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Abstract

This paper documents our experience of organising a medium-size
programming contest for second year university students—an ex-
periment we conducted as an attempt to introduce them to com-
putational geometry. The main effort in organising the event was
implementation of a solid infrastructure for testing and ranking so-
lutions. For this, we employed functional programming techniques.
The choice of the language and the paradigm made it possible for
us to engineer, from scratch and in a very short period of time, a
series of robust geometric primitives and algorithms, as well as im-
plement a scalable framework for their randomised testing.

We describe the main insights, enabling efficient random testing
of geometric algorithms, and report on our experience of using the
testing framework to ensure the quality of our ranking artifacts.

1. Introduction

Imagine that we are put in charge of a museum that contains a large
number of galleries, exhibiting precious pieces of art. Naturally,
not all visitors of the museum are well-behaved, and some of them
might try to vandalise the paintings and installations. In order
to prevent this from happening, we will have to install security
cameras in each gallery. While the cameras can observe all area
around them as far as their line of sight is not interrupted by some
obstacles (e.g., walls), alas, they cannot move. They are also quite
expensive, so we will not be able to buy too many of them, and
instead we should choose their locations wisely. Therefore, the
problem is as follows: for each given gallery, find such locations,
so security cameras installed in them would be able to survey the
entire gallery’s surface, while minimising their number.

This setup describes the famous Art Gallery Problem (AGP),
posed by Victor Klee in 1973 [7, 22]. Even though the problem’s
description is simple, as it is the case with many problems of com-
putational geometry, AGP itself is proven to be NP-hard [17], there-
fore, no efficient way to find its optimal solution in a general case is
known to date. However, many sufficiently good, although not op-
timal, algorithms have been proposed for solving AGP [22], with
the upper boundary on the size of set of cameras bn

3
c (where n is a

number of vertices in the gallery polygon) proved by Chvátal [2].
We drew inspiration from the variety of existing AGP algo-

rithms, whose optimality depends on the properties of a polygon,
to turn the Art Gallery Problem into an ICFP-style programming
contest [8] for second year computer science students, introducing
them to problems of computational geometry. The five days-long
event, dubbed the Art Gallery Competition, during which the stu-
dents were supposed to implement the best solution for the prob-
lem, has been organised as a part of the standard Software Engi-
neering course offered by our department.

In order to make grading and ranking of the solutions in the com-
petition of such scale feasible, we designed a framework for check-

ing AGP solutions, implemented as a web-server, which ran during
the time span of the event. While efficiency of solution checking
was important (we wanted to provide automated feedback to stu-
dents as fast as possible), what was far more important for us was
robustness of our geometric machineries. In the competition, we
fixed the set of problems (making it to be 30 large galleries of dif-
ferent shapes with floating-point coordinates), allowing the partic-
ipants to submit any solution candidates, which we then checked
for validity and optimality, ranking them accordingly. Therefore,
we could not afford our checker to crash on arbitrary inputs.

There was no ready solution for our task, which could be easily
integrated into a lightweight server-side application, so we had to
develop our checking framework from scratch. For this quest, we
chose a functional programming language with an expressive type
system and a rich set of abstractions for server-side concurrent pro-
gramming. Luckily, in such setting, we could also efficiently ensure
the quality of our program artifacts, by applying QuickCheck-style
random testing [3] to the implemented algorithms.

In this paper we mainly focus on the testing aspect of our imple-
mentation experience, outlining the key ideas behind the abstrac-
tions that we had to develop in order to employ randomised testing
for checking and debugging geometric algorithms. We also report
on our experience of using the functional approach for implement-
ing from scratch a concurrent server-side application for automatic
checking and grading solutions during the Art Gallery Competition.

2. Overview

Choice of programming language We chose Scala as a language
for our implementation. The first reason for our choice was the rich
library of collections and higher-order functions for data process-
ing [21], provided by Scala, which we anticipated to come in handy
when processing geometric data (and this proved to be a right ex-
pectation). The second reason for choosing Scala was its expres-
sive type system with the support of implicit coercions and the
ability to emulate type class-based polymorphism [4]. This feature
of the language turned out to be essential for seamlessly switch-
ing between multiple representations of the same object (e.g., of a
point in cartesian or polar coordinates), augmenting existing data
types with extension methods (e.g., for checking ε-equivalence ≈
instead of equality for floating-point values). In combination with
the support for monadic do-notation (expressed via Scala’s for-
comprehensions), it allowed us to implement a random testing
framework, described in Section 3 and evaluated in Section 4.

