leads to

increased amino acid breakdown in mitochondria. The process

necessitates further oxidation via the tricarboxylic acid (TCA)

cycle, which was also upregulated in response to amino acid

withdrawal, as assessed by citrate synthase activity and aconitase 2

expression (Fig. 5A).

Figure 1. Amino acid starvation increases mitochondrial respiration and membrane potential. HEK cells were cultured in 25 mM glucose
(HG), 5 mM glucose (LG), or 5 mM galactose (Gal), with (+) or without (2) the 15 amino acids (AA) present in the standard formulation of DMEM
(Table S1). The same notation is used in subsequent figures. Mitochondrial oxygen consumption rate (OCR) was measured using a flux analyser
before (basal) (A) and after the addition of FCCP (maximal) (B), having subtracted the non-mitochondrial (rotenone-insensitive) OCR. Inset shows
maximal OCR of HEK cells grown in the presence or absence of amino acids combining the three sets of values for the different sugar concentrations
shown in panel B. (C) Mitochondrial membrane potential was assessed by a quantitative flow cytometry analysis of TMRE fluorescence. The
fluorescence values were normalized to those of HEK cells grown in HG with amino acids. The data represent the mean 6 standard error of the mean
(s.e.m) of 3 independent experiments, each one performed in duplicate. Statistical analysis was performed using the unpaired two-tailed Student’s t-
test. Asterisks indicate the level of statistical significance (P,0.05 *, P,0.01 **, and P,0.001 ***); NS, not significant (p.0.05).
doi:10.1371/journal.pone.0093597.g001
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Protein Synthesis in the Cytosol and in the Mitochondria
are Reciprocally Co-regulated

To investigate the cell signaling pathways that might be

involved in the mitochondrial response to amino acid starvation,

we studied two well-known energy and nutrient sensors AMP-

activated protein kinase (AMPK) and TORC1 [6,22], together

with two recognized inducers of mitochondrial biogenesis, the

transcription co-activator PGC1a [23,24] and the transcription

factor YY1 [23,25]. Although there was an increase in active

AMPK whenever amino acids were withdrawn from the growth

medium, the extent of the increase was dependent on sugar

availability (Fig. 5B). Thus, AMPK activation did not parallel the

observed increase in mitochondrial energy producing capacity.

Mitochondrial respiration and protein synthesis were also not

strictly correlated with PGC1a expression, which was increased

when amino acids or glucose were limited (see Fig. S4). In contrast

to AMPK and PGC1a, YY1 expression responded to amino acid,

and not to glucose, availability (Fig. 5B).

