
Automatic Cyclic Termination Proofs for
Recursive Procedures in Separation Logic

Reuben N. S. Rowe James Brotherston
Department of Computer Science
University College London, UK

{r.rowe,j.brotherston}@ucl.ac.uk

Abstract
We describe a formal verification framework and tool imple-
mentation, based upon cyclic proofs, for certifying the safe
termination of imperative pointer programs with recursive
procedures. Our assertions are symbolic heaps in separation
logic with user defined inductive predicates; we employ ex-
plicit approximations of these predicates as our termination
measures. This enables us to extend cyclic proof to programs
with procedures by relating these measures across the pre-
and postconditions of procedure calls.

We provide an implementation of our formal proof system
in the CYCLIST theorem proving framework, and evaluate
its performance on a range of examples drawn from the liter-
ature on program termination. Our implementation extends
the current state-of-the-art in cyclic proof-based program ver-
ification, enabling automatic termination proofs of a larger
set of programs than previously possible.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Theory, Verification

Keywords Automated proof search, Cyclic proof, Explicit
approximation, Imperative programming, Proof Certificates,
Separation logic, Termination

1. Introduction
Establishing that a given program eventually terminates was
identified as a fundamental problem in computer science by
Turing well before the actual physical development of stored-
program computers [34]. It has been understood at least

since Floyd’s landmark paper [19] that proving termination
depends on identifying a suitable well-founded termination
measure (a.k.a. “ranking function”) that decreases regularly
during every execution. Then, since the measure cannot
decrease infinitely often, there can be no infinite execution of
the program.

For example, consider the following C procedure for
traversing a null-terminated linked list in memory pointed to
by x:

void TraverseList(Node *x) {
if x != NULL {
y := x->nxt; TraverseList(y); TraverseList(y);}}

In the case that the linked list is empty (x == NULL), termi-
nation is immediate. For non-empty lists, intuitively we can
infer termination for two reasons: the first recursive call acts
on the local variable y which references a smaller linked list
(i.e. the tail of the original one); and the second recursive call
also acts on a smaller list since the first recursive call does
not increase the size of the list referenced by y.

In this paper, we provide a formalism for proving the termi-
nation of pointer programs with procedures (such as the one
above), and present a tool which automatically discovers such
proofs. The core of our approach is a cyclic Hoare-style proof
system for total correctness, with pre- and postconditions
written in the well-known symbolic heap fragment of separa-
tion logic [27], where user-defined inductive predicates are
used to describe data structures in memory (see [5, 15]). Our
cyclic proof system extends an earlier cyclic proof system for
simple while programs [12] in which termination measures
are always obtained from (combinations of) semantic approx-
imations of the inductive predicates in the proof. The addition
of procedures, however, requires non-trivial extensions to the
proof system in order to track how these approximations are
affected by procedure calls. For this, our formalism uses ex-
plicit ordinal variables, e.g., specifying TraverseList as
follows:

{Listα(x)} TraverseList(x) {Listα(x)} (1)

Here List(x) is an inductively defined predicate of separation
logic describing null-terminated linked lists with head pointer

Copyright is held by the owner/author(s).

CPP’17, January 16–17, 2017, Paris, France
ACM. 978-1-4503-4705-1/17/01...$15.00
http://dx.doi.org/10.1145/3018610.3018623

53

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

x, and α is an ordinal variable referring to an (under-)
approximation of this predicate, which is unchanged by the
procedure; in this context α can intuitively be read simply
as the length of the list. In general we might write, e.g.,
{Pα(x)} myproc(x) {∃β < α. Qβ(x)} if it happens that
myproc actually decreases the measure referred to by α.

Proofs in our system are cyclic proofs, which are standard
finite derivation trees, but with some leaves possibly closed by
back-links to identical interior nodes. To ensure soundness of
such proofs, a global soundness condition (which is decidable
by automata-theoretic methods) is imposed on the proof
structure1. In our case, this condition amounts to the fact that
some ordinal termination measure decreases infinitely often
on every infinite path in the proof structure. In this sense, our
technique is related to size-change termination [24], which
attempts to extract similarly well-founded measures directly
from program data.

We provide an implementation of our proof system in-
side the generic cyclic theorem prover CYCLIST [14]. This
results in a fully-automatic proof search procedure for our
system; the cyclic termination proofs it produces are formal
mathematical objects, which can be seen as independently
verifiable certificates of program termination. We employ
key theorem-proving features such as frame inference, well
known to be needed for interprocedural proof in separation
logic [5]. We evaluate our implementation on a number of ex-
amples taken from the Termination Problems Database [33],
demonstrating that our implementation is competitive with
other termination tools (e.g. AProVE [20] and HIPTNT+
[23]).

Our approach has two major advantages. Firstly, it is com-
positional, meaning that proofs for procedures may be re-used
as part of larger proofs and thus need only be verified once. In
addition, building the analysis around separation logic allows
taking advantange of the compositionality afforded by its well
known frame rule [35]. Namely, having proved {A}P1 {B}
and {A′}P2 {B′} valid for program fragments P1 and P2,
we can then compose the specifications of the individual
fragments using the separating conjunction ∗ of separation
logic to derive a valid specification for the sequential com-
position {A ∗ A′}P1;P2 {B ∗B′}. Secondly, although our
implementation currently requires individual procedures to
be annotated with pre- and postcondition summaries, we do
not require the user to provide global termination measures:
these are guaranteed by the global soundness check. Thus
our approach provides more automation than might initially
be apparent. Moreover, it seems quite plausible that such
procedure specifications might be inferred automatically (see
e.g. [10, 16, 22] for results in specification inference), and
so we believe that our framework has the potential for full
automation in the future.

1 See [8, 28, 30] for early examples of cyclic proof systems, and [9, 13] for
their application to separation logic.

The remainder of this paper is structured as follows. Sec-
tion 2 informally explains our cyclic proof-based technique
using two motivating examples. Sections 3 and 4 then for-
mally present, respectively, our programming and assertion
languages, and our cyclic proof system for total correctness.
In Sections 5 and 6 we discuss the details of our implementa-
tion and our experimental results. Section 7 gives a compari-
son with related work, and we conclude in Section 8.

2. Motivating Examples
We now illustrate our approach using two examples. To ease
the presentation of these examples, we here use standard
logical syntax for assertions rather than the more succinct
formal syntax we define in Section 3.

Example 1. We describe how our approach verifies that the
TraverseList procedure above satisfies the specification
given in Eq. (1), where the List predicate is defined induc-
tively in separation logic by:

(x = nil ∧ emp) ∨
(x 6= nil ∧ x 7→ y ∗ List(y))⇒ List(x)

Here, emp denotes the empty piece of memory; x 7→ y
denotes a single memory cell at the location referenced by
x and containing the value y; and A ∗ B denotes a piece of
memory that can be split into two disjoint parts satisfying A
and B respectively.

The key feature of Eq. (1) for proving termination of
TraverseList is that the instances of the List predicate
in both the pre- and the postcondition are labelled by the
same α. We may think of this as encapsulating the fact that
the procedure does not change the size of the list referenced
by the parameter.2 This allows us to infer that the second
recursive call to TraverseList indeed acts on an input
which is smaller than that of its parent call, even though this
data has previously been passed through another procedure
call. In this example, for simplicity, the two procedure calls
in the body of TraverseList are recursive; however, if
we consider replacing the first recursive call by a call to
some arbitrary independent procedure, then it is clear the
knowledge that that procedure does not increase the size of
the list is absolutely necessary.

This reasoning is encapsulated in the cyclic proof shown
in Fig. 1. The overall structure of the proof is dictated by that
of the code, as each command is executed symbolically: the
initial procedure call is unfolded (proc); the analysis branches
at the conditional statement (if-det); and the dereferencing
of x is handled by the (read) rule. The recursion is naturally

2 The correspondence is not direct however: the ‘size’ measured by predicate
labels is how long it takes the fixed point semantics, described in Section 3
below, to generate portions of memory as a model (i.e. the number of
‘unfoldings’ of an inductive definition). Thus, while it broadly corresponds
to one notion of the size of a data-structure (as predicate definitions are
monotone), it is not exactly the same concept.

