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Abstract 43 

Importance: Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is a rare 44 

disorder of N-linked glycosylation.  The retinal phenotype is not well described and could be 45 

important for disease recognition since it appears to be a consistent primary presenting feature. 46 

Objective: To investigate a series of patients with the same steroid 5α-reductase type 3 (SRD5A3) 47 

mutation thereby characterising the retinal manifestations and other associated features. 48 

Design, setting and participants: Seven affected individuals from four unrelated families presenting 49 

with early-onset retinal dystrophy (EORD) as a primary manifestation underwent comprehensive 50 

ophthalmic assessment, including retinal imaging and electrodiagnostic (EDT) testing.  51 

Developmental and systemic findings were also recorded.  Molecular genetic approaches including 52 

target-enrichment NGS, autozygosity mapping and apex microarray, were used to try and reach a 53 

diagnosis; all were mutation negative. Whole exome (WES) or whole genome sequencing (WGS) was 54 

used to identify the causative variant.  Biochemical profiling was conducted to confirm a CDG Type I 55 

defect.  56 

Main outcome measures: Detailed clinical phenotypes, genetic and biochemical results. 57 

Results: The mean age of participants at their most recent exam was 17.1 years (SD 3.9), all were of 58 

South Asian ethnicity and 71.4% of the cohort was female.  WES and WGS identified the same 59 

homozygous SRD5A3 c.57G>A, p.(Trp19Ter) variant as the underlying cause of EORD in each family.  60 

Detailed ocular phenotyping identified early-onset (≤3 years of age) visual loss (mean BCVA = +0.95 61 

LogMar (SD: 0.34)), childhood-onset nyctalopia, myopia (mean refractive error -6.71 (SD-4.22)) and 62 

nystagmus. Six of seven patients had learning difficulties and psychomotor delay.  Fundus 63 

autofluorescence imaging and optical coherence tomography scans were abnormal in all patients, 64 

and EDT revealed rod and cone dysfunction in the five patients tested. 65 

Conclusions and relevance: These data suggest mutations in SRD5A3 cause EORD, a previously 66 

under-described feature of SRD5A3-CDG that is progressive and may lead to serious visual 67 

impairment.  SRD5A3 and other glycosylation disorder genes should be considered as a cause of 68 
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retinal dystrophy even where systemic features are mild.  Further delineation of SRD5A3 associated 69 

eye phenotypes can help inform genetic counselling for prognostic estimation of visual loss and 70 

disease progression. 71 
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Text 72 

Congenital disorders of glycosylation (CDG) are a large group of neurometabolic diseases caused by 73 

impaired glycoconjugate synthesis.  Type I CDGs (CDG-I), result from disruptions in the early N-linked 74 

glycosylation pathway1.  Numerous CDG-I sub-types exist that are characterised by neurological, 75 

developmental, hepatic and coagulation abnormalities, alongside ocular, muscular, skeletal, 76 

dermatological, cardiovascular, or genitourinary involvement in some forms.1,2  Approximately 23 77 

different genes have been associated with this group of disorders.1  Steroid 5α-reductase type 3 78 

(SRD5A3, MIM 611715) encodes a polyprenol reductase enzyme required for the synthesis of 79 

dolichol, the end product of the mevalonate pathway.3  Dolichol undergoes phosphorylation to 80 

produce dolichol phosphate that serves as the lipid-anchor for N-glycan biosynthesis in the 81 

endoplasmic reticulum.3   82 

Biallelic mutations in SRD5A3 cause SRD5A3-CDG (formerly known as CDG-Iq; MIM 612379), a 83 

phenotypically variable form of CDG-I that features nystagmus, optic atrophy, visual loss, muscle 84 

hypotonia, intellectual disability and cerebellar ataxia. 3,4  Biochemically, SRD5A3-CDG is 85 

characterised by a transferrin isoelectric focusing (TIEF) pattern that is typical of CDG-I.5  Defective 86 

glycan synthesis results in altered sialotransferrin forms, detectable by charge differences and 87 

characterized by increased di- and/or asialotransferrin in cases of CDG-I.5 Kahrizi syndrome, 88 

featuring iris coloboma, juvenile cataract, contractures, kyphosis, mental retardation, motor delay 89 

and lack of speech (MIM 612713), has also been reported in association with biallelic variants in 90 

SRD5A3.6  Patients described thus far, have considerable phenotypic overlap with SRD5A3-CDG, 91 

though demonstrate a normal TIEF profile.6,7  Unlike other CDG-I subtypes, all patients with SRD5A3-92 

CDG develop abnormal ocular phenotypes and almost always experience early-onset visual loss, 93 

such that the ocular presentation can be an early and obvious disease-delineating feature.  94 
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Previous studies of this disorder focus on genetic findings in relation to the neurometabolic and 95 

developmental manifestations of the condition, with only one study having acknowledged a retinal 96 

abnormality.8  Hence, the appearance, onset and progression of the SRD5A3-CDG-related retinal 97 

phenotype is poorly understood.  We report detailed ocular and developmental phenotypes in seven 98 

individuals with early-onset retinal dystrophy (EORD), from four unrelated families who were found 99 

to harbour the same SRD5A3 mutation via whole exome (WES) or whole genome sequencing (WGS).   100 