When mitochondrial function was enhanced by amino acid

deprivation TORC1 was inactive, as evidenced by the hypopho-

sphorylated states of its downstream substrates, p70 S6 kinase

(S6K) [26] and 4E-BP1 [27] (Fig. 5B). Hypophosphorylated S6K

and 4E-BP1 are indicative of the downregulation of cytosolic

protein synthesis. Thus, amino acid starvation in human cells

stimulates mitochondrial protein synthesis while repressing trans-

lation in the cytosol, suggesting that protein synthesis in the two

compartments is reciprocally regulated (Fig. 5C). If this is true,

then repressing key factors contributing to mitochondrial protein

synthesis might upregulate cytosolic translation. To test this

concept, we compared the abundance of the 12, 16 and 18S RNA

Figure 2. Amino acid starvation boosts mitochondrial protein synthesis. (A) One-hour 35S-methionine pulse-labeling of nascent
mitochondrial polypeptides in HEK cells grown for 72 h in different media (see Figure legend 1), and fractionated by 12% SDS-PAGE. Tentative
assignments of the mitochondrial polypeptides are indicated to the left of the gel: COI-III, subunits of cytochrome c oxidase; ND1-6 and 4L, subunits
of respiratory complex I; Cyt b – Cytochrome b of respiratory complex III; A6 and A8, subunits of ATP synthase. A section of the Coomassie blue-
stained gel indicates equal protein loading. (B) Pulse-labelings of nascent mitochondrial polypeptides and fractionation as per panel A except that
the labeling medium lacked all amino acids (other than 35S-methionine). (C) The combined signal of the labeled mitochondrial proteins was
quantified and normalized with respect to HG+AA. HG, n = 6 experiments; LG, n = 3 experiments; and Gal, n = 3 experiments. The error bars represent
the s.e.m.; unpaired student’s t-test, (P,0.05 *, P,0.01 **, and P,0.001 ***). (D) The growth rates of cells grown in HG with or without AA were
monitored and measured over the course of 7 days. Broken vertical lines at 6, 26, and 72 h indicate the times at which the mitochondrial translation
capacity was measured.
doi:10.1371/journal.pone.0093597.g002
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elements of mitochondrial and cytosolic ribosomes after repressing

the expression of two proteins that contribute to mitochondrial

translation. Gene silencing of METTL17 and CHCHD1 in

human osteosarcoma cells (which inhibits mitochondrial transla-

tion; [28] and He and Holt, unpublished findings) is accompanied

by an increase in the abundance of the 18S rRNA component of

cytosolic ribosomes (see Fig. S5 A and B), thereby bolstering the

idea that mitochondrial and cytosolic protein synthesis are subject

to oppositely acting co-regulators.

Discussion

Proliferation requires energy, nutrients and a swath of

biosynthetic activities to duplicate the contents of the cell. When

cells switch from a non-dividing to a dividing state they increase

their reliance on glycolysis, a phenomenon known as the Warburg

effect [29]. Although the Warburg effect occurs early in

carcinogenesis, and so may predispose the cell to malignant

transformation [30], it was widely overlooked by cancer biologists

for over half a century [31]. The heavy dependence of cancer cells

on glycolysis for energy production, when respiration is far more

efficient at producing ATP, appeared paradoxical. However,

much later it was appreciated that glycolysis provides important

biosynthetic (anabolic) precursors for cell proliferation. Here we

have revealed a situation that can be interpreted as the opposite of

the Warburg effect; cells starved of amino acids increase the

capacity of the mitochondria to respire and to catabolize amino

acids. There is evidently no shortage of amino acids in the

mitochondria in these conditions as they synthesize proteins at a

higher rate than normal (Figs. 2A-2C and S1 and S2). To achieve

an increase in mitochondrial protein synthesis when exogenous

amino acids are lacking, the cell must channel the products of

protein turnover to the mitochondria (Fig. 5C). This is compatible

with the amino acids being required for energy production, and

the upregulation of amino acid catabolizing enzymes in the

mitochondria of cells starved of amino acids is consistent with this

idea. However, these changes occur in conditions where an

alternative energy source, glucose, is present in abundance.

Therefore we conclude that the consumption of amino acids in

mitochondria when cells are deprived of an exogenous supply is

not driven by a need for energy. Instead we propose it serves

primarily to restrict anabolism and thereby to halt cell prolifer-

ation. Thus, enhancing catabolism via increased mitochondrial

respiration might be as important as inhibiting cytosolic protein

synthesis in restricting uncontrolled cellular proliferation.

Amino acid deprivation inhibits TORC1 activity and cytosolic

protein synthesis, whereas it increases mitochondrial translation

and respiration in human embryonic kidney cells. This represents

a new finding in human cells and supports the studies that in lower

organisms suggested active TOR represses mitochondrial function

[13–15]. In contrast to AMPK and PGC1a, the enhanced

mitochondrial respiration and membrane potential associated

with TORC1 inhibition are not the result of an overall increase in

mitochondrial biogenesis, rather it is more narrowly focused on

mitochondrial translation. Thus, it is not necessary to replace old

mitochondria with new [32]; instead, the findings of this report

suggest that the substitution of a subset of organelle components is

sufficient to increase the energy transducing capacity of the

mitochondria. Inversely, there can be selective turnover of

particular components of mitochondria, such as complex I,

leading to energy insufficiency [33].