54

` {Listα(x)} Trav(x) {Listα(x)} (param/relabel)
` {Listβ(y)} Trav(y) {Listβ(y)}

(frame)

`

{
β < α ∧ x 6= nil ∧
x 7→ y ∗ Listβ(y)

}
Trav(y)

{
β < α ∧ x 6= nil ∧
x 7→ y ∗ Listβ(y)

}

` {Listα(x)} Trav(x) {Listα(x)} (param/relabel)
` {Listβ(y)} Trav(y) {Listβ(y)}

(frame)

`

{
β < α ∧ x 6= nil ∧
x 7→ y ∗ Listβ(y)

}
Trav(y)

{
β < α ∧ x 6= nil ∧
x 7→ y ∗ Listβ(y)

}
(conseq)

`

{
β < α ∧ x 6= nil ∧
x 7→ y ∗ Listβ(y)

}
Trav(y) {Listα(x)}

(seq)

`

{
β < α ∧ x 6= nil ∧
x 7→ y ∗ Listβ(y)

}
Trav(y); . . . {Listα(x)}

(read)

`

{
β < α ∧ x 6= nil ∧
x 7→ v ∗ Listβ(v)

}
y := x->nxt . . . {Listα(x)}

(unfold)
` {x 6= nil ∧ Listα(x)} y := x->nxt . . . {Listα(x)}

(stop)
` {x = nil ∧ Listα(x)} ε {Listα(x)}

(if-det)
` {Listα(x)} if x 6= NULL . . . {Listα(x)}

(proc)
` {Listα(x)} Trav(x) {Listα(x)}

Figure 1: Cyclic proof of correctness for the TraverseList procedure (here abbreviated Trav).

handled by substitution and back-linking, possibly facilitated
by a framing step. Notice that in order to obtain a precondition
enabling the symbolic execution of the pointer dereference
(the precondition must explicitly specify, via a subformula
x 7→ y, that the program variable x is allocated), the definition
of List must be unfolded. We elide the case that leads to
inconsistency (we cannot have an empty list in the ‘then’
branch of the conditional). Note that predicate unfolding in
our system generates fresh ordinal variables for each recursive
predicate instance, and introduces constraints (β < α)
relating these to the parent instance. These are justified by the
semantics of our inductive definitions, defined in Section 3.

It is necessary to check that the proof is globally sound,
i.e. that some well-founded measure decreases infinitely often
along each infinite path (following symbolic execution) from
conclusion through to premise. For this, we track the pro-
gression of some ordinal variable through the precondition of
each sequent along the path. In the proof in Fig. 1 this ‘trace’
progresses from tracking α to tracking β when the List predi-
cate is unfolded, and the constraint β < α corresponds to a
decrease in the measure being tracked. The substitution steps
immediately preceding the back-links allow renaming of the
ordinal variable being tracked. The sequential composition
rule (seq) creates different infinite paths through the cyclic
proof, but notice that we may trace the ordinal variable β
along both branches. Importantly, the ability to trace β along
the right-hand branch however is due to its presence in the
postcondition of the left-hand premise, deriving ultimately
from the specification in Eq. (1).

We draw attention to the compositional nature of our
approach. The proof in Fig. 1 is self-contained and thus
may constitute, as is, a sub-component of a larger (possibly
also cyclic) proof. Moreover, the well-foundedness of any

infinite path in the larger proof which enters this sub-proof
is implied by the global soundness of the sub-proof alone,
and thus does not need to be re-checked. We demonstrate this
compositionality with our second example

Example 2. Consider a while loop that calls a procedure
(suggestively named Remove) which reduces a linked list in
some way (and does nothing if the list is already empty), for
which we assume a specification (with corresponding cyclic
termination proof P) given by the Hoare triple:

{x 7→ l ∗ Listα(l)}
Remove(x)

{x 7→ nil ∨ (∃β, l. β < α ∧ x 7→ l ∗ Listβ(l))}
(2)

Here, the argument x to this procedure is a pointer to the
head of the list, rather than a reference to the head of the list
itself. The constraint in the postcondition of this specification
allows for a cyclic proof of the following Hoare triple, which
asserts termination of a while loop that repeatedly invokes
Remove until the list is empty:

{x 7→ list ∗ Listα(list)}
while list!=NULL { Remove(x); list:=x->val; }

{x 7→ nil}

A cyclic termination proof of this triple is shown in Fig. 2,
where ψ denotes the postcondition in Eq. (2). Notice that,
similarly to procedures, the cyclic proof system treats loops
by unrolling them. Just as recursion is handled composition-
ally by forming cycles (back-linking), iteration is handled the
same way. The precondition at the back-link point can be seen
as an invariant for the loop or recursion, and global soundness
of the cycle amounts to the existence of a termination variant.

55

..

..

..

..

..

..

.

sub-proof P

` {x 7→ list ∗ Listα(list)} Remove(x) {ψ}

elided···
{x 7→ nil} list := x->val . . . {x 7→ nil}

{x 7→ list ∗ Listα(list)} while list!=NULL . . . {x 7→ nil} (relabel)
{x 7→ list ∗ Listβ(list)} while list!=NULL . . . {x 7→ nil}

(conseq)
{β < α ∧ x 7→ list ∗ Listβ(list)} while list!=NULL . . . {x 7→ nil}

(read)
{β < α ∧ x 7→ l ∗ Listβ(l)} list := x->val . . . {x 7→ nil}

(∃Intro)
{∃β, l. β < α ∧ x 7→ l ∗ Listβ(l)} list := x->val . . . {x 7→ nil}

(split)
{x 7→ nil ∨ ∃β, l. β < α ∧ x 7→ l ∗ Listβ(l)} list := x->val . . . {x 7→ nil}

(seq)
` {x 7→ list ∗ Listα(list)} Remove(x) . . . {x 7→ nil}

(conseq)

`

{
list 6= nil ∧

x 7→ list ∗ Listα(list)

}
Remove(x); list:=x->val;

while list!=NULL . . .
{x 7→ nil}

(stop)

`

{
list = nil ∧

x 7→ list ∗ Listα(list)

}
ε {x 7→ nil}

(while-det)

` {x 7→ list ∗ Listα(list)} while list != NULL . . . {x 7→ nil}

Figure 2: Cyclic proof of a while loop invoking the Remove procedure

In Fig. 2, after symbolically executing the call to the Remove
procedure, the (split) rule analyses the continuation of the
loop body in the context of each disjunct of ψ separately. We
elide one of the branches however since it is a straightforward
acyclic symbolic execution proof. The other branch, which
we show, forms a cycle in the proof. Following the infinite
path generated by this cycle, we may track the ordinal vari-
able α which progresses to β across the (seq) rule, and then
eventually is renamed back to α before cycling around the
loop again. The well-foundedness of this path derives from
the effect of the Remove procedure, encoded in the specifica-
tion of Eq. (2), which decreases the measure tracked by this
trace.

We point out that, given a (candidate) cyclic proof, it
is possible to determine automatically whether its ordinal
variables trace some decreasing measure. This means our
technique infers (certain kinds of) termination measures. It
might seem that the constraints in a procedure specification
(which we currently rely on the programmer to provide)
specify a measure for its termination. However, this is not
precisely the case; while ordinal variable constraints can be
used to describe how our termination measures are affected
by a procedure call or code fragment, this is not equivalent to
specifying the measures themselves.

3. Programs and Separation Logic Assertions
We now formally describe the language treated by our system,
essentially while programs with procedures, and our lan-
guage of separation logic assertions, based on the well known
symbolic heap fragment introduced in [4, 5], incorporating
user-defined inductive predicates as in [10, 15]. Moreover,
we allow predicate instances to be annotated with labels, in-
terpreting these as approximations of the predicate; similar
notions are employed in [18, 31].

Notational Conventions. We use vector notation for se-
quences, writing si for the ith element of s, ε for the empty
sequence, s1 · s2 for sequence concatenation, and |s| for the
number of elements in s. We sometimes abuse notation by
using s to refer to the set of elements occurring in s. We also
write f [s 7→ t] for the update of function f by the partial
function (s 7→ t), and f =\s f

′ to denote equality of f and
f ′ up to all points in s.

