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Abstract

We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar
coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-
force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical
boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis
curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula,
which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is
estimated by the twist multiplied by the square of the axial magnetic flux. We compare the obtained values with
those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the
twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for
most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very
location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity
computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.
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1. Introduction

A magnetic flux rope is a key ingredient for various solar-
activity models, such as filament/prominence eruptions, flares,
and coronal mass ejections. The terms magnetic flux rope and
magnetic flux tube are defined as a bundle of magnetic field
lines of finite size twisting around a common axis curve. When
a flux tube is infinitesimally thin, it represents a single magnetic
field line. To study the equilibrium and stability of a magnetic
flux rope, it is crucial to know its force balance, free magnetic
energy, and magnetic helicity. There are various ways to
quantify the force and energy of a magnetic flux rope based on
theoretical, numerical, and observational methods (e.g.,
Chen 1996; Lin et al. 1998; Régnier et al. 2002; Török &
Kliem 2005; Kliem & Török 2006; Feng et al. 2013). The
method of choice to quantify the magnetic helicity of a flux
rope is still an open issue, because there are various
uncertainties in observations, models, and methods. These
include, e.g., limitations of current techniques to measure and
model the magnetic field in the solar atmosphere, difficulties in
quantifying the topological boundaries of flux ropes, as well as
the uncertainty of helicity computations.

Magnetic helicity quantitatively measures the geometrical
complexity of a magnetic field. A gauge-invariant helicity
measure for open magnetic configurations (with field lines
penetrating the boundaries) is defined by the relative magnetic

helicity in finite volumes (Berger & Field 1984; Finn &
Antonsen 1985):

A A B B dV , 1V
V

p pH ò= + -( ) · ( ) ( )

where B is the vector magnetic field in volume V, Bp is the
reference magnetic field that is usually selected as the potential
field with the same normal magnetic field as B on the boundaries
of V, A is the vector potential of B with B A=  ´ , and Ap is
the vector potential of the potential field Bp. The relative
magnetic helicity is a global quantity. Its local density in an
arbitrary volume does not have a physical meaning, because the
vector potential depends on the distribution of the field in the
entire volume, and because adding a gauge function to any vector
potential would arbitrarily change the local helicity-density
values. However, magnetic helicity does have a local density
per elementary flux tube, namely, the field line helicity defined as
the integral of A along a magnetic field line (Yeates &
Hornig 2014, 2016; Russell et al. 2015). Besides the relative
magnetic helicity in Equation (1), there are some other
expressions and interpretations of the magnetic helicity (Jensen
& Chu 1984; Hornig 2006; Low 2006, 2011; Longcope &
Malanushenko 2008; Prior & Yeates 2014). Here, we only focus
on the relative magnetic helicity.
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There are several practical ways to compute magnetic
helicity either using a finite volume method (Rudenko &
Myshyakov 2011; Thalmann et al. 2011; Valori et al. 2012;
Yang et al. 2013; Moraitis et al. 2014; Rudenko &
Anfinogentov 2014), a twist number method (Guo
et al. 2010, 2013), a helicity-flux integration method
(Chae 2001; Pariat et al. 2005; Liu & Schuck 2012), or a
connectivity-based method (Georgoulis et al. 2012). These
methods differ in their input magnetic field and in how they
calculate the magnetic helicity. The finite volume method
employs Equation (1) and requires the full 3D magnetic field
vector information as an input. The twist number method also
requires the magnetic field in a 3D volume but with the
additional requirement that a magnetic flux rope is present. The
helicity-flux integration method requires a time series of two-
dimensional (2D) vector magnetic field and velocity maps as an
input. Consequently, with this method, only the accumulation
of the magnetic helicity injected through a 2D surface can be
computed. The connectivity-based method requires only a
single vector magnetic field map on the bottom boundary and
assumes that the magnetic polarities are magnetically con-
nected over a minimal connection length. A detailed descrip-
tion of all of these methods is presented in the first paper of a
series (Valori et al. 2016), where different implementations of
the finite volume method are also compared. The comparison
of existing implementations of the flux integration method and
the connectivity-based method is the subject of a second paper
(Pariat et al. 2017), while a third paper of the series will
implement different helicity methods on a particularly observed
eruptive solar active region (M. K. Georgoulis et al. 2017, in
preparation).

The twist number method estimates the magnetic helicity of
a magnetic flux rope by computing the twist and axial magnetic
flux. The twist measures the rotation of an individual field line
about the central axis of the flux rope (i.e., the axis curve).
Figures illustrating how the twist is measured are Figure 1 of
Berger & Prior (2006) and Figure 3 of Prior & Berger (2012).
When computing the helicity of isolated flux rope structures,
one basically ignores the magnetic field surrounding the
structure, and its connection to the field inside of the rope.
However, it is still meaningful to compute the magnetic helicity
of a magnetic flux rope, for three reasons. First, the solar
active-region corona could be approximated by a major electric
current channel embedded in a potential field using the
argument of Titov & Démoulin (1999). Second, the lateral
boundary of a magnetic flux rope is a magnetic flux surface
without any magnetic flux penetrating it; therefore, the
magnetic helicity within the magnetic flux surface is conserved
under an ideal evolution. Third, Berger (2003) showed that VH

can be decomposed into two separately gauge-invariant
components:

, 2V V J V JP, ,H H H= + ( )

with

A A B B dV , 3V J
V

, p pH ò= - -( ) · ( ) ( )

A B B dV2 . 4V JP
V

, p pH ò= -· ( ) ( )

V J,H measures the magnetic helicity contributed purely by the
magnetic field that carries local currents. The other part V JP,H
is the mixed contribution of the magnetic helicity between the
potential magnetic field and the magnetic field generated by
local currents. The magnetic helicity of a magnetic flux rope
would have a physical meaning if it contributed a major part of