Although the steady-state level of the peroxisomal protein

PMP70 (Fig. S1C) was markedly decreased after seventy-two hours

of amino acid deprivation, this growth regime did not lead to an

appreciable decrease in GAPDH or total protein content per cell

(Fig. S1). Hence, the increases in mitochondrial amino acid

consumption reported here may be fueled more by extra-cellular,

than by intracellular, proteins. The viable cells deprived of amino

acids could source protein either via phagocytosis of cellular debris

or pinocytosis-mediated internalization of serum proteins.

Citrate synthase activity is widely used as a measure of

mitochondrial biomass. The finding that it can increase (Fig. 5A)

with no concomitant increment in the steady-state level of a range

of OXPHOS components or TOM20 (Fig. 3) indicates that citrate

synthase is not always a reliable indicator of mitochondrial mass.

The data on TFAM have important ramifications for funda-

mental aspects of mtDNA maintenance. Previously, it has been

shown that the expression of TFAM correlates strictly with

mtDNA copy number [21]. However, in the current study the

upregulation of TFAM in response to amino acid starvation

elicited no appreciable effect on mtDNA levels (Fig. 4F). The

discordance between the levels of TFAM and mtDNA observed

here is mirrored in yeasts, where levels of the TFAM homologue

Abf2 increased 27-fold in response to the TOR inhibitor

rapamycin [34], and the deletion of TOR, while stimulating

mitochondrial respiration, had no effect on the mtDNA copy

number [13]. Hence, both TFAM and Abf2 are implicated in the

stimulation of mitochondrial energy production independent of

mtDNA maintenance.

OXPHOS deficiency induces an amino acid starvation-like

response in a mouse model of mitochondrial disease [35],

suggesting that respiratory-deficient cells remodel amino acid

metabolism to limit the loss of mitochondrial function. Thus, the

inverse correlation between TORC1 activity and mitochondrial

translation and TCA cycle activity has potentially important

implications for mitochondrial diseases; i.e., inhibiting TORC1

might provide a novel means of enhancing mitochondrial function

Figure 3. Amino acid starvation does not induce mitochondrial
biogenesis. After growing HEK cells for 72 h in one of six different
media, proteins were extracted and immunobloted for selected
OXPHOS components: Respiratory complex I subunits, ND1, NDUSF1,
and NDUFA7; complex II, succinate dehydrogenase subunit B; complex
III, CORE2; complex IV, COVb and COII. TOM20, outer membrane protein
of mitochondria (OM); GAPDH, reference protein. m, protein product of
mtDNA; n, product of nuclear DNA.
doi:10.1371/journal.pone.0093597.g003
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in pathological states. However, treatment of mouse myotubes for

14 hours with the TOR inhibitor rapamycin suppressed a number

of nuclear genes encoding mitochondrial components, and

marginally reduced mitochondrial respiration, by provoking the

dissociation of PGC1a from the YY1-TORC1 complex [11].

Then again, extending the rapamycin treatment to 96 hours

reversed the effect on PGC1a, and increased the expression of

YY1, and TFAM and an OXPHOS component, compared to

controls [36]. Thus, the longer rapamycin treatment produced

effects more like those reported here for amino acid starvation;

nevertheless, there was no increase in mitochondrial respiration

[36]. Hence, YY1 and TFAM elevation appear to be necessary but

not sufficient to boost mitochondrial function, which may

additionally require increased PGC1a levels. Therefore, rapamy-

cin alone may not benefit patients with mitochondrial diseases.

Finally, the reciprocal relationship between cytosolic and

mitochondrial translation identified herein helps to explain the

many studies that have linked dietary restriction, mitochondrial

function, and longevity [2,13,15,20,37,38]. Viz. upregulation of

mitochondrial function induces a starvation-like response, which

in conjunction with repressed cytosolic protein synthesis, restricts

cell growth. This may ‘slow the clock’ with respect to aging, as

many cellular processes are suspended or downregulated.