3.1 Syntax and Semantics of Programs
We use x, y, etc. to range over program variables and f to
range over identifiers for fields of records in heap memory.
Programs consist of sequences of procedures, declared by
p(x) {C} where p ranges over procedure names, C is a com-
mand sequence called the body of the procedure (denoted
by body(p)), and the (distinct) variables x are the param-
eters (denoted by params(p)). We write locals(p) for the
local variables of p, the set of program variables occurring
in C which are not parameters (i.e. vars(C) \ params(p)).
The atomic commands are: assignment (x :=E); field read
(y :=x.f); field write (x.f :=E); memory record alloca-
tion (x := new(f)) and deallocation (free(x)); or proce-
dure call (p(E)), where expressions E are either a variable
or the constant nil. We also include branching commands
(ifB thenC1 elseC2 fi) and loops (whileB doC od),
where branching conditions B are given by (dis)equalities on
expressions or non-determinism (?). We write B to indicate
the negation of a branching condition, and mod(C) for the
set of all variables whose values are modified by C (i.e. all x
such thatC contains a command of the form x :=E, x := y.f ,
or x := new(f)). Formally, we define command sequences
C by the following grammar:

B ::= ? | E = E | E 6= E

C ::= ε | x :=E;C | y :=x.f ;C | x.f :=E;C |
x := new(f);C | free(x);C | p(E);C |

56

ifB thenC elseC fi;C | whileB doC od;C

The semantics of our language is given by a RAM model
of heaps of field-labelled records. Heap cells are finite partial
functions from field identifiers to values in a set Val, and
heaps are finite partial functions from heap locations (taken
from a set Loc) to heap cells. Since the values manipulated
by programs are intended to be pointers, Val contains the
set Loc and a distinguished value nil 6∈ Loc. e denotes the
empty heap (undefined everywhere), and h1 ◦ h2 denotes
the union of heaps h1 and h2 if their domains are disjoint
(and is otherwise undefined). Stores map variables to values,
and we define the interpretation [[E]]s of an expression E
in a store s by [[nil]]s = nil and [[x]]s = s(x), extending
pointwise to sequences of expressions E. The interpretation
of a branching condition is a set of stores; we define s ∈ [[?]]
for all s, s ∈ [[E1 = E2]] if and only if [[E1]]s = [[E2]]s, and
s ∈ [[E1 6= E2]] if and only if [[E1]]s 6= [[E2]]s. Furthermore,
if a program does not contain a declaration for procedure p
then we say that p is undefined.

Each procedure call is executed within its own stack frame
(C, s), where C is the remainder of the procedure body to
be executed and s is a store recording the values of the
procedure’s formal arguments and local variables. A stack Ξ
is a sequence of stack frames. We model a program’s state as
a configuration κ, which is either a pair (Ξ, h) of a non-empty
stack Ξ and a heap h, or the special configuration fault . We
define the semantics of programs by a standard small-step
relation on configurations defined as the smallest relation
satisfying the rules in Fig. 3. We say that (s, h) is a final state
for a configuration κ whenever κ n ((ε, s), h) for some
n, and that κ is terminating whenever there are no infinite
execution sequences κ ∞, and no n such that κ n fault .
Thus our notion of termination is also memory-safe.

3.2 Syntax and Semantics of Assertions
We let α, β, etc. range over a set of predicate labels, whose
intended domain of interpretation is the ordinals. We use P
to range over a set Pred of predicate names, which each have
an associated arity denoted by ar(P).

Definition 1 (Symbolic heap). Spatial formulas Σ, and pure
formulas π are defined by the following grammar:

π ::= E = E | E 6= E

Σ ::= ⊥ | > | emp | x f7−→E | Pα(E) | Σ ∗ Σ

where the sequence of fields f in x
f7−→ E must satisfy

|f | = |E|, and in Pα(E) we require |E| = ar(P).
A symbolic heap F is given by ∃x.Π : Σ, where Π is a set

of pure formulas and x is a sequence of (distinct) variables.
When Π or x is empty then we omit them. We write fv(F) for
the set of free variables in a symbolic heap F .

Symbolic heaps denote concrete memory states, via a
satisfaction relation |=X , where X :Pred → ℘(Heaps ×

((x :=E;C, s) · Ξ, h) ((C, s[x 7→ [[E]]s]) · Ξ, h)

[[x]]s ∈ dom(h) f ∈ dom(h([[x]]s))

((y :=x.f ;C, s) · Ξ, h) ((C, s[y 7→ (h([[x]]s))(f)]) · Ξ, h)

[[x]]s ∈ dom(h) f ∈ dom(h([[x]]s))

((x.f :=E;C, s) · Ξ, h) ((C, s) · Ξ, h[x 7→ (h([[x]]s))[f 7→ [[E]]s]])

l /∈ dom(h) v ⊂ Val |v| = |f |
((x := new(f);C, s) · Ξ, h) ((C, s[x 7→ l]) · Ξ, h[l 7→ (f 7→ v)])

[[x]]s ∈ dom(h)

((free(x);C, s) · Ξ, h) ((C, s) · Ξ, h � dom(h) \ {[[x]]s})
s ∈ [[B]]

((ifB thenC1 elseC2 fi;C, s) · Ξ, h) ((C1;C, s) · Ξ, h)

s ∈ [[B]]

((ifB thenC1 elseC2 fi;C, s) · Ξ, h) ((C2;C, s) · Ξ, h)

s ∈ [[B]]

((whileB doC od;C′, s) · Ξ, h) ((C; whileB doC od;C′, s) · Ξ, h)

s ∈ [[B]]

((whileB doC od;C′, s) · Ξ, h) ((C′, s) · Ξ, h)

body(p) = C′ params(p) = x |E| = |x| s′ � x = (x 7→ [[E]]s)

((p(E);C, s) · Ξ, h) ((C′, s′) · (C, s) · Ξ, h)

Ξ 6= ε

((ε, s) · Ξ, h) (Ξ, h)

[[x]]s /∈ dom(h)

((y :=x.f ;C, s) · Ξ, h) fault

[[x]]s ∈ dom(h) f /∈ dom(h([[x]]s))

((y :=x.f ;C, s) · Ξ, h) fault

[[x]]s /∈ dom(h)

((x.f :=E;C, s) · Ξ, h) fault

[[x]]s ∈ dom(h) f /∈ dom(h([[x]]s))

((x.f :=E;C, s) · Ξ, h) fault

[[x]]s /∈ dom(h)

((free(x);C, s) · Ξ, h) fault

p undefined
((p(E);C, s) · Ξ, h) fault

params(p) = x |E| 6= |x|
((p(E);C, s) · Ξ, h) fault

Figure 3: Operational semantics of while programs with
pointers and procedures.

⋃
n≥0(Valn)) is a function interpreting predicate symbols

as sets of memory states (where Heaps is the set of all heaps
and ℘ is powerset).

Definition 2 (Satisfaction). The satisfaction relation |= be-
tween pairs of stores and heaps, predicate interpretations and
formulas is defined inductively over the structure of formulas
as follows:

(s, h) |=X E1 = E2 ⇔ [[E1]]s = [[E2]]s

(s, h) |=X E1 6= E2 ⇔ [[E1]]s 6= [[E2]]s

(s, h) |=X ⊥ ⇔ false

(s, h) |=X > ⇔ true

(s, h) |=X emp ⇔ h = e

(s, h) |=X x
f7−→E ⇔ dom(h) = {[[x]]s}

and h([[x]]s) = (f 7→ [[E]]s)

(s, h) |=X Pα(E) ⇔ (h, [[E]]s) ∈ X(P)

(s, h) |=X Σ1 ∗ Σ2 ⇔ h = h1 ◦ h2 and (s, h1) |=X Σ1

and (s, h2) |=X Σ2

57

(s, h) |=X Π : Σ ⇔ (s, h) |=X π for all π ∈ Π

and (s, h) |=X Σ

(s, h) |=X ∃x. F ⇔ ∃v ∈ Val. (s[x 7→ v], h) |=X F

Notice that this notion of satisfaction ignores predicate
labels. These will be interpreted once we bootstrap this
relation to construct predicate interpretations from inductive
definitions.

Definition 3 (Inductive rule set). An inductive rule set is a
finite set of inductive rules, each of the form Π : Σ⇒ P (x)
where Π : Σ is a symbolic heap formula (in which all
predicate instances must have distinct labels), and P (x) is
a predicate formula. We sometimes write F z⇒ P (x) to
indicate that z is the set of variables occurring in the body
F of the inductive rule which are not formal parameters x;
the variables in z are implicitly existentially quantified.

If Φ denotes an inductive rule set, then we write ΦP for
the set of all inductive rules of the form F ⇒ P (x) in Φ.

