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No genetic association between attention-deficit/hyperactivity disorder and Parkinson´s disease 
 
Abstract 
Attention-Deficit/Hyperactivity Disorder (ADHD) and Parkinson’s disease (PD) involve pathological 
changes in brain structures such as the basal ganglia, which are essential for the control of motor and 
cognitive behavior and impulsivity. The cause of ADHD and PD remains unknown, but there is 
increasing evidence that both seem to result from a complicated interplay of genetic and 
environmental factors affecting numerous cellular processes and brain regions. To explore the 
possibility of common genetic pathways within the respective pathophysiologies, nine ADHD 
candidate Single-Nucleotide Polymorphisms (SNPs) in seven genes  were tested for association with 
PD in 5333 cases and 12019 healthy controls: one variant respectively in the genes coding for 
Synaptosomal-Associated Protein 25k (SNAP25), the dopamine (DA) transporter (SLC6A3; DAT1), DA 
receptor D4 (DRD4), serotonin receptor 1B (HTR1B), tryptophan hydroxylase 2 (TPH2), the 
norepinephrine transporter SLC6A2 and three SNPs in cadherin 13 (CDH13). Information was 
extracted from a recent meta-analysis of five Genome-Wide Association studies, in which 7,689,524 
SNPs in European samples were successfully imputed. No significant association was observed after 
correction for multiple testing. Therefore, it is reasonable to conclude that candidate variants 
implicated in the pathogenesis of ADHD do not play a substantial role in PD.  
 
Keywords: ADHD, Parkinson´s disease, GWAS, SNPs, CDH13, dopamine transporter  
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Introduction 
Attention-Deficit/Hyperactivity Disorder (ADHD) is a clinically heterogeneous neurodevelopmental 
syndrome with an onset in childhood, which persists at least partially into adulthood in up to 60% of 
patients (Gerlach and Romanos, 2014). Patients with ADHD show characteristic symptoms of age-
inappropriate inattention, impulsiveness, and motor hyperactivity. Parkinson’s disease (PD) is a 
common and complex neurological disorder with age as a dominant risk factor. Prevalence and 
incidence increase nearly exponentially with age and peak after the age of 80 (Kalia and Lang, 2015). 
PD has long been characterized by the classical motor symptoms bradykinesia, rigidity and/or resting 
tremor. However, PD is now recognized as a heterogeneous disease, with clinically significant non-
motor features including olfactory dysfunction, cognitive impairment, psychiatric symptoms, sleep 
disorders, and impulse control disorders (Kalia and Lang, 2015). 

There is increasing evidence from imaging studies that disturbances in cortico-basal ganglia-thalamo-
cortical circuits may contribute to the development of motor, cognitive and impulsive symptoms 
seen in both ADHD and PD (Geng et al., 2006; Mehler-Wex et al. 2006: Gerlach and Romanos, 2014; 
Volkmann et al. 2010). Cognitive and executive dysfunction is prevalent in both disorders (Craig et al., 
2016; Goldman et al., 2015). Impulse control disorders including compulsive gambling, shopping, 
sexual behaviors, and eating occur relatively frequently in PD (Ramirez-Zamora et al. 2016) and are 
often observed as an adverse reaction to PD treatment with dopaminergic drugs and deep brain 
stimulation of the subthalamic nucleus (for review, see Volkmann et al., 2010). Dopamine (DA) has 
long been known to be a crucial modulator of striatal processing of cortical and thalamic signals, 
mediated through glutamatergic synapses on the principal striatal neurons (medium spiny). 
Regulation of these neurons by DA is important for a wide array of psychomotor functions ascribed 
to the basal ganglia, including motor, cognitive and motivational functions. In PD, motor symptoms 
are largely the consequence of a progressive degeneration of cells in the pars compacta of the 
substantia nigra (SN), which constitute the nervous system’s most important DA suppliers (Gibb & 
Lees, 1991). Abnormalities of the SN have also been demonstrated with transcranial sonography, 
with children with ADHD (Romanos et al., 2010)  as well as PD patients (Berg et al., 2001) showing a 
hyperechogenic SN. Available symptomatic therapies for ADHD and PD both target the dopaminergic 
system (Gerlach and Romanos, 2014; Walitza et al., 2014; Kalia and Lang, 2015) by using drugs that 
enhance intra-cerebral DA concentrations and/or stimulate DA receptors.  
 