Materials and Methods

Cell Culture
Human embryonic kidney cells (HEK293T, Invitrogen) and

143B osteosarcoma (HOS) (ATCC, CRL-8303) cells were

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

containing 25 mM glucose, a full complement of amino acids and

10% fetal bovine serum. For the experiments cells were grown for

6, 26 or 72 h in DMEM containing 10% dialyzed serum and high

(25 mM) or low (5 mM) glucose, or 5 mM galactose, with or

without amino acids (Table S1). Incubations started 24 h after

passaging the cells and they were harvested at 80% of confluency.

Q-PCR Estimation of mtDNA Copy Number and PGC1a
Transcript in HEK293T Cells

Q-PCR was performed on 25 ng lots of total cellular DNA,

using portions of the COII and cytochrome b genes for mtDNA

and APP1 for nuclear DNA. Primers with the following sequences

were employed: COXII, forward 59-CGTCTGAACTATCCT-

GCCCG-39, reverse 59-TGGTAAGGGAGGGATCGTT G-39,

probe 59-CGCCCTCCCATCCCTACGCATC-39; Cytb forward

59-GCCTGCCTGATCCTCCAAAT-39, reverse 59-AAGGTAG-

CGGATGATTCA GCC-39, probe 59-CACCAGACGCCTCAA-

CCGCCTT-39. Probes contained a 59 FAM fluorophore and a 39

TAMRA quencher (Sigma Genosys). For the nuclear reference

gene a validated (20 x) APP TaqMan Copy Number Assay master

mix was used (Applied Biosystems ID Hs00339475_cn) containing

primers and probe. A 26TaqMan Gene Expression master mix

(Applied Biosystems) was used in all reactions. Cycle conditions

were the default setting on the ABI sequence detection system

7700. PGC1a mRNA abundance was estimated relative to the

mRNA for GAPDH. Total RNA was extracted from cells with

Trizol reagent (Ambion) and PureLink RNA Mini Kit (Ambion).

cDNA was generated with an Ominiscript reverse transcription kit

(Qiagen) according to the manufacturer’s instructions. PGC1a
mRNA was performed using validated TaqMan Gene Expression

Assay mix ID Hs01016719_m1 (Applied Biosystems). GAPDH

levels were quantified as described previously [39]. All experi-

mental data were analyzed using the DDCt method to generate

relative values for experimental versus control. Control samples

were HEK cells grown in standard DMEM (25 mM glucose and a

full complement of amino acids).

Mitochondrial Translation
The labeling of mitochondrial translation products with 35S-

methionine was performed as described previously [40] in DMEM

containing 25 mM glucose, with or without amino acids (Table

S1). Briefly, cells were incubated with 100 mg/mL emetine for

20 min to inhibit cytosolic protein synthesis, before adding 35S-

methionine for 1 h, after which cells were lysed and equal amounts

of protein separated by 4–12 or 12% SDS-PAGE. Gels were dried

and exposed to phosphor plates, and the signals quantified with a

TyphoonTM Phosphorimager (GE Healthcare).

