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A B S T R A C T

This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses
machine learning to transfer the rich information available from one-off experimental medical imaging devices
to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn
mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment
unseen low quality images, for example by enhancing image resolution or information content. Here, we
demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set
from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain
connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard
data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In
microstructure imaging, IQT shows potential in estimating, from standard “single-shell” data (one non-zero b-
value), maps of microstructural parameters that normally require specialised multi-shell data. Further
experiments show strong generalisability, highlighting IQT's benefits even when the training set does not
directly represent the application domain. The concept extends naturally to many other imaging modalities and
reconstruction problems.

Introduction

Bespoke MRI scanners and imaging protocols can produce very
high quality data uniquely informative on anatomy and physiology. For
example, the Human Connectome Project (HCP) developed specialised
human MRI scanners fitted with 100 mTm−1 and 300 mTm−1 gradient
coils (Ugurbil et al., 2013; Setsompop et al., 2013), which are up to an
order of magnitude more powerful than standard clinical scanners. In
combination with custom imaging and image reconstruction innova-
tions (Sotiropoulos et al., 2013) and a lengthy acquisition protocol,
these devices provide unprecedented image resolution, signal levels,
and coverage of the measurement space revealing ultra-fine anatomical
detail from live subjects. Such experimental devices showcase the
potential for future clinical imaging systems (Vu et al., 2015), but
provide little immediate benefit to current clinical practice where

hardware is more modest and patient-imaging time is very limited.
Moreover, translation is slow, because market forces demand strong
evidence that mass production has major benefit. Even when available,
the latest technology is often prohibitively expensive outside elite
research centres, so the state of the art remains inaccessible to most
practitioners.

Image quality transfer (IQT) aims to bridge this gap between rare
experimental systems and accessible commercial systems. The techni-
que learns mappings from low quality (e.g. clinical) to high quality (e.g.
experimental) images exploiting the similarity of images across sub-
jects, regions, modalities, and scales: image macro- and meso-structure
is highly predictive of sub-voxel content. The mapping may then
operate directly on low-quality images to estimate the corresponding
high-quality images, or serve as a prior in an otherwise ill-posed image-
reconstruction routine.
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Such a procedure has the potential to enhance or enable a wide
range of desirable imaging or image analysis operations. These include
long-standing challenges in medical imaging, such as enhancement of
spatial resolution (Greenspan et al., 2002; Coupé et al., 2013; Scherrer
et al., 2012; van Steenkiste et al., 2016; Ning et al., 2016) and
harmonisation of multi-centre studies (Mirzaalian et al., 2016) or
longitudinal studies that straddle scanner upgrades, as well as more
recent developments, such as image reconstruction from sparse
acquisition (compressed sensing or MR fingerprinting) (Lustig et al.,
2007; Ma et al., 2013), or predicting one contrast or modality from
another (“image synthesis” or “modality propagation”) (Jog et al.,
2015; Ye et al., 2013; Burgos et al., 2015; Bahrami et al., 2016).

We construct two simple and practical implementations of IQT via
patch-regression using i) a global linear transformation (IQT-GL), and
ii) a non-linear random-forest (IQT-RF). To demonstrate the concept
and benefits of IQT, we focus on using it to enhance spatial resolution
and the downstream benefits to brain connectivity mapping. We also
investigate the potential for IQT to enrich the information content of
images by estimating maps of microstructural indices that normally
rely on a “multi-shell” acquisition, but from “single-shell” input.

Image resolution is a major limiting factor in tractography. IQT can
reconstruct high resolution images from low resolution input by
learning a mapping from low resolution to high resolution images.
We demonstrate here that this operation improves dramatically on
interpolation, the standard technique that has well-documented limita-
tions (Dyrby et al., 2014), and enables tractography to identify white
matter pathways in low-resolution images that otherwise require
specialised high-resolution data. Diffusion MRI super-resolution tech-
niques, e.g. (Coupé et al., 2013; Scherrer et al., 2012; van Steenkiste
et al., 2016; Ning et al., 2016), potentially offer similar benefits.
However, most rely on a specialised acquisition with partially over-
lapping anisotropic voxel grids, cf. Greenspan et al. (2002), and/or
involve complex processing pipelines (Coupé et al., 2013), so are not
widely used. In contrast, IQT operates naturally on any existing data
set and requires no special acquisition. In fact, the IQT operation is
complementary to the reconstruction procedures in Scherrer et al.
(2012), van Steenkiste et al. (2016) and Ning et al. (2016).

Additional experiments aim to recover parameter maps provided by
neurite orientation dispersion and density imaging (NODDI) (Zhang
et al., 2012) and microscopic diffusion anisotropy mapping based on
the spherical mean technique (SMT) (Kaden et al., 2016, 2016) from
single-shell data sets, i.e. with only one non-zero b-value. NODDI maps
indices of neurite (axons and dendrites) density and their geometric
configuration (orientation dispersion); SMT (Kaden et al., 2016) maps
the per-axon microscopic diffusion tensor independent of intra-voxel
orientation distribution, as well as orientation dispersion. Both ex-
emplify the microstructure-imaging paradigm (Assaf et al., 2013), but
require non-standard multi-shell acquisitions with multiple non-zero
b-values and fail given single-shell data sets, which are routinely
acquired for diffusion tensor imaging (DTI) (Basser et al., 1994). IQT
learns mappings from single-shell (DTI) to multi-shell (NODDI/SMT)
parameter maps. The ability to estimate such parameters from single-
shell input data potentially enables reanalysis of a wide range of
historical brain-imaging studies to reveal more specific information on
group differences or disease mechanisms. The closest previous work on
this topic (Golkov et al., 2016) learns a prior from examples to stabilise
estimates of advanced diffusion MRI indices, specifically NODDI
parameters and diffusion kurtosis (Jensen et al., 2005), from sparse
data sets. However, the data sets in Golkov et al. (2016) are still multi-
shell so the parameter-estimation problem remains well posed.

Methods

This section first specifies the various data sets and diffusion MRI
models the experiments in the next section use to demonstrate IQT. We

then describe the general implementation of IQT through patch
regression and detail the specific versions designed for resolution
enhancement and microstructural parameter mapping.

Data sets

We make use of four data sets to test and evaluate our implementa-
tions of IQT.

HCP data set
The main data set for training and testing is the diffusion MRI data

provided by the WU-Minn HCP, release Q3 (Van Essen et al., 2013).
The data from each subject includes 288 diffusion weighted images
(DWIs) (acquired twice with reversed phase encoding direction) with
1.25 mm isotropic voxels; 18 have nominal b=0 and the three high-
angular-resolution-diffusion-imaging (HARDI) shells of 90 directions
have nominal b-values of 1000, 2000, and 3000 smm−2; the precise
values vary spatially, see Sotiropoulos et al. (2013), which fully details
the acquisition. The data are corrected for distortions (susceptibility-
induced, eddy currents and subject motion), see Glasser et al. (2013).

The HCP cohort contains broadly healthy, young-adult (22–36
years) subjects, who vary in race, gender, and handedness all of which
affect brain structure. We identify various subgroups of the HCP cohort
to evaluate generalisability. Subgroup 1, which we refer to as HCP1, is
as heterogeneous as possible containing a mixture of “White –
Hispanic/Latino”, “White – Not Hispanic”, and “Black or African
Am.”, unrelated, male and female, and left and right-handed subjects
in their 20s and 30s. Subgroups 2 (HCP2) and 3 (HCP3) are as
homogeneous as possible while being as different as possible from one
another. HCP2 subjects are unrelated “White – Not Hispanic” right-
handed females aged 22-27. HCP3 subjects are “Black or African Am.”
unrelated males aged 31–36, predominantly left-handed. HCP1 and
HCP2 include 8 subjects for training and a separate 8 subjects for
testing. HCP3 has only a training set of 8 subjects. Support vector
machine classification, c.f. Klöppel et al. (2008), of whole structural
images from subjects in HCP2 and HCP3 achieves around 90%
accuracy on average over an 8-fold cross-validation test. Thus, brain
structure strongly discriminates the two groups.