The cause of ADHD and PD remains unknown, but there is increasing evidence that both seem to 
result from a complicated interplay of genetic and environmental factors affecting numerous cellular 
processes and brain regions (Kalia and Lang, 2015; Gerlach and Romanos, 2014). Based on the 
common neurobiological pathways implicated in the development of motor, cognitive and impulsive 
symptoms seen in ADHD and PD, the aim of this study was to examine whether there is a genetic 
association between ADHD and PD. Interestingly, a recent study has shown that copy number 
variations at the PARK2 locus, contribute to the genetic susceptibility to ADHD (Jarick et al. 2014). 
Mutations in the PARK2 gene have been reported to cause autosomal recessive juvenile PD (Crosiers 
et al. 2011). The PARK2 gene encodes parkin, which has been suggested to increase DA uptake by 
enhancing the ubiquitination and degradation of mis-folded DA transporter (Jiang et al. 2004). 
Nine variants in seven genes were tested for association with PD based on an extensive literature 
review of genome-wide association studies (GWAS) and meta-analyses on ADHD involving single 
nucleotide polymorphisms (SNPs): four variants in the genes coding for Synaptosomal-Associated 
Protein, 25kDa1 (SNAP25), the DA transporter (SLC6A3; DAT1), DA receptor D4 (DRD4) and serotonin 
receptor 1B (HTR1B) (Forero et al., 2009; Gizer et al., 2009), three SNPs in cadherin 13 (CDH13) 
(Lasky-Su et al., 2008; Lesch et al., 2008; Neale et al., 2010), and single SNPs located within the genes 
coding for tryptophan hydroxylase 2 (TPH2) and the noradrenaline transporter SLC6A2 (Park et al., 
2013; Sengupta et al., 2012).  
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Materials and Methods 

We re-analyzed data from a recent meta-analysis of GWAS on PD (International Parkinson Disease 
Genomics Consortium, 2011) specifically for association of risk variants in ADHD candidate genes 
with PD. The International Parkinson Disease Genomics Consortium (IPDGC) is an international 
collaboration of genome-wide association studies in PD. The total cohort comprised 5,333 PD cases 
and 12,019 controls from European ancestry. This dataset included five GWA studies with patients 
and controls from the USA, the UK, France and Germany. All samples have been genotyped using 
Illumina platform and underwent extensive quality control criteria. Imputation has been performed 
using the Markov chain–based haplotyper (version 1.0.16) yielding a total of 7,689,524 SNPs. GWAS 
has been undertaken using logistic regression models. Details on the cohort and analyses are 
published elsewhere (Spencer et al., 2011). Nine ADHD risk variants described above were tested for 
association with PD. Reported p-values are not corrected for multiple testing.  
 
Results 
As shown in table 1, the SNP rs1843809 in TPH2 was nominally associated with PD (uncorrected 
p=0,037). Here, the more frequent T allele showed a protective effect, while the G allele was 
identified as risk variant. However, after using Bonferroni correction for multiple testing, the 
association became non-significant. None of the other analyzed variants showed a significant p-value 
(Table 1). No substantial heterogeneity was detected in the analyzed cohort.  
 
Discussion 
Our hypothesis that risk variants in candidate genes for ADHD would also be significantly associated 
with PD could not be confirmed in this study.  

Although ADHD is a developmental disorder with an onset in childhood while PD is a degenerative 
disease associated with older age, ADHD and PD share abnormalities in cortico-basal ganglia-
thalamo-cortical circuits, which contribute to motor, cognitive and impulsive symptoms in both 
disorders. The SNPs analyzed in our study were selected because they were located within genes 
coding for proteins that are involved in the regulation of dopaminergic, noradrenergic and 
serotonergic neurotransmission, which in turn is implicated in the development of motor, cognitive 
and impulsive symptoms seen in ADHD and PD. DAT1 is a pre-synaptically located protein that plays a 
key role in regulating the DA concentrations in the synaptic cleft by removing DA from the synaptic 
cleft and returning it to the pre-synaptic neurons (Giros et al. 1996). Reduced DAT1 density and 
reduced binding of the remaining DAT1 has been reported in the striatum of PD patients (Galvin et 
al., 2006). In contrast, neuroimaging studies demonstrated an increased density of DAT1 in the 
striatum of ADHD patients (Fusar-Poli et al. 2012). SNAP25 constitutes part of the SNARE complex 
and is crucial for general neurotransmitter release (for a review, see Rizo & Südhof, 2002). A mutant 
mouse model of SNAP25 showed that the SNARE complex might be involved in the localization and 

accumulation of -synuclein, a protein of unknown function that is located primarily in the 
presynaptic vesicles and modulates the DAT1 function (Sidhu et al. 2004). CDH13 propagates 
neuronal growth and brain plasticity. It is an interesting candidate for PD since it supports motility, 
growth and proliferation of neuronal cells (for a review, see Philippova et al., 2009) and is expressed 
in brain regions affected in PD (Takeuchi et al., 2000). Sequence variations in this gene may 
compromise the protein’s function as a negative regulator of axonal growth during development and 
its protective properties against oxidative stress (Philippova et al., 2010), and ultimately play a role in 
the progressive cell loss in PD. 