Immunoblotting
Cells were counted and lyzed on ice in TG buffer (Tris.HCl

20 mM pH 7.5, NaCl 500 mM, EDTA 2 mM, Triton-X-100 1%,

Glycerol 10%, protease inhibitors (Roche) and phosphatase

inhibitors (Na3VO4 1 mM, NaF 50 mM, b-Glycerophosphate

10 mM). Lysate was centrifuged at 130006g and supernatant

transferred to fresh pre-chilled 1.5 mL tubes. Protein concentration

was determined by BCA assay (Pierce). Equal amounts of protein or

2.56104 cells were separated on 4–12% or 12% Bis-Tris NuPAGE

gels (Life Technologies). Protein was transferred to PVDF

membrane then blocked in 5% milk/PBST for 1 h. Immunoprotein

detection utilized antibodies to mouse anti-Aconitase 2 (1:1000,

Abcam), rabbit anti-AMPK (1:1000, Cell Signaling), rabbit anti-

phospho-AMPK Thr 172 (1:500, Cell Signaling), mouse anti-ASNS

(1:1000, Abcam), mouse anti-COII (1:2000 Mitoscience), rabbit

anti-COVb (1:2000) was a kind gift of J. Walker, mouse core2

(1:1000, Invitrogen), rabbit anti-CRIF1 (1:2000) was raised against

recombinant protein produced in-house), mouse anti-DBT (1:1000

Abnova), rabbit anti-cytochrome oxidase II (1:1000, Mitoscience),

mouse anti-GAPDH (1:1000 GeneTex), rabbit anti-GCSH (1:1000

Proteintech), rabbit anti-mtRNAP (1:1000, Abcam), rabbit anti-

LRPPRC (1:1000 Santa Cruz), rabbit anti-MRPL12 (1:5000,

Abcam), rabbit anti-MRPS18 (1:1000, Proteintech), rabbit anti-

MRPS29 (1:1000, Abcam), rabbit anti-NDUFS1 (1:4000), chicken

anti-NDFA11 B14.7 (1:2000) and chicken anti-ND1 (1:4000) were

kind gifts of J.Walker, mouse anti-PMP70 (1:1000, Sigma), rabbit

anti-p70 S6K (1:1000, Cell Signaling Technology), rabbit anti-

phospho-p70 S6K Thr 389 (1:1000, Cell Signaling Technology),

Figure 4. Amino acid deprivation increases the levels of several mitochondrial RNAs, their protein products, and TFAM and EFTu.
DNA, RNA, and protein were harvested from HEK cells grown for 72 h in six different types of media. (A) and (B) Northern hybridization with probes
corresponding to mRNAs and tRNAs, respectively. COIII, cytochrome oxidase III mRNA; ND1-3, RNAs encoding subunits of complex I; pRNA, precursor
RNA; EB, ethidium bromide. 18S and 28S rRNA are the RNA elements of cytosolic ribosomes. R – arginine, Y – tryptophan, L(UUR) – Leucine. (C)
Immunoblots of selected mitochondrial translation machinery factors: EFTUm – mitochondrial translation elongation factor; TFB1M, modifies the RNA
of the small subunit of the mitochondrial ribosome; CRIF1, a contributor to normal mitochondrial translation; LRPPRC, a mitochondrial mRNA-
interacting protein. (D) and (E) Immunoblots of TFAM and TFB2M, respectively. (F) Q-PCR estimation of mtDNA copy number; n = 6; error bars
represent the s.e.m. There was no significant change in mtDNA copy number as a result of amino acid withdrawal based on the unpaired student’s t-
test, NS not significant (p.0.05), for any sugar concentration, or all (inset). Using the same test there was a significant increase in the mtDNA copy
number when glucose was replaced by galactose (Figure S6).
doi:10.1371/journal.pone.0093597.g004
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mouse anti-SDHB (1:250 Abcam), rabbit anti-TFAM (1:20,000) was

kind gift of R. Wiesner, goat anti-TFB1M (1:1000, Thermo

Scientific), goat anti-TFB2M (1:1000, Abcam), rabbit anti-TOM20

(1:20,000, Santa Cruz), mouse anti-EFTUm (1:1000, Abnova),

rabbit anti-YY1 (1:2000, Bethyl Labs), rabbit anti-4E-BP1 (1:1000,

Cell Signaling Technology), rabbit anti-phospho-4E-BP1 Thr37,46

(1:500, Cell Signaling Technology), rabbit anti-phospho-4E-BP1

Ser65 (1:500, Cell Signaling Technology). Secondary antibodies

were anti-chicken HRP (1:1000 Promega), anti-mouse HRP and

anti-rabbit HRP (1:3000 Promega) or anti-goat HRP (1:1000 Santa

Cruz).

RNA Extraction and Northern Blotting
Total RNA from HEK293T cells was extracted using Trizol

(Invitrogen) via chloroform extraction and isopropanol precipita-

tion according to manufacturer’s specifications. 5–8 mg of total

RNA was resolved on agarose gels (1.2% agarose, 1.17% (0.39 M)

formaldehyde, 1x MOPS) at 80V for 3 h 30 min, in 1X MOPS

buffer supplemented with 0.78% (0.26 M) formaldehyde and

10 mg/ml ethidium bromide. (1X MOPS: 20 mM MOPS, 5 mM

Na acetate, 1 mM EDTA). Resulting gels were imaged under UV.