A further 8 training sets of 8 subjects (HCP-Random 1–8),
randomly chosen from the remaining subjects in HCP Q3, enable tests
of variability of performance over training sets.

HCP Lifespan data set
The HCP Lifespan Pilot Phase 1a, which is available online at

http://lifespan.humanconnectome.org, has a much wider age range
than the main HCP cohort including 26 subjects from 8-75 years. The
HCP Lifespan diffusion-imaging protocol is a shortened version of the
main HCP protocol with lower resolution (1.5 mm isotropic voxels) and
only two HARDI shells, with b = 1000 and 2500 smm−2. However, the
protocol exploits the optimised features of the HCP scanners, providing
data of considerably better quality than standard sequences.

Monkey data set
We also use 13 diffusion MRI data sets each from a separate

perfusion-fixed vervet monkey (Chlorocebus aethiops) brain. The age
range is 5–83 months. The animals were obtained from the Behavioral
Science Foundation, St. Kitts and were socially housed in enriched
environments. The experimental protocol was reviewed and approved
by the Institutional Review Board of the Behavioral Science Foundation
acting under the auspices of the Canadian Council on Animal Care. The
brains were prepared using the protocol in Dyrby et al. (2011). They
were imaged on a 4.7 T Varian MR system at the Danish Research
Centre for Magnetic Resonance, Denmark, with imaging protocol
similar to the 300 mTm−1 protocol in Dyrby et al. (2013), but with less
directions per shell to enable full-brain imaging. Thus, each data set
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has three HARDI shells, with b-values approximately 2000, 3000, and
9500 smm−2, 16 b=0 images, and isotropic 0.5 mm voxels.

Prisma data
We acquired two non-HCP in-vivo human data sets on separate

subjects using the clinical 3 T Siemens Prisma scanner in fMRIB,
Oxford. The scanner is equipped with a modern gradient set of 80 mT/
m maximum strength. The publicly available CMRR Multiband se-
quence (Moeller et al., 2010) has been installed. These features allow
acquisitions that resemble the main HCP diffusion MRI protocol.
Subjects 1 and 2 are healthy male adults (29 and 33 years old
respectively). Both data sets include a standard 3D T1-weighted
MPRAGE (1 mm isotropic resolution) and diffusion MRI data with
three 90-direction HARDI shells, b-values of 1000, 2000, and
3000 smm−2, and 21 b=0 images, each for two image resolutions:
2.5 mm and1.35 mm isotropic voxels (TE = 75 ms, TR=2.17 s, multiband
factor=3 and TE = 94.6 ms, TR = 5.59 s, multiband factor=3, respec-
tively). All data were acquired twice with reversed phase encoding
direction (AP and PA). The HCP preprocessing pipelines (Glasser et al.,
2013) were used to correct for distortions in the diffusion MRI data and
obtain transformations to T1 and MNI space. The Prisma scanner is
less powerful than the bespoke HCP scanner and cannot achieve
sufficient signal at 1.25 mm resolution, but the 1.35 mm data provides
a pseudo ground-truth for IQT resolution enhancement of the 2.5 mm
data.

Diffusion MRI models and fitting

Wemake use of four diffusion MRI models: i) the diffusion tensor (DT)
model (Basser et al., 1994) and ii) Mean Apparent Propagator (MAP) MRI
(Özarslan et al., 2013), to illustrate IQT resolution enhancement; and iii)
NODDI (Zhang et al., 2012) and iv) SMT (Kaden et al., 2016), for IQT
parameter mapping. Initial demonstrations of IQT resolution enhancement
use DTI for simplicity. However, MAP-MRI provides a more general signal
representation than DTI and can capture orientational variance in fibre
crossing regions and across multiple b-values (for a fixed diffusion time),
which IQT tractography requires. We demonstrate IQT parameter mapping
by reconstructing NODDI and SMT maps from single-shell DTI maps.

We fit the DT model to only the b = 0 images and b = 1000 smm−2

shell of the HCP and Lifespan data sets. Since the monkey data come
from ex-vivo samples, the diffusivity of water in the tissue is 3–4 times
lower (Dyrby et al., 2011; D'Arceuil et al., 2007). Thus, we use the b = 0
images and b = 3000 smm−2 shell (87 gradient directions); the latter
shows signal attenuation most similar to the b = 1000 smm−2 HCP data.
In all cases we use weighted linear least squares, cf. Jones and Basser
(2004), accounting in the HCP data for the spatially varying b-value
and gradient directions.

We fit the MAP basis up to order 4, giving 22 coefficients, by linear
(unweighted) least squares to all three shells of the HCP data again
accounting for spatial variation. The choice of scale parameters (see
Özarslan et al. (2013)) u u u= = = 1.2 × 10 mmx y z

−3 empirically mini-
mises the error in fitting the signals in the HCP data.

The NODDI model, see Zhang et al. (2012) for details, has five free
parameters: the intra-cellular volume fraction fICVF; the free-water
volume fraction fISO; the mean θ ϕ( , ) and variance parameter κ of a
Watson distribution of fibre orientations. The orientation dispersion
index (ODI) is a function of κ (Zhang et al., 2012). We fit the NODDI
model via non-linear fitting using the NODDI toolbox https://www.
nitrc.org/projects/noddi_toolbox version 0.9.

SMT (Kaden et al., 2016) has two primary unknown parameters:
the axial λ and radial λ⊥ diffusivities of microscopic tissue compart-
ments, which provide the microscopic FA, μFA. The framework also
estimates the fibre orientation distribution p, which the scalar orienta-
tion dispersion entropy H(p) summarises. We fit the model using the
implementation from Kaden et al. (2016), which is available at https://
ekaden.github.io.

IQT implementation

Our implementations of IQT use patch regression, i.e. learn
mappings from a 3D neighbourhood, or “patch”, of N1 voxels in the
input (low-quality) data set to a corresponding patch of N2 voxels in the
output (high-quality) data set. Open-source code is available from the
authors on request. Input and output voxels are vector-valued contain-
ing p1 and p2 values, respectively. The regression problem requires a
training set of patch pairs T x y= { , }i i i

T
=1

| | , where each input patch xi has
dimension p N1 1 and each output patch yi has dimension p N2 2. Image
reconstruction considers each patch of an input image independently;
the learned mapping provides the output patch at the corresponding
location. Thus, the IQT reconstruction step simply iterates over the
image volume executing the mapping at each location to piece together
the output image.

We consider a hierarchy of three types of mapping to implement the
regression: global linear (for IQT-GL), regression trees, and regression
forests (for IQT-RF).

Linear regression
Global linear regression computes a linear transformation matrix

G YX= †, where the columns of Y are the training output-patches, yi,

and the columns of X the corresponding input-patches, xi; X† is an
appropriate pseudo inverse of X. For an unseen input patch x, the
estimate of the corresponding output patch is Gx.

Regression trees
The regression tree implements a piecewise linear regression over

the space of input data points (Breiman, 2001; Criminisi and Shotton,
2013). Each internal node in the tree sends data points into left or right
subtrees by thresholding one of J scalar functions of x, called features,
F F, …, J1 . Each leaf node contains a linear transformation with the
same structure as the global linear transformation G defined above.
Thus, for test input-patch x, the output estimate is G xt where Gt is the
linear transformation associated with the leaf node t at which the data
point arrives after traversing the tree.

