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Let ρ denote the non-trivial zeros of the Riemann zeta function. We study the relative value distribution
of L(ρ+σ, χ1) and L(ρ+σ, χ2), where σ ∈ [0, 1/2) is fixed and χ1, χ2 are two fixed Dirichlet characters
to distinct prime moduli. For σ > 0 we prove that a positive proportion of these pairs of values are
linearly independent over R, which implies that the arguments of the values are different. For σ = 0

we show that, up to height T , the values are different for cT of the Riemann zeros for some positive
constant c.

1. Introduction

The value distribution of ζ(s) and L(s, χ) is a classical problem that has recently attracted
attention in for example [6], [10], [22]. In this paper we prove two results relating to the relative
distribution of arguments and values of two distinct Dirichlet L-functions. In Theorem 1.1 we
compare the arguments of two Dirichlet L-functions at horizontal shifts of the Riemann zeros,
σ + iγ, where σ ∈ (1/2, 1) is fixed and γ runs over heights of the non-trivial zeros of ζ. This is
done by computing discrete averages of the second and fourth moments of Dirichlet L-functions.
In Theorem 1.2 we move to the actual zeros of ζ. In this case we are only able to obtain results for
the first and second moments. This allows us to compare the values of two Dirichlet L-functions.

The most typical focus for investigation for ζ and L(s, χ) is the distribution of their zeros.
Let N(T ) denote the number of zeros of ζ(s) in the region Re s ∈ (0, 1) and Im s ∈ (0, T ). The
Riemann–von Mangoldt formula states that

N(T ) =
T

2π
log T − T

2π
+O(log T ).

We expect that all zeros of Dirichlet L-functions to primitive characters are simple, and that
two L-functions with distinct primitive characters do not share any non-trivial zeros at all. This
comes from the Grand Simplicity Hypothesis (GSH), which states that the set

{γ ≥ 0 | L( 1
2 + iγ, χ) = 0 and χ is primitive}

is linearly independent over Q, see [21]. In 1976 Fujii [4] showed that a positive proportion
of zeros of L(s, ψ)L(s, χ) are distinct, where the characters are primitive and distinct, but not
necessarily of distinct moduli. A zero of the product is said to be distinct if it is a zero of only one
of the two, or if it is a zero of both then it occurs with different multiplicities for each function.
R. Murty and K. Murty [19] proved that two functions of the Selberg class S cannot share too
many zeros (counted with multiplicity). They show that if F , G ∈ S then F = G provided that

|ZF (T )∆ZG(T )| = o(T ),
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where ZF (T ) denotes the set of zeros of F (s) in the region Re s ≥ 1/2 and |Im s| ≤ T , and ∆ is
the symmetric difference. In 1986 Conrey et al. [1] proved that the Dedekind zeta function of a
quadratic number field has infinitely many simple zeros unconditionally. However, they had to
assume the RH in order to extend this to a positive proportion [2].

Apart from looking at the zeros, it is natural to consider other values of ζ and L(s, χ), that is,
the distribution of s such that ζ(s) = a (or L(s, χ) = a) for some fixed a ∈ C. In [8] Garunkštis
and Steuding proved a discrete average for ζ ′ over the a-values of ζ, which implies that there
are infinitely many simple a-points in the critical strip. On the critical line, however, we do not
even know whether there are infinitely many a-points. For further results on the distribution of
simple a-points see [11]. On the other hand, we can also look at points where ζ(s) (or L(s, χ))
has a specific fixed argument. Fix ϕ ∈ [0, π) such that ϕ 6= π/2. In [14] the authors proved that
ζ takes arbitrarily large values with argument ϕ, that is

max
0<t≤T

Arg(ζ(1/2+it))=ϕ

|ζ( 1
2 + it)| � exp

((
1

2
+ o(1)

)√
log T

log log T

)
.

This has recently been improved to angles modulo 2π by Hough [13].
In this paper we will prove the following two theorems.