V J,H in the entire volume V.
To guarantee the gauge invariance of the magnetic helicity,

the input magnetic field should be solenoidal. To quantify the
solenoidal condition of a magnetic field, Valori et al. (2013)
proposed using Thomson’s theorem, which decomposes the
magnetic field into four parts, namely, the solenoidal potential,
solenoidal current-carrying, non-solenoidal potential, and non-
solenoidal current-carrying parts. Correspondingly, the asso-
ciated magnetic energy can also be decomposed into four
terms, plus a fifth term accounting for mixed contributions. If
the total magnetic energy, including all of the aforementioned
terms, is denoted by E, and the total non-solenoidal energy
(potential, current-carrying, mixed) is denoted by Ens (also refer
to Appendix A of Valori et al. 2016), the ratio between Ens and
E can be used to quantify how well the solenoidal condition is
fulfilled. The numbers listed in Table 1 of Valori et al. (2013)
provide a quantitative comparison between E Ens and fiá ñ∣ ∣ ,
which is the average of the absolute value of the fractional flux
change in a numerical cell (refer to Appendix C of Valori
et al. 2013). We note that fiá ñ∣ ∣ is another size-dependent
measure of the solenoidality of the field. For the test cases
considered in Valori et al. (2013), if E Ens is less than 2%,

fiá ñ∣ ∣ is less than 2 10 5´ - (see, e.g., the first three rows of their
Table 1). An alternative method to assess the non-solenoidality
of the field via the magnetic energy is described in Moraitis
et al. (2014).
In Valori et al. (2016), a preliminary comparison of the twist

number method and the finite volume method was presented. It
was found that the magnetic helicity estimated by the twist
number method approximately matches the purely current-
carrying part, namely V J,H , of the total relative magnetic
helicity of the Titov–Démoulin model. It was also shown that

Table 1
Writhe, Twist, and Magnetic Helicity of the JL Stable Models

Models Writhe Twist Magnetic Flux twistH VH V J,H E Ens

(Turn) (Turn) (B L0 0
2) ( B L103

0
2

0
4) ( B L103

0
2

0
4) ( B L103

0
2

0
4)

JL-S-T30 0.0033 0.02±0.00 0.0 0.0±0.0 0.00 0.00 0.058
JL-S-T50 −0.013 0.47±0.06 22 0.2±0.0 1.74 0.13 0.017
JL-S-T85 0.029 0.32±0.22 55 1.0±0.6 6.98 0.17 0.011
JL-S-T120 0.067 0.42±0.38 63 1.6±1.5 11.2 1.71 0.007
JL-S-T155 0.061 0.56±0.37 72 2.9±1.9 14.3 3.41 0.005
JL-S-T190 0.037 0.61±0.27 78 3.6±1.6 16.6 4.90 0.005
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the magnetic helicity estimated by the twist number method
matches V J,H better for higher twist and spatial resolution. In
order to progress in the quantification of the abilities of the
twist number method, here we will test how the twist number
depends on the choice of the axis of a magnetic flux rope in the
Titov–Démoulin model. We provide a systematic study on the
performance of the twist number method when applied to
various magnetic field models and compare it to the results
delivered from a finite volume method. We also provide an
analysis of the magnetic fields by splitting them into a potential
part and a current-carrying part, in order to explain why the
magnetic helicity estimated by the twist number method
matches V J,H rather than VH .

The outline of the paper is as follows. The twist number
method is described in Section 2. The results of the
method’s application to the Titov–Démoulin model (Titov &
Démoulin 1999), magnetohydrodynamic (MHD) numerical
simulations (Leake et al. 2013, 2014), and nonlinear force-free
field (NLFFF) models (Savcheva et al. 2015, 2016) are
presented in Section 3. We provide a summary and a discussion
in Section 4.

2. The Twist Number Method

With the Titov–Démoulin model, MHD numerical simula-
tions, and NLFFF models computed by the flux rope insertion
method, one can obtain 3D magnetic field models hosting
magnetic flux ropes. In order to quantify the magnetic helicity
of these flux ropes, one needs to determine their geometrical
boundaries. The quasi-separatrix layer (QSL; Priest &
Démoulin 1995; Démoulin et al. 1996, 1997; Titov
et al. 2002) is a useful concept for such a purpose. QSLs are
3D thin volumes where the gradient of the magnetic field line
connectivity is large, as measured by the squashing degree Q
(Démoulin et al. 1996; Titov et al. 2002; Titov 2007). Pariat &
Démoulin (2012) compared three different methods and
identified a best-performing method to compute the squashing
degree Q in a 3D volume. This method has been implemented
by various authors and been applied to analyze the magnetic
topology of magnetic fields derived by NLFFF extrapolations
(Zhao et al. 2014; Yang et al. 2015, 2016; Liu et al. 2016). It
has been shown that magnetic flux ropes are associated with
bald patches or hyperbolic flux tubes (Titov & Démoulin 1999;
Titov et al. 2002). Bald patches are locations along the polarity
inversion line where the field is shaped concave-up and
oriented tangent to the photosphere, whereas hyperbolic flux
tubes are volumes defined by the intersection of two or more
QSLs. The QSLs associated with these topology structures
wrap the magnetic flux ropes and separate them from their
surroundings. Guo et al. (2013) also found a magnetic flux rope
wrapped by QSLs, based on an NLFFF model using the
optimization algorithm of Wiegelmann (2004).

Berger & Field (1984) have assigned the magnetic helicity a
clear geometrical meaning. They pointed out that magnetic
helicity quantitatively measures the geometrical complexity of
magnetic field lines. If a magnetic configuration consists of a
finite number, N, of flux tubes, the magnetic helicity is
determined by the linkage and knotting of different flux tubes
(mutual helicity), and by the writhe and twist of all of the
individual flux tubes (self-helicity). For closed curves, the
linking number, twist, and writhe are well-defined as shown in
Berger & Prior (2006). The Gauss linking number measures the
mutual linkage of two curves x s( ) and y s¢( ) that are

parameterized by s and s¢:

T T
r
r

s s ds ds
1

4
, 5

x y
x y 3


p

= ´ ¢ ¢∮ ∮ ( ) ( ) ·
∣ ∣

( )

where T sx ( ) and T sy ¢( ) are the unit tangent vector to x s( ) and
y s¢( ), respectively, and r is the position vector with
r x ys s= - ¢( ) ( ). The writhe measures the non-planarity of a
single curve:

T T
r
r

s s ds ds
1

4
, 6

x x 3


p
= ´ ¢ ¢∮ ∮ ( ) ( ) ·

∣ ∣
( )

where the position vector r points from x s¢( ) to x s( ) such that
r x xs s= - ¢( ) ( ). The twist measures the rotation amount of
one curve y s¢( ) about the other x s( ):

T V
V

s s
d s

ds
ds

1

2
, 7

x


p
= ´∮ ( ) · ( ) ( ) ( )

where V s( ) is a unit vector normal to T s( ) and pointing from
x s( ) to y s¢( ). The linking number and writhe are global
quantities that involve double integrals of geometrical
parameters along the curves. The linking number of two closed
curves is always an integer. The linking number of a tube or
ribbon (the surface between two non-intersecting curves forms
a ribbon) equals the sum of the twist and writhe as
demonstrated by the Cǎlugǎreanu theorem (e.g., Fuller 1978;
Moffatt & Ricca 1992; Berger & Prior 2006):

. 8  = + ( )
Magnetic field lines can be regarded as infinitesimally thin

flux tubes and represented by curves in 3D space. In a closed
configuration where no magnetic flux penetrates the bound-
aries, the total magnetic helicity is quantitatively expressed as
the sum of the self and mutual helicity contributed by the N flux
tubes (Berger & Field 1984; Démoulin et al. 2006):

, 9
i

N

i i
i

N

j j i

N

i j i j
1

2

1 1,
,H  å å å» F + F F

= = = ¹

( )

where i denotes the sum of the twist and writhe of flux tube i
with magnetic flux iF , namely, i i i  = + , and i j, denotes
the linking number of two flux tubes i and j, respectively.
For open configurations, where flux penetrates the volume’s

surface, Equation (9) still holds, only its meaning is changed.
The magnetic helicity of open configurations is gauge-invariant
and physically meaningful in context with the definition of a
relative magnetic helicity. To be also applicable to open curves,
Démoulin et al. (2006) proposed an alternative definition of the
linking number i j, following the concept of helicity injection.
Berger & Prior (2006) also proposed an alternative definition of
the writhe for open curves. They used a directional expression,
e.g., along the vertical direction z, for the writhe to define a
polar writhe p . The key idea is that a curve is split into n
pieces by its local turning points where ds dz 0= , and the
double integration in Equation (6) can be expressed as the sum
of a single integration. The polar writhe includes a local part,

pl , and non-local part, pnl (see also, Prior & Neukirch 2016):

, 10p pl pnl  = + ( )

z T

z T
dz

1

2 1
, 11

T
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i

n

z

z i
d

dz

i1 i

i
i
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max

 òå p
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+=

·

∣ · ∣
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where is indicates whether the ith piece of the curve exists at
height z, and whether it is rising or falling. If z z z,i i 1Î +( ) and
ds dz 0> , 1;is = if z z z,i i 1Î +( ) and ds dz 0< , 1;is = - if
z z z,i i 1Ï +( ), 0is = . And ijQ is the azimuth angle of the
position vector pointing from x zi ( ) to x zj ( ). Equations (10)–
(12) have been adopted to compute the writhe of open curves,
such as the helical structures in the corona (Török et al. 2010;
Prior & Berger 2012).

Since the twist is a local quantity with a well-defined twist
density,

T V
Vd

ds

d

ds

1

2
, 13


p

= ´· ( )

the formula for closed curves is still applicable for open curves.
Equation (7) is the integration of Equation (13) along an axis
curve. It is suitable for smooth curves in arbitrary geometries
without self intersection. Therefore, it is also suitable for both
force-free and non-force-free models. Equation (7) has been
applied to compute the twist in Guo et al. (2010, 2013), Xia
et al. (2014), and Yang et al. (2016).

The twist number method is designed to estimate the
magnetic helicity of a single highly twisted magnetic flux rope.
Two major approximations are adopted for this method. On the
one hand, the highly twisted magnetic structure is considered as
a single flux tube, thus the mutual helicity between the flux
tube and the surrounding magnetic field is omitted. This
approach is motivated by observations of solar eruptions, since
usually only one major magnetic flux rope is present in an
active region. On the other hand, the magnetic helicity
contributed by the writhe is also omitted. Observations and
models of magnetic flux rope structures and evolutions suggest
that they are usually not highly kinked due to low twists of
magnetic field lines. The kink instability is not triggered in
these cases. With the above two approximations, the magnetic
helicity can be approximated by the twist of a single highly
twisted structure as:

, 14twist
2H » F ( )

where  and Φ are the twist number and magnetic flux of the
single magnetic flux rope. For the cases possessing highly
kinked magnetic flux ropes (e.g., Török & Kliem 2005; Guo
et al. 2010), the magnetic helicity contributed by the writhe
cannot be omitted, and the twist number method is not
applicable to those structures that have significant writhe. But
for the cases considered below, we will show that the writhe is
small compared to the twist.

3. Results

The twist number method is applied to three different
magnetic field models, all of them enclosing a magnetic flux
rope. These are the Titov–Démoulin model (Titov &
Démoulin 1999) in Section 3.1, MHD numerical simulations
(Leake et al. 2013, 2014) in Section 3.2, and NLFFF models
(Savcheva et al. 2015, 2016) in Section 3.3. These models
provide different challenges for the magnetic helicity estima-
tion method. The Titov–Démoulin model is semi-analytically

computed and serves a static 3D magnetic field solution, within
which the existing flux rope is easily determined. The MHD
simulations are time-dependent, while the NLFFF models are
also static. But both are computed numerically and the flux
rope structures are more complex than those of the Titov–
Démoulin model. For example, the flux ropes in the MHD
simulations are more extended than those in the Titov–
Démoulin model, and possess a lower twist, causing larger
uncertainties in the computed twist helicity values. Similar to
the MHD simulations, the flux ropes in the NLFFF models
have more complicated boundaries than those of the Titov–
Démoulin model, also increasing the uncertainty in the
computation of the magnetic helicity.
Some tests of the twist number method on the Titov–

Démoulin model have already been performed and were
presented in Section 9.1 of Valori et al. (2016). In this paper,
we provide additional results for one case of the Titov–
Démoulin model to provide more detailed information on the
twist number method, such as the 3D QSL structure associated
with the magnetic flux rope and the dependence of the twist on
the position of the axis. We also provide a systematic analysis
of the magnetic helicity computed by the twist number method
for MHD and NLFFF models and compare the results with the
finite volume method.