Following the outlined reasons, we could also have picked
Haskell. The additional motivation to use Scala was its smooth
integration with various third-party JVM-based frameworks (most
of which are implemented in Java), e.g., for developing servlets
or sending e-mails (more on that in Section 5), that were required
in order to implement our solution-checking server. Finally, from
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def triangulate(pol: Polygon): Set[Triangle] = {
val vs = pol.getVertices
val n = vs.size
if (n ≤ 2) return Set.empty
if (n == 3) return Set(mkTriangle(vs))
val (i, j) = diagonalIndices(pol)
val p1 = Polygon(vs(j) :: vs.slice(i, j))
val p2 = Polygon(vs(i) :: vs.slice(j, n) ++ vs.slice(0, i))
triangulate(p1) ++ triangulate(p2)

}

def diagonalIndices(pol: Polygon): (Int, Int) = {
val vs = pol.getVertices
val es = pol.getEdges
val candidates = for {
i ← vs.indices.toStream
j ← i until vs.size
cand = Segment(vs(i), vs(j)) // candidate diagonal
c1 = !es.exists(e⇒ e ≈ cand || e.flip ≈ cand)
c2 = vs.forall(v⇒ v ≈ cand.a || v ≈ cand.b ||

!cand.contains(v))
c3 = es.forall(e⇒ !intersect(cand, e))
if c1 && c2 && c3

} yield (i, j)
candidates.head

}

Figure 1. Naı̈ve (and flawed) polygon triangulation.

all functional languages we knew, Scala was offering the best IDE
support, facilitating debugging and major code refactorings.

Basic data types Our main data types are points, encoded via
their cartesian or polar coordinates (with the implicit type-based
conversion between the two views), and polygons on the plane. A
polygon is represented by a list of vertices such that when “walk-
ing” along it the polygon’s interior is “on the left”. We didn’t con-
sider polygons with inner “holes” or self-intersections, and com-
puted the polygon’s properties, such as (non-)convexity, set of
edges, or relation to a specific point via standard collection com-
binators.

Typical bugs in geometric algorithms It is difficult to get even
seemingly simple geometric algorithms right from the first try.
Consider, for example, the code in Figure 1 implementing an unop-
timised triangulation algorithm, via the “ear clipping” method [18].
The function triangulate has O(n3) worst-time complexity
(where n is the number of vertices) and implements the divide-
and-conquer strategy to find a diagonal of the polygon pol (i.e., a
non-edge segment, which fully lies within it) when n > 3. It does
so by calling diagonalIndices, which computes indices i and
j of the diagonal’s endpoints vertices. The indices are then used
to split the polygon pol’s list of vertices to represent two smaller
polygons, p1 and p2, so triangulate proceeds to construct tri-
angulations recursively, until the polygon pol is itself a triangle.

The function diagonalIndices iterates through indices of
the polygon’s vertices via for-comprehension (doing this lazily,
thanks to the toStream conversion), looking for a suitable diago-
nal candidate cand. A candidate is considered suitable
if the following three conditions
hold: it is not an edge (c1), it
only contains the two vertices of
the polygon, which are its end-
points (c2), and it doesn’t inter-
sect internally any of the poly-
gon’s edges (c3). Unfortunately,
these checks are not sufficient,
which is demonstrated by the “triangulation” of the polygon on the
right (it also has some additional spurious “diagonals”). What we
forgot to check is that the candidate diagonal is also not outside of

the polygon, which could be done by adding the simple condition
c4 = pol.contains(cand.middle).

3. Randomised Testing with Polygons
The bug in the flawed polygon triangulation was one of the first
problems we caught in our geometric development. It has been de-
tected via a unit test on a polygon similar to the one in the example
above. It has soon become apparent that encoding polygons man-
ually is not a good idea, as most of the “interesting” bugs can be
discovered only on fairly large polygons (in terms of a number of
vertices) with specific configurations of edges and angles.