Regression-tree training estimates the optimal i) tree structure, i.e.
which nodes exist and which are internal and leaf nodes, ii) choice of
feature and feature threshold at each internal node, and iii) linear
transformation at each leaf node. We use a greedy search here similar
to Criminisi and Shotton (2013). To control for overfitting, the
algorithm reserves half the training set, T, as a validation set V. It
selects features, thresholds, and fits linear models using the remaining
half of T and accepts only splits that reduce the residual error of V. The
procedure starts by assigning all training points to a single root node
and computing a global linear transformation. It then seeks the
feature-and-threshold combination that partitions the data with max-
imum information gain

I I I− − ,L R0 (1)

where

I T V S= 2(| | − | |)logdet( )0 (2)

is the information content of the root node, IL and IR that for the left
and right child nodes, respectively, and

S Y GX Y GX= ( − ) ( − ).T (3)

For each candidate Fj, a standard golden search locates the threshold τj
that maximises the information gain. We select the Fj with maximum
information gain and accept the split if it reduces the residual errors on
V. Specifically, the test compares the residual errors from the root node

Gy x= ∑ ∥ − ∥P i
V

i i=1
| | with those from the children

C G Gy x= ∑ ∥ − ( , ) ∥LR i
V

i L R i=1
| | , where C selects transformation GL in

the left node if F τx( ) <j j or GR in the right node otherwise. We retain
the split only if <LR P; otherwise, the root node remains a leaf node.
If the split at the root node does reduce errors on V, the training
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process continues and recursively splits the training data into finer
subsets assigned to left and right child nodes until the residual error of
V stops reducing.

Regression forests
Regression forests (Criminisi and Shotton, 2013) use multiple

regression trees constructed from different bootstrap samples of the
available training data. Outputs are element by element averages of the
estimate from each tree weighted by the error covariance St

−1 (c.f. Eq.
(3)) of the linear transformation Gt, estimated during training.

IQT resolution enhancement

The IQT resolution-enhancement mapping takes as input a
n n n(2 + 1) × (2 + 1) × (2 + 1) cubic patch of voxels, so that

N n= (2 + 1)1
3, and outputs an m m m× × cubic patch of voxels, so

that N m=2
3. The output patch is a cubic array of subvoxels corre-

sponding to the central voxel of the input patch, as Fig. 1 (left)
illustrates. Each voxel in each patch contains p p=1 2 model para-
meters. For example, for DTI resolution enhancement with n=2 and
m=2, each input vector, x, contains the p = 61 independent elements of
the DT in each voxel of a 5 × 5 × 5 low-resolution patch and each
output vector, y, contains the p = 62 elements of each DT in the

2 × 2 × 2 high resolution patch; the mapping is thus from 750 to 48 .
Fourth-order MAP has p = 222 , leading to correspondingly higher
dimensional mappings.

Training pairs come from downsampling each DWI by a factor of m
in each dimension, fitting the model (e.g. DT or MAP) in each voxel of
both the downsampled and full resolution image, and associating

n(2 + 1)3 patches in the downsampled image with the m3 patch in the
full resolution image corresponding to the central voxel of the low-
resolution patch. For downsampling, here we simply take the mean
DWI intensity in each block of m m m× × voxels, thus assuming an
idealised point-spread function. The training data includes only
patches wholly contained in the brain mask. We randomly subsample
T from the pool of patch-pairs available from a set of training images
without replacement. The HCP images each contain around 7.8 × 105

brain voxels on average, which leads to a pool of around 3×106 patch
pairs (allowing overlapping patches) with m=2 and n=2 in a training
set of 8 HCP subjects. We consider sampling rates of up to 1 in 2, which
hits the limits of available computer memory and use similar training
set sizes from the Lifespan and Monkey data sets.

For IQT models trained on ex-vivo monkey data, a simple correc-
tion makes image patches from the in-vivo data sets compatible during
reconstruction. Specifically, since the average eigenvalues of DTs fitted
to the Monkey b = 3000 smm−2 shell are approximately half of those

from the HCP or Lifespan b = 1000 smm−2 shell, we halve all the
elements of each DT in the input patch, estimate the output patch from
the regression model, and double all elements of the output to recover
compatibility with the original data.

IQT parameter mapping

IQT parameter mapping estimates one set of image contrasts from
another so, in general, p p≠1 2. We assume here that the voxel grid of
the output images is the same as the input, i.e. N m= = 12 , as in Fig. 1
(right). Thus to estimate NODDI or SMT parameters from DTI data,
the mapping takes as input a n(2 + 1)3 cubic patch of DTs, so that
N n= (2 + 1)1

3 and p = 61 . For NODDI, the mapping outputs all five
parameters at the central voxel of the input patch, so that p = 52 ; for
SMT it outputs λ , λ⊥, and H(p) so p = 32 . Training pairs come from

fitting DT maps to just the b = 0 and 1000 smm−2 images (input) and
matched NODDI or SMT maps fitted to full data sets (output).

Split features

For F F, …, J1 , we use the following features of x in IQT-RF to define
partitions of the training data in the trees for both applications:

• The three eigenvalues of the DT in the central voxel.

• The linearity, planarity, isotropy (Westin et al., 1999) and trace of
the DT in the central voxel.

• The means of each of the features above over the central 3 × 3 × 3
cube (if input patch size n ≥ 1 - see Fig. 1) and those over the whole

n(2 + 1)3 cube (if n ≥ 2).
• The orientational variance over the central 3 × 3 × 3 cube (if n ≥ 1)

and the whole cube (if n ≥ 2).

Thus here J=7 if n=0, J=15 if n=1, and J=23 if n ≥ 2. We quantify the
orientational variance using the principal eigenvalue of the mean
dyadic tensor, as in Alexander and Barker (2005).

The set includes only orientationally and spatially invariant features
to ensure generalisability among various types of training and test data.
Additional features like absolute DT orientation and spatial location
within the brain potentially enable the regression to build models
specific to particular anatomic locations. Their inclusion leads to small
reductions of error scores when training and testing within the HCP
data set where the brain is consistently oriented within each image.
However, they reduce the generalisability among data sets, because
anatomical locations correspond less well between, say, monkey brains
and HCP subjects than between different HCP subjects. Thus we
exclude such features here.

Boundary effects

During IQT training, we use only patches wholly contained within
the brain regions of the images. During testing, however, ignoring
partial patches leaves a rim of unassigned values around the edge of the
brain, which can erode a significant portion of the image for large
patches. We avoid this effect by completing partial patches with the
conditional mean of all missing entries in x, given the available entries,
derived from a Gaussian model of the set of input patches in T.
Specifically, we compute the mean x and covariance
Γ T X X X X= | | ( − ) ( − )T−1 of the training input-patch library, where X
is the matrix with columns xi, i T= 1, …, | | and X is the matrix of the
same size as X, but with each column equal to x. These two quantities
provide a multi-variate Gaussian model of the distribution of input
patches. Equation 5.13 of Prince (2012) provides the conditional mean
of a multivariate Gaussian distribution given a subset of components.
We use that expression directly to replace the missing entries in
boundary patches. Once completed in this way, we pass the completed
x through the IQT mapping in the usual way.

Fig. 1. 2D illustration of the input (blue) and output (red) patch structure for n=2 and
m=2 (typical for resolution enhancement) and n=1 and m=1 (typical for parameter
mapping).
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Tractography

Tractography experiments use the probabilistic tractography algo-
rithm in Sotiropoulos et al. (2013) via the multi-shell multi-fibre
reconstruction in Jbabdi et al. (2012). IQT tractography simply runs
the same algorithm after resolution enhancement with IQT.
Specifically, we fit the MAP coefficients to low resolution DWIs and
enhance resolution using IQT to obtain high resolution MAP coefficient
maps. Those high resolution maps provide DWIs following the HCP
protocol, through Eq. (24) in Özarslan et al. (2013), which provides the
input to the tractography package. IQT could work with any other
tractography package in a similar way.

Error metrics

We use two simple error metrics to evaluate IQT performance. To
compare DTI maps, we use the mean (over NS test set subjects) median
(over the set Ω i( ) in the i-th subject of brain voxels contained only in
patches completely within the brain mask) root-mean-squared error (of
the six independent DT elements D D, …,1 6) against the gold standard
(D D, …,1

⋆
6
⋆):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑

N
D D1 median ( − ) .