RNA was transferred onto MagnaProbe nylon membrane (GE) in

5X SSC, 10 mM NaOH and RNA was UV-crosslinked to the

membrane. Membranes were either probed with radioactively

labeled PCR fragments or with T7 promoter derived riboprobes.

PCR products were labeled with 32P-dCTP (Hartmann Analytic)

using DNA Polymerase I Klenow Fragment (New England

Biolabs). Riboprobes were labeled with 32P-UTP (Hartmann

Analytic) using the Maxiscript T7 kit (Ambion).

Forward and reverse primers for probes were as follows 59-39:

ND1, CATGGCC AACCTCCTACTCCTCATT and GGCAG-

GAGTAATCAGAGGTGTTCTTG; A6/COII, TATTCCTA-

GAACCAGGCGACCTGC and TTTCGTTCATTTTGGT T-

CTCAGGGTTG; COX3, TGACCCACCAATCACATGCCT-

ATCATATAG and GACCCTCATCAATAGATGGAGACAT-

ACAG; ND2, CTGCCATCAAGTATT TCCTCACGC and

TCAGGTGCGAGATAGTAGTAGGGTC; ND3, GTATGT C-

TCCATCTATTGATGAGGGTCTTAC and TGTAGTCACT-

CATAGGCCAGA CTTAG; ATP8/6 CACCCAACAATGAC-

TAATCAAACTAACCTC and TATGAGGAGCGTTATG-

GAGTGGAAG; 28S rRNA GCCTAGCAGCCGA CTTAG-

AACTGG and GGGGCCTCCCACTTATTCTACACC; 18S

rRNA GTTGGTGGAGCGATTTGTCT and GGCCTCAC-

TAAACCATCCAA. Riboprobes for mt-tRNAs were: LeuUUR

TAATACGACTCACTATAGGGA GACTGTTAAGAAGAG-

GAATTGAACCTCTG and GTTAAGATGGCAGAGC CCG-

G; Tyr TAATACGACTCACTATAGGGAGACTGGTAAAA-

AGAGGCC TAACCC and GGTAAAATGGCTGAGTGAAG-

C; Arg TAATACGACTCACTA TAGGGAGACTTGGTAAA-

TATGATTATCATAATTTAATG and TGGTAT ATAGTT-

TAAACAAAACGAA.

Mitochondrial Respiration, Membrane Potential and
Citrate Synthase Activity

Mitochondrial respiration was assayed in triplicate in

HEK293T cells on 24 well microplates, using a XF24 Extracel-

lular Flux Analyzer (Seahorse Bioscience), 24 h after seeding. The

wells containing cells were sequentially injected with 20 mM 2-

deoxyglucose (2-DG) to inhibit glycolysis, 100 nM oligomycin to

inhibit ATP synthase, 500–1000 nM carbonylcyanide-4-trifluor-

ometho-xyphenylhydrazone (FCCP) to uncouple the respiratory

chain and 200 nM rotenone to inhibit complex I. For membrane

potential measurements, 56105 cells were incubated with 100 nM

tetramethylrhodamine ethyl ester (TMRE) (Invitrogen) in PBS for

1 h at 37uC, trypsinized, resuspended in PBS, placed on ice in the

dark and analyzed without delay by flow cytometery (BD LSRII).

Debris and apoptotic cells were excluded from the analyses using

forward and side scatter gating. Acquired data were analyzed by

FlowJo software (Tree Star, Inc.). Three independent experiments

were performed in triplicate, each based on 50,000 events. The

results for cells deprived of amino acids were normalized to the

values for cells cultured in medium containing amino acids. In

control experiments, FCCP-treatment produced a collapse in the

membrane potential based on TMRE measurements and cells

lacking a respiratory chain (rho zero cells) had markedly lower

membrane potential than controls (data not shown). Citrate

synthase activity was assayed as previously described [41].