3.1. Titov–Démoulin Model

The data set of the Titov–Démoulin model is similar to the
one used in Valori et al. (2016). The reader is referred to that
study for further details on the magnetic field data. To derive
the twist of a magnetic flux rope, we need its geometrical
information, i.e., its boundary and axis curve. A magnetic flux
rope is usually surrounded by a QSL since it is usually
associated with bald patches or hyperbolic flux tubes, where the
connections of magnetic field lines change rapidly (e.g., Titov
& Démoulin 1999; Guo et al. 2013; Liu et al. 2016; Zhao
et al. 2016). For the magnetic flux rope as shown in Figure 1,
its boundary is determined by the bottom boundary and the
QSLs. We adopt the method proposed by Pariat & Démoulin
(2012) to compute the 3D distribution of the squashing degree
(Titov et al. 2002; Titov 2007), Q, where large Q values (with
Q 2 ) indicate the location of QSLs. Figure 1 and its
animation display the QSLs and some magnetic field lines in
the magnetic flux rope. The model configuration used here is
identical with the “TD-N3-0.06” case in Valori et al. (2016),
with the model flux rope possessing a twist of about three full
turns around its axis. It is clear to see that QSLs surround some
magnetic field lines, which are regarded as the constituent part
of the magnetic flux rope.
In order to determine the axis of the model flux rope, we

make advantage of the symmetrical properties of its geometry.
We assume the axis of the magnetic flux rope to be aligned
with the y-axis, i.e., lying on a plane and thus possessing zero
writhe. We first consider Q within a vertical slice lying on the
xz-plane at y=0. We delineate the projected boundary of the
flux rope, based on the largest values of Q (Figure 2(a)) and
assume all points within this boundary to be part of the flux
rope. The latter can be used to compute the axial magnetic flux
of the flux rope, in the form B dxdzyò òF = . If we assume that
the magnetic field and the length are normalized by B0 and L0
in the Titov–Démoulin model, respectively, the magnetic flux
of the flux rope is B L0.17 0 0

2F = . Then, the axis of the flux
rope is determined as the magnetic field line with the minimum
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value of B Br y∣ ∣, where B B Br x z
2 2= + , oriented almost

perpendicular to the xz-plane (see the red dot in Figure 2(a)).
The twist of each sample field line (their cross-sections with

the vertical slice are indicated by blue crosses in Figure 2(a)) as
a function of distance from the axis curve of the flux rope is
displayed in Figure 2(b), represented by red dots. It shows that
the twist first increases until r L0.24 0» , and decreases for
locations further away from the axis curve. Though the sample
field lines obviously adhere to a different amount of twist, in
order to use Equation (14), we aim to find a single number that
quantifies the overall twist of the magnetic flux rope, where we
use the arithmetic average of the field line’s twist number.
Furthermore, the standard deviation of the twists of all sample
field lines quantifies the spread of the twists around their
average number, and thus can be regarded as an uncertainty
measure. We find an average twist of −3.0±0.7 turns,

and using Equation (14), a helicity of 0.087twistH = - (
B L0.020 0

2
0
4) . The writhe of the axis curve is computed based

on Equations (10)–(12) using the Prior & Neukirch code
available online.10 We find 8.6 10p

4 = - ´ - , which is very
small compared to the twist of the magnetic flux rope. It
furthermore justifies the geometrical method used to determine
the axis as perpendicular to the xz-plane.
In order to test the influence of the location of the axis curve

of the flux rope on the result, we redefine its location of the
intersection with the xz-plane at three different positions (other
than that marked by the red dot in Figure 2(a)). The twist
numbers in Figure 2(b) show that the average twists with axes
at arbitrarily selected positions are smaller compared to the first
analyzed situation, where the axis possesses the minimal

Figure 1. QSLs and magnetic field lines in the magnetic flux rope of the Titov–Démoulin model, adhering to a twist of about three turns. The semi-transparent layers
surrounding the magnetic field lines display the QSLs. The grayscale images on the bottom show the vertical magnetic field Bz. The magnetic field lines are colored by
the magnetic field strength B∣ ∣.
(An animation of this figure is available.)

Figure 2. (a) Vertical slice of the Q map in the xz-plane at y=0, namely, in the middle of the flux rope along its axis. The red dot, orange square, cyan diamond, and
green triangle indicate the intersections of the axis curves with the xz-plane for different test setups, in order to compare the effect of their relative locations on the
retrieved flux rope twist. The blue plus sign indicates the intersections of the sample field lines, used to calculated the average flux rope twist, with the xz-plane. (b)
Twist of the sample magnetic field lines along the distance, r from the flux rope axis. Symbols with different colors and signs represent the twist distributions for
varying positions of the axis (shown in panel (a), using the same color and sign notations).

10 https://www.maths.dur.ac.uk/~ktch24/code.html
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poloidal magnetic flux. Furthermore, in the cases with
displaced axis curves, the distributions of the twist numbers
are much less coherent than the case with the axis possessing
the minimal poloidal magnetic flux. This highlights how
important the precise determination of the axis position is for a
reliable estimation of its twist. In the TD-N3-0.06 case,
when the axis is defined at the symmetrical position as
indicated by the red dot in Figure 2(a), the magnetic helicity
computed by the twist method is closest to that derived by the
finite volume method, which is B L0.090 0

2
0
4- as listed in Table

6 of Valori et al. (2016).