The List predicate used in Section 2, for example, can be
defined by the inductive rule set ΦList = {x = nil : emp ⇒
List(x), x 6= nil : x

nxt7−−→ y ∗ Listα(y) ⇒ List(x)}. Binary
trees whose nodes are represented by memory cells with fields
named l and r and leaves by null pointers can be defined by
the inductive rule set Φbt = {x = nil : emp ⇒ bt(x), x 6=
nil : x

l,r7−−→ l, r ∗ btα(l) ∗ btβ(r)⇒ bt(x)}.
Each inductive rule set Φ induces a characteristic op-

erator ϕΦ on predicate interpretations by ϕΦ(X)(P) =def
{(h, [[x]]s) | ∃F. (s, h) |=X F & F ⇒ P (x) ∈ Φ}. Given a
predicate interpretation X , ϕΦ will generate a new interpre-
tation X ′ containing, for each predicate P , models obtained
by applying the inductive rules in Φ to the models in X .
For example, the models in ϕΦList

(X)(List) are obtained by
prepending a new head (i.e. memory cell) to each model in
the set X(List).

We define a partial ordering ≤ on the set of predicate
interpretations I by X ≤ X ′ ⇔ ∀P. X(P) ⊆ X ′(P). One
can note that (I,≤) is a complete lattice and the least element,
denoted by X⊥, maps all predicate names to the empty set.
Moreover, characteristic operators are monotone with respect
to ≤, thus admitting the following (standard) construction
that builds interpretations via a process of approximation.

Definition 4 (Interpretation of inductive rule sets). An induc-
tive rule set Φ is interpreted as the least prefixed point of its
characteristic predicate interpretation operator, µX. ϕΦ(X).
This least prefixed point, denoted by [[Φ]], can be approached
iteratively being the supremum of the (ordinal-indexed) chain

X⊥ ≤ ϕΦ(X⊥) ≤ ϕΦ(ϕΦ(X⊥)) ≤ . . . ≤ ϕαΦ(X⊥) ≤ . . .

For each α, ϕαΦ(X⊥) is called an approximation of [[Φ]] and
may be denoted by [[Φ]]α.

Our full assertion language makes use of explicit con-
straints over predicate labels.

Definition 5 (Constrained formula). Constrained formulas
are given by ∃α. Ω : ∆, where α is a sequence of predicate
labels, Ω is a set of constraints of the form α < β or α ≤ β,
where α and β are predicate labels, and ∆ is a disjunction
of symbolic heaps (cf. Definition 1). When the quantifier
sequence or the constraint set is empty, we omit them.

For a constrained formula φ = ∃α. Ω : ∆, we write
constraints(φ) to denote the constraint set Ω, we write
free-labs(φ) for the set of labels occurring free in φ, and
lab(φ) for the set of all labels in φ.

Constrained formulas are interpreted as triples consisting
of predicate label valuations (i.e. maps from predicate labels
to ordinals), variable stores and heaps.

Definition 6 (Extended satisfaction). Let Φ be an inductive
rule set. Then the satisfaction relation between interpreta-
tions and constrained formulas is defined by extending the
satisfaction relation in Definition 2

(ρ, s, h) |=Φ Pα(E) ⇔ (h, [[E]]s) ∈ [[Φ]]ρ(α)(P)

(ρ, s, h) |=X ∆1 ∨∆2 ⇔ (ρ, s, h) |=X ∆1

or (ρ, s, h) |=X ∆2

(ρ, s, h) |=Φ ∃α. Ω : ∆⇔
∃ρ′. ρ′ =\α ρ and (ρ′, s, h) |=Φ ∆ and

ρ′(α) ∼ ρ′(β) for all α ∼ β ∈ Ω (∼ ∈ {<,≤})

When (ρ, s, h) |=Φ φ holds, we say that (ρ, s, h) is a model
of the constrained formula φ (wrt. the inductive rule set Φ).

Thus, predicate instances Pα(E) are interpreted using the
ρ(α)th approximation of the interpretation of the inductive
rule set Φ, and the possible valuations for a model are
restricted by the set of predicate label constraints.

Definition 7 (Entailment). We write φ �Φ ψ, where φ and
ψ are constrained formulas, to mean that (ρ, s, h) |=Φ φ
implies (ρ, s, h) |=Φ ψ for all (ρ, s, h).

We additionally write: ρ |= Ω to mean that ρ(α) ∼ ρ(β)
(∼ ∈ {<,≤}) for all constraints α ∼ β ∈ Ω; and Ω � Ω′ to
mean that ρ |= Ω implies ρ |= Ω′ for all ρ.

4. Cyclic Termination Proofs
In this section, we describe how we verify termination of pro-
grams written in the language defined in Section 3, using a
Hoare logic built on the assertion language defined above. Our
proof system manipulates Hoare triples {φ}C {ψ}, where
C is a program in our language and the pre- and postcondi-
tions φ and ψ, respectively, are constrained formulas of our
assertion language.

Definition 8 (Validity). We say a Hoare triple {φ}C {ψ}
is valid iff, whenever (ρ, s, h) |=Φ φ, it is also the case that
((C, s), h) is terminating and (ρ, s′, h′) |=Φ ψ for all final
states (s′, h′).

58

(stop):
`Φ {φ} ε {ψ}

(φ �Φ ψ) (write):
`Φ {Ω : Π : x

f7−→E′ ∗ Σ}C {ψ}

`Φ {Ω : Π : x
f7−→E ∗ Σ}x.f i :=E;C {ψ}

(E′ isE with E substituted forEi)

(assign)∗:
`Φ {Ω : Π[x′/x] ∪ {x = E[x′/x]} : Σ[x′/x]}C {ψ}

`Φ {Ω : Π : Σ}x :=E;C {ψ}
(read)∗:

`Φ {Ω : Π[x′/x] ∪ {x = Ei[x
′/x]} : (y

f7−→E ∗ Σ)[x′/x]}C {ψ}

`Φ {Ω : Π : y
f7−→E ∗ Σ}x := y.f i;C {ψ}

(free):
`Φ {Ω : Π : Σ}C {ψ}

`Φ {Ω : Π : x
f7−→E ∗ Σ} free(x);C {ψ}

(new):
`Φ {Ω : Π[x′/x] : x

f7−→ x ∗ Σ[x′/x]}C {ψ}
`Φ {Ω : Π : Σ}x := new(f);C {ψ}

(
|x| = |f |

x′ and x fresh, x pairwise distinct

)

(if-nondet):
`Φ {φ}C1;C {ψ} `Φ {φ}C2;C {ψ}
`Φ {φ} if ? thenC1 elseC2 fi;C {ψ}

(if-det):
`Φ {Ω : Π ∪ {π} : Σ}C1;C {ψ} `Φ {Ω : Π ∪ {π} : Σ}C2;C {ψ}

`Φ {Ω : Π : Σ} ifπ thenC1 elseC2 fi;C {ψ}

(while-nondet):
`Φ {φ}C′; while ? doC′ od;C {ψ} `Φ {φ}C {ψ}

`Φ {φ} while ? doC′ od;C {ψ}
(proc):

`Φ {φ} body(p) {ψ}
`Φ {φ} p(x) {ψ}

(
x = params(p)

locals(p) ∩ (fv(φ) ∪ fv(ψ)) = ∅

)

(while-det):
`Φ {Ω : Π ∪ {π} : Σ}C′; whileπ doC′ od;C {ψ} `Φ {Ω : Π ∪ {π} : Σ}C {ψ}

`Φ {Ω : Π : Σ} whileπ doC′ od;C {ψ}

(∗) where x′ is a fresh variable

Figure 4: Symbolic execution proof rules

(⊥):
`Φ {⊥}C {ψ}

(consequence / |=):
`Φ {χ}C {ξ}
`Φ {φ}C {ψ}

(φ �Φ χ, ξ �Φ ψ) (split):
`Φ {Ω : ∆1}C {ψ} `Φ {Ω : ∆2}C {ψ}

`Φ {Ω : ∆1 ∨∆2}C {ψ}

(frame):
`Φ {φ}C {ψ}

`Φ {φ ∗ χ}C {ψ ∗ χ}
(fv(χ) ∩ mod(C) = ∅) (subst):

`Φ {φ}C {ψ}
`Φ {φ[E/x]}C {ψ[E/x]}

(
x /∈ vars(C)

x ∈ fv(ψ)⇒ E 6∈ vars(C)

)

(relabel):
`Φ {φ}C {ψ}

`Φ {φ[β/α]}C {ψ[β/α]}
(param):

`Φ {φ} p(E) {ψ}
`Φ {φ[E/x]} p(E[E/x]) {ψ[E/x]}

(seq):
`Φ {φ}C1 {χ} `Φ {χ}C2 {ψ}

`Φ {φ}C1;C2 {ψ}

(∃Var):
`Φ {Ω : F [y/x]}C {ψ}
`Φ {Ω : ∃x. F}C {ψ}

(y /∈ fv(∃x. F) ∪ fv(ψ)) (∃Lab):
`Φ {∃α. Ω[γ/β] : ∆[γ/β]}C {ψ}
`Φ {∃α ∪ {β}. Ω : ∆}C {ψ}