S i

N

v Ω i
j

j j
=1

∈ ( )
=1

6
⋆ 2

1
2S

(4)

We refer to this metric as DT-RMSE. We have also computed a range of
other performance metrics, including orientational difference, as in
Alexander and Barker (2005), and normalised predicted signal error, as
in Ning et al. (2015), but all produce similar trends and conclusions so
we present only DT-RMSE.

To compare NODDI maps, we use the mean (over subjects) of the
mean (over NODDI parameters), median (over voxels) absolute error,
which we refer to as NODDI-MAE. Only the three scalar NODDI
parameters, fICVF, fISO, and κ, contribute and we normalise κ to [0, 1],
like fICVF and fISO.

Experiments and results

This section starts by demonstrating and evaluating IQT resolution
enhancement, which we use to: a) highlight the advantage over
standard operations such as interpolation, b) study the performance
of IQT-GL and IQT-RF as a function of algorithm parameters, and c)
demonstrate and evaluate generalisability beyond the training data. It
then demonstrates the potential for parameter mapping from under-
sampled data sets using NODDI and SMT. We exemplify the down-
stream benefits of IQT resolution enhancement in tractography and,
finally, verify results using independent test data (the Prisma data).

Table 1 summarises the usage of the various data sets in each
experiment and result.

Resolution enhancement

Fig. 2 demonstrates IQT image-resolution enhancement and its
generalisability. The test image (top left) is a 1.25 mm resolution DT
map not in any training set. We show the direction-encoded colour
(DEC) map (Pajevic and Pierpaoli, 1999), which summarises the full
DT map with DT fractional anisotropy (FA) (Basser and Pierpaoli,
1996) as intensity and principal orientation as colour (red for left-right,
green for anterior-posterior, blue for inferior-superior). The corre-
sponding low-resolution image (top middle-left) comes from block
averaging DWIs prior to model fitting to obtain a 3.75 mm resolution
DT map (27 times larger voxels). The remaining DEC maps all show
1.25 mm resolution DT maps obtained from the 3.75 mm resolution map
by interpolation or IQT. The IQT transformations operate on the low
resolution DT maps; all use m=3 and n=2. The figure compares
reconstructions from IQT-GL and IQT-RF both trained on HCP data
(row 3 left) and IQT-RF trained on Lifespan and Monkey data (row 3
right). The IQT-GL transformation uses a training set of T| | ≈ 1.6 × 106

patch-pairs drawn from the HCP1 training set, as does each of the 8
trees in HCP-trained IQT-RF. Lifespan-trained IQT-RF also has 8 trees
with similar T| | to the HCP trees; Monkey-trained IQT-RF has 64 trees
with T| | ≈ 0.2 × 106 so that the total number of training samples is
similar to the HCP and Lifespan-trained forests. The choices corre-
spond to the best operating points identified in later quantitative
results (Fig. 6(a)); the optima are similar form=2 and m=3. Linear and
cubic interpolation is on the downsampled DWIs prior to model-fitting.

The difference maps in rows 2 and 4 are sums of absolute
differences of DEC maps (before clipping) against ground truth (“Hi-
res gold standard” in the figure). The bar chart (row 2 left) summarises
later quantitative results (Fig. 5 and Fig. 7(b)) showing mean recon-
struction errors (DT-RMSE) over the eight subjects in the HCP1 test
set.

IQT (e.g. third row middle-left) approximates the corresponding
full-resolution image (top left) more closely than interpolation (e.g. top
right). IQT provides sharper edges throughout the brain (e.g. pink
arrows) than interpolation, producing less blurred images, and retains
the high FA of the full resolution image, which interpolation artificially
reduces. IQT also avoids artefactual “hotspots” (white arrows and pink
arrows) that interpolation can cause (Dyrby et al., 2014). The pink
arrows highlight IQT's ability to recover small structures obscured by
partial volume effects at the resolution of the input data. Even IQT-GL
improves substantially on interpolation, although the non-linear IQT-
RF has additional benefits. For example, within homogeneous regions
such as the corpus callosum (yellow ellipses), IQT-RF captures the
smooth transition from red to yellow apparent in the “Hi-res gold
standard”, whereas IQT-GL produces blockier output. The difference
maps highlight better detail at tract interfaces (e.g. cyan circles) with
IQT-RF than IQT-GL. In general, IQT avoids the strong anatomical
structure that appears in the difference maps from interpolation. Even
given only training data from the Lifespan and Monkey data sets, IQT-
RF shows clear advantages over interpolation. In particular, the IQT-
RF Monkey image (row 3 right) shows remarkable consistency with the
IQT-RF HCP image (row 3 left-middle) given that the former is
synthesised only from patches of ex-vivo fixed monkey-brain images.

Fig. 3 provides a more detailed comparison of IQT and interpola-
tion. It compares DTI principal direction maps in the cortex from a full-
resolution HCP image (not in the training set) with those from the
same image downsampled to 2.5 mm resolution and subsequently
interpolated and IQT-RF reconstructed 1.25 mm images. A sharp
transition in fibre orientation occurs across the boundary between
grey matter and white matter (inner black contour) from tangential to
orthogonal to the boundary. The transition is only visible with
sufficiently high image resolution (see e.g. Dyrby et al., 2011) and in

Table 1
Data sets and their usage in each figure. The columns for Figs. 6 and 7 indicate which
subfigure uses each data set. The entries in the Prisma data set row indicate which of the
two subjects each figure uses.

Data set Info Figure number

2 3 4 5 6 7 8 9 10 11 12 13

HCP exemplar 1 subject * * * * *
HCP1 train 8 subjects * * * * ab ab * * * * * *
HCP1 test 8 subjects * ab ab *
HCP2 train 8 subjects b ab
HCP2 test 8 subjects a
HCP3 train 8 subjects a
HCP random 1-

8
8×8 subjects b

Lifespan 26 subjects * b *
Monkey 13 subjects * b
Prisma 2 subjects 1 1 1,2
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the figure is clear at 1.25 mm resolution but not at 2.5 mm (black
arrows). IQT recovers the transition, as well as the directionality within
the cortical ribbon, even though the low-resolution image contains little
information in these areas, e.g. where indicated with black arrows.
Interpolation fails to recover the transition as it cannot resolve the
partial volume effects inherent in the low resolution input data, as
discussed in Dyrby et al. (2014). In addition, IQT-RF recovers complex
directional structure better in the white matter, particularly at inter-
faces, e.g. the area to the right of the white arrows.

Supplementary Fig. S1 shows an equivalent to Fig. 3 without using
boundary completion. The comparison reveals where boundary completion
comes into play and confirms, qualitatively, efficacy of the approach. For
example, at the crown of the gyrus containing the black arrow, the visual
match of IQT-RF with the original high resolution image is closer than that
from interpolation. Supplementary Fig. S2 shows the random forest that
provides the reconstruction in Fig. 3 to give some insight into its operation.

Parameter mapping

Fig. 4 demonstrates IQT NODDI and SMT parameter mapping
from single-shell data. IQT training uses the HCP1 training set with
n=1 and m=1 (best operating point from Fig. 6(b)), T| | = 1.6 × 106, and
8 trees. The second column comes from inputting just the b = 0 and
1000 smm−2 images to the standard NODDI and SMT estimation tools,
as used for the first column. The SMT algorithm uses random starting
points for single-shell input.