Methods 101 

Clinical Assessment 102 
Study participants were ascertained from Manchester Centre for Genomic Medicine (Manchester, 103 

England), Moorfields Eye Hospital (London, England) and St James’s University Hospital (Leeds, 104 

England).  The Northwest Research Ethics Committee granted approval for all aspects of this study 105 

(11/NW/0421 and 15/YH/0365) and the protocol observed the tenets of the Declaration of Helsinki.  106 

Written informed consent was obtained from each study participant, or parental consent was 107 

obtained on behalf children, as an essential pre-requisite for study inclusion. 108 

Each patient underwent full ophthalmic assessment including visual acuity and dilated fundus 109 

examination.  Fundus photographs were obtained using conventional 35o colour fundus photography 110 

(Topcon Great Britain, Ltd., Berkshire, UK) or Wide-field Optos™ colour fundus imaging (Optos plc, 111 

Dunfermlin, UK).  Fundus autofluorescence (FAF) imaging was conducted using either the 55o 112 

Spectralis (Heidelberg Engineering Ltd., Heidelberg, Germany) or ultra-widefield confocal scanning 113 

laser imaging (Optos™ plc, Dunfermlin, UK).  Optical coherence tomography (OCT) was performed 114 

using the Spectralis OCT platform (Heidelberg Engineering).  Five patients underwent 115 

electroretinography (ERG), three using gold foil electrodes and performed to standards specified by 116 

the International Society for Clinical Electrophysiology of Vision (ISCEV) and two using surface 117 
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electrodes.9,10  Developmental and dysmorphology assessments were conducted by a clinical 118 

geneticist or inherited metabolic disease specialist. 119 

Molecular Investigations 120 

Genetic Analysis 121 

Target-next generation sequencing (105 gene inherited retinal dystrophy panel testing and whole 122 

exome sequencing (WES)) was conducted as previously detailed by Arno et al. (2016).11   123 

Briefly: the proband of families I and III underwent screening for a panel of 105 known inherited 124 

retinal dystrophy (IRD) genes (described in O’Sullivan et al., 2012)12 at the Manchester Genomic 125 

Diagnostic Laboratory. Family II (GC15567) underwent SNP analysis using an Affymetrix 50k Xba SNP 126 

chip (Affymetrix Inc., Santa Clara, CA, USA) on DNA samples from the parents, one affected and two 127 

unaffected children to identify regions of homozygosity in the affected child for the prioritization of 128 

candidate genes.  The proband from family IV was screened using a commercially available apex 129 

microarray for 344 published disease-causing variants in eight genes associated with Lebers 130 

congenital amaurosis (LCA) and EORD (Asper Ophthalmics, Tartu, Estonia).  The proband from family 131 

I-III underwent WES as part of an ongoing study of inherited retinal disease in families without a 132 

molecular diagnosis following targeted gene panel screening (UK Inherited Retinal Disease 133 

Consortium, UKIRDC).   134 

The affected individual and unaffected parents of family IV underwent whole genome sequencing 135 

(WGS) as part of the 100,000 Genomes Project. Briefly, genomic DNA was processed using the 136 

Illumina TruSeq DNA PCR-Free Sample Preparation kit (Illumina Inc) and sequenced using an Illumina 137 

HiSeq X Ten, generating minimum coverage of 15X for >97% of the callable autosomal genome.  138 

Reads were aligned to build GRCh37 of the human genome using the Isaac aligner (Illumina Inc). 139 

SNVs and indels were identified using Platypus v0.8.1 and annotated using Cellbase 140 

(https://github.com/opencb/cellbase).  Variant filtering was performed using MAF in publicly 141 

available and in-house datasets, predicted protein impact and familial segregation. Surviving variants 142 
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were prioritized using two prespecified virtual gene panels from PanelApp 143 

(https://bioinfo.extge.co.uk/crowdsourcing/PanelApp/): Intellectual disability v1.2, which includes 144 

SRD5A3, and Posterior segment abnormalities v1.7. Allelic state was required to match the curated 145 

mode of inheritance for variants in panel genes. 146 

The SRD5A3 c.57G>A p.Trp19Ter homozygous variant (GenBank accession NM_024592) was 147 

confirmed by Sanger sequencing using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 148 

Biosystems Corporation, Foster City, Ca, USA). 149 

Biochemical Studies 150 

Where samples were made available, Type I N-glycosylation defect was confirmed using isoelectric 151 

focussing of serum transferrin and blood coagulation studies.5 152 

Results 153 

Patient Phenotypes 154 

The mean age of participants at their most recent exam was 17.1 years (SD 3.9), all were of South 155 

Asian ethnicity and 71.4% of the cohort was female.  Phenotypes are summarized in Table 1. 156 