To automate the process of detecting geometric bugs, we de-
cided to use random property-based testing—an approach that has
been implemented in the QuickCheck tool for Haskell [3], em-
ployed subsequently with great success in various areas [12–14, 19,
23, 24], and adopted in many other languages, including Scala [20],
where it has become a part of major testing frameworks, such as
ScalaTest.1 But in order to employ QuickCheck-style random test-
ing for debugging of polygon-manipulating procedures, we first
need to supply two machineries: for generating and shrinking poly-
gons. The former procedure is required for creating arbitrarily large
inputs of various shapes, while the latter helps reducing inputs for
failing tests. In this section we describe our approach for engineer-
ing scalable and customisable strategies for doing so.

3.1 Growing random polygons
If we are asked to generate an arbitrary polygon, the simplest so-
lution will be to give a list of coordinates, describing a rectan-
gle, for instance, [(0, 0), (5, 0), (5, 2), (0, 2)].
If we need something a bit more complicated, we can choose
to “attach” another rectangle, let’s say, with initial coordinates
[(0, 0), (3, 0), (3, 3), (0, 3)], to the segment
[(4, 2), (1, 2)] of the edge [(5, 2), (0, 2)] of
our “base” rectangle. This way, we will obtain a polygon with
with the following encoding: [(0, 0), (5, 0), (5, 2),
(4, 2), (4, 5), (1, 5), (1, 2), (0, 2)].

We can then continue this process of (i) picking a suitable “prim-
itive” polygon to attach, (ii) locating an edge of a base polygon
and a segment on it (which might be the entire edge itself), where
the attachment should be deployed, (iii) attaching the primitive by
shifting, scaling and rotating it appropriately and (iv) checking that
the newly deployed attachment didn’t introduce self-intersection in
the polygon. If the step (iv) fails, we repeat the steps (i)-(iii).

This intuition summarises our method for growing polygons,
which we call Pick-Locate-Attach (PLA). Even though we have
presented it using rectangles, it can be instantiated with base and
primitive polygons of any arbitrary shape. The only requirement
for a polygon to be primitive is that it should have at least one con-
vex edge, i.e., an edge, which has the rest of the polygon in one
half-plane with respect to it (for instance, some star-shaped poly-
gons might not have convex edges). Our implementation ensures
that it is always the case before making an attempt to attach. It also
“normalises” a primitive polygon with respect to its arbitrary con-
vex edge e, shifting and scaling it, so e would be a segment [0, 1]
on the X axis, and the whole primitive polygon is in the half-plane
above it. This edge will then be used as a surface of attachment of
the scaled/rotated primitive to the base edge’s segment.

The PLA procedure, as described, might not terminate, or take
a lot of time, due to possible failures of the check in step (iv),
therefore we have instrumented it with a “fuel” parameter, limiting
the number of PLA “generations” and ensuring fast termination.

Figure 2 shows the base interface with partial implementation
(defined as a Scala trait) for random polygon generators. Its first

1 http://www.scalatest.org
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trait RandomPolygonGenerator {
val bases : List[Polygon]
val primitives : List[(Int)⇒ Polygon]
val baseFreqs : List[Int]
val primFreqs : List[Int]
val locate : Double⇒ Option[(Double, Double)]
val generations : Int
val scale : Int

// Random polygon generator
implicit val arbitraryPolygon: Arbitrary[CompositePolygon] =
Arbitrary( for {
base ← zipWithFreqs(bases, baseFreqs)
iNum ← Gen.choose(0, generations)
primG = zipWithFreqs(primitives, primFreqs)
scaleG = Gen.choose(1, scale)

} yield generatePolygon(base, primG, scaleG, iNum, locate) )

// Relative frequency-based choice generator
def zipWithFreqs[T](ps: List[T], freqs: List[Int]): Gen[T] =
Gen.frequency(freqs.zip(ps.map(Gen.const(_))): _*)

}

Figure 2. Base Scala trait for random polygon generators.

four abstract fields are used to provide, when instantiated, a set of
base and primitive polygons, along with the relative frequencies,
defining how often they should be picked. The parameter locate
is a function, determining the strategy to choose endpoints of the at-
tachment segment. Finally, the last two parameters, generations
and scale, define the maximal number of times the PLA proce-
dure should be iterated and the coefficient, used to “stretch” the
primitive once attached (hence each of primitives takes Int
as an input). What follows is the definition of the generator pro-
cedure arbitraryPolygon, defined using Scala’s monadic for-
notation, which draws random values for a base polygon and a
number of generations, as well as creates a randomised genera-
tors primG and scaleG for primitives and scales, passing them
to the generatePolygon function, implementing the PLA logic.
The CompositePolygon type will be explained in Section 3.2.