As Zhang et al. (2012) and Kaden et al. (2016) predict, conventional
estimation techniques (“Direct Fitting” in the figure) fail given single-
shell input, producing strongly disrupted maps, e.g. noisy appearance
of fICVF and μFA. IQT-GL also performs poorly and fails to recover the
structure of most parameter maps. The improvement IQT-RF provides
is striking. It recovers the broad patterns of contrast between grey
matter, white matter, and cerebro-spinal fluid in all parameters, albeit

Fig. 2. Demonstration of IQT image-resolution enhancement. The figure shows DEC maps (clipped at FA=0.75) for an example (not in any training set) full-resolution (1.25 mm
isotropic) HCP DTI (top left), the corresponding image after downsampling the DWIs to 3.75 mm isotropic resolution (top left-middle), those after reconstruction to full resolution via
linear (top right-middle) and cubic (top right) interpolation prior to DT fitting, and after reconstruction using IQT (third row) trained on other HCP data sets (left), the Lifespan data set
(right-middle), and fixed monkey-brain data (right). The second and fourth rows show difference maps against the “Hi-res gold standard”. The bar chart on the second row compares
average reconstruction errors over the 8 images in the HCP1 test set – lower is better.
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with less point-to-point variation (cyan ellipses) and weaker contrast
(yellow ellipses) than the “Original”.

Quantitative evaluation

Fig. 5 compares high-resolution DTI reconstruction errors (DT-
RMSE from Eq. (4)) on the HCP1 test set for various algorithms as a
function of per-tree training set size, T| |. As in Figs. 2 and 3, low-
resolution input data comes from block averaging DWIs prior to model
fitting and linear and cubic interpolation is on the downsampled DWIs
prior to model-fitting. All quantitative results on resolution enhance-
ment, in this and subsequent figures, use m=2 (factor of 8 difference in
voxel volume), which is representative of practical situations. However,
this is in contrast to the qualitative results in Fig. 2, which use m=3
(factor of 27 voxel volume difference) to emphasise visible differences
in reconstruction quality better. In the IQT-RF data points, in all
figures in this section, the number of trees is inversely proportional to
the number of training samples per tree so that the total amount of
training data is comparable; from left to right, the number of trees is
64, 32, 16, 8, 4.

Fig. 5 shows that standard-deviation over subjects (error bars in the
figure) is consistent among the different algorithms. However, the
subject-specific error score is highly correlated among algorithms,
because individual anatomical features, such as the size of the
ventricles, strongly drive its absolute value. For this reason, standard
deviation over training sets is more meaningful when comparing
performance between algorithms than standard deviation over sub-
jects. Later results (Fig. 7(b)) show that the standard deviation over
training sets has a value of around 10 mm s−7 2 −1, which is negligible on
the scale of Fig. 5. This suggests that even small differences in error

score, such as between IQT-OneTree (a single regression-tree) and
IQT-RF at T| | ≈ 1.6 × 106, are strongly significant at about 60 standard
deviations. Similarly, the differences in performance between inter-
polation and IQT-GL, or IQT-GL and IQT-RF, are highly significant.
Thus we conclude that, as the qualitative results in Fig. 2 suggest, all
IQT implementations outperform linear and cubic interpolation, and
non-linear random forests (IQT-RF) outperform non-linear decision
trees (IQT-OneTree), which outperform global-linear regression (IQT-
GL). The flexibility of the non-linear mappings captures significant
extra detail. Moreover, as is common in learning applications, the
consensus approach of the forest provides subtle but significant
additional benefit over the single tree; this is both because it enables
the learning to consider more training data, and because it mitigates
the greedy tree-learning algorithm hitting local minima.

Fig. 5 also shows that while IQT-GL benefits little from increasing
T| |, and interpolation is obviously independent of T| |, IQT-RF perfor-
mance increases steadily with T| |. Thus, IQT-RF favours a small
number of complex trees, from large T| |, over a large number of smaller
trees trained with less data.

Fig. 6 plots reconstruction errors against T| | for various n to guide
the choice of the parameter. Panel (a) is for IQT resolution enhance-
ment and (b) for NODDI parameter mapping. For comparison to the
minimum NODDI-MAE score for IQT-RF of 0.10 × 10−2 (n=1, max-
imum T| |), the corresponding score for “Direct Fitting” (Fig. 4) is
1.81 × 10−2 (18 times worse than IQT-RF), and the best case for IQT-GL
(n=2, largest T| |) is 0.65 × 10−2 (6 times worse than IQT-RF). We omit
error bars in both panels for clarity, but they have similar magnitude to
those in Fig. 5.

In resolution enhancement, performance of IQT-GL increases with
n for sufficient T| |. This reflects the increase in linear-model complexity

Fig. 3. Visualisation of DTI principal directions in and around the cortex in one HCP data set: original 1.25 mm resolution image (top left), downsampled 2.5 mm resolution image
(bottom left), IQT-RF (m n= 2, = 2) reconstructed 1.25 mm resolution image (top right), and linearly interpolated 1.25 mm resolution image (bottom right). The two black lines

correspond to the pial and white matter boundary surfaces so encompass the cortical ribbon. The background is a high-resolution T2-weighted image. Each vector has been scaled by the
corresponding FA and coloured by orientation in the same way as the DEC maps in Fig. 2.
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as n increases: for n=1, the input patch includes 27 voxels withm=2, so
the linear transformation has 7824 = 163 × 48 elements
( n p163 = (2 + 1) × + 13

1 ; m p48 = ×3
2; p p= = 61 2 ); the number of

parameters increases to 98,832 (=(7 × 6 + 1) × (2 × 63 3 )) for n=3. In
contrast, the random forests find an appropriate level of complexity of
the model for any n. However, computer memory limitations enforce a

Fig. 4. IQT reconstruction of NODDI and SMT parameters from DTI; trained on HCP1. The left column shows gold standard NODDI (top three rows) and SMT (bottom three rows)
parameter maps estimated using standard tools from the full data set (all 3 non-zero b-value shells) of the same HCP subject as Fig. 2. The second column shows corresponding maps
estimated using standard tools from just the b = 0 images and b = 1000 smm−2 shell. The third and fourth columns show maps recovered by IQT-GL and IQT-RF, respectively, from just
the b = 1000 smm−2 DTI.
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trade-off between number of data points the training set can contain
(maximum at small n) and the information content of each data point
(maximum at large n). Fig. 6(a) shows that n=2 optimises that trade
off.

Supplementary results in figure S3 explore the dependence of
performance on noise level in the input data and orientation with
respect to the training data (representing a change in head orientation).
They show that performance degrades gracefully as noise increases and
that performance is orientation dependent. Other results (not shown)
reveal that reconstruction error reduces rapidly as the number of trees
in the random forest increases from 1 to 3, but stabilises above 4;
increasing the number of trees further, even for high T| |, provides little
gain. Moreover, for fixed training set size, little improvement arises
from increasing the number of source images in the HCP1 training set
above its setting here of 8. Corresponding results for MAP-MRI
resolution enhancement (not shown) show similar trends to those for
DTI: forests outperform single trees, global linear transformations, and
standard interpolation in terms of reconstruction error; n=2 is a good
choice, although for MAP-MRI n=1 performs similarly to n=2 and we
thus use n=1 for MAP-MRI driven tractography later, as the boundary
completion is faster to run.

Fig. 6(b) shows that n=1 optimises the neighbourhood size for IQT
NODDI parameter estimation. The comparison to n=0 confirms that
the neighbourhood information is important and improves substan-
tially on a direct estimation of the NODDI parameters from each DT in
isolation.

Fig. 7 evaluates generalisability of IQT beyond its training set. Panel
(a) evaluates the effect of choice of training set within the HCP data set,
while (b) compares the performance of models trained on HCP,
Lifespan, and Monkey data sets.

Fig. 7(a) tests the hypothesis that IQT models generalise well across
demographic groups, i.e. performance depends little on the choice of
subjects in the training set. Results show that reconstruction errors on
a test set of images from a very homogeneous group (HCP2: white,
right-handed, females in their 20s) depend very little on whether the
training set comes from other individuals in the same group, a set of
individuals in a distinct homogeneous group (HCP3: black, left-
handed, males in their 30s), or a diverse group (HCP1: with all
combinations of the characteristics in HCP2 and HCP3). In fact,
training on HCP1 produces slightly lower errors than training on
HCP2 on both test sets, highlighting that a precise match of demo-
graphics between the training and test sets has little importance. Error
scores vary substantially among test sets, reflecting the relatively high
variability over subjects, which, as discussed earlier, depends on gross
anatomy, such as ventricle volume.