Family I 157 

Family I, originally from India, had a history of consanguinity and no prior family history of health 158 

problems. 159 

The proband, patient I.I, from family I (G40001, Figure 1) was born slightly under-weight at 6lbs and 160 

was mildly jaundiced after birth. A developmental and dysmorphology assessment by a clinical 161 

geneticist found only mild developmental delay.  She walked at 18 months and developed speech at 162 

the normal time.  She attended mainstream school where she received assistance because of her 163 

visual problems, but was able to complete the same level of work as her peers. 164 
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At five weeks of age she was not fixing and following but was otherwise well.  At the age of 5 years, 165 

ophthalmic review identified a decline in visual acuity; fundus imaging and electrophysiological 166 

testing led to a preliminary diagnosis of CSNB (Table 1 and Figure 2).  At her latest visit at 20 years of 167 

age, right and left best-corrected visual acuity (BCVA) measured 1.5 Logmar (20/800 Snellen 168 

equivalent) with a mild myopic refractive error (Table 1).  Fundus autofluoresence (FAF) imaging was 169 

also abnormal (Figure 2). 170 

Patient I.II was born at term following an uneventful pregnancy and was otherwise fit and well.  At 171 

five years of age, she was described as being hyperactive with an attention deficit and suffering from 172 

frequent sleep disturbances.  At age 7 years, examination by a clinical geneticist diagnosed a social 173 

communication disorder, behavioural problems and learning difficulties.  Dysmorphology 174 

assessment identified thick hair, thick gums, coarse facies and slender, tapered fingers.   175 

Aged 2 months, I.II presented with multi-planar nystagmus.  On examination, she was found to be 176 

mildly myopic, while fundoscopy revealed only attenuated retinal blood vessels and ERG 177 

demonstrated no recordable response in the dark (Figure 2 and Table 1).  FAF at 3 years was also 178 

abnormal (Figure 2).  At age 7 years, she began to report symptoms of nyctalopia. 179 

  Family II 180 

The proband (II.I) and her affected sister (II.I) from family II (GC15567, Figure 1) were born to first 181 

cousin parents of a family originating from Gujarat, India.   182 

Examination of patient II.I by a clinical geneticist found delayed motor and speech development 183 

with associated learning difficulties at young age.  She was found to have variable manifest 184 

nystagmus and myopia at age 18 months.  At five years of age, her BCVA measured 3/12 single Kays 185 

(0.60 logMAR equivalent; 20/80 Snellen equivalent) in the right and left (Table1).  Electrodiagnostic 186 

testing at the age of 11 years identified both rod and cone system dysfunction.  In her second 187 

decade she became symptomatic with nyctalopia and photophobia.  Funduscopic, FAF and OCT 188 
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examinations identified multiple abnormalities indicative of retinitis pigmentosa (RP) (Table 1, Figure 189 

2 and Figure 3). 190 

Patient II.II was reviewed by a paediatrician aged 18 months and found to have normal muscle tone 191 

but increased, brisk reflexes and mild hyperkeratosis on the right leg.  She also had developmental 192 

delay and learning difficulties with normal growth parameters, with a normal skeletal survey.  She is 193 

particularly anxious and has a very short memory.  194 

II.II was found to have pendular nystagmus and roving eye movements at 3 months of age.  195 

Electrodiagnostic testing at the age of 7 years suggested rod and cone dysfunction.  By the age of 15 196 

years her myopia increased and she was experiencing poor night vision and photophobia.  Fundus, 197 

FAF and OCT examinations were abnormal and indicative of RP in the absence of pigmentary 198 

changes (Table 1, Figure 2 and Figure 3). 199 

  Family III 200 

The affected sibling pair from family III (LDS3659, Figure 1) were born to apparently non-201 

consanguineous parents originating from India. 202 

Patient III.I experienced learning difficulties from a young age and was described as having a slightly 203 

‘clumsy’ walking style.  She was noticed to have poor visual behaviour, by her family within the first 204 

year of life.  A myopic refractive error was detected at 18 months, which progressed to high myopia 205 

by the age of 16 years (Table 1).  Examination of the fundus, by colour and FAF imaging, revealed 206 

abnormalities suggestive of retinal pigment epithelium (RPE) malfunction (Table 1 and Figure 2).  207 

OCT scans were corroborative of this and indicated loss of outer segment structures with complete 208 

loss of photoreceptor layer (Figure 3). 209 
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Patient III.II, when examined aged 14 years, was found to have an ataxic gait and reduced upper 210 

limb co-ordination- both signs of mild cerebellar disease.  He also demonstrated global 211 

developmental delay and experienced recurrent respiratory tract infections.   212 

He experienced loss of vision with associated roving eye movements between two and three years 213 

of age.  He also presented with early-onset nyctalopia and high myopia (Table 1).  Ophthalmic 214 

examination revealed abnormalities similar to those of his brother apart from a small region of 215 

photoreceptor preservation within the central macular (Table 1 and Figure 3).   216 