While this interface could have been generalised even further to
provide more flexibility in polygon generation, what is presented
is already higher-order enough for the needs of our project. For
instance, Figure 3(a) demonstrates a rectilinear polygon obtained
via the PLA method with 7 generations, with rectangles as the base
and primitives. The primitives are numbered as they were attached.

3.2 Trimming polygons
Once a geometry-specific property is violated, we would like to
“shrink” the polygon, which served as a test case, to investigate
the problem. However, “shrinking” here doesn’t mean “scaling”: it
stands for reducing the polygon’s size, i.e., its number of vertices.

By simply removing vertices from the polygon’s encoding, we
risk to create self-intersections. What we should do instead is to
“trim” the polygon, seeking a part of it that keeps the relevant
shape, yet reproduces the bug. For this, we exploit the nature of the
PLA method, generating a polygon as a list of attachements, which
we record via the following Scala datatype CompositePolygon
with only two constructors: BasePolygon and Attached.
sealed abstract class CompositePolygon { def pol: Polygon }
case class BasePolygon(pol: Polygon) extends CompositePolygon
case class Attached(base: CompositePolygon, e: Segment,

prim: Polygon) extends CompositePolygon {
def pol: Polygon = { /* render into actual polygon */ }
lazy val parent: CompositePolygon = computeParent(this) }

The BasePolygon case merely stores the base polygon, while
the cons-like Attached also records the base’s edge e, which
served for attachment and the primitive prim in its position right
before the attachment (i.e., shifted and scaled). We can now “ren-
der” the actual polygon by calling the pol method. Furthermore,
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Figure 3. Composite polygon H (a), and its attachment tree (b)
with A = 1, B = (2,−, A), . . . , D = (4,−, C), . . . , G =
(7,−, F ), H = (8,−, G). The attachment tree-parents might
differ from the cons-parent (e.g., in the cases of D and H).

for any composite polygon instance, we can render the whole series
of its “pre-polygons” by compiling the prefixes of the list, obtained
by unwinding its recursive structure, therefore getting meaningful
“smaller” test cases to reproduce the bug.

This is still not good enough, as this way we will only obtain
a small number of “sub-polygons”, all rooted in the base one. To
make a significant improvement, let us notice that, in fact, the way
composite pre-polygons are obtained makes it possible to arrange
them not just in a list but in a tree. By storing an attachment edge e
in Attached, we can track its origin back to a composite polygon
instance, where it has appeared for the first time. This origin will
be the “parent” of the current composite polygon. The intuition is
that we can only attach the child’s primitive if the parent has been
constructed, providing the attachment edge. We can safely ignore
“unrelated” parents in different subtrees. We call such a structure
an attachment tree, and example is given in Figure 3(b). By taking
any partial traversal (e.g., DFS or BFS) of a composite polygon’s
reversed attachment tree and rendering it as a series of primitive
attachments, one gets a valid sub-polygon of the original one.

As the last improvement to our shrinking strategy, we can no-
tice that one can traverse a reversed attachment tree starting from
any internal node, as long as the edge, establishing the link be-
tween the chosen initial parent node and its child, belongs to the
parent’s primitive attachment prim and is not a result of splitting a
previously existing edge. In this case, we can render a sub-polygon
starting from the internal node’sprim, instead of the base polygon.

To summarise, our final shrinking strategy works on the reversed
attachment tree of a randomly generated composite polygon, lazily
rendering all its traversals (including those from internal nodes)
into “candidate” polygons for reproducing the failed test.