(γ 6∈ α ∪ lab(Ω : ∆) ∪ free-labs(ψ))

(unfold):
`Φ {Ω ∪ Ωi : Π′i ∪Π : Σ′i ∗ Σ}C {ψ} (∀ 1 ≤ i ≤ n)

`Φ {Ω : Π : Pα(E) ∗ Σ}C {ψ}

ΦP = {Π1 : Σ1

z1⇒ P (x1), . . . ,Πn : Σn
zn⇒ P (xn)} and for all 1 ≤ i ≤ n:

Π′i : Σ′i is Πi : Σi with variables zi and labels freshened, and argumentsE

substituted for parameters xi

Ωi = {β < α | β ∈ lab(Σ′i)}

Figure 5: Logical proof rules

In contrast to the standard notion of proof in Hoare-style
logic, our framework employs cyclic proofs, which are finite
derivation trees in which leaves may be closed by back-
links to identical interior nodes. Thus, as usual in cyclic
proof systems, an additional global soundness condition
must be imposed on the derivation graph, which amounts
to ensuring that all infinite paths in the proof correspond to
valid arguments by infinite descent (cf. [11, 14]).

The rules of our proof system are given in Figs. 4 and 5.
The symbolic execution rules, viewed from conclusion to
premise, capture the effect on the precondition of executing
commands. The logical rules are mainly standard; but we
draw particular attention to the well-known frame rule of
separation logic [35] which permits portions of the symbolic

heap that are not affected by the program to be disregarded.
Note that we lift the separating conjunction (∗) to constrained
formulas in the obvious way. The unfold rule performs a case-
split on a predicate instance in the precondition, by replacing
it with the body of each clause of its inductive definition in
turn (generating extra label constraints as appropriate).

Cyclic pre-proofs are finite derivation trees with back-
links: to every leaf that is not the conclusion of an axiom we
assign a syntactically identical interior node. By identifying
back-linked nodes, a pre-proof may thus be seen as a rep-
resentation of an infinite, regular derivation tree by a cyclic
graph. If P is a pre-proof, then we write GP to denote this
graph. A path ν in GP is a (possibly infinite) sequence of
nodes in GP such that for each element νi (i > 1) there is

59

an edge in GP from νi−1 to νi. In an abuse of notation, we
may write ν = (S1, r1), (S2, r2), . . . where Si is the sequent
associated with node νi and ri is the rule for which Si is the
conclusion and Si+1 is a premise.

Our global soundness condition, required to qualify such
pre-proofs as genuine cyclic proofs, is formulated in terms
of the following concept of a trace through the pre-proof
(cf. [11, 12, 31]).

Definition 9 (Traces). 1. Let sequents S1 = `Φ {φ}C {ψ}
and S2 = `Φ {φ′}C ′ {ψ′} be, respectively, the conclu-
sion and a premise of some instance of a proof rule r; a
tuple (α, β) of labels is a trace pair for (S1, S2, r) if and
only if the following conditions hold:

• if r 6= (relabel) then constraints(φ′) � {β ≤ α};
• if r = (relabel) and the relabelling applied in the

rule instance is [γ/δ], then either constraints(φ′) �
{β ≤ α} with α 6= δ if δ not bound in φ′, or
constraints(φ′) � {β ≤ δ} with α = γ and δ not
bound in φ′;

• if r = (consequence) or r = (seq) with S2 the right-
hand premise of the rule instance, then α is free in both
φ and φ′.

If these conditions hold with < in place of ≤, then we say
that (α, β) is a progressing trace pair for (S1, S2, r).

2. Let ν = (S1, r1), (S2, r2), . . . be a (possibly infinite)
path; a trace τ following ν is a sequence of predicate
labels such that |τ | = |ν| and (τ i, τ i+1) is a trace
pair for (Si, Si+1, ri) for each 1 ≤ i < |τ |. Whenever
(τ i, τ i+1) is a progressing trace pair, then we say that τ
progresses at i. We say that τ is infinitely progressing if it
progresses at infinitely many points.

Cyclic pre-proofs may only be considered valid proofs
when they satisfy a global soundness condition.

Definition 10 (Cyclic proof). A cyclic pre-proof P is a cyclic
proof if for every infinite path ν in GP there is an infinitely
progressing trace τ following some tail of ν.

This global soundness condition can be decided (modulo
decidability of entailment between predicate label constraints,
which is here trivial) by transforming the pre-proof graph into
a Büchi automaton with the accepting states given by those
edges that admit a progressing trace pair (cf. [14]).

The following soundness result follows similarly to [12].

Theorem 11 (Soundness). If `Φ {φ}C {ψ} has a cyclic
proof, then {φ}C {ψ} is valid.

Proof. (Sketch) Each of the inference rules r satisfies the
following property:

(Local Soundness) Suppose S ≡ {φ}C {ψ} is the conclu-
sion of r and that it is not valid; i.e., there is some model
(ρ, s, h) |= φ, but either κ = ((C, s), h) is not terminat-
ing or (s′, h′) is a final state for κ and (ρ, s′, h′) 6|= ψ.
Then there is a premise S′ ≡ {φ′}C ′ {ψ′} of r and a

model (ρ′, s′′, h′′) |= φ′ such that κ′ = ((C ′, s′′), h′′)
is not terminating or (s′′′, h′′′) is a final state for κ′ and
(ρ′, s′′′, h′′′) 6|= ψ′ — that is S′ is not valid either. Moreover,
if (α, β) is a trace pair for (S, S′, r) then ρ′(β) ≤ ρ(α), and
ρ′(β) < ρ(α) if the trace pair is progressing.

Now `Φ {φ}C {ψ} has a cyclic proof P , so suppose for
contradiction that {φ}C {ψ} is not valid. Then it follows
from the local soundness property above that there is an
infinite path ν of (invalid) sequents in GP . Since P is a valid
cyclic proof, there is also an infinitely progressing trace τ
following ν. It then also follows from the local soundness
property that there is an infinite sequence of valuations ρ
such that for each pair (τ i, τ i+1) of the trace it is the case
that ρi+1(νi+1) ≤ ρi(νi), with ρi+1(νi+1) < ρi(νi) if the
trace pair is progressing. Therefore, since the trace is infinitely
progressing, this comprises an infinitely decreasing chain
of ordinals. This contradicts the well-foundedness of the
ordinals, thus we conclude {φ}C {ψ} is indeed valid.

Remark 1. One might also consider the question of rela-
tive completeness: if one assumes a complete proof system
for entailments between assertions, does every valid triple
{φ}C {ψ} then have a cyclic termination proof? Such a re-
sult was shown to hold of the cyclic system for simple while
programs without procedures in [12]. The result in [12] cru-
cially depends on the presence of the separating implication,
—∗, to express weakest termination preconditions. It seems that,
at a minimum, we would need to add this connective to our
system to have any hope of relative completeness; we would
also need to express the weakest termination precondition
relative to a given postcondition (cf. [32]). Here, however, we
deliberately exclude —∗ from our assertion language, since
our main focus here is on automation, for which —∗ is well
known to cause difficulties (and it is not typically handled by
most separation logic provers).

5. Implementation
We have implemented a tool that can automatically verify the
termination of programs written in the language described in
Section 3, based upon the cyclic proof system in Section 4:
given as input a set of inductive predicate definitions and
a Hoare triple in our language, it searches for a cyclic
termination proof. The tool is built on top of CYCLIST [1], a
general framework for implementing cyclic theorem provers
which provides a general search procedure for cyclic proofs
(see [14] for details). Logic-specific theorem provers can
be obtained by instantiating this general procedure with the
appropriate syntax, proof rules and tactics implementing a
particular proof system. CYCLIST is able to produce a cyclic
proof object as output. Our tool executable, source code and
benchmarks are available online [2].

Basic Proof Search Strategy. The tactics that we implement
for the proof system of Section 4 are largely guided by the
syntax of the program: we attempt to apply as many symbolic

60

execution rules as possible; when no symbolic execution
rules can be applied, we perform predicate unfoldings until
sufficient structure is revealed in the current symbolic state to
allow further symbolic execution. When all commands have
been symbolically executed, we attempt to apply the axiom
(stop), which involves deciding whether the postcondition
is entailed by the current symbolic state. To decide such
entailment questions our tool uses a separate instantiation of
CYCLIST with an entailment proof system for our logic (see
below). Thus it is capable of proving entailments that require
inductive reasoning.