Family IV 217 

The proband (IV.I) from family IV, a male, was born to apparently non-consanguineous parents 218 

originating from India (GC15063, Figure 1).  Examination of patient IV.I at 4.5 years of age identified 219 

developmental delay, learning difficulties and abnormal curvature of the spine (Table 1).  220 

Ophthalmic history revealed infantile-onset nystagmus and reduced vision.  At 4.5 years, he was 221 

found to have reduced visual acuity (0.60 logMAR RE and LE) and myopia (Table 1).  At his most 222 

recent examination at 24 years of age, his vision had deteriorated (Table 1) and fundus exam 223 

revealed retinal vessel attenuation and pale optic discs (Figure 1).  ERG indicated both rod and cone 224 

dysfunction (Table 1) and OCT scan revealed loss of outer segments structures with relative 225 

preservation of the central macular, bilaterally (Figure 3). 226 

Molecular Analysis 227 

Clinically available genetic testing did not identify any potentially pathogenic variants in 105 known 228 

retinal dystrophy genes in the proband of families I and III.  Autozygosity mapping and candidate 229 

gene sequencing did not identify any pathogenic variants in the proband of family II.  Apex array 230 

analysis in patient IV.I was also mutation negative.  Subsequent WES or WGS led to the identification 231 

of SRD5A3 c.57G>A, p.(Trp19Ter) homozygous variant in each proband.  Sanger sequencing 232 

confirmed the presence and zygosity of this variant in every affected member of each family. The 233 
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SRD5A3 p.(Trp19Ter) variant has an allele frequency of 0.001174 in 4684 controls of South Asian 234 

ethnicity, according to the ExAC dataset.  In homozygous state, this same variant has been described 235 

as the cause of SRD5A3-CDG in four unrelated families.4,8,13 236 

Both siblings from family III underwent screening for biochemical abnormalities that may be 237 

associated with congenital disorders of glycosylation.5 Mild abnormalities of blood clotting (activated 238 

partial thromboplastin time (APTT) 43.6s, APTT ratio 1.4) and a microcytic hypochromic blood profile 239 

were observed in both. Liver function tests were normal, however, a CDG type I pattern of 240 

transferrin glycoforms was observed. 241 

Discussion 242 

Biallelic mutations in SRD5A3 cause SRD5A3-CDG (CDG-Iq; MIM612379) a phenotypically variable 243 

disorder of N-linked glycosylation that is normally characterised by neuro-developmental 244 

abnormalities and ophthalmic manifestations.3,4  We report seven patients from four families with a 245 

retinopathy consequent upon the SRD5A3 p.(Trp19Ter) mutation.  This mutation has been reported 246 

to cause SRD5A3-CDG previously, in four unrelated families.4,8,13  Our case series provides an in-247 

depth description of the ocular symptomology and appearance over the course of ophthalmic 248 

follow-up.  The retinopathy, unlike the extra-ocular features of this disease, appears to be slowly 249 

progressive.  On fundal view, signs of retinal disease may be very subtle and bone spicules absent in 250 

young patients.  Likewise, syndromic manifestations associated with mutation of SRD5A3 may also 251 

be very mild.  This detailed description of retinal phenotype could be important for early disease 252 

recognition since it appears to be a consistent primary presenting feature.Early-onset visual loss (≤ 3 253 

years of age, mean BCVA = +0.95 LogMar (SD= 0.34)) and nystagmus are consistent manifestations 254 

associated with the SRD5A3 p.(Trp19Ter) variant in this cohort of seven patients.  Other shared 255 

ocular findings were: retinal arteriolar attenuation in the absence of bone spicule formation (n=7), 256 

childhood-onset nyctalopia (n=5) and optic disc pallor (n=5).  Each of the patients reported in this 257 
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series also experienced varying degrees of progressive myopia (mean refractive error -6.71 (SD= 258 

4.22)), ranging from relatively mild to high (Table 1).  None of our patients were either 259 

microphthalmic, nor did they have ocular colobomata as has been described in association with 260 

other SRD5A3 mutations.4  Mutual systemic associations included learning difficulties and 261 

developmental delay.  One patient was found to have only mild developmental delay as a young 262 

child (<5 years of age), which may have been attributable to her severe visual impairment since she 263 

went on to meet normal developmental and intellectual milestones with increasing age.   264 