3.2. MHD Numerical Simulated Models

Two MHD models constructed by Leake et al. (2013, 2014)
are adopted here to extract the 3D magnetic field for the
computation of magnetic helicity. The MHD models use the
visco-resistive MHD equations to simulate a magnetic flux rope
emergence from the upper convection zone into the corona.
The two models differ in the strength and orientation of the

overlying dipolar coronal magnetic field, which results in a
stable (i.e., non-eruptive, referred to as the JL stable case
hereafter) and unstable (i.e., eruptive, referred to as the JL
unstable case hereafter) configuration for each case. From the
original simulation data sets, only the coronal domain is
extracted and the magnetic field is interpolated onto a uniform
grid (for details see Valori et al. 2016). We select the following
snapshots for the computation of magnetic helicity, namely,
t t 30, 50, 85, 120, 155, 1900 = for the stable case, and
t t 30, 50, 80, 110, 140, 1500 = for the unstable case, where
t0 is the normalization factor for time.
Figures 3(a) and (b) show the QSLs and some selected

magnetic field lines for the JL stable case at the time t t 850 =
and for the JL unstable case at the time t t 1100 = . The
involved basic configuration for both cases consists of highly
sheared and twisted field lines surrounded by a prominent QSL.
All field lines within the QSL are regarded as a coherent
magnetic flux rope. The slice for the computation of Q is placed
within the xz-plane, centered at the middle point between all of
the footpoints of the flux rope. Figure 4 displays the evolution

Figure 3. QSL and magnetic field in the magnetic flux rope (a) for the JL stable case at the time t t 850 = and (b) for the JL unstable case at the time t t 1100 = . The
grayscale image on the bottom show the vertical magnetic field Bz. The magnetic field lines are colored by the magnetic field strength B∣ ∣.
(An animation of this figure is available.)
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of Q within the same slice as a function of time for the JL stable
case at times t t 30, 50, 85, 120, 155, 1900 = . Evidently, the
QSL rises and expands over time. Similar to the Titov–
Démoulin model, the axis of the magnetic flux rope is
determined as the magnetic field line that is oriented most
perpendicular with respect to the vertical slice. As shown in
Figure 4, the axis of the magnetic flux rope also rises with time.
Table 1 lists the writhe of each axis curve computed with
Equations (10)–(12). Some field lines are selected randomly for
the computation of the twist numbers within the QSL; their
cross-sections with the xz-plane are indicated by the blue plus
signs in Figure 4.

Figure 5 displays the distributions of the twist numbers for
the sample field lines as a function of distance to the axis curve
of the flux rope, for the same time instances as before. In
general, the field line closer to the axis possesses a larger twist.
The average twist for each snapshot is indicated in Figure 5 and
listed in Table 1. The magnetic fluxes within the QSL for each
snapshot are also computed within the selected slices and listed

in Table 1. Then, the magnetic helicity is computed by
Equation (14) and listed in Table 1. The total relative magnetic
helicity VH has been computed in Valori et al. (2016) with six
different volume helicity implementations, revealing a very
small spread in the obtained helicity values. Therefore, in the
following, we use the results obtained with the method of
Valori et al. (2012), based on the DeVore gauge, here for
comparison. Together with the total relative magnetic helicity

VH , the purely current-carrying parts V J,H are also computed
with the DeVore gauge and listed in Table 1. A careful
comparison shows that twistH matches V J,H within the
uncertainties for most snapshots, except at t t 500 = and 85.
The means of V Jtwist ,H H and VtwistH H for the JL stable
cases (except the case JL-S-T30 where V J,H and VH are zero)
are 1.99 and 0.16, respectively. The case JL-S-T85 contributes
a large ratio of 5.88 for V Jtwist ,H H . Excluding this case, the
means of V Jtwist ,H H for the other cases are 1.01. To compare
the writhe and twist, we compute the mean of p ∣ ∣, which is
0.089 for all cases except the JL-S-T30 case. The flux rope has

Figure 4. Distribution of the squashing degree Q in the xz-plane at y=0, namely, in the middle of the flux rope along its axis, for the JL stable models with t t0 = (a)
30, (b) 50, (c) 85, (d) 120, (e) 155, and (f) 190. The gray solid line delineates the boundary of the flux rope. A red dot indicates the position of the axis. The blue plus
signs indicate the intersection of the sample field lines, used to retrieve the flux rope twist, with the xz-plane.
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barely emerged for the JL-S-T30 case and only a small portion
is above the z=0 boundary, which might introduce a
relatively large error in measuring the writhe and twist. We
note that the uncertainties are quite large compared with the
Titov–Démoulin cases in Valori et al. (2016). In the JL cases,
the structure of the flux rope is more extended than that in the
Titov–Démoulin cases, resulting in the twist values varying
significantly across the flux rope (hence, a large dispersion and
standard deviation). The ratio E Ens is listed in the last column
of Table 1, which shows that Ens only contributes (at most) a
few percent of the total magnetic energy. Based on the analysis
in Valori et al. (2016), we conclude that the error on helicity
values due to the violation of the solenoidal property is small
enough such that our conclusions are not affected by it.

Following Equations (2)–(4), the magnetic field helicity can
be decomposed into the purely current-carrying part, and
another part contributed by the potential field and the field
generated by local currents. The above results show that the
magnetic helicity, twistH , computed by the twist method
favorably compares with V J,H , the magnetic helicity purely
contributed by the current-carrying part. To study the reason
why twistH and V J,H coincide within a magnetic flux rope, we
decompose the magnetic field B into a potential part, Bp, and a
current-carrying part BJ , with B B BJp= + . Figure 6 displays
the distribution of B Blog J(∣ ∣ ∣ ∣) on the same slice as that for the
squashing degree Q. Comparing with the Q map in Figure 4,
we find that the regions where BJ contributes a major part of the
total magnetic field, namely with B Blog J(∣ ∣ ∣ ∣) being around 0,

Figure 5. Twist of the sample magnetic field lines along the distance, r, which is measured in the xz-plane at y=0, for the JL stable models with t t0 = (a) 30, (b) 50,
(c) 85, (d) 120, (e) 155, and (f) 190.
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are mainly located within the QSL surrounding the magnetic
flux rope. Therefore, the magnetic helicity computed by the
twist method in the magnetic flux rope agrees with the helicity
purely contributed by the current-carrying part for most
snapshots. The result shown in Figure 6(b) is an exception.
The region where B Blog J(∣ ∣ ∣ ∣) around 0 is outside of the QSL
in Figure 4(b). This is because the QSLs generally do not
strictly correspond to the boundary of BJ .