Loops and Recursion. These features are handled naturally
in cyclic proof by back-linking. When a procedure call or
loop is first encountered during symbolic execution, it is
unfolded using the (proc) or (while) rules. On subsequent
symbolic iterations of the loop or recursions/calls of the
procedure, our tactics will typically attempt to form a back-
link to a node created by a previous encounter with the
loop/procedure. Global soundness of the generated proof
is checked incrementally as new back-links are formed.

Frame Inference. To symbolically execute a procedure call,
we must verify that the state at the call-site φ entails the
procedure precondition ψ. However in general this state will
contain a portion of memory that is not required by the proce-
dure and which must be considered separately. Thus we must
find a solutionX that validates the entailment φ � ψ∗X; this
known as the frame inference problem [5]. To allow proofs
verifying procedures to be reused at multiple call-sites (i.e. to
treat procedure calls compositionally), our implementation
currently relies on procedures being annotated with pre- and
postconditions. An interesting avenue for future work is to
extend our implementation with specification inference tech-
niques such as biabduction [16].

We perform frame inference by unfolding predicates in
the procedure precondition, up to some pre-specified limit,
until syntactic matching of atomic formulas is possible. A
candidate frame can then be computed by subtracting the
matching atomic formulas from the current symbolic state.
For example, consider the case where a proof search must
process the open subgoal

{List(z) ∗ x 7→ y ∗ List(y)} TraverseList(x);C {ψ}

for some program fragment C, and where the precondition of
the TraverseList procedure is List(x), as inSection 2. We
can proceed be unfolding the List predicate in the procedure
precondition to obtain ∃v. x 7→ v ∗ List(v). At this point, we
are able to match (i.e. instantiate) the existentially quantified
variable v with y, and subtract the result from the subgoal
precondition to infer the frame List(z). To then symbolically
execute the procedure call a backlink may be formed with
a previous generating unfolding of the TraverseList, and
the frame is combined with the procedure postcondition to
generate a new subgoal {List(x)∗List(z)}C {ψ} from which

proof search can continue. For this simple illustration we
have omitted details of generating and matching predicate
labels and constraints, which our implementation also handles
during frame inference. In general, this unfold-and-match will
also generate substitutions of (logical) variables, predicate
labels and procedure parameters.

Note that this simple frame inference procedure may fail,
not only in the case that no frame exists but also if we do
not unfold sufficiently many times or if inductive reasoning
is required. Since our tool encounters many potential back-
link candidates during proof search, this simple unfold-and-
match approach provides a relatively cheap if somewhat weak
solution to frame inference. Our experimental results show
that, combined with a more powerful procedure for deciding
entailments at axioms as well as at other locations specified
by the user, this is an effective trade-off.

Entailment Proof System. In Fig. 6 we give the rules for a
cyclic proof system deriving entailments between constrained
formulas. In the (Equiv) rule we refer to an equivalence
≡ on constrained formulas which is given by the least
congruence containing alpha-equivalence on existentially
quantified variables and labels, and satisfying the following
equations:

(∗-commutativity): Σ1 ∗ Σ2 ≡ Σ2 ∗ Σ1

(∗-associativity): Σ1 ∗ (Σ2 ∗ Σ3) ≡ (Σ1 ∗ Σ2) ∗ Σ3

(emp-unit): emp ∗ Σ ≡ Σ

(>-absorb): > ∗ Σ ≡ >
(⊥-absorb): ⊥ ∗ Σ ≡ ⊥
(∨-commutativity): ∆1 ∨∆2 ≡ ∆2 ∨∆1

(∨-associativity): ∆1 ∨ (∆2 ∨∆3) ≡ (∆1 ∨∆2) ∨∆3

For the (Id) rule, we refer to the following restricted
entailment relation on sets of predicate label constraints:

Ω1 �\α Ω2 ⇔ ∀ρ.ρ |= Ω1 ⇒ ∃ρ′. ρ =\α ρ
′ ∧ ρ′ |= Ω2

Traces for this cyclic entailment system are defined similarly
to traces for the program termination proof system (see
Definition 9), using predicate labels: for most rules (α, β) is
a trace pair for the conclusion-premise pair (φ `Φ ψ, χ `Φ ξ)
if constraints(χ) � {β ≤ α}. The same conditions apply for
the (Relab) rule as for the (relabel) rule in Definition 9. The
(cut) rule carries the same condition as the (seq) rule that α
be free in both φ and ξ. We allow that (β, γ) is a trace pair
for the (∃LabL) rule, where the free label γ in the premise
is existentially quantifies as γ in the conclusion; this can be
seen as a renaming. Lastly, we also allow (α, β) as a trace
pair for the (Equiv) rule where β in the premise has been
alpha-renamed to α in the conclusion. The entailment proof
system can be shown to be sound using a similar argument to
the one given in the proof sketch for Theorem 11, including
a similar notion of local soundness for the entailment rules.

61

(Id):
Ω1 : F `Φ ∃α.Ω2 : F

(Ω1 �\α Ω2) (>):
Σ `Φ >

(⊥L):
⊥ `Φ Ω : Π : Σ

(⊥R1):
x
f17−−→E1 ∗ x

f27−−→E2 `Φ ⊥

(⊥R2):
{E1 = E2, E1 6= E2} : Σ `Φ ⊥

(⊥R3):
{E 6= E} : Σ `Φ ⊥

(⊥R4):
Ω : Σ `Φ ⊥

(Ω � ⊥) (=R):
Σ `Φ E = E : Σ

(Wk):
Ω : Π : Σ `Φ ψ

Ω ∪ Ω′ : Π ∪Π′ : Σ `Φ ψ
(∨L):

Ω : ∆1 `Φ ψ Ω : ∆2 `Φ ψ

Ω : ∆1 ∨∆2 `Φ ψ
(∨R):

φ `Φ Ω : ∆

φ `Φ Ω : ∆ ∨∆′
(Relab):

φ `Φ ψ

φ[β/α] `Φ ψ[β/α]

(Subst):
φ `Φ ψ

φ[E/x] `Φ ψ[E/x]
(Equiv):

χ `Φ ξ

φ `Φ ψ
(φ ≡ χ, ψ ≡ ξ) (∗):

φ `Φ ψ φ′ `Φ ψ′

φ ∗ φ′ `Φ ψ ∗ ψ′
(Cut):

φ `Φ χ χ `Φ ψ

φ `Φ ψ

(∃VarL):
Ω : F [y/x] `Φ ψ

Ω : ∃x. F `Φ ψ
(y 6∈ fv(∃xF) ∪ fv(ψ)) (∃VarR):

φ `Φ Ω : F [E/x]

φ `Φ Ω : ∃x. F
(∃LabR):

φ `Φ ∃β.Ω[γ/δ] : ∆[γ/δ]

φ `Φ ∃β ∪ {δ}.Ω : ∆

(∃LabL):
∃α.Ω[γ/β] : ∆[γ/β] `Φ ψ

∃α ∪ {β}.Ω : ∆ `Φ ψ
(γ 6∈ α ∪ lab(Ω : ∆) ∪ free-labs(ψ)) (Exchange):

Ω : (Π ∪ {v = w} : Σ)[v/x,w/y] `Φ ψ[v/x,w/y]

Ω : (Π ∪ {v = w} : Σ)[w/x, v/y] `Φ ψ[w/x, v/y]

(UnfoldL):
Ω ∪ Ωi : Π′i ∪Π : Σ′i ∗ Σ) `Φ ψ (∀ 1 ≤ i ≤ n)

Ω : Π : Pα(E) ∗ Σ `Φ ψ

ΦP = {Π1 : Σ1

z1⇒ P (x1), . . . ,Πn : Σn
zn⇒ P (xn)} and for all 1 ≤ i ≤ n:

Π′i : Σ′i is Πi : Σi with variables zi and labels freshened, and argumentsE

substituted for parameters xi

Ωi = {β < α | β ∈ lab(Σ′i)}

(UnfoldR):
φ `Φ ∃β.{β < α | β ∈ β} : ∃z.Π[E/x] : Σ[E/x]

φ `Φ Pα(E)

Π : Σ

z⇒ P (x) ∈ Φ

α 6∈ β, β = lab(Π : Σ)

E ∩ z = ∅

Figure 6: Proof rules for entailment.