Despite the absence of a pigmentary retinopathy, widespread loss of outer retinal structures was 265 

evidenced by OCT, with relative preservation of foveal photoreceptors, and only mild epiretinal 266 

membrane formation (Figure 3).  Electroretinography, where performed (n=5), identified 267 

dysfunction in both rod and cone pathways at the level of the photoreceptor allowing discrimination 268 

from disorders involving the photoreceptor-bipolar cell synapse, such as CSNB, as three out of seven 269 

patients here initially received a clinical diagnosis of CSNB.  Previous reports of patients with SRD5A3 270 

mutations have not described OCT findings.  There has been a single description of retinal bone 271 

spicule pigmentation in an adult sibling pair with the SRD5A3 p.(Trp19Ter) variant.  Due to lack of 272 

previous descriptions of RP as a feature of SRD5A3-CDG, Kara et al., 2014 hypothesized that it may 273 

be a late onset feature of the condition.8  Our findings suggest that the onset of retinal degeneration 274 

is likely to occur in childhood in at least a proportion of cases and indeed, ocular imaging and FAF do 275 

suggest early dysfunction of the RPE. 276 

Rhodopsin is a pigment containing, G protein-coupled receptor that is expressed in rod 277 

photoreceptors cells where it specifically localises to the rod outer segments (ROS)14.  Studies have 278 

shown that the N-terminus of rhodopsin contains two N-linked glycosylation sequences.15  279 

Mutations at glycosylated amino acid residues or surrounding glycosylation consensus sequences of 280 

rhodopsin cause autosomal dominant and sectoral RP in humans.16,17  Studies in animal models 281 

expressing non-glycosylated rhodopsin have shown that although the mutant proteins undergo 282 
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normal biosynthesis, folding and trafficking, they confer toxicity, causing rod cell death, leading to 283 

light-sensitive retinal degeneration.18  Evidence on whether non-glycosylated rhodopsin incorporates 284 

into and initiates disk morphogenesis in ROS is conflicting.19,20  It is possible that the SRD5A3 285 

p.(Trp19Ter) variant prevents normal glycosylation of rhodopsin in the retina and subsequently 286 

impairs its normal incorporation and/or function in the ROS, thereby leading to defective 287 

phototransduction and loss of vision, before eventual photoreceptor death and the presentation of 288 

RP.  Similarly, non-glycosylation of other retinal proteins such as ABCA4, known to have seven N-289 

glycosylation sites, could also lead to defective phototransduction, and eventual cell death.21  This is 290 

an area that warrants further research.  291 

The SRD5A3 p.(Trp19Ter) variant has a frequency of 0.0012 in the South Asian population according 292 

to the ExAC dataset- a frequency that is 30 times higher than other ethnic groups, suggesting that 293 

this is an ancestral variant within this specific population.  Further, findings from our cohort suggest 294 

that phenotypic subtleties mean this condition goes unrecognised or unsuspected.  Alongside recent 295 

evidence for a role of other glycosylation disorder genes in non-syndromic retinal dystrophy 296 

(POMGNT122 and DHDDS23), we suggest that CDG genes should be considered in clinical diagnostic 297 

gene panels for retinal disease.   298 

Conclusions 299 

This case series is the first to provide a detailed account of the retinal dystrophy consequent upon 300 

the p.(Trp19Ter) mutation in SRD5A3, delineating the complex phenotype associated with SRD5A3-301 

CDG. Furthermore, we illustrate the wide variability in onset and progression of the disorder in 302 

patients with the same null mutation.  We report EORD as a novel feature of SRD5A3-CDG and 303 

suggest that retinal degeneration without pigmentary change may be an early manifestation of CDG 304 

that may progress to RP over time.  Crucially, our findings also suggest that SRD5A3 may cause these 305 

ocular manifestations alongside only mild learning difficulties, in some instances, in contrast to the 306 
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neurodevelopmental delay and other systemic features usually associated with SRD5A3-CDG3,4.   Our 307 

work adds to cumulative evidence that NGS offers a proficient means of diagnosis for this genetically 308 

heterogeneous and phenotypically variable group of conditions.6,24,25  For CDG, precise diagnosis 309 

enables the provision of more accurate prognostic information regarding loss of vision and risk of 310 

later onset manifestations.  Better understanding of the pathogenesis of SRD5A3 mediated retinal 311 

disease could lead to the development of novel therapeutic strategies.  Findings in our cohort show 312 

that the macular, although non-functional, remains structurally intact making this condition a good 313 

target for gene therapy. 314 

Acknowledgements 315 

Financial Sources and Role of Sponsor: This work was funded by RP Fighting Blindness and Fight for 316 

Sight (RP Genome Project GR586) and Rosetrees Trust, Fight for Sight (family II), Moorfields Eye 317 

Hospital (MEH) Special Trustees, National Institute for Health Research Biomedical Research Centre 318 

at Moorfields Eye Hospital National Health Service Foundation Trust and UCL Institute of 319 

Ophthalmology (KNK, ARW, AJH).  KNK is supported by a National Institute for Health Research Rare 320 

Diseases Translational Research Collaboration (NIHR RD-TRC) fellowship award. The authors would 321 

also like to acknowledge the support of the Manchester Academic Health Science Centre and the 322 

Manchester National Institute for Health Research Biomedical Research Centre.  The views 323 

expressed are those of the authors, and not necessarily those of the NHS, the NIHR or the 324 

Department of Health.  Funding bodies did not have any specific role in design and conduct of the 325 

study; collection, management, analysis, and interpretation of the data; preparation, review, or 326 

approval of the manuscript; and decision to submit the manuscript for publication. 327 