3.3 Testing using custom polygon generators
To make use of our testing framework, one should instantiate the
interface from Figure 2 with appropriate fields. In our case, we
have several instances for generating rectilinear, quasi-convex and
particularly nasty polygons (see Figure 7). As an instance of the
locate strategy, we often use the following one, which sticks to
integer positions on edges, whose length is greater or equal than 3:
val locate = (length : Double)⇒
if (l < 3) None else {
val start = randomIntBetween(1, length - 2)
Some((start, randomIntBetween(start + 1, length - 1))) }

Once a polygon generator is defined, it can be imported into
the testing scope. The conversion from CompositePolygon to
Polygon instance is made transparent thanks to Scala’s mech-
anism of customisable implicit conversions. The following code
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1: procedure VISPARTITION(pol, VPS)
2: TS := triangulate(pol)
3: for each visibility polygon vp ∈ VPS do
4: for each edge e of vp do
5: TI := triangles from TS, properly intersected by e
6: TP := ∆-partitioning of all triangles in TI via e
7: TS := TS \ TI ∪ TP
8: return TS

Figure 4. Triangular partitioning via visibility polygons VPS.

snippet illustrates random testing of the triangulation property that
centres of all triangles are within the triangulated polygon.
test("Centres of triangles are within the original polygon") {
check((p: CompositePolygon)⇒ {
val triangles = Triangulation.triangulate(p)
triangles.forall(t⇒ p.contains(t.center))

})}

We have also implemented a number of QuickCheck-style collec-
tors to analyse distribution of random polygons in our test cases.

4. Case Study: AGP Solution Checker
How useful was our framework for testing with polygons after all?

One of the main components of the infrastructure we have de-
veloped for the competition is the checker for submitted solutions,
implemented as a part of a server, running during the contest week.
Specifically, we needed an algorithm to check whether a proposed
solution for an Art Gallery Problem instance is indeed a solution,
that is, the set of cameras can see the entire gallery. In order to as-
sess the solutions precisely and provide the feedback in a timely
fashion, we could not afford to use cheap-and-cheerful approaches,
such as random sampling or ray casting, and had to employ a proper
visibility checking algorithm. As we soon discovered, there was no
ready-to-use algorithm for this problem implemented as a JVM-
compatible library, so we had to implement it from scratch. After
having done that, we employed random testing to make sure that
our implementation is correct and sufficiently robust to serve as
checker for the length of the competition.

4.1 Constructing visibility polygons for individual cameras
Our checker for the Art Gallery Problem solutions builds on a pro-
cedure for constructing a visibility polygon (VP) of a point within a
simple polygon. For this role, we chose to implement the stack-
based plane-sweeping algorithm by Joe and Simpson [15, 16],
which runs in O(n) time. Even though this algorithm is presented
in the literature as one of the simplest and most efficient solutions
for the problem [22], in our implementation we faced a number
of subtleties, stemming from the simplifications in its presenta-
tion [15], identified via random testing (see Section 4.4).

4.2 Visibility checker for a set of cameras
Once we have implemented an algorithm for VP construction, the
problem of identifying “non-complete” solutions for AGP seemed
almost trivial: we would just need to take a union of VPs for all
cameras in the solution and check whether it is the same as the
gallery polygon itself. Unfortunately, computing the union (and,
equivalently, the difference) of two simple polygons is a challeng-
ing task, as the result of such operation might itself be a non-simple
polygon and, for instance, contain inner holes.

Instead of following this path, we based our implementation
of visibility checking and finding refutations (i.e., points within a
polygon that are not visible from any of the solution’s cameras)
on the idea of “progressive triangulation” by gradually adding con-
structed VPs and “refining” the initial triangulation TS of the poly-
gon, via intersections of VPs’ edges and “current” triangles. While
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Figure 5. ∆-partitioning of the triangle ABC via the edge e (thick
line), which intersects it, into (a) three or (b) two new tirangles.

this idea is quite simple, we didn’t encounter it in the literature on
AGP and plane visibility [10], so we describe it here.

The procedure VISPARTITION, implementing the idea of fine-
grained triangular partitioning, is presented in Figure 4. It takes as
inputs the polygon pol and a list of visibility polygons VPS, con-
structed via the Joe-Simpson algorithm for the solution’s cameras.
All triangles from the previous partition TS, “affected” by an edge e
of a polygon vp (and, hence, recorded in TI), are ∆-partitioned, as
shown in Figure 5, into three or two new triangles each. Thus, the
procedure of finding a refutation (if it exists) relies on the following
theorem, establishing an invariant for VISPARTITION’s main loop:

Theorem 4.1. The triangles in the result partition, delivered by
the procedure VISPARTITION, cover the whole polygon pol, and
each of these triangles is either fully contained within some polygon
vp ∈ VPS or is fully outside of any of them.

Proof. By two-level induction: the top-level one is on the list of
visibility polygons VPS, the inner one is on the list of the edges of
a visibility polygon vp currently being processed.