Fig. 7(b) tests wider generalisability of IQT-RF by comparing DTI
reconstruction errors for the HCP1 test set using IQT-RF trained on
various different data sets. The variability of the error scores among the
HCP Random 1-8 training sets (grey markers) allows us to evaluate the
standard deviation over training set, which is of order 10 mm s−7 2 −1. This
illustrates the within-subject variability (in contrast to the between-
subject variability that the standard deviation over subjects reflects)
that we refer to earlier in the discussion of Fig. 5 and confirms that
performance depends only weakly on the choice of HCP training
subjects. Although error scores from the Lifespan and Monkey data
sets are outside the range of variability of the HCP training sets, so
significantly worse statistically, both training sets still produce good
approximations to the ground truth. Both produce much lower error
scores than interpolation techniques: comparison of error scores with
Fig. 5 shows that IQT-RF trained on Monkey data produces similar
error scores to IQT-GL trained on HCP data (see also Fig. 2 inset).

Fig. 7(b) also shows that for the Lifespan training sets, performance
increases with T| | favouring a small number of complex trees, as with
the HCP training sets. However, for the Monkey data sets, a larger

Fig. 5. High-resolution DTI reconstruction errors as a function of per-tree training set
size, T| |, for interpolation and IQT, using HCP1 training and test sets with m=2 for all
algorithms, and n=2 for IQT. The error bars show one standard deviation over subjects.

Fig. 6. Reconstruction errors as a function of training set size, T| |, and patch size, n. Panel (a) is for IQT resolution enhancement withm=2 using HCP1 training and test sets. Panel (b) is
for IQT NODDI parameter estimation. The black markers and lines show error scores for models trained on HCP1 and grey those for HCP2 training; the test set in both cases is from
HCP1.
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number of simpler trees proves favourable; this promotes generalisa-
bility better for this training data, which is more distinct from the test
data than the HCP or Lifespan training data.

Tractography

Fig. 8 demonstrates IQT's direct benefits to tractography in
ameliorating ambiguities that arise from limited spatial resolution.
The top row replicates the finding in Sotiropoulos et al. (2013) that
probabilistic tractography separates the four distinct pathways from
the cortical hand area to the thalamus, brainstem, spinal cord and
putamen (Haines, 2012) when using 1.25 mm resolution data sets.
Fig. 4 of Sotiropoulos et al. (2013) also shows that tractography cannot
separate the pathways using 1.5 mm or 2 mm resolution images.
However, following IQT MAP-MRI resolution enhancement (n=1,
m=2, HCP1 training data, T| | ≈ 1.6 × 106, 8 trees in IQT-RF), prob-
abilistic tractography recovers the four pathways even from 2.5 mm
resolution input data. The finding is consistent over the HCP test
subjects. In contrast, the same tractography procedure after linear or
cubic interpolation misses at least one of the four pathways and
produces various false positives (yellow arrows).

IQT on independent data sets

Figs. 9–11 demonstrate IQT-RF, trained on HCP data, on the
independently acquired Prisma data sets. The key distinction with
earlier results in Figs. 2 and 3, is that the low resolution data set is
acquired at 2.5 mm resolution rather than obtained by the same
downsampling procedure used in training. The results confirm efficacy
of IQT-RF on realistic data. Specifically, IQT-RF sharpens weak
structures in data from widely available scanners (Fig. 9), produces
plausible NODDI parameter maps even from very sparse input data
sets (Fig. 9), recovers structure at the white-matter-grey-matter
boundary that interpolation cannot (Fig. 10), and enables tractography
to separate thin pathways from data acquired at 2.5 mm isotropic
resolution (Fig. 11).

Fig. 9 illustrates DTI resolution enhancement and NODDI para-
meter mapping via IQT-RF on the Prisma data set from Subject 1. The
increase in detail in the high resolution images obtained from IQT-RF
is clear in many areas of the DEC maps, particularly after zooming in
(rows 2 and 4). For example, the small red, blue, and yellow (top to

bottom) structures marked with white arrows are clearly discernible in
the IQT-RF maps, but not in the low-resolution 2.5 mm data, even after
cubic interpolation of the source DWIs to 1.25 mm resolution. The
figure also shows that performance degrades gracefully as the number
of input DWIs decreases. The second column of the figure uses all 90
b = 1000 smm−2 DWIs to construct the DTI input to IQT-RF. Such a
data set would require about 15 min to acquire on a modern clinical
system. However, the third and fourth columns use only 30 and 6
DWIs, respectively, representing sparser 5 minute or 1 minute
acquisitions. Very short acquisitions like these are common in clinical
situations where subjects cannot stay still, e.g. infants (Counsell et al.,
2003), or are in the middle of a surgical operation (Winston et al.,
2012). The figure shows that even using very sparse input to IQT, the
mappings we learn produce high resolution images with good consis-
tency to those from less noisy input and to the pseudo-ground-truth.
IQT-RF also produces NODDI maps that reflect the ground-truth
contrast. IQT-RF preserves the pattern of contrast even with the
thirty-direction input, although the maps become visibly disrupted
with six-direction input.

Fig. 10 compares cortical DTI principal direction maps in the
1.35 mm and 2.5 mm resolution data sets with those after interpolation
and IQT-RF resolution-enhancement from 2.5 mm to 1.25 mm resolu-
tion. The figure illustrates areas where IQT-RF recovers the sharp
tangential-orthogonal transition at the white-grey matter boundary
that interpolation loses (black arrows and ellipse). It also shows areas
that match the 1.35 mm pseudo ground-truth less well (yellow arrow
and grey matter above black ellipse). In the white matter of the gyrus
indicated by the yellow arrow, IQT-RF and interpolation both produce
a slightly different orientation (more purple) to the 1.35 mm data (more
green). However, the orientations in both reconstructions reflect the
source 2.5 mm data, so the difference may arise from imperfect spatial
alignment of the 1.35 mm and 2.5 mm data sets; small residual
misalignments always remain even though state-of-the-art image
registration (Anderson and Sotiropoulos, 2016) maps both data sets
to MNI space. IQT-RF recovers the sharp tangential-orthogonal
transition across the white-grey matter boundary on the left side of
that sulcus, albeit displaced (again possibly arising from imperfect
spatial alignment with the pseudo-ground truth), whereas interpolation
does not recover the transition at all. The grey matter at the top of the
sulcus (right of yellow arrow, above black ellipse) has complex
structure in the 1.35 mm data set that is lost in the 2.5 mm data; neither

Fig. 7. Quantitative evaluation of generalisability of IQT resolution enhancement both within the HCP data set (panel (a)) and across different data sets (panel (b)). Panel (a) plots
errors for training and test sets of demographically distinct HCP sub-groups with m=2 and n=2. The same colours indicate the same test set (HCP1 or HCP2) and the same markers
indicate the same training set (HCP1, HCP2, or HCP3). HCP1 contains diverse subjects while HCP2 and HCP3 are homogeneous but distinct. In the legend, “TrainXTestY” represents
training on HCPX and testing on HCPY. Panel (b) shows reconstruction errors on the HCP1 test set for IQT-RF withm=2 and n=2 trained on Monkey data, Lifespan data, the HCP1 and
HCP2 training sets, as well as the eight HCP-Random training sets. The error bars show one standard deviation over subjects.
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interpolation nor IQT-RF recover the full complexity of the region.
IQT-RF relies on boundary completion in much of that area.
Nevertheless, reassuringly, IQT-RF remains consistent with the low-
resolution data producing similar output to interpolation.

Fig. 11 shows probabilistic tractography from the hand area of the
motor cortex using the full 1.35 mm data set, and 1.25 mm data sets
reconstructed by interpolation and IQT-RF MAP-MRI resolution
enhancement (n=1, m=2) from the 2.5 mm Prisma data sets using all
90 directions.