This research was made possible through access to the data and findings generated by the 100,000 328 

Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly 329 

owned company of the Department of Health). The 100,000 Genomes Project is funded by the 330 



16 
 

National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK 331 

and the Medical Research Council have also funded the research infrastructure. The authors also 332 

wish to acknowledge Genomics England and the Ophthalmology Genomics England Clinical 333 

Interpretation Partnership (GeCIP) for enabling this research.  The authors would also like to thank 334 

the families for agreeing to participate in this study. 335 

Conflict of interest: No conflicting relationship exists for any author 336 

 337 

References 338 

1. Cylwik B, Naklicki M, Chrostek L, Gruszewska E. Congenital disorders of glycosylation. Part I. 339 
Defects of protein N-glycosylation. Acta biochimica Polonica. 2013;60(2):151-161. 340 

2. Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding disease 341 
family. Annual review of genomics and human genetics. 2007;8:261-278. 342 

3. Cantagrel V, Lefeber DJ, Ng BG, et al. SRD5A3 is required for converting polyprenol to 343 
dolichol and is mutated in a congenital glycosylation disorder. Cell. Jul 23 2010;142(2):203-344 
217. 345 

4. Morava E, Wevers RA, Cantagrel V, et al. A novel cerebello-ocular syndrome with abnormal 346 
glycosylation due to abnormalities in dolichol metabolism. Brain. Nov 2010;133(11):3210-347 
3220. 348 

5. Lefeber DJ, Morava E, Jaeken J. How to find and diagnose a CDG due to defective N-349 
glycosylation. J Inherit Metab Dis. Aug 2011;34(4):849-852. 350 

6. Kahrizi K, Hu CH, Garshasbi M, et al. Next generation sequencing in a family with autosomal 351 
recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in 352 
SRD5A3. European journal of human genetics : EJHG. Jan 2011;19(1):115-117. 353 

7. Al-Gazali L, Hertecant J, Algawi K, El Teraifi H, Dattani M. A new autosomal recessive 354 
syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities 355 
in an inbred Emirati family. American journal of medical genetics. Part A. Apr 1 356 
2008;146A(7):813-819. 357 

8. Kara B, Ayhan O, Gokcay G, Basbogaoglu N, Tolun A. Adult phenotype and further 358 
phenotypic variability in SRD5A3-CDG. BMC medical genetics. 2014;15:10. 359 

9. McCulloch DL, Marmor MF, Brigell MG, et al. ISCEV Standard for full-field clinical 360 
electroretinography (2015 update). Documenta ophthalmologica. Advances in 361 
ophthalmology. Feb 2015;130(1):1-12. 362 

10. Bach M, Brigell MG, Hawlina M, et al. ISCEV standard for clinical pattern electroretinography 363 
(PERG): 2012 update. Documenta ophthalmologica. Advances in ophthalmology. Feb 364 
2013;126(1):1-7. 365 

11. Arno G, Holder GE, Chakarova C, et al. Recessive Retinopathy Consequent on Mutant G-366 
Protein beta Subunit 3 (GNB3). JAMA ophthalmology. Aug 1 2016;134(8):924-927. 367 

12. O'Sullivan J, Mullaney BG, Bhaskar SS, et al. A paradigm shift in the delivery of services for 368 
diagnosis of inherited retinal disease. Journal of medical genetics. May 2012;49(5):322-326. 369 

13. Grundahl JE, Guan Z, Rust S, et al. Life with too much polyprenol: polyprenol reductase 370 
deficiency. Molecular genetics and metabolism. Apr 2012;105(4):642-651. 371 



17 
 

14. Palczewski K. G protein-coupled receptor rhodopsin. Annual review of biochemistry. 372 
2006;75:743-767. 373 

15. Hargrave PA. The amino-terminal tryptic peptide of bovine rhodopsin. A glycopeptide 374 
containing two sites of oligosaccharide attachment. Biochimica et biophysica acta. May 27 375 
1977;492(1):83-94. 376 

16. Fishman GA, Stone EM, Sheffield VC, Gilbert LD, Kimura AE. Ocular findings associated with 377 
rhodopsin gene codon 17 and codon 182 transition mutations in dominant retinitis 378 
pigmentosa. Archives of ophthalmology. Jan 1992;110(1):54-62. 379 

17. Sullivan LJ, Makris GS, Dickinson P, et al. A new codon 15 rhodopsin gene mutation in 380 
autosomal dominant retinitis pigmentosa is associated with sectorial disease. Archives of 381 
ophthalmology. Nov 1993;111(11):1512-1517. 382 

18. Tam BM, Moritz OL. The role of rhodopsin glycosylation in protein folding, trafficking, and 383 
light-sensitive retinal degeneration. The Journal of neuroscience : the official journal of the 384 
Society for Neuroscience. Dec 2 2009;29(48):15145-15154. 385 