We can now iterate through the set of all obtained triangles,
checking for each of them, whether its centre is not within any
visibility polygon from VPS. If such triangle is found, its centre

C1

C2

C3

R

is the refutation, other-
wise the polygon pol is
fully covered. A result of
the algorithm, with final
triangulation, is illustrated
on the right, with dots Ci

indicating cameras, their
VPs being pink, and the
refutation R being a red
dot in the bottom, in a gray triangle, invisible by the cameras.

4.3 Tested algorithms and properties
The foremost application of our framework for random testing with
polygons was to simply check that none of the algorithms, critical
for our goals (triangulation, visibility checking, etc), crashes on ar-
bitrary large polygons and corresponding inputs. While this sounds
like a trivial safety assertion, in the case of algorithms, such as
the Joe-Simpson construction, we were surprised by the amount of
possible subtle bugs that we initially missed and that immediately
caused our implementation to crash on large non-trivial inputs.

Next, we employed randomised polygon generation for check-
ing the following properties of our project’s main algorithms:
1. Triangulation of a polygon of size n:

(a) centre of each triangle lies within a polygon;
(b) triangulation generates n− 2 (possibly degenerate) triangles;

2. Joe-Simpson algorithm for visibility polygons (VPs) [15]:

(a) a vertex of a VP is also within the original polygon;
(b) a middle point of a VP’s edge is within the original polygon;
(c) a random point within a VP is indeed visible from its origin;
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(a)

(b)

Figure 6. Randomly generated polygon (a), 260 vertices, which
exhibits the bug in Joe-Simpson visibility algorithm, and its
trimmed version (b), 20 vertices, reproducing the failed test case.

3. Triangulation-based set visibility checker (Section 4.2):

(a) a refutation (if it exists) is within the original polygon;
(b) a refutation for a set of cameras is not within any of their VPs;

4. Fisk’s basic algorithm for solving AGP [9]:

(a) delivers a solution of size within Chvátal’s boundary bn
3
c;

(b) the visibility checker finds no refutations for its result.

While this list might be incomplete, it was sufficient to reveal a
number of problems, which all were fixed, so our final implemen-
tation was robust enough to fulfill its purpose (see Section 5).

4.4 Discovered bugs
The Joe-Simpson algorithm was by far the most sophisticated part
of our geometric development. The vast majority of the problems
discovered with our implementation originated from inaccurate
treatment of results of floating-point computations. Not entirely
surprisingly, not only equalities should have been replaced by ε-
equivalences (which is a standard practice for floating points), but
also some of the inequalities (including strict ones, appearing when
comparing radial angles of two positions of a plane-sweeping ray)
had to be treated not precisely, but modulo a selected ε.

Perhaps, more surprisingly, several bugs were discovered in the
algorithm [15] itself, and below we report on three of them.

The first problem was a result of an erroneous notation, chosen
in the paper [15] in order to unify two cases of a camera position
in a polygon: on the boundary (i) and in its proper interior (ii). In
the former case, a specific treatment should be given, in fact, only
to the situation when the camera is located in the polygon’s vertex.
If it’s on an edge, but not in a vertex, it should be treated in the
same way as in the case (ii). Following the policy (i) in this case (as
suggested by the authors) leads to errors for some polygons.

The next bug is almost trivial. The algorithm is formulated as
iteration over vertices of the gallery polygon, but an important side
condition was omitted in one of the cases, leading to an index-out-

of-range error for specific configurations of angles between edges.
The fix was easy: just add the necessary boundary check.

The last problem is the most subtle and occurred only in situa-
tions when several vertices of the polygon were aligned on a line of
sight of a specific camera, with some of them visible and some oth-
ers hidden. This has been discovered on large rectilinear polygons
via the property test 2(b) from Section 4.3. An example is shown in
Figure 6(a), where cameras are put in every vertex of the polygon.
Thanks to the shrinking strategy, the testcase has been minimised
down to a polygon of size 20 (Figure 6(b)), used to locate the prob-
lem in the algorithm. In this particular case, the problem is caused
by the three vertices, with the ray origin being the rightmost bot-
tommost one. As a fix, we added the corresponding distance check
to the plane-sweeping algorithm [15], so it would exclude aligned
hidden vertices from consideration.