We also compute the magnetic helicity with the twist number
method for the JL unstable case. The squashing degree Q is
computed on a slice as shown in Figure 3(b). The evolution of
the Q map at snapshots t t 30, 50, 80, 110, 1400 = and 150 is
shown in Figure 7. A magnetic flux rope is defined within the
QSL delineated by large Q values. The magnetic flux rope first
rises (Figures 7(a)–(d)), then detaches from the bottom
boundary (Figure 7(e)), and finally moves out of the selected
area (Figure 7(f)). The axis of the magnetic flux rope is
determined by the magnetic field line that is oriented most
perpendicular with respect to the vertical slice along the xz-
plane. The writhes of the axes at different times are listed in

Table 2. Some sample field lines are randomly selected within
the QSL surrounding the magnetic flux rope. In Figure 7(f), we
find that the axis of the magnetic flux rope has been propelled
outside of the region of interest. Therefore, we do not compute
the magnetic helicity for this snapshot.
The distributions of the twist numbers at t t 30, 50,0 =

80, 110, and 140 along the distances to the axes are displayed
in Figure 8. Similar to the JL stable case, the twist also
decreases from the axis to a distance further away from it. The
average of the twist numbers is displayed in Figure 8 and listed
in Table 2, where the magnetic flux and the magnetic helicities
computed by the twist number method and finite volume
method are also listed. The results show that twistH matches

V J,H within the uncertainties at t t 30, 500 = , and 80, while
twistH is less than V J,H at t t 1100 = and 140. The means of

V Jtwist ,H H and VtwistH H for the JL unstable cases (except
the case JL-U-T30 where V J,H and VH are zero) are 0.58 and
0.35, respectively. The mean of p ∣ ∣ is 0.091 for all the JL
unstable cases except the JL-U-T30 case at t t 300 = , at which
time the writhe is large compared to its twist. We check its axis

Figure 6. Distribution of B Blog J(∣ ∣ ∣ ∣), where B B BJ p= - , for the JL stable case at t t0= (a) 30, (b) 50, (c) 85, (d) 120, (e) 155, and (f) 190. The gray solid line,
which is the same as that in Figure 4, delineates the boundary of the flux rope.
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curve and find that it is highly coiled. However, it must be
noted that t t30 0= is a very early time in the emergence
evolution referring to, e.g., Figure 2 in Leake et al. (2014),
where the proper identification of the axis might be prone to
larger fluctuations. The ratio E Ens listed in the last column of
Table 2 indicates that the magnetic energy produced by the
non-solenoidal part only contributes (at most) a few percent of
the total magnetic energy.

To study the relationship between twistH and V J,H , we also
decompose the magnetic field B of JL unstable model into a
potential part, Bp, and a current-carrying part BJ . Figure 9
displays the distribution of B Blog J(∣ ∣ ∣ ∣) on the same slice
(Figure 3(b)) as that for the squashing degree Q. It is found that
BJ contributes the major part of B mainly at three different
places, namely, the front of the magnetic flux rope, the bottom
boundary, and the current sheet stretched by the erupting

Figure 7. Distribution of the squashing degree Q in the xz-plane at y=0, namely, in the middle of the flux rope along its axis, for the JL unstable models with t t0 =
(a) 30, (b) 50, (c) 80, (d) 110, (e) 140, and (f) 150. The gray solid line delineates the boundary of the flux rope. A red dot indicates the position of the axis. The blue
plus signs indicate the intersection of the sample field lines, which are used to retrieve the flux rope twist, with the xz-plane.

Table 2
Writhe, Twist, and Magnetic Helicity of the JL Unstable Models

Models Writhe Twist Magnetic Flux twistH VH V J,H E Ens

(Turn) (Turn) (B L0 0
2) ( B L103

0
2

0
4) ( B L103

0
2

0
4) ( B L103

0
2

0
4)

JL-U-T30 −0.63 0.16±0.07 0.0 0.0±0.0 0.00 0.00 0.058
JL-U-T50 0.00020 0.35±0.20 25 0.2±0.1 0.40 0.25 0.011
JL-U-T80 0.043 0.29±0.21 49 0.7±0.5 1.49 0.92 0.008
JL-U-T110 0.12 0.76±0.36 35 0.9±0.4 2.77 1.67 0.005
JL-U-T140 −0.035 0.62±0.26 26 0.4±0.2 3.85 1.68 0.004
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magnetic flux rope. This point is different from the JL stable
model, where BJ only contributes the major part close to the
bottom boundary and within the magnetic flux rope (Figure 6).
This difference also explains why twistH within the magnetic
flux rope deviates from V J,H in the whole computation box.
This is because there is large BJ outside of the magnetic flux
rope, as shown in Figures 9(d) and (e). Figure 9(b) is also an
exception. The region where B Blog J(∣ ∣ ∣ ∣) around 0 is outside
of the QSL in Figure 7(b).

3.3. Nonlinear Force-free Field Models

In this section, we compare the results obtained with the
twist number method with those obtained with the aforemen-
tioned DeVore volume helicity method, using NLFFF extra-
polations. In particular, we use two of the active regions studied
in Savcheva et al. (2015, 2016), one on 2007 February 12 and
the other on 2010 August 7. The flux rope insertion method
(van Ballegooijen 2004) is used to produce the NLFFF models.
More details of this method are provided in Su et al. (2011) and
Savcheva et al. (2012b). The flux rope insertion method
produces models that are in a wedge-shaped volume and in the

spherical coordinate system. However, the helicity computation
is performed in Cartesian coordinates, so we transform the
spherical to Cartesian coordinates of the grid, as in Savcheva
et al. (2012a).
The active region on 2007 February 12 produced a flare with a

GOES class smaller than B starting at 07:40UT. More details on
the observations can be found in Savcheva et al. (2015). Some
selected magnetic field lines and QSLs on a slice of the NLFFF
model are displayed in Figure 10(a). The computation box in the
range 199.3, 420.4 256.4, 42.1 0.0, 112.3´ - - ´[ ] [ ] [ ]Mm
is resolved into a uniform Cartesian grid of 227 220 126´ ´
pixels, with 0, 0, 0( ) being the coordinates of the central point on
the disk. Since the axis of the magnetic flux rope is not along the
x- or y-axis, the slice for the computation of Q is selected at an
oblique direction, as shown in Figure 10(a). We assume that the
magnetic flux rope axis is horizontal at the position where we cut
the slice. And the normal direction of the slice points along the
overall orientation of the flux rope delineating the flux rope axis.
The axis of the magnetic flux rope is determined similarly to

the previous cases; namely, it is the field line oriented most
perpendicular with respect to the selected slice. This choice is
supported by the resulting small writhe, as listed in Table 3.