Cell Proliferation
Cell proliferation rate was determined using an IncuCyte live-

cell imaging system (Essen Instruments). Twenty four hours after

seeding 1.56105 cells in triplicate, the medium was changed and

phase-contrast images were acquired at 3 h intervals over a period

of 5–7 days, and processed automatically.

Statistical Analysis
Data were expressed as mean, standard error of the mean

(SEM) or standard deviation (SD). Probability was determined

using a two-tailed, unpaired Student’s t-test.

Supporting Information

Figure S1 Amino acid deprivation induces an increase
in mitochondrial translation per cell. (A) After labeling of

newly synthesized mitochondrial proteins (as per Fig. 2 and

methods), HEK cells were harvested and the cell number counted.

Lysate from 2.56104 cells were separated by 12% SDS-PAGE (A
and B). The protein in the gels was stained with Coomassie blue

post-electrophoresis and after drying the labeled mitochondrial

proteins were detected using a Phosphorimager. The total amount

of protein was similar for 2.56104 cells irrespective of the presence

or absence of amino acids in the growth medium, based on

Coomassie blue staining. However, some individual proteins

Figure 5. HEK cells starved of amino acids have elevated levels of amino acid-catabolizing and TCA cycle enzymes and YY1, while
displaying the signature of TORC1 inhibition. HEK cell extracts were immunoblotted for (A) proteins involved in mitochondrial amino acid
metabolism (DBT, GCSH, ASNS, see text for details) and aconitase 2. The chart shows the citrate synthase enzyme activity in the cell lysates (nmol
citrate/s/mg protein). Error bars represent the s.e.m.; n = 3 (pairs); two asterisks, p,0.01. (B) The abundance of sensors and effectors linked to nutrient
signaling in the different growth regimes was determined by immunoblotting for AMPK, 4E-BP1, S6K, and YY1, with GAPDH as reference. The
reference corresponding to the blots of S6K and YY1 is not shown. The numbers following the amino acids indicate the key phosphorylated residues
for which the antibody is specific. (C) schemes illustrating the influence of mitochondria on cellular anabolism (i) and catabolism (ii) according to
amino acid availability. i) to proliferate cells require amino acids from the breakdown of food, in these conditions TORC1 is active; it promotes
cytosolic protein synthesis (CPS) and inhibits protein recycling, mitochondria make relatively little contribution to energy production (which is more
reliant on glycolysis – not shown). Conversely, amino acid deprivation (ii) inhibits TORC1, which leads to the repression of cytosolic protein synthesis
(CPS) and the upregulation of mitochondrial protein synthesis (MPS) and the respiratory electron transport chain (RETC). YY1 also contributes to
increased mitochondrial respiration, either independently as illustrated, or possibly via derepression owing to TORC1 inhibition.
doi:10.1371/journal.pone.0093597.g005
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changed markedly in response to amino acid deprivation, the

steady state level of ND1 increased (Fig. 3), whereas a peroxisomal

protein (PMP70) decreased (C), in line with a previous study

[3,42].

(TIF)

Figure S2 Enhanced mitochondrial translation in re-
sponse to amino acid starvation. (A) An example of the

mitochondrial translation products of cells grown+or – amino

acids (AA), in high (HG) or low glucose (LG), or galactose (Gal) for

26 h, fractionated by 4–12% SDS-PAGE. Below each autoradio-

gram is a section of the corresponding Coomassie blue-stained gel

to show equal protein loading. (B) The signal profile from each

lane in panel B was measured by phosphorimaging and the traces

for+(black line) and - (gray line) amino acids aligned to give a

direct comparison of the relative abundance of the mitochondrial

polypeptides; HG, high glucose, LG, low glucose, Gal, galactose.

Tentative assignment of the polypeptides is as per Fig. 2A.