It is conceivable that despite an underlying common genetic basis, the proposed genetic structure of 
most psychiatric disorders prevents the detection of contributing variants by means of GWAS. In 
psychiatric conditions, state-of-the-art genetic theories assume an interaction of a multitude of 
genes (both common and rare variants) with small effect. Precisely for this kind of genetic 
architecture, GWAS are ill-suited to detect the contributing variants. Hence it is possible that genes 
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showing up in GWAS on ADHD might be reflective of very specific forms of ADHD, where those 
variants are of high penetrance and immediate consequence and produce a distinct phenotype. The 
SNPs analyzed in our study were selected because they are situated within genes which code for 
products implicated in the etiopathogenesis of both disorders. Although no association survived 
correction for multiple testing, the putative roles of those genes for PD shall briefly be expanded 
upon. The negative finding regarding DAT1 is in line with a study on a Japanese sample, which could 
not confirm an association of the 3’ UTR VNTR polymorphism with PD, suggesting that the 
investigated polymorphism (Higuchi et al., 1995) is of limited importance for the etiopathogenesis of 
PD both in Asian and European populations. However, it has to be noted that there are some positive 
reports as well. Morino et al. (2000) found a non-functional base exchange in exon 9 (1215A/G) to be 
less common in PD, and there are reports of an association of other polymorphisms within this gene 
with the disorder (Juyal et al, 2006; Le Couteur et al, 1997). 

However, putting our findings into perspective, there is doubt on common genetic bases in terms of 
variants with large effects for both PD and ADHD. Several independent lines of evidence support that 
conclusion. Firstly, a diagnosis of ADHD demands an early onset in childhood despite a high tendency 
to persist into adulthood, whereas PD patients typically experience the first symptoms late in life – 
the exception being rare recessive PD which typically has an early age of onset. It is conceivable that 
for ADHD - a disorder which emerges at a time where particularly the prefrontal cortex as the seat of 
cognitive control is still undergoing maturational processes (Shaw et al., 2006) and thus making it 
particularly vulnerable for disturbances - a different set of genes or genetic variants might be acting 
together to shape the developmental course of the brain. Furthermore, it is important to bear in 
mind that the two forms of PD have extremely different heritabilities, since most published GWAS on 
PD include only the sporadic and less strongly genetically triggered variant of the disorder, where a 
putative common genetic background is more complex. While familial PD shows relatively consistent 

associations with mutations in genes like SNCA encoding -synuclein, PARK2, PINK1, PARK7 and 
LRRK2 (Lesage & Brice, 2009), the predominant sporadic variant of the disorder seems more related 
to combinations of common variants within several genes. So it stands to reason that sporadic PD 
and the largely familial ADHD overall have divergent etiologies on a genetic level. 
 
Conclusion  
In a European sample, ADHD candidate SNPs within the genes coding for CDH13, DRD4, HTR1B, 
SLC6A2 (NET1), SLC6A3 (DAT1), SNAP25 and TPH2 were not associated with PD after correction for 
multiple testing. An overlap in the genetic architecture of both disorders cannot be ruled out, 
although traditional candidate genes in ADHD do not show a major effect in PD. 
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Table 1: Results for Attention-Deficit/Hyperactivity Disorder candidate Single Nucleotide 
Polymorhpisms in Parkinson’s Disease Meta-Analysis  
 

Gene SNP 
Effect allele / 
Other allele 

Allele 
Frequency 

P value Effect Het p 

CDH13 rs6565113 T/G 0.53 0.20 0.032 0.76 

CDH13 rs11646411 C/G 0.88 0.92 0.004 0.73 

CDH13 rs7187223 A/G 0.96 0.65 -0.028 0.58 

DRD4 rs1800955 T/C 0.65 0.70 -0.0115 0.63 

HTR1B rs6296 C/G 0.74 0.16 0.0405 0.45 

SLC6A2 (NET1) rs3785143 T/C 0.091 0.958 0.0023 0.075 

SLC6A3 (DAT1) rs27072 T/C 0.17 0.35 -0.031 0.33 

SNAP25 rs3746544 T/G 0.65 0.97 9.00E-04 0.17 

TPH2 rs1843809 T/G 0.85 0.037* -0.071 0.77 

 
*nominal significant; shown p values are not corrected for multiple testing; Het p = heterogeneity p 
value; data derived from the PD meta-analysis (Nalls et al., 2011) 
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