19. Fliesler SJ, Basinger SF. Tunicamycin blocks the incorporation of opsin into retinal rod outer 386 
segment membranes. Proceedings of the National Academy of Sciences of the United States 387 
of America. Feb 1985;82(4):1116-1120. 388 

20. Tam BM, Moritz OL. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a 389 
transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent 390 
mechanism characterized by production of N-terminally truncated mutant rhodopsin. The 391 
Journal of neuroscience : the official journal of the Society for Neuroscience. Aug 22 392 
2007;27(34):9043-9053. 393 

21. Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: 394 
structural and functional properties and role in retinal disease. Advances in experimental 395 
medicine and biology. 2010;703:105-125. 396 

22. Xu M, Yamada T, Sun Z, et al. Mutations in POMGNT1 cause non-syndromic retinitis 397 
pigmentosa. Human molecular genetics. Apr 15 2016;25(8):1479-1488. 398 

23. Lam BL, Zuchner SL, Dallman J, et al. Mutation K42E in dehydrodolichol diphosphate 399 
synthase (DHDDS) causes recessive retinitis pigmentosa. Advances in experimental medicine 400 
and biology. 2014;801:165-170. 401 

24. Najmabadi H, Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for 402 
recessive cognitive disorders. Nature. Oct 6 2011;478(7367):57-63. 403 

25. Timal S, Hoischen A, Lehle L, et al. Gene identification in the congenital disorders of 404 
glycosylation type I by whole-exome sequencing. Human molecular genetics. Oct 1 405 
2012;21(19):4151-4161. 406 

 

 

 

 

 

 

 



18 
 

Table 1:  Ophthalmic and phenotypic presentations of patients with SRD5A3 p.(Trp19X) mutation 
Family (gender)/I.D number I.I (F)/G40001.1) I.II (F)/G40001.2 II.I (F)/GC15567.1 II.II (F)/GC15567.2 III.I (F)/LDS3659.1 III.II (M)/LDS3659.2 IV.I (M) 

Ethnicity South Asian South Asian Indian Indian Pakistani Pakistani Indian 
Age at onset 5w 2m 18m 3m <1y 2-3y <1y 
Age at last exam 20y 13y 18.5y 14.5y 16y 14y 24y 
Consanguinity    + +  - - 
Ophthalmic findings  

Ophthalmic history 

Failure to fix and follow, multi-
planar nystagmus, mild myopia 
from 2m, nyctalopia from 6y, 

initial diagnosis of CSNB made at 
6y 

Multi-planar nystagmus, 
strabismus, progressive 

myopia from 2m, nyctalopia 
from 7y 

Variable manifest nystagmus, 
squint, myopia from 18m 

Nystagmus and roving eye 
movements from 3m, myopia, 

poor night vision and photophobia 

Roving eye movements and 
nyctalopia from <1y, high myopia,  

exophoria decompensating into 
an exotropia from 16y, central 

scotomata 

Roving eye movements from 2-3y, 
nyctalopia, high myopia, exophoria 

Early-onset nystagmus and 
myopia 

BCVA (Snellen equivalent) 
[age] 

1.5 LogMar (20/640) RE and LE 
[20y] 

1.3 LogMar (20/400) RE and 
LE [7y] 

0.900  crowded LogMar 
(20/160) RE; 0.800 (20/125) 

crowded LogMar LE [6y] 1.0 LogMar (20/200) RE; 0.8 
LogMar (20/125) LE [15y] Data not available 

0.6 LogMAR (20/80) RE and 
LE [4.5y] 

1.04 LogMar (20/250) RE; 1.20 
LogMar (20/320) LE [13y] 

0.72 LogMar (20/100) RE; 0.36 
LogMar (20/50) LE [18.5y] 

1.0 LogMAR (20/200) RE and 
LE [24y] 

Refractive error [age] RE:-1.00/+0.25x90; LE: -
1.25/+0.25x80  [20y] 

-2.00/+1.00x100 RE; -
3.00/+1.00 x 80 LE [2m] 

-2.5/-2.5 x 180 RE; -1.5/-3.0 x 
170 LE [6y] 

-1.5/-1.25 x 180 RE; -2.00/-2.00 x 
180 LE [18m] -15.50/+0.25x109 RE; 

 -14.00/+1.00x92 LE [16y] 
-9.50/+1.50x103 RE,  

-8.25/+2.5x106 LE [14y] 
RE: -7.00/-0.75 x 180; LE: -

7.5DS [24y] -6.00/+1.75X90 RE and -
6.50/+1.00 x90 LE [3y] 

-3.00/-3.5 x 180 RE; -3.50/-4.0 
x 160 LE [18.5y] 

-5.5/-3.75x155 RE; -5.5/-3.75x100 
LE [15y] 

Fundus imaging 

Optic disc pallor, foveal 
hypoplasia, granular appearance 
of peripheral retina, attenuated 

retinal vasculature. 

Subtle temporal optic disc 
pallor, mildly attenuated 

retinal arterioles, prominent 
nerve fibre layer visible 

radiating around the superior 
and inferior vascular arcades. 
Patchy (RE) and stippled (LE) 

macular reflex. 