Theorem 1.1. Assume the Riemann Hypothesis, i.e. β = 1
2 . Let χ1, χ2 be two primitive

Dirichlet characters modulo distinct primes q and `, respectively. Let σ ∈ ( 1
2 , 1), then, for a

positive proportion of the non-trivial zeros of ζ(s) with γ > 0, the values of the Dirichlet L-
functions L(σ + iγ, χ1) and L(σ + iγ, χ2) are linearly independent over R.

Remark 1. If the values L(σ + iγ, χ1) and L(σ + iγ, χ2) are linearly independent over R, then
in particular their arguments are different.

Theorem 1.2. Two Dirichlet L-functions with primitive characters modulo distinct primes,
attain different values at cT non-trivial zeros of ζ(s) up to height T , for some positive constant
c.

Remark 2. In Theorem 1.2 we fail to obtain positive proportion and we expect this to be a
limitation of the method used. In [5] the authors looked at the mean square of a single Dirichlet
L-function at the zeros of another, and showed that it is non-zero for at least cT of the zeros for
some explicit c > 0. On the other hand, since we are working with two distinct L-functions, and
more precisely their difference, it seems difficult to introduce a mollifier to improve on the result.
Martin and Ng [18] evaluated the mollified first and second moments of L(s, χ) in arithmetic
progressions on the critical line and proved that at least T (log T )−1 of the values are nonzero,
which misses the positive proportion (of arithmetic progressions) by a logarithm. This was
extended to positive proportion by Li and Radziwiłł [17]. However, their method relies on the
strong rigidity of the arithmetic progression and fails when the sequence is slightly perturbed.

Remark 3. We assume that the conductors of χ1 and χ2 are primes in order to make the
notation simpler. It should be possible to generalise our results to the case when the conductors
are coprime or have distinct prime factors.

We will prove Theorem 1.1 in section 2 and Theorem 1.2 in section 3. The main ingredient
in the proofs is the Gonek–Landau formula, and results derived from it. In 1912 Landau [15]
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proved that, for a fixed x > 1, ∑
0<γ≤T

xρ = − T

2π
Λ(x) +O(log T ), (1.1)

as T −→ ∞, where Λ(x) is the von Mangoldt function extended to R by letting Λ(x) = log p

if x = pk for some prime p and integer k ≥ 1, and Λ(x) = 0 otherwise. The sum in (1.1) runs
over the positive imaginary parts of the Riemann zeros. What is striking in (1.1) is that the
right-hand side grows by a factor of T only if x is a prime power. This version of Landau’s
formula is of limited practical use since the estimate is not uniform in x. Gonek [9] proved a
version of Landau’s formula which is uniform in both x and T with only small sacrifices to the
error term:

Lemma 1.1 (Gonek–Landau Formula). Let x, T > 1. Then∑
0<γ≤T

xρ = − T

2π
Λ(x) +O (x log 2xT log log 3x)

+O

(
log x min

(
T,

x

〈x〉

))
+O

(
log 2T min

(
T,

1

log x

))
,

(1.2)

where 〈x〉 denotes the distance from x to the nearest prime power other than x itself.

If one fixes x then this reduces to the original result of Landau as T −→∞. As an application
of this result Gonek proves (under the RH) the following mean value for ζ:∑

0<γ≤T

|ζ( 1
2 + i(γ + 2πα/ log T ))|2 =

(
1−

(
sinπα

πα

)2
)
T

2π
log2 T +O(T log7/4 T ),

where T is large and α is real with |α| ≤ 1
2π log T .

In order to work on the critical line (or exactly at the Riemann zeros) we need different tools.
We replace the classical Gonek–Landau formula with an integrated version, see [6].