Figure 8. Twist of the sample magnetic field lines along the distance, r, which is measured in the xz-plane at y=0, for the JL unstable models with t t0 = (a) 30,
(b) 50, (c) 80, (d) 110, and (e) 140.
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The red dot in Figures 11(a) and (b) indicates the intersection
of the axis of the magnetic flux rope with the vertical slice.
However, there are some ambiguities in determining the body
of the magnetic flux rope because there are many interlaced
QSLs on the cross-section, as shown in Figures 11(a) and (b).
This seems to be common for models constructed by NLFFF
models (e.g., Savcheva et al. 2012a, 2012b; Guo et al. 2013),
since the magnetic field in observations is more complicated
than those in analytic and MHD models. The observed
magnetic fields are usually distributed intermittently, which
could introduce many bald patches (Savcheva et al. 2012a) or
magnetic null points (e.g., Schrijver & Title 2002). For
comparison, we select two connectivity domains to define the
body of the magnetic flux rope, one in an inner region
surrounded by the QSL (Figure 11(a)) and the other in a larger
region surrounded by the outermost QSL (Figure 11(b)). Some
sample field lines, their intersection with the vertical slice
denoted by blue crosses, are randomly selected in the two
regions, respectively.

The twist numbers of the sample field lines for the two
different regions are displayed in Figures 12(a) and (b), as a
function of their distances from the sample field lines to the
axis. The averages of the twist numbers are also shown in
Figures 12(a) and (b) and are listed in Table 3 as the smaller
region case (NLFFF-S-20070212) and larger region case
(NLFFF-L-20070212), respectively. Combined with the magn-
etic fluxes, the magnetic helicity, twistH , can be computed by
Equation (14). We find that twistH in the NLFFF-L-20070212
case matches V J,H within the uncertainties.
Similar to the above analysis, some selected field lines and a

Q map for the sigmoidal active region on 2010 August 7 are
shown in Figure 10(b). Figures 11(d) and (e) show two vertical
slices, with different domains selected to outline the body of
the flux rope. The distributions and averages of the twist
numbers are displayed in Figures 12(c) and (d). We list the
writhe, twist, magnetic flux, and magnetic helicity (computed
by the twist method and finite volume method) for both the
smaller region (NLFFF-S-20100807) and the larger region
(NLFFF-L-20100807) in Table 3. It is found that twistH is close

Figure 9. Distribution of B Blog J(∣ ∣ ∣ ∣), where B B BJ p= - , for the JL unstable case at t t0 = (a) 30, (b) 50, (c) 80, (d) 110, (e) 140, and (f) 150. The gray solid line,
which is the same as that in Figure 7, delineates the boundary of the flux rope.
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to V J,H for the NLFFF-S-20100807 case. The absolute values
of the twist and magnetic flux for the NLFFF-L-20100807 case
become even smaller than the NLFFF-S-20100807 case, which
derives a small absolute value of twistH . This is because the
cross-section in the NLFFF-L-20100807 case is too large.
Many field lines far away from the axis become potential,
which yields small twist numbers. At the same time, some
magnetic field lines crossing the selected slice reverse their
directions. This effect cancels the magnetic flux on the selected
slice. Table 3 also lists the ratio between the magnetic energy

contributed by the non-solenoidal field and the total magnetic
energy. This ratio is below a few percent.
The distributions of B Blog J(∣ ∣ ∣ ∣) for the cases on 2007

February 12 and 2010 August 7 are shown in Figures 11(c) and
(f), respectively. Comparing Figures 11(a) and (b) with
Figure 11(c), we find that BJ contributes the major part within
the larger region (NLFFF-L-20070212) surrounded by the
QSL. It explains why twistH of the NLFFF-L-20070212 case
equals V J,H . Comparing Figures 11(d) and (e) with
Figure 11(f), we also find that BJ contributes the major part

Figure 10. QSL and magnetic field lines in the magnetic flux rope for the magnetic extrapolation models (a) at 06:41 UT on 2007 February 12 and (b) at 17:00 UT on
2010 August 7. The color-scale image at the bottom shows the vertical magnetic field Bz. The magnetic field lines are green.

(An animation of this figure is available.)

Table 3
Writhe, Twist, and Magnetic Helicity of the NLFFF Models

Models Writhe Twist Magnetic Flux twistH VH V J,H E Ens
(Turn) (Turn) (1020 Mx) (1040 Mx2) (1040 Mx2) (1040 Mx2)

NLFFF-S-20070212 0.22 1.14±0.15 1.8 3.6±0.5 106±11 20.5±0.2 0.043
NLFFF-L-20070212 0.22 0.57±0.32 5.8 19.5±11.0 106±11 20.5±0.2 0.043
NLFFF-S-20100807 −0.072 −0.72±0.19 11.5 −95.7±25.4 −570±97 −164±1 0.061
NLFFF-L-20100807 −0.072 −0.09±0.31 3.3 −0.9±3.3 −570±97 −164±1 0.061
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within the larger region (NLFFF-L-200100807) surrounded by
the QSL. But twistH is close to V J,H in the smaller region
(NLFFF-S-200100807). We have found that this is because the
considered region is too large and the twist and magnetic flux
for the flux rope are not accurate. Table 3 also shows that the
absolute value of twistH in the smaller region (NLFFF-S-
20100807) is less than the absolute value of V J,H . This point
can also be explained by the distribution of B Blog J(∣ ∣ ∣ ∣), as
shown in Figure 11(f). The dominant region of BJ , where

B Blog J(∣ ∣ ∣ ∣) is close to 0, is larger than the smaller region, as
shown in Figure 11(d).