Tilted optic disc with temporal 
pallor, peri-papillary atrophy 
temporally, absence of foveal 

reflex (LE only), attenuated 
retinal vasculature. 

Myopic tilted discs, attenuated 
retinal vasculature, subtle 

mottling in the retinal periphery 
(data not shown) 

Myopic tilted discs, attenuated retinal vasculature, subtle mottling in the 
retinal periphery (data not shown) 

Optic disc pallor, attenuated 
retinal vasculature 

FAF Well defined ring of hyper-autofluorescence around the macula 

Diffuse ring of hyper-fluorescence 
at the periphery of the macular 
with normal autofluorescence 
centrally apart from a hyper-

autofluorescent dot at the fovea 

Diffuse ring of hyper-
autofluorescence around the 

macula 

Well defined ring of hyper-
autofluorescence around the macula 

(data not shown) 

Diffuse ring of hyper-
autofluorescence around the 

macula 

OCT Data not available 

Widespread loss of outer 
retinal structures with relative 

preservation of foveal 
structures including 

photoreceptors. 

Widespread loss of outer retinal 
structures with relative 

preservation of foveal structures 
including photoreceptors. 

Widespread loss of outer retinal 
structures and complete absence 

of the photoreceptor layer 

Widespread loss of outer retinal 
structures with relative preservation of 

foveal structures including 
photoreceptors. 

Widespread loss of outer 
retinal structures with 

relative preservation of 
foveal structures including 

photoreceptors. 

ERG (age at testing) Indicative of rod-cone dystrophy 
(no details available) (5y) 

Low amplitude light-adapted 
response, extinguished dark-

adapted response (2m) 

Undetectable rod-specific 
responses and delayed and 

subnormal cone-specific 
responses (11y) 

Limited compliance with test but 
reduced and delayed cone-specific 

responses found with rod 
involvement 

Data not available Data not available 
Profoundly electronegative 

ERG, and grossly delayed 
cone-specific responses 

Developmental/Neurological 
findings 

Mild developmental delay up to 
5 years of age 

Dysmorphic, communication 
and behavioural problems, 

learning difficulties, recurrent 
respiratory infections, gait 

ataxia. 

Psychomotor delay, learning 
difficulties 

Increased, brisk reflexes, 
psychomotor delay and learning 

difficulties 

Learning difficulties, gait ataxia, 
normal reflexes, mild upper limb 

co-ordination difficulties on 
finger-nose test. Normal height, 
weight and head circumference. 

Learning difficulties, developmental 
delay, gait ataxia, normal reflexes, mild 
upper limb co-ordination difficulties on 
finger-nose test. Recurrent respiratory 
infections. Normal height, weight and 

head circumference. 

Developmental delay, 
learning difficulties, scoliosis 

Other Investigations 
Urine organic acids (normal) 
Plasma phytanic acid levels 

(normal) 

Hearing assessment (normal); 
uMPS (normal); 

Oligosaccharides (normal); 
Lysosomal enzymes (normal); 
X-ray (normal); aCGH (normal) 

VLCFAs (normal) 
Lysosomal enzymes (normal) 

White cell and plasma 
enzymes (normal) 

VLCFAs (normal) 
Lysosomal enzymes (normal) 

White cell and plasma enzymes 
(normal) 
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n.d.: not disclosed; w: weeks; m: months; y: years; RE: right eye; LE: left eye;  ERG: electroretinography;  OCT: optical coherence tomography; FAF: fundus autofluoresence; uMPS: urine mucoplysaccharides; + present; - absent; DS: dioptre 
sphere; VLCFAs: very long chain fatty acids; aCGH: array comparative genomic hybridization
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Figure Legends 407 

Figure 1: Pedigrees of families (I-IV) included in this study.  Arrows indicate proband. 408 
 409 

Figure 2: Colour fundus and fundus autofluorescence (FAF) images of patients with SRD5A3 410 
p.(Trp19Ter) variant. a,c,e,g: Wide-field Optos™ colour fundus imaging;  i,k,m,o,q,s: 35° colour 411 
fundus photography; b,d,f,h,j,l,n,p,r: FAF imaging RE: right eye; LE: left eye; Y: years of age; RE: right 412 
eye; LE: Left eye, FAF: Fundus autofluoresence; AF: autofluorescence. 413 
 414 

Figure 3: Optical coherence tomography (OCT) in patients with SRD5A3 p.(Trp19Ter) variant. OCTs 415 
are shown as horizontal (a-e, g, h), or vertical (f) scans and accompanying en face infra-red image 416 
with location at which the scan through the macular was taken (indicated by green arrow). Arrow 417 
heads demarcate the transition of absent/present photoreceptors (except in c where part of the 418 
macular is not visible, and e where the photoreceptor layer is completely absent). RE: right eye; LE: 419 
left eye; Y: years of age. 420 
 421 
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