Lemma 1.2 (Modified Gonek Lemma). Suppose that
∑∞
n=1 a(n)n−s converges for σ > 1 and

a(n) = O(nε). Let a = 1 + log−1 T . Then

1

2πi

∫ a+iT

a+i

(m
2π

)s
Γ(s) exp

(
δ
πis

2

) ∞∑
n=1

a(n)

ns
ds

=


∑
n≤Tm2π

a(n) exp
(
−2πi

n

m

)
+O(maT 1/2+ε), if δ = −1,

O(ma), if δ = +1.

We also need the following version of the approximate functional equation for Dirichlet L-
functions. First, denote by G(k, χ) the Gauss sum

G(k, χ) =

q∑
a=1

χ(a)e2πiak/q.

We also write G(1, χ) = G(χ).

Theorem 1.3 (Lavrik [16]). Let χ be a primitive character mod q. For s = σ+it with 0 < σ < 1,

t > 0, and x = ∆
√

qt
2π , y = ∆−1

√
qt
2π , and ∆ ≥ 1, ∆ ∈ N, we have

L(s, χ) =
∑
n≤x

χ(n)

ns
+ ε(χ)

( q
π

) 1
2−s Γ

(
1−s+a

2

)
Γ
(
s+a

2

) ∑
n≤y

χ(n)

n1−s +Rxy, (1.3)
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with
Rxy �

√
q
(
y−σ + xσ−1(qt)1/2−σ

)
log 2t,

and in particular, for x = y,
R� x−σ

√
q log 2t.

Here ε(χ) = q−1/2iaG(1, χ), and

a =
1− χ(−1)

2
.

It is not hard to see that this formula is, in fact, valid for all real ∆ ≥ 0. Approximate func-
tional equations for imprimitive characters do exist, but they are more complicated. Therefore,
we restrict our attention to primitive characters in Theorem 1.1.

2. Proof of Theorem 1.1

The proof will follow the steps of [9, Theorem 2] and [20, Theorem 1.9] for the Riemann zeta
function and GL2 L-functions, respecively.

Two non-zero complex numbers z and w are linearly independent over the reals is equivalent
to the quotient z/w being non-real, or that |zw̄− z̄w| > 0. For us z and w are values of Dirichlet
L-functions. Instead of looking at these functions at a single point, we will average over multiple
points with a fixed real part σ ∈ ( 1

2 , 1) and the imaginary part at the height of the Riemann
zeros.

We are assuming the RH purely because it makes the proof simpler as expressions of the
form xρ become easier to deal with if we know the real part explicitly. On the other hand, the
distribution of these specific points does not seem to have any impact on the rest of the proof.
We suspect that the RH is not an essential requirement. In fact, following [10], it might be
possible to obtain the result without the RH by integrating

ζ ′

ζ
(s− σ)B(s, P )L(s, χ1)L(s, χ2)

over a suitable contour. This picks the desired points as residues of the integrand yielding the
required sum. This idea is also used in the proof of Theorem 1.2.

The proof will be divided into three propositions after which the main result follows easily.
In the first proposition we want to calculate discrete mean values of sums of terms of the
type L(σ + iγ, χ1)L(σ + iγ, χ2) and its complex conjugate. If we subtract one of these mean
values from the other then each term is non-zero precisely when the two numbers are linearly
independent over the reals. Hence we need to prove that the two mean values are not equal,
which is the content of Proposition 2.3. Finally, we get the main result by applying the Cauchy–
Schwarz inequality to the difference of the mean values. Because of this we also need to estimate
a sum of squares of the absolute values of the above quantities, that is,

|L(σ + iγ, χ1)L(σ + iγ, χ2)− L(σ + iγ, χ1)L(σ + iγ, χ2)|2.