5. The Art Gallery Competition
While debugging and optimising individual geometric algorithms
was fun, the ultimate goal of our project was to implement a work-
ing server to run the geometric programming contest. Having very
limited time to develop the infrastructure, we made use of existing
Scala–powered frameworks for the server-side programming.

5.1 Implementing the server

The server for checking solutions was implemented using Spray,2

a Scala-based open-source toolkit for building REST/HTTP-based
applications using servlets. Spray comes with a lightweight embed-
ded web-server and builds on top of Akka [27], a Scala-powered
framework for concurrent applications, facilitating distributed re-
quest processing using Scala actors [11].

Since the participants of the competition were working in teams
of four, we distributed the workload of checking submitted solu-
tions by allocating a separate Akka actor for each team. We did
not use any specific database backend for persistent storage, re-
sorting instead to generating per-submission log files (backed up to
the cloud), managed atomically and storing all data about submit-
ted/accepted solutions as well as submission times. The front-end
webpages with scoreboards were rendered dynamically from the
stored submission data via Scala’s native support for XML.

5.2 Overall implementation effort
The server implementation for the competition is about 1500 LOC.
The implementation of geometric primitives and procedures is
1450 LOC, and the random polygon testing framework is about
350 LOC. The work on the implementation was carried out in less
than one man-month, starting from sketching the initial idea and
including the planning of the competition, multiple discussions,
playing with the random testing framework, engineering the prob-
lem sets and testing the server. Overall, we consider it to be a very
modest implementation effort for the problem, given that we had to
implement the core logic for solution checking from scratch.

5.3 Running the competition
In order to generate a set of 30 challenging galleries for the com-
petition, we employed the random polygon generating framework,
described in Section 3. The sizes of problems ranged from a cou-
ple of dozen vertices to about 500. For instance, Figure 7 features
a large polygon, which was generated using rectangles, triangles,
convex decagons, and “Chvátal’s combs” as primitives.

94 second year CS students took part in the competition, work-
ing in groups, making it 24 separate teams. None of the participants
had systematic exposure to geometric algorithms before, as they are

2 http://spray.io
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Figure 7. One of the polygons from the competition (469 vertices),
obtained by the PLA method using six primitives, including convex
polygons, rectangles, decagons and “Chvátal’s combs”.

not a part of the first or second-year curriculum. Each team has been
given unique credentials for authentication and submitting their so-
lutions. Teams were allowed to submit their batch solutions (en-
coded as ASCII text files) multiple times, improving their results.
Overall, 2360 files with solutions were submitted and processed.

We ran our server on an Intel Xeon 2.67 GHz Linux machine
with 4GB RAM. It was rejecting solutions for individual galleries
(i.e., sets of camera coordinates), which were larger than Chvátal’s
boundary bn

3
c. Checking a complete batch of solutions of this size

for all 30 galleries from the problem set was taking 1–3 minutes,
depending on the current load, which was up to 10 simultaneous
submissions. The server was running for the entire duration of the
competition without crashing or noticeable slowdowns.

Since we didn’t require to submit the code, the efficiency of
the implementations was not of the teams’ concern. As implemen-
tation languages, the students employed (in descending order of
popularity) Python, Java, JavaScript, C, C#, C++ and MATLAB.
While several teams tried to visualise the problems and find the op-
timal solutions “by hand” using the human intuition and visual in-
spections, the majority of the participants started from implement-
ing the textbook Fisk’s algorithm [9], delivering a solution within
Chvátal’s boundary. Many teams then implemented a conservative
or imprecise visibility checker, and used “greedy” algorithms in
order to optimise their solution by throwing away some of the cam-
eras and checking whether the remaining ones still cover the whole
gallery. Some other teams tried to use the server for the same pur-
pose, as an oracle, “querying” it manually and receiving the results
by e-mail, although, without much success. We were pleasantly sur-
prised by one team’s discovery of the recent result (which we were
not aware of), reducing AGP to the Set Cover Problem (SCP) [26],
which they solved using Integer Linear Programming techniques.
As the result, the team obtained optimal solutions for almost all of
the problems from our set, beating other top-ranked teams, whose
best solutions were, as we suspect, hand-crafted.