Fig. 8. IQT-enhanced tractography. A: Probabilistic tractography maps (thresholded at
0.35%) for one HCP subject (not in any training set) overlaid on a group-mean T1-
weighted image. Tractography maps come from the original high resolution data set with
seed region in the hand area of the motor cortex, together with corresponding maps using
data sets reconstructed via linear and cubic interpolation, IQT-GL, and IQT-RF, after
downsampling to 2.5 mm resolution (8 times larger voxels). The blue arrows point to four
cortical projections that tractography identifies in the original data (from medial to
lateral: cortico-thalamic, cortico-bulbar, cortico-spinal and cortico-striatal). B: Error and
correlation scores between probabilistic tractography maps from the original high
resolution data set and each reconstruction; bar-chart metrics are averages over the 8
test subjects from HCP1. Individual performance on all test subjects are root-mean-
square errors and correlations normalised to the worst and best case, respectively, so the
worst error score is 100 and the best correlation score is 1.
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In both subjects, tractography separates the four cortical projec-
tions (as described in Fig. 8 and indicated by the blue arrows) from the
pseudo ground-truth1.35 mm data set. After interpolation of the 2.5 mm
data set to 1.25 mm resolution, tractography cannot separate the four
pathways, in particular missing the cortico-bulbar projection to the
brainstem (2nd projection from the left), and produces several false
positives. Tractography on the 1.25 mm IQT-RF data sets finds four
pathways, recovering the cotico-bulbar projection. In subject 2, tracto-
graphy on the IQT-RF 1.25 mm data set separates the three medial
pathways even more clearly than the1.35 mm data set. In both subjects,
the position and shape of the most lateral (cortico-striatal) projection is
somewhat disrupted in comparison to the 1.35 mm data set. However,
the match between the IQT-RF tractography and the pseudo ground-
truth is remarkable given that the former uses less than one sixth of the
input data.

Discussion

We have introduced the notion of IQT, proposed two straightfor-
ward implementations, and demonstrated the potential to transfer
information from a unique custom-built high-power imaging system to

lower-quality data representative of widely available machines. The
current implementations of IQT require only off-the-shelf machine
learning tools and simple and standard data preprocessing. They
require no image smoothing, denoising, spatial normalisation, or
specialised acquisition sequence or protocol. Although training IQT-
RF can require days of processor time, a straightforward image
reconstruction with IQT-RF typically requires about 10 minutes of
processor time (similar to DTI or MAP-MRI processing, but <5% of the
standard NODDI computation), since it requires just one linear
transformation per image patch. Boundary completion increases
computation. However, both operations also parallelise naturally.

IQT resolution enhancement shows clear improvements over
interpolation, which is the standard way to estimate sub-voxel infor-
mation in imaging applications from visualisation by a radiologist to
sophisticated post-processing procedures, such as tractography. IQT
avoids artefacts commonly associated with interpolation (Dyrby et al.,
2014), such as hot-spots/blurrring in Fig. 2 and the partial volume
effects in Fig. 3, and recovers fine detail lost at low resolution. Although
higher order interpolation can also reduce such artefacts to some
extent (Dyrby et al., 2014), such methods all approximate high
resolution voxels as averages over low-resolution neighbourhoods.
IQT's strategy is fundamentally different and has the substantial
advantage of exploiting knowledge of likely corresponding high resolu-
tion image structure. The technique should be beneficial in any
application that requires sub-voxel inference.

Future work must compare performance of IQT's mappings learned
from training data, with more recent interpolation techniques, such as
sparse reconstruction or non-local means (Coupé et al., 2013; Manjon
et al., 2010). Preliminary tests with the basic algorithm in Manjon et al.
(2010) find best performance running it directly on the DT element
maps, which gives DT-RMSE of 1.1 × 10 mm s−4 2 −1 on the HCP1 test set.
Thus, it scores in between cubic interpolation and IQT-GL; see bar
chart in Fig. 2. The later technique (Coupé et al., 2013) tailored
specifically for DWI will be interesting to compare once the code is
freely available.

The generalisability that Fig. 2 and 7 illustrate is important,
because it reveals the potential for IQT to enhance images distinct

Fig. 10. Visualisation of DTI principal directions in and around the cortex in Prisma data, Subject 1, before and after resolution enhancement.

Fig. 9. IQT-RF for the non-HCP data set from Subject 1. The top row (columns 2-4)
shows DEC maps from the b = 1000 smm−2 shell of the 2.5 mm data set with all 90
directions (middle left), a subset of 30 of the 90 directions (middle right), and a subset of
6 directions (right). The top left panel shows the DEC map after cubic interpolation of the
90 DWIs used in the middle-left panel to 1.25 mm resolution. The third row compares
DEC maps from the 1.35 mm pseudo ground-truth data set (left) with those from 1.25 mm
DTI maps reconstructed by IQT-RF from the 2.5 mm DTI maps with varying numbers of
input images in the corresponding columns of the top row. To show differences more
clearly, rows 2 and 4 zoom in on the area marked by the white rectangle in the left-most
image of row 3 in the corresponding image immediately above; the white arrows
highlight structures visible in the IQT maps that are not discernible in the low-resolution
images. The last three rows compare ground-truth NODDI parameter maps (left), fitted
to the whole1.35 mm data set, to parameter maps reconstructed by IQT from DTI fitted to
90 (and 21 b=0 images), 30 (plus 5 b=0), and 6 (plus 1 b=0) (middle left to right,
respectively) directions from the b = 1000 smm−2 shell of the 1.35 mm data set. In each
case, IQT-RF uses an eight-tree random forest learned from HCP1 with T| | ≈ 1.6 × 106;
n=2 for DTI resolution enhancement, and n=1 for NODDI mapping.
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from the training set. Specifically, reconstruction of high-resolution
DTI degrades remarkably little as we move through IQT trained on i)
HCP data from very similar subjects to the test data; ii) HCP data from
a distinct demographic; iii) data from a distinct acquisition protocol
and very different demographic (the HCP Lifespan data set); and iv)
data from fixed monkey brains. This shows the great potential of IQT to
enhance any data set even when training data is not directly repre-

sentative. Nevertheless, the robustness of performance in the presence
of pathology remains a key question for healthcare applications. Future
work must determine whether IQT can benefit cohort studies and
whether training data from patients is necessary to do so. A related
challenge is to quantify uncertainty in IQT output, to highlight areas of
low confidence e.g. from lack of representation in the training data. The
current implementations naturally provide such estimates, via Eq. (3),
although future work must evaluate their precision. See Tanno et al.
(2016) for preliminary work on IQT uncertainty quantification in the
presence of pathology. More generally, future work could explore ideas
from domain adaptation (Blitzer et al., 2006) to address the challenges
of generalisability particularly in situations where direct training data
is hard to come by.

One natural question for future work on resolution-enhancement is
whether IQT can predict even higher resolution images than its
training data on the assumption of fractal properties of brain images,
i.e. self-similarity across scale. This is reasonable over a limited range
of scales, as, for example, we can expect similar partial volume effects
to arise going from 1.25 mm to 2.5 mm voxels as from 0.625 mm to
1.25 mm. Fig. 12 shows an initial exploration of the idea. It shows
0.625 mm and 0.313 mm isotropic resolution DEC maps obtained via
IQT-RF, trained with 1.25 mm images downsampled to 2.5 mm, but
using the original 1.25 mm image as input for one and two iterations,
respectively. The figure focusses on regions of interest in increasingly
(top to bottom) lateral sagittal slices. The top row shows a slice near the
midline of the brain and focusses on a region in the cerebellum. IQT-
RF reveals the fine tree-like structure of the cerebellar white matter,
e.g. the thin pathways ending at the white horizontal arrows, which are
difficult to discern at the original resolution. The middle row illustrates
clearer depiction after IQT-RF super-resolution of the fine interdigitat-
ing pathways in the brain stem at the level of the pons (blue and red
area). IQT-RF infers sub-voxel crossing structures (e.g. white vertical
upward arrow) and distinct subareas (white vertical downward arrows)
obscured by partial volume effects at the original resolution. The
bottom row shows that IQT-RF highlights the fine separating pathways
in the lateral areas of the corpus callosum (white diagonal arrows)
projecting to different gyri; the pattern is consistent with those in very
high resolution ex-vivo DTI and polarised light imaging, e.g. (Mollink
et al., 2016). Fig. S4 shows equivalent images obtained from cubic
interpolation of each DWI prior to fitting the DT. The interpolated
images do reveal some of the same hidden detail, but are more blurred.
For example, the fine pathways of the cerebellum are less clear than
from IQT-RF. Although these results are compelling, validation is
challenging due to lack of ground truth. Future validation work with
very high resolution data is necessary to confirm efficacy.