This is done in Proposition 2.2.
The first problem in our proof is that the mean values are complex conjugates. In order to

show that the difference is non-zero leads to determining whether ImL(2σ, χ1χ2) 6= 0, which
does not always hold. Thus we need to introduce some kind of weighting in order to shove
these sums off balance. We do this by multiplying by a finite Dirichlet polynomial, B(s, P ),
which cancels some terms from either of the L-functions, depending on which mean value we are
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considering. We define

B(s, P ) =
∏
p≤P

(1− χ1(p)p−s)(1− χ2(p)p−s) (2.1)

for some fixed prime P , depending only on q and `. In Proposition 2.3 we prove that it is sufficient
to pick any prime with P > max(q, `). Let us also assume that this Dirichlet polynomial has
the expansion

B(s, P ) =
∑
n≤R

cnn
−s,

for some R depending on P . Since |cp| ≤ 2 for any prime p, we have for all n that

|cn| ≤ 2P . (2.2)

We prove the following propositions.

Proposition 2.1. Assume the Riemann Hypothesis. With s = σ + iγ we have∑
0<γ≤T

B(s, P )L(s, χ1)L(s, χ2) ∼ N(T )

∞∑
n=1

dnχ2(n)

n2σ
, (2.3)

and ∑
0<γ≤T

B(s, P )L(s, χ1)L(s, χ2) ∼ N(T )

∞∑
n=1

enχ1(n)

n2σ
, (2.4)

where

B(s, P )L(s, χ1) =

∞∑
n=1

dn
ns
, B(s, P )L(s, χ2) =

∞∑
n=1

en
ns
. (2.5)

Proposition 2.2. Suppose s = σ + iγ and let

A(γ) = B(s, P )
(
L(s, χ1)L(s, χ2)− L(s, χ1)L(s, χ2)

)
.

Then, under the Riemann Hypothesis,∑
0<γ≤T

|A(γ)|2 � N(T ). (2.6)

Proposition 2.3. Under the Riemann Hypothesis we can find a prime P such that∑
0<γ≤T

A(γ) ∼ C ·N(T ) (2.7)

for some non-zero constant C.

Remark 4. Recently, Garunkštis and Laurinčikas [7] considered mean values similar to ours for
ζ at horizontal shifts of its zeros. They use the fourth moment estimate to obtain results about
the discrete universality of the Riemann zeta function.

Proof of Theorem 1.1. By the Cauchy–Schwarz inequality and Propositions 2.2 and 2.3∑
0<γ≤T
A(γ) 6=0

1 ≥
|
∑

0<γ≤T A(γ)|2∑
0<γ≤T |A(γ)|2

� |C|
2
N(T )2

N(T )
= |C|2N(T ). (2.8)

This proves that a positive proportion of the A(γ)’s are non-zero; in particular, for the same γ’s,
L(s, χ1) and L(s, χ2) are linearly independent over the reals. �
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2.1. Proof of Proposition 2.1. It follows directly from the definition (2.5) that the coefficients
dn define a multiplicative arithmetic function and that dn = O(1) (see proof of Proposition 2.3
for the explicit formula). We define, for a fixed t,

B(s, P )
∑

n≤
√
q`t
2π

χ1(n)n−s =
∑

n≤R
√
q`t
2π

d′nn
−s.

We have
dn =

∑
n=km

ckχ1(m), (2.9)

and hence for n ≤ R
√

q`t
2π

d′n =
∑
n=km
k≤R

ckχ1(m). (2.10)

From this it follows that dn = d′n for n ≤
√

q`t
2π . We also need to show that d′n � 1. Let p1, . . . , ph,

for some h > 1, denote all the primes below P in an increasing order. Define P̃ = p1 · · · phP .
From the product representation of B(s, P ), equation (2.1), we see that cn = 0 for n > 1, if
n contains any prime factors greater than P . Thus, write n = pα1

1 · · · p
αh
h Pα0ν = n′ν for some

αi ≥ 0. Then

d′n =
∑
k|n′
k<R

ckχ1

(
n′

k
ν

)
= χ1(ν)d′n′ .