6. Evaluation
We tested our tool on a number of hand-crafted example
programs consisting of recursive procedures operating on
various flavours of lists and trees; we also included some
iterative examples. Furthermore, we translated a number of
examples from the Recursive Java Bytecode suite in the latest
version (10.3) of the Termination Problems Database [33]
into a form that can be parsed by our tool. These examples
are each individually on the order of up to 100 lines of
code comprising up to 6 procedures. We also compared
the performance of our prover against two other state-of-
the-art tools that prove termination of heap-manipulating
procedural code: HIPTNT+ and AProVE. The results are
shown in Figs. 7 and 8. For each benchmark test we give the
running time in seconds for each tool, as well as the number
of annotations required as a percentage of the number of
lines of code (no annotation percentage is given for AProVE,
since it does not require any). All tests were carried out on a
2.93GHz Intel Core i7-870 with 8GB RAM.

The examples that we treat include non-trivial recursion
schemes. For example, the Alternate benchmark contains
a procedure that creates a binary tree using the left and right
subtrees of its two inputs in an alternating fashion; the re-
cursive calls also swap the arguments and so proving termi-
nation requires a lexicographic measure, which is discov-
ered by our tool. The Shuffle benchmark rearranges the

elements of a linked list by first reversing the tail of its in-
put, and then making a recursive call on the result. Thus, it
contains a nested recursion over which it is crucial to know
that the termination measure of the outer recursion is pre-
served. Other examples require complex reasoning about
the shape of the heap resulting from procedure calls; these
include the SharingAnalysisRec, CyclicAnalysisRec,
and TwoWay benchmarks, with the latter two requiring to
prove that a cyclic heap structure and non-terminating loop,
respectively, is unreachable. Two of our hand-crafted bench-
marks implement different forms of queue data structures,
and we also verified an implementation of a union-find data
structure in which the representative elements are indicated
using a self-loop. Since our tool does not currently support nu-
meric features we focussed on examples containing solely or
predominantly heap-manipulating features. However, we did
model some arithmetic-based control flow using linked-lists
to stand for natural numbers; this includes an implementation
of the Ackermann function.

As a caveat, we note that our tool does not operate directly
on C code or Java bytecode, but rather on translations of
such programs into our basic procedural while language;
however, these translations faithfully model the operation and
recursion schemes of the original benchmarks.

Compared with HIPTNT+ and AProVE, our tool dis-
played much shorter execution times on almost all of the
examples in our benchmark suite. Notably, our tool easily

62

Benchmark Suite Time (sec) / % Annotated
Test AProVE CYCLIST

Costa_Julia_09-recursive
Ackermann 3.82 0.14 (18%)
BinarySearchTree (tree copy) 1.41 0.95 (13%)
BTree 1.77 0.03 (22%)
List 1.43 1.74 (19%)

Julia_10_Recursive
AckR 3.22 0.14 (18%)
BTreeR 2.68 0.03 (22%)
Test8 (bubble sort) 2.95 0.97 (13%)

AProVE_11_recursive
CyclicAnalysisRec 2.61 5.21 (27%)
RotateTree 5.86 0.32 (14%)
SharingAnalysisRec 2.47 4.72 (16%)
UnionFind TIMEOUT 1.21 (25%)

BOG_RTA_11
Alternate 5.47 1.47 (12%)
AppE 2.19 0.09 (23%)
BinTreeChanger 3.38 3.33 (20%)
CAppE 2.04 1.78 (25%)
ConvertRec 3.72 0.06 (38%)
DupTreeRec 4.18 0.03 (20%)
GrowTreeR 3.53 0.05 (20%)
MirrorBinTreeRec 4.96 0.02 (22%)
MirrorMultiTreeRec 5.16 0.63 (33%)
SearchTreeR 2.74 0.34 (14%)
Shuffle (MAYBE) 11.72 0.21 (29%)
TwoWay 1.94 0.02 (25%)

Figure 7: Comparison with AProVE on TPDB v10.3
Java_Bytecode_Recursive benchmarks

handles the UnionFind benchmark, which AProVE cannot.
We also note that AProVE returns the answer ‘MAYBE’ for
the Shuffle example, rather than a definite termination re-
sult. HIPTNT+ also handles these two examples. The relative
length of the execution time for the iterative version of the
binary tree traversal custom benchmark is due to its relative
complexity; re-establishing the loop invariant requires an
inductive entailment to be proven.

7. Related Work
There are a number of other existing tools that verify termina-
tion of procedural, heap-manipulating code, some of which
we have already mentioned in the previous section. Many of
these are, like our system, built on top of Hoare-style program
logics. Closest to our work in this respect is HIPTNT+ [23]
which extends a Hoare-style separation logic system with
temporal operators expressing termination and both possi-
ble and definite non-termination, and is able to infer such
temporal predicates for procedural programs. Also like our
work, HIPTNT+ requires pre-/postcondition annotations for
heap-manipulating procedures, and requires arithmetic pa-
rameters to be incorporated into inductive predicates (reflect-
ing e.g. the length of a list) in order to support the inference
of termination measures. This is comparable to our use of
ordinal-valued labels. While it is mentioned in [23] that ex-
isting techniques for inferring separation logic specifications

Benchmark test Time (sec) / % Annotated
HIPTNT+ CYCLIST

traverse acyclic linked list 0.31 (25%) 0.02 (33%)
traverse cyclic linked list 0.52 (29%) 0.02 (38%)
append acyclic linked lists 0.36 (25%) 0.03 (10%)
TPDB Shuffle 1.79 (22%) 0.21 (29%)
TPDB Alternate 6.33 (13%) 1.47 (12%)
TPDB UnionFind 4.03 (26%) 1.21 (25%)

(a) Comparison with HIPTNT+ benchmarks

Time (sec) /
Benchmark test % Annotated
traverse acyclic linked list 0.80 (100%)
traverse cyclic linked list 0.15 (100%)
traverse binary tree 2.99 (50%)
reverse acyclic linked list 0.09 (20%)
deallocated linked list 0.03 (25%)

(b) CYCLIST custom benchmarks (iterative)

Time (sec) /
Benchmark test % Annotated
reverse linked list 0.13 (36%)
reverse linked list (tail recursive) 0.04 (11%)
reverse linked list (using append) 0.05 (11%)
deallocate linked list 0.02 (29%)
deallocate binary tree 0.02 (25%)
append cyclic linked list 0.03 (10%)
filter linked list 0.03 (13%)
partition linked list 0.03 (8%)
remove linked list tail (example in paper) 0.05 (17%)
queue data structure 0.19 (20%)
functional queue data structure 0.26 (14%)

(c) CYCLIST custom benchmarks (recursive)

Figure 8: Comparison with HIPTNT+ (table (a)) and evalu-
ation on custom benchmarks (tables (b) and (c))

(e.g. bi-abduction [16]) can be integrated with the termination
inference, HIPTNT+ does not currently implement this.

The AProVE termination prover [20] takes an alternative
approach, handling C code and Java bytecode by transforming
it into a term rewriting system and then using existing
techniques for proving termination of these. For Java it can
also prove non-termination, but it does consider termination
due to the raising of a checked exception as safe termination.
An advantage of AProVE is that it does not require procedure
annotations; however, since it is not based on a program
logic, it does not allow for the verification of functional
correctness. In contrast, our analysis also allows to verify
that the final state of the program conforms to some given
shape predicate. A further advantage of basing our analysis
on a logic with user-defined predicates is that, effectively,
our abstract domain is easily modified. In contrast, extending
the abstract domain of AProVE to handle the Union-Find
example would likely not be straightforward. The Julia [29]
and COSTA [3] tools also prove termination of Java bytecode
in a similar way via an encoding as constraint logic programs.

63

The Verifast tool verifies the safety of heap manipulating
programs using separation logic, and has recently incorpo-
rated termination checking using an approach similar to our
ordinal-valued labels [21]. However, Verifast is closer to an
interactive proof assistant than to a fully-automatic verifica-
tion tool. The Dafny integrated programming language and
verifier [25] affords a greater level of automation, translating
programs and their assertions into the Boogie intermediate
verification language, which uses the Z3 SMT solver to dis-
charge verification conditions. Similar to HIPTNT+, Dafny
infers termination based on arithmetic measures and requires
heap-based termination measures (e.g. linked-list length) to
be manually associated to arithmetic parameters. Boström et
al. [7] have also recently described a termination analysis for
concurrent imperative programs via an encoding to Boogie
which requires explicit arithmetical measures, and includes
termination of sequential programs as a special case. Pinto et
al. consider an alternative approach based on explicit ordinal-
valued measures [17]. However, to our knowledge, neither of
these latter two analyses have been implemented.