4. Summary and Discussion

We present a first systematic analysis of the magnetic helicity
computed using the twist number method (Guo et al. 2010, 2013),
and relate its performance to an existing and well-tested finite
volume method. The input magnetic field configurations are either
in the form of analytical (i.e., Titov–Démoulin) or numerical

(MHD and NLFFF) models. The magnetic field models can be
force-free (Titov–Démoulin and NLFFF) or not (MHD simula-
tions). Our results suggest that the twist number method delivers
helicity estimates, twistH , in line with V J,H (the magnetic helicity
purely contributed by the current-carrying part) derived using a
finite volume method, within the uncertainties for the semi-
analytic models and MHD simulation cases. It also delivers
similar values for NLFFF cases, given that the flux rope boundary
is selected carefully.
To provide a quantitative comparison of twistH , V J,H , and

VH , we make some statistics for the ratio of the following three
pairs of variables, namely, twist twistH (where twist marks the
error of twistH ), V Jtwist ,H H , and VtwistH H . For the JL stable
and unstable models, we exclude the cases JL-S-T30 and JL-U-
T30, where all the values are zero and the ratios are not defined.
For the NLFFF models, we only consider NLFFF-L-20070212
and NLFFF-S-20100807, where twistH is closer to V J,H for
each case than the other two cases. The means of twist twistH ,

V Jtwist ,H H , and VtwistH H for all the considered cases are

Figure 11. Vertical slices of the Q map that are perpendicular to the axes of the flux ropes, for the NLFFF models at (a) and (b) 06:41 UT on 2007 February 12, and at
(d) and (e) 17:00 UT on 2010 August 7. The gray solid line delineates the boundary of the flux rope. The red dot indicates the position of the axis. The blue plus sign
indicates the starting points of the sample field lines. (c) Distribution of B Blog J(∣ ∣ ∣ ∣), where B B BJ p= - , for the slice at 06:41 UT on 2007 February 12. (f) Similar
to panel (c) but for the slice at 17:00 UT on 2010 August 7.
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51.1%, 125.6%, and 23.4%, respectively. We find that within
the errors of twistH , its value matches V J,H better than VH . The
agreement within error bars of twistH and V J,H is valid for most
models, as demonstrated here and also in Valori et al. (2016).
The physical reason is that in a magnetic flux rope the magnetic
field is mainly contributed by the local current. For those cases
where twistH deviates from V J,H , the magnetic field is either
fully dynamical (JL-U-T110 and JL-U-T140, as listed in
Table 2) or topologically very complicated (NLFFF-S-
20100807 and NLFFF-L-20100807, as listed in Table 3). In
these cases, the local currents extend beyond the volume in the
magnetic flux rope structure.

To quantify the contribution of the writhe to the self-helicity
in the test cases, we compute the polar writhe that is applicable
to open curves (Berger & Prior 2006; Prior & Neukirch 2016).
The mean of p ∣ ∣ is 0.12 for all the cases listed in Tables 1,
2, and 3 except the cases JL-S-T30, JL-U-T30, NLFFF-S-
20070212, and NLFFF-L-20100807. Therefore, the magnetic
helicity contributed by the twist is the dominant component
over the part by the writhe. Together with the large
uncertainties in computing the twist number, which is 51.1%
on average, the contribution of the writhe to the self-helicity
could be neglected in these test cases. For the cases with large
writhe, the self-helicity should be computed with

pself
2  = + F( ) , where both the writhe and twist are

included.
In terms of the field topology, the magnetic helicity is

divided into a self-helicity and mutual helicity, as expressed in

Equation (9), where the self-helicity is contributed by both the
twist of a sample field line referred to its axis and the writhe of
the axis itself. In this paper, we compute the helicity
contributed by the twist; meanwhile, the helicity contributed
by the writhe could be neglected, since most magnetic flux
ropes do not have an obvious kink. Thus, twistH here is a good
proxy for the self-helicity, while for the finite volume method
as expressed in Equations (2)–(4), the magnetic helicity is
divided by the purely current-carrying part, V J,H , and another
part V JP,H . Since we have found that twistH (equivalent to the
self-helicity in this paper) coincides with V J,H , it seems that

V J,H could also be interpreted as the self-helicity. We
emphasize, however, that this interpretation is to be treated
with caution, because the self-helicity is only a concept to help
us to understand the magnetic helicity if one regards the
magnetic field to be composed of a finite number of flux tubes
(or, flux ropes in the case of an existing local current). As
explained in Démoulin et al. (2006), the self-helicity becomes
negligible when the number of flux tubes, N, approaches
infinity, because the ratio between the self-helicity and the
mutual helicity in Equation (9) decreases as N1 .
Although the self-helicity “vanishes” when the magnetic field

is thought of as being composed of an infinite number of flux
tubes, the concept is still useful. As demonstrated in this paper,
we could derive the self-helicity for a very extended (with finite
size) magnetic flux rope. And the results are comparable to those
derived by the finite volume method. Under the assumption of a
finite number of flux tubes, we might improve the computation

Figure 12. Twist of the sample magnetic field lines along the distance, r from the flux rope axis, which is measured in the Q slice plane as shown in Figure 10, for the
NLFFF models on (a) 2007 February 12 and the sample field lines in a small area as shown in Figures 11(a) and (b) for 2007 February 12 and the sample field lines in
a large area as shown in Figures 11(b) and (c) for 2010 August 7, and the sample field lines in a small area as shown in Figures 11(d) and (e) for 2010 August 7 and the
sample field lines in a large area as shown in Figure 11(e).
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with the aid of the mutual helicity method, e.g., the internal
angle method proposed in Démoulin et al. (2006). With this
method, it is possible to divide an extended magnetic flux rope
into smaller flux tubes, thus deriving more accurately the
magnetic helicity. Some preliminary tests have been presented in
Yang et al. (2016). Alternatively, one may use the method of the
field line helicity (Yeates & Hornig 2014, 2016; Russell
et al. 2015) to study the helicity-flux distribution per field line.
This method distinguishes the internal topology of a magnetic
flux rope, and its integration over a cross-section provides the
total magnetic self-helicity. Corresponding in-depth studies are
envisaged for the future.
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