(TIFF)

Figure S3 Effects of amino acid deprivation on mito-
chondrial RNAs and proteins involved in mitochondrial
transcription. RNA and proteins were extracted from HEK

cells. The RNA was fractionated by 1.2% agarose gel electropho-

resis, transferred to nylon membranes, and hybridized with probes

corresponding to mRNAs (A), rRNAs (B), or tRNAs (C). The

proteins were immunoblotted using antibodies against (B) three

mitochondrial ribosomal components (MRPs) or (D) the core

transcription apparatus. (A) COII – cytochrome c oxidase subunit

II mRNA, A6/A8– the single mature mRNA that encodes two

subunits of ATP synthase. (B) 16S and 12S rRNAs are the RNA

elements of mitochondrial ribosomes. (C) To gain an overall

impression of the level of tRNAs in cells grown with or without

amino acids, the portion of the membrane where tRNAs reside

was hybridized to two labeled probes that together span the entire

mitochondrial genome, as previously described [43]. In (A) and

(C), the images for+and – amino acids derive from different

portions of the same gel; additional samples (not shown) occupied

the intervening lanes. (D) Immunoblotting for HEK cellular

proteins indicated that amino acid deprivation had no effect on the

steady state level of the mitochondrial RNA polymerase, in

contrast to TFAM and TFB2M. GAPDH is used as the loading

control. Two other experiments gave essentially the same results

(data not shown).

(TIF)

Figure S4 Both low glucose and amino acid restriction
enhance PGC1a expression. RNA was extracted from HEK

cells maintained for 72 h in HG, LG, or Gal medium,+or – AA.

PGC1a mRNA levels were quantified by Q-(RT)-PCR using

GAPDH as a reference and normalized to HG+AA. N = 6

experiments, each in triplicate; data were analyzed using the

student’s unpaired two-tailed t-test, * P,0.05, NS, not significant.

Error bars are s.e.m.

(TIFF)

Figure S5 RNAi against two proteins that contribute to
mitochondrial translation induces an increase in the
cytosolic 18S ribosomal RNA. METTL17 and CHCHD1 co-

purify with C4ORF14, which is tightly linked to the small subunit

of the mitochondrial ribosome [44]. When either is repressed by

RNA interference in human osteosarcoma cells, mitochondrial

protein synthesis is severely compromised (He and Holt,

manuscript in preparation). The total cellular RNA and proteins

were extracted from human osteosarcoma cells treated with

double-stranded RNAs targeting CHCHD1 and/or METTL17 or

a scrambled RNA control. (A) Mitochondrial (12S and 16S) and

cytosolic (18S) rRNA levels were determined by Q-(RT)-PCR with

GAPDH as a reference, as previously described [39]. Error bars

are one standard deviation from the mean, n = 3 experiments.

Two-tailed unpaired student’s t-test (P,0.01 **, P,0.001 ***, not

significant NS). (B) The abundances of the CHCHD1,

METTL17, and GAPDH proteins were determined by immuno-

blotting. The Sigma Mission Pre-designed siRNAs (59-39) for

METTL17 were (a) GUUCAAACCUUAUGGCGUATT (sense)

and UACGCCAUAAGGUUUGAACTT (antisense); and (b)

CAGUUAUUGCUA CUUGGGATT (sense) and UCCCAA-

GUAGCAAUAACUGTT (antisense). For CHCHD1, the siRNAs

were (1) AACCUCUCAUUCUAGCUAATT (sense) and UUAG-

CUAGAAUGAGAGGUUTA (antisense); and (2) GGAGUUUA-

CUUCCA AAUAATT (sense) and UUAUUUGGAAGUAAA-

CUC CCA (antisense).

(TIFF)

Figure S6 The replacement of glucose with galactose
induces an increase in mtDNA copy number. The chart

shows the estimated mtDNA copy number; for HEK cells grown

for 72 h in galactose (Gal) and amino acids, compared to the same

cell type grown in high glucose (HG) with amino acids. [The data

are derived from Fig. 4F]. n = 6; error bars represent the s.e.m.

Transfer to galactose medium was associated with a significant

increase in mtDNA copy number based on the unpaired student’s

t-test, *** = p,0.001.

(TIFF)

Table S1 The amino acid composition of DMEM
defined as containing amino acids, none of which were
present in DMEM minus amino acids.

(TIFF)
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