Thus it suffices to consider n with prime factors only up to P . Since B(s, P ) has a finite Euler
product of degree two we have cpj = 0 for any prime p and j ≥ 3. So we can suppose that
n = pα1

1 · · · p
αh
h Pα0 , where 0 ≤ αi ≤ 2 for all i ≤ h. The number of summands in (2.10) is then

at most 3h+1. By (2.2), we find that |d′n| ≤ 2P 3h+1. In particular, d′n � 1 as required.
The approximate functional equation (1.3) for χ1 with ∆ =

√
` gives

L(s, χ1) =
∑

n≤
√
q`t
2π

χ1(n)n−s +X(s, χ1)
∑

n≤
√

qt
2π`

χ1(n)ns−1 +O(t−σ/2 log t+ t−1/4),

where

X(s, χ) = ε(χ)
( q
π

)1/2−s Γ
(

1−s+a
2

)
Γ
(
s+a

2

) .
Similarly for χ2 with ∆ =

√
qR we get

L(s, χ2) =
∑

n≤R
√
q`t
2π

χ2(n)n−s +X(s, χ2)
∑

n≤1
R

√
`t

2πq

χ2(n)ns−1 +O(t−σ/2 log t+ t−1/4).

We can now expand the left-hand side in (2.3) to∑
0<γ≤T

B(s, P )

×

( ∑
n≤
√
q`γ
2π

χ1(n)n−s +X(s, χ1)
∑

n≤
√

qγ
2π`

χ1(n)ns−1 +O(γ−σ/2 log γ + γ−1/4)

)

×

( ∑
n≤R
√
q`γ
2π

χ2(n)n−s +X(s, χ2)
∑

n≤1
R

√
`γ
2πq

χ2(n)ns−1 +O(γ−σ/2 log γ + γ−1/4)

)
.

(2.11)
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Denote the sum with χ1 and χ2 by M(T ). We will take care of the other sums at the end of the
proof. The main term comes from the diagonal entries of M(T ). First, write

M(T ) =
∑

0<γ≤T

B(s, P )
∑

n≤
√
q`γ
2π

χ1(n)n−s
∑

m≤R
√
q`γ
2π

χ2(m)m−s

=
∑

0<γ≤T

∑
n≤R
√
q`γ
2π

d′nn
−σ−iγ

∑
m≤R
√
q`γ
2π

χ2(m)m−σ+iγ .

Then, we separate the diagonal terms

M(T ) =
∑

0<γ≤T

( ∑
n≤R
√
q`γ
2π

d′nχ2(n)

n2σ
+

R
√
q`γ
2π∑

n 6=m

d′mχ2(n)

(nm)σ

( n
m

)iγ)
= Z1 + Z2. (2.12)

The asymptotics in (2.3) come from Z1. We have

Z1 =
∑

0<γ≤T

( ∞∑
n=1

dnχ2(n)

n2σ
−
∑

n>R
√
q`γ
2π

dnχ2(n)

n2σ
+
∑

n≤R
√
q`γ
2π

(d′n − dn)χ2(n)

n2σ

)

= N(T )

∞∑
n=1

dnχ2(n)

n2σ
+ C1 + C2.

We need to estimate C1 and C2. For C1 we have

C1 �
∑

0<γ≤T

∑
n>
√
γ

n−2σ �
∑

0<γ≤T

γ1/2−σ = o(N(T )).

Similarly,

C2 �
∑

0<γ≤T

∑
n>
√
q`γ
2π

n−2σ = o(N(T )).

To estimate Z2 we wish to exchange the order of summation and apply the Gonek–Landau
formula (1.2). Splitting and rewriting Z2 in terms of the zeros of ζ we get

Z2 =
∑

0<γ≤T

∑
n≤R
√

q`γ
2π

∑
m<n

(
d′mχ2(n)

nσ+1/2mσ−1/2

( n
m

)1/2+iγ

+
d′nχ2(m)

nσ+1/2mσ−1/2

( n
m

)1/2+iγ
)

=
∑

n≤R
√
q`T
2π

∑
m<n

∑
2πn2

q`R2 ≤γ≤T

(
d′mχ2(n)

nσ+1/2mσ−1/2

( n
m

)ρ
+

d′nχ2(m)

nσ+1/2mσ−1/2

( n
m

)ρ)
.