6. Discussion and Lessons Learned
We now summarise the lessons we learned from the project.

Our background and development structure When this project
started, all of us had experience with functional programming in

Haskell, OCaml and Scala, but none of us had expertise in compu-
tational geometry beyond the contents of the standard textbook [7].
Neither did we have a lot of experience with randomised testing,
Spray or Akka. Deciding to use Scala and the infrastructure it pro-
vides was, thus, a venture, which turned out to be the right choice
for our purposes, as our priorities were more towards the speed of
development and robustness, than efficiency of the final artifact.

The idea to use QuickCheck-style random testing was not pur-
sued from the beginning, but only occurred to us, once the sizes
of unit tests we had to write to exercise hypotheses about potential
problems, went beyond 30 vertices in a polygon. The necessity to
implement a shrinking strategy came even later from the fact that
debugging an algorithm on a 200-vertices polygon is unpleasant.

Using alternative implementations An alternative solution was,
indeed, to use a well-established state-of-the-art library of com-
putational geometry algorithms, i.e., CGAL.3 However, doing so
would require us to give up the opportunity of using the functional
programming benefits outlined in Section 2. It would also force us
to stick with C++ as an implementation language, or, alternatively,
sacrifice the uniformity of the core logic/server implementation.

At the very late stages of our development, right before the be-
ginning of the competition, we have asked a colleague, who had
previous experience with CGAL, to test our server by engineer-
ing solution candidates and uploading them for checking. The col-
league immediately implemented the approach with random cam-
era generation within a polygon, followed by subsequent construc-
tion of its VP (using the Joe-Simpson algorithm, which was re-
cently implemented in CGAL [1]) and taking the union of VPs for
all generated cameras. To our surprise, CGAL didn’t sustain this
stress-testing, and its VP construction implementation crashed on
several inputs from our set (one of them being of size 338). We are
currently planning to submit the bug report to the authors of CGAL.

We have also investigated existing alternative approaches to
generate random orthogonal polygons [25], but could not adopt
them, as they (a) didn’t generalise easily to arbitrary shapes and (b)
didn’t provide a natural way of implementing a shrinking strategy.

What can you learn from our experience? Lifting the hard re-
quirement for the best possible efficiency of our implementation
was, indeed, a facilitating factor, allowing us to choose the lan-
guage, which is declarative enough to make the project feasible in
the time period we could afford. For what it’s worth, from our expe-
rience, using Scala and functional programming in an educational
medium-size project involving computational geometry is not a bad
idea, and overall we had a very pleasant time developing and play-
ing with it (and so did the participants of the competition).

The classical algorithms of computational geometry are typi-
cally formulated in a very imperative fashion. For instance, the
Joe-Simpson algorithm [15] is presented in FORTRAN-like pseu-
docode with several global mutable variables and a single global
driver loop. Translating this to Scala and idiomatic functional style
was, nevertheless, fairly straightforward, essentially requiring us
to refunctionalize [6] and direct-style transform [5] the first-order
imperative code. At this point of the development, it was, indeed,
invaluable to have a good testing/debugging framework to immedi-
ately check the properties of our implementation.

For the purposes of debugging, having a good IDE really helps.
For Scala programming we used IntelliJ IDEA with the Scala plu-
gin,4 which provided great support for large code refactorings (e.g.,
consistent renaming and code relocation) and was very helpful
for debugging failed test cases, allowing us to inspect several call
frames simultaneously and re-run parts of the code at breakpoints.

3 http://www.cgal.org
4 http://blog.jetbrains.com/scala
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What didn’t work so well Scala is notorious for its long compi-
lation times, and it was the price we agreed to pay for using its ex-
pressive type system. When implementing QuickCheck-style gen-
erators (cf. Figure 2), we had to “delay” fetching of some random
values from sub-generators (e.g., primG) until later computation
stages (instead of querying them immediately in the top-level for-
comprehension), and then query them directly within the procedure
implementing PLA. There might be a more elegant way to imple-
ment this logic in ScalaCheck that we are not aware of.

7. Conclusion
We reported on our experience of taking functional programming to
the field where it is rarely used—computational geometry. We have
demonstrated that random property-based testing—a standard tool
of a working functional programmer—is applicable and highly ben-
eficial for checking and debugging realistic geometric algorithms.
Our experience shows that when the code robustness and speed of
development are of bigger concern than fine-tuned performance,
the functional programming approach provides a reasonable way
to tackle the complexities of programming geometric applications.
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