IQT-enhanced tractography reveals thin pathways in standard
resolution data previously identifiable only in specialised high-resolu-
tion data. We concentrate here on just one well-known tractography
task to illustrate the potential and further work will evaluate the
benefits more generally. However, exploitation of IQT in this way
promises major benefits in neuroanatomy (Catani et al., 2005; Wedeen
et al., 2012) and patient connectivity studies (Catani and ffytche, 2005;
Warren et al., 2013), where tractography has provided fundamental
advances in understanding. It offers similar benefits in neurosurgical
planning e.g. (Winston et al., 2012), which relies increasingly on
tractography, but with low-resolution data from limited acquisition
time; Fig. 9 shows feasibility of IQT in such scenarios. Moreover, the
benefits that IQT offers tractography are mostly complementary to
other advances in tractography, such as global and microstructure-
informed tractography (Sherbondy et al., 2010; Reisert et al., 2014;
Daducci et al., 2015) or machine-learning based tractography (Neher
et al., 2015). A recent evaluation of signal models in Ning et al. (2015)
suggests that other signal representations can recover fibre orientations
more accurately than MAP-MRI, so future work may examine the
impact of the precise signal representation IQT uses and make choices
that further enhance performance. Fig. 8 shows that occasionally (e.g.

Fig. 11. Probabilistic tractography maps, overlaid on T1 maps in MNI space, on both
subjects for various acquired and reconstructed data sets.
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subject 7) tractography matches ground truth better after cubic
interpolation than IQT-RF. This occurs despite the IQT-RF recon-
structed MAP-MRI map always having lower error compared to ground
truth than interpolation. In this particular case, IQT in the seed region
relies on boundary completion, which reduces accuracy and disrupts
the tractography process from the start.

IQT parameter mapping gives tantalising results in recovering
multi-shell microstructure-imaging parameter maps from single-shell
input. The ability to estimate subtle microstructure parameters from
single-shell DTI data potentially enables reanalysis of a wide range of
historical brain-imaging studies to reveal more specific information on
group differences or disease mechanisms. However, this estimation
problem is extremely challenging and ill-posed, as the effects of neurite
density and orientation dispersion are inseparable in isolated voxels
from single-shell input data (Zhang et al., 2012). IQT manages to
resolve much of the ambiguity by exploiting the local image (i.e. patch)
structure. For example, within-voxel orientation dispersion from
NODDI or SMT must have some consistency with the distribution of
orientations in surrounding voxels; IQT-RF with non-trivial patch size
learns such constraints implicitly. Nevertheless, the current implemen-
tation is not sufficient to replace the multi-shell acquisition. The
ellipses in Fig. 4 highlight a loss of detail. Fig. 13 shows how this
manifests in a group study: IQT-NODDI recovers the known trend
across age-groups of NODDI's fICVF parameter, which increases to
middle age then decreases towards old age (Chang et al., 2015).
However, the absolute values are biased upwards and the ranges are
narrower. This reflects the fact that, even considering neighbourhood
configurations, the mapping from DTI to NODDI is underdetermined
so IQT-RF cannot capture subtle variations in parameter values.
Despite these limitations, the current implementation may be sufficient
to provide pilot data motivating reacquisition of existing single shell
data sets using a multi-shell protocol. Alternative input parameters,
such as crossing fibre orientations, T1 or T2-weighted intensity
patterns, white-matter-grey-matter classification, or even the weak

parameter estimates from the second column of Fig. 4, may improve
performance. In general though, IQT parameter mapping may be more
directly useful in stabilising estimates from very sparse, but multi-shell,
data sets, as Golkov et al. (2016) and Fig. 9 explore. Future work will
test the potential further.

Although the simplicity of the current IQT implementations is
appealing, many other implementations are feasible and may improve
performance. More precise simulation of low-quality from high-quality
data to generate matched training pairs is certainly possible (Jog et al.,
2015). Other learning algorithms, e.g. deep learning via convolutional
neural networks (Dong et al., 2016), may capture more detailed and
precise IQT mappings and may help specifically in learning mappings
at the boundary to help tractography from cortical regions. Enforcing

Fig. 12. “Super-resolution” DTI maps obtained from IQT-RF. The first column shows DEC maps from three sagittal slices at increasingly lateral positions (top to bottom) from the same
data set used for Fig. 2 at the original 1.25 mm-isotropic resolution. The second column shows the regions of interest marked in the first column at the original 1.25 mm-isotropic
resolution. The third and fourth columns show the same regions of interest in 0.625 mm and 0.313 mm isotropic resolution data sets obtained from IQT-RF with m=2 and n=2 after one
and two iterations, respectively.

Fig. 13. Box plots showing the trends across the different age groups in the Lifespan
data set of the NODDI fICVF parameter from standard NODDI fitting and IQT-RF

estimation from DTI after training on HCP1 (8 training images, T| | ≈ 1.6 × 106, 8 trees,
n=1, m=1). The markers show the mean, median, standard deviation, and range over the
white matter skeleton from the popular tract-based spatial-statistics method (Smith
et al., 2006).
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compatibility of neighbouring patches, e.g. via a Markov random field
or AutoContext (Tu and Bai, 2010), may help resolve remaining
ambiguities. For example, close inspection of the 0.313 mm images in
Fig. 12 reveals subtle artefacts, e.g. a blockiness to the image in the
vicinity of the upward vertical arrow in the middle row, that arise when
pushing the technique to its limit. Neighbourhood constraints and
uncertainty evaluation can add further constraints to avoid such effects.

All these candidate IQT implementations support many other
important image reconstruction and analysis challenges, such as:
synthesising other image contrasts, e.g. estimating T2-weighted images
from T1 (Jog et al., 2015; Ye et al., 2013), to reduce acquisition time in
clinical studies, or estimating X-ray CT images from MRI (Burgos et al.,
2015), to avoid irradiating patients in cancer-therapy planning; learn-
ing mappings among imaging protocols to reduce confounds in multi-
centre studies or studies that straddle scanner upgrades (Mirzaalian
et al., 2016); or removing artefacts e.g. from signal drop-out or subject
motion. The demonstrations we make here illustrate the potential of
IQT on its own to bring the power of tomorrow's imaging techniques
into today's clinical applications. However, even greater future poten-
tial lies in IQT's complementarity to rapid image acquisition strategies,
such as compressed sensing (Lustig et al., 2007), MR fingerprinting
(Ma et al., 2013), or simultaneous multislice (Moeller et al., 2010;
Setsompop et al., 2012). The combination offers great promise in
realising practical low-power MR, or other imaging, devices such as
portable desktop, ambulance or battlefield MRI scanners (Cooley et al.,
2015, Sarracanie et al., 2015), or in intra-operative imaging applica-
tions with a very tight acquisition-time budget, e.g. (Winston et al.,
2012). Longer-term, these ideas support a future medical-imaging
paradigm exploiting coupled design of a) bespoke high-powered
devices to capture databases of high quality images, and b) widely
deployed cheap and/or low-power devices designed specifically to
exploit the rich information from (a).
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