To apply the Gonek–Landau formula we split the innermost sum to 0 < γ ≤ T and 0 < γ ≤
2πn2/q`R2. Hence, we can write

Z2 = Z21 + Z22 + Z23 + Z24 + Z25,

with

Z21 = − T

2π

∑
n≤R
√
q`T
2π

∑
m<n

d′mχ2(n) + d′nχ2(m)

nσ+1/2mσ−1/2
Λ
( n
m

)
,

Z22 �
∑

n≤R
√

q`T
2π

∑
m<n

n2Λ(n/m)

nσ+1/2mσ−1/2
,
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Z23 �
∑

n≤R
√

q`T
2π

∑
m<n

1

nσ+1/2mσ−1/2

n

m
log

2nT

m
log log

3n

m
,

Z24 �
∑

n≤R
√

q`T
2π

∑
m<n

1

nσ+1/2mσ−1/2
log

n

m
min

(
T,

n/m

〈n/m〉

)
,

and

Z25 � log T
∑

n≤R
√
q`T
2π

∑
m<n

1

nσ+1/2mσ−1/2
min

(
T,

1

log(n/m)

)
.

We begin by estimating Z21. The only non-vanishing terms are withm|n. Thus we write n = km

and obtain

Z21 �
T

2π

∑
k≤R
√
q`T
2π

∑
m<R

k

√
q`T
2π

Λ(k)

kσ+1/2m2σ
� T

2π

∑
k≤R
√
q`T
2π

kε−σ−1/2
∑

m<Rk

√
q`T
2π

m−2σ,

since Λ(k) � kε for any ε > 0. Since both sums are partial sums of convergent series we get
Z21 = O(T ). Working similarly with Z22 gives

Z22 �
∑

k≤R
√
q`T
2π

∑
m<R

k

√
q`T
2π

Λ(k)

kσ−3/2m2σ−2
�
∑

k≤R
√
q`T
2π

k3/2−σ+ε
∑

m<Rk

√
q`T
2π

m2−2σ

�
∑

k≤R
√
q`T
2π

k3/2−σ+ε

((
T 1/2

k

)3−2σ

+ 1

)
� T

3−2σ
2

∑
k�T 1/2

kσ−3/2+ε = O(T ).

For Z23 we get

Z23 � log T log log T
∑

n≤R
√
q`T
2π

1

nσ−1/2

∑
m<n

1

mσ+1/2

� log T log log T
∑

n≤R
√
q`T
2π

1

nσ−1/2
= o(N(T )).

In order to estimate Z24 we write n = um+ r, where −m/2 < r ≤ m/2. Hence

〈
u+

r

m

〉
=


|r|
m , if u is a prime power and r 6= 0,

≥ 1
2 , otherwise.

(2.13)

Let c = R
√
q`/2π then n/m ≤ c

√
T , and so

Z24 � log T
∑

n≤cT 1/2

∑
m<n

1

nσ+1/2mσ−1/2

n

m

1

〈n/m〉

� log T
∑

m≤cT 1/2

∑
u≤bcT 1/2/mc+1

∑
−m2 <r≤

m
2

1

mσ+1/2(um+ r)σ−1/2

1

〈u+ r
m 〉

,

and then evaluate the sum over r depending on whether u is a prime power or not to get

� log T
∑

m≤cT 1/2

∑
u≤bcT 1/2/mc+1

(
Λ(u)

m logm

mσ+1/2(um)σ−1/2
+

m

mσ+1/2(um)σ−1/2

)

� log T
∑

m≤cT 1/2

logm

m2σ−1

∑
u�cT 1/2/m

uε

uσ−1/2
= O(T ).
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Finally, for Z25 set m = n− r, 1 ≤ r ≤ n−1. So in particular log(n/m) = − log(1− r/n) > r/n.
Hence,

Z25 � log T
∑

n≤cT 1/2

∑
1≤r<n

1

nσ+1/2(n− r)σ−1/2

n

r

� log T
∑

n≤cT 1/2

1

nσ−1/2

∑
r≤n−1

1

r
= O(T ).