The MUTANT tool [6], part of the TERMINATOR/T2
termination prover, uses an abstract interpretation for a list-
based fragment separation logic to prove termination of
loops by synthesis of ranking functions. The THOR tool
[26] extends this approach to procedural programs and also
allows the abstraction to be guided by user-defined inductive
predicates in separation logic.

8. Conclusions and Future Work
We have defined a cyclic proof system for verifying the safe
termination of procedural programs written in a C-like syntax.
Loops and recursion are handled naturally by cyclic proof,
and termination is guaranteed by the well-foundedness of
the inductively defined predicates in program specifications.
We have implemented a prototype tool that can automatically
prove termination of such programs, when its component
procedures are annotated with pre- and postconditions. We
have evaluated our tool using a number of non-trivial example
programs taken from standard benchmarks, demonstrating
that it performs favourably compared with existing related
tools.

Our work can be seen as a natural extension of the system
for simple while programs in [12] and its corresponding im-
plementation [14], treating programs with arbitrary, possibly
recursive procedures. The extension to procedures requires
both the proof system and its implementation to be extended
in a number of ways (cf. Sections 4 and 5). The work we
describe in this paper comprises a significant development
over what could previously be achieved using cyclic proof
techniques in practice. Key to its practicability is the abil-
ity to treat procedures directly (as opposed to in-lining) and
compositionally; here we show how this can be achieved
within the cyclic proof framework. Our tool puts cyclic proof-
based termination reasoning roughly on a par with the current

state-of-the-art, as discussed in Sections 5 and 7, and lays the
foundations for further development of the technique.

The ordinal variable annotations in our system, specify-
ing how predicate approximations are related over procedure
calls, are analogous to the arithmetic parameters required in
most other approaches (see Section 7). We believe that these
annotations are actually unnecessary, and that the constraints
on ordinal labels might, in principle, be inferred directly from
the structure of a cyclic proof. We consider this direction a
high priority for future work. We would also like to inves-
tigate the possibility of inferring entire pre-/postcondition
specifications, most probably using biabduction [16], as well
as extending the assertion language supported by our imple-
mentation in order to verify functional properties of programs,
rather than just shape properties.

Acknowledgments
This work was supported by EPSRC grant EP/K040049/1.

References
[1] CYCLIST: software distribution. http://www.

cyclist-prover.org/.

[2] www.github.com/ngorogiannis/cyclist/releases.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
COSTA: Design and Implementation of a Cost and Termina-
tion Analyzer for Java Bytecode. In Proceedings of FMCO-6,
pages 113–132, 2007.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. A Decidable Frag-
ment of Separation Logic. In Proc. FSTTCS-24, volume 3328
of LNCS, pages 97–109. Springer, 2004.

[5] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic
Execution with Separation Logic. In Proc. APLAS-3, volume
3780 of LNCS, pages 52–68. Springer, 2005.

[6] J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Auto-
matic Termination Proofs for Programs with Shape-shifting
Heaps. In Proceedings of CAV-18, volume 4144 of LNCS,
pages 386–400. Springer, 2006.

[7] P. Boström and P. Müller. Modular Verification of Finite
Blocking in Non-terminating Programs. In Proceedings of
ECOOP-29, pages 639–663, 2015.

[8] J. Brotherston. Cyclic Proofs for First-Order Logic with
Inductive Definitions. In Proceedings of TABLEAUX-14,
volume 3702 of LNAI, pages 78–92. Springer-Verlag, 2005.

[9] J. Brotherston. Formalised Inductive Reasoning in the Logic
of Bunched Implications. In Proc. SAS-14, volume 4634 of
LNCS, pages 87–103. Springer-Verlag, 2007.

[10] J. Brotherston and N. Gorogiannis. Cyclic Abduction of
Inductively Defined Safety and Termination Preconditions. In
SAS-21, volume 8723 of LNCS, pages 68–84. Springer, 2014.

[11] J. Brotherston and A. Simpson. Sequent Calculi for Induction
and Infinite Descent. Journal of Logic and Computation, 21
(6):1177–1216, December 2011.

64

[12] J. Brotherston, R. Bornat, and C. Calcagno. Cyclic Proofs of
Program Termination in Separation Logic. In Proceedings of
POPL-35, pages 101–112. ACM, 2008.

[13] J. Brotherston, D. Distefano, and R. L. Petersen. Automated
Cyclic Entailment Proofs in Separation Logic. In Proceedings
of CADE-23, volume 6803 of LNAI, pages 131–146. Springer,
2011.

[14] J. Brotherston, N. Gorogiannis, and R. L. Petersen. A Generic
Cyclic Theorem Prover. In Proceedings of APLAS-10, LNCS,
pages 350–367. Springer, 2012.

[15] J. Brotherston, N. Gorogiannis, M. Kanovich, and R. Rowe.
Model Checking for Symbolic-Heap Separation Logic with
Inductive Predicates. In Proc. POPL-43. ACM, 2016.

[16] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compo-
sitional Shape Analysis by means of Bi-Abduction. Journal of
the ACM, 58(6), December 2011.

[17] P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner, and J. Suther-
land. Modular Termination Verification for Non-blocking Con-
currency. In Proc. ESOP, pages 176–201, 2016.

[18] M. Dam and D. Gurov. µ-Calculus with Explicit Points and
Approximations. Journal of Logic and Computation, 12(2):
255–269, April 2002.

[19] R. W. Floyd. Assigning Meanings to Programs. In Proc. Amer.
Math. Soc., volume 19 of Symposia in Applied Mathematics,
pages 19–31, 1967.

[20] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swider-
ski, and R. Thiemann. Proving Termination of Programs Auto-
matically with AProVE. In IJCAR-7, pages 184–191, 2014.

[21] B. Jacobs, D. Bosnacki, and R. Kuiper. Modular Termination
Verification. In Proc. ECOOP-29, pages 664–688, 2015.

[22] Q. L. Le, C. Gherghina, S. Qin, and W. Chin. Shape Analysis
via Second-Order Bi-Abduction. In Proceedings of CAV-26,
volume 8559 of LNCS, pages 52–68. Springer, 2014.

[23] T. C. Le, S. Qin, and W.-N. Chin. Termination and Non-
termination Specification Inference. In Proceedings of PLDI-

15, pages 489–498, 2015.

[24] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The Size-
change Principle for Program Termination. In Proceedings of
POPL, pages 81–92. ACM, 2001.

[25] K. R. M. Leino. Dafny: An Automatic Program Verifier for
Functional Correctness. In LPAR-16, pages 348–370, 2010.

[26] S. Magill, M. Tsai, P. Lee, and Y. Tsay. Automatic Numeric
Abstractions for Heap-manipulating Programs. In Proceedings
of POPL, pages 211–222, 2010.

[27] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. In Proceedings of LICS-17, pages 55–74.
IEEE Computer Society, 2002.

[28] L. Santocanale. A Calculus of Circular Proofs and its Cate-
gorical Semantics. In Proc. FOSSACS, volume 2303 of LNCS,
pages 357–371. Springer-Verlag, 2002.

[29] F. Spoto, F. Mesnard, and É. Payet. A Termination Analyzer
for Java Bytecode Based on Path-length. ACM Trans. Program.
Lang. Syst., 32(3), 2010.

[30] C. Sprenger and M. Dam. On the Structure of Inductive
Reasoning: Circular and Tree-shaped Proofs in the µ-calculus.
In Proceedings of FOSSACS-6, volume 2620 of LNCS, pages
425–440. Springer-Verlag, 2003.

[31] C. Sprenger and M. Dam. On Global Induction Mechanisms
in a µ-calculus with Explicit Approximations. ITA, 37(4):
365–391, 2003.

[32] M. Tatsuta and W. Chin. Completeness of Separation Logic
with Inductive Definitions for Program Verification. In Proc.
SEFM, pages 20–34, 2014.

[33] TPDB. Termination Problems Database. http://
termination-portal.org/wiki/TPDB.

[34] A. M. Turing. On Computable Numbers, with an Application
to the Entscheidungsproblem. Proc. London Math. Soc., 1937.

[35] H. Yang and P. O’Hearn. A Semantic Basis for Local Reason-
ing. In Proc. FOSSACS-5, pages 402–416. Springer, 2002.

65