It remains to estimate all the other terms in (2.11). By repeating the analysis done for Z1 and
Z2 we obtain the following estimates∑

0<γ≤T

∣∣∣∣ ∑
n≤R
√
q`γ
2π

d′nn
−σ−iγ

∣∣∣∣2 � N(T ), (2.14)

and ∑
0<γ≤T

∣∣∣∣ ∑
n≤R
√
q`γ
2π

χ2(n)n−σ+iγ

∣∣∣∣2 � N(T ). (2.15)

With trivial changes to the above argument we get,∑
0<γ≤T

∣∣∣∣ ∑
n≤
√

qγ
2π`

χ1(n)nσ−1+iγ

∣∣∣∣2 � Tσ−1/2N(T ), (2.16)

and ∑
0<γ≤T

∣∣∣∣ ∑
n≤1

R

√
`γ
2πq

χ2(n)nσ−1−iγ
∣∣∣∣2 � Tσ−1/2N(T ). (2.17)

We also need to estimate the order of growth of the derivative in t of |X(s, χ)|2. First, notice
that |ε(χ)| = 1, so

|X(s, χ)| =
( q
π

)1/2−σ
∣∣∣∣Γ(1− s+ a

2

)∣∣∣∣∣∣∣∣Γ(s+ a

2

)∣∣∣∣−1

.

By Stirling asymptotics

|X(s, χ)|2 ∼ A
( q
π

)1−2σ

γ1−2σ, (2.18)

as Γ(z) = Γ(z), where A is some non-zero constant. Thus, with ψ = Γ′/Γ,

d

dγ
|X(s, χ)|2 = |X(s, χ)|2 i

2

(
ψ

(
1− s+ a

2

)
− ψ

(
1− s+ a

2

)
+ ψ

(
s+ a

2

)
− ψ

(
s+ a

2

))
= |X(s, χ)|2 i

2

(
2i

(
arg

(
1− s+ a

2

)
− arg

(
s+ a

2

))
+O(γ−2)

)
� γ1−2σ

(
O(γ−1) +O(γ−2)

)
� γ−2σ, (2.19)

by a standard estimate on ψ [12, p. 902, 8.361(3)] and the Taylor expansion of arccot. Let

S(T ) =
∑

0<γ≤T

|X(σ + iγ, χ1)|2
∣∣∣∣∑
n≤R

cnn
−σ−iγ

∣∣∣∣2∣∣∣∣ ∑
n≤
√

qγ
2π`

χ1(n)nσ−1+iγ

∣∣∣∣2.
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We use summation by parts, (2.19), (2.16), and (2.17) to see that

S(T ) = |X(σ + iT, χ1)|2
∑

0<γ≤T

∣∣∣∣ ∑
n≤
√

qγ
2π`

χ1(n)nσ−1+iγ

∣∣∣∣2

−
∫ T

1

∑
0<γ≤t

∣∣∣∣ ∑
n≤
√

qγ
2π`

χ1(n)nσ−1+iγ

∣∣∣∣2 ddt |X(σ + it, χ1)|2 dt,

which simplifies to

S(T )� T 1−2σTσ−1/2N(T ) +

∫ T

1

tσ−1/2N(t)t−2σ dt.

The first term is clearly o(N(T )). For the integral we use the fact that N(t) = O(t log t) to
estimate it as ∫ T

1

t1/2−σ log t dt� T 3/2−σ+ε.

Hence we have that S(T ) = o(N(T )), and similarly

∑
0<γ≤T

|X(σ + iγ, χ2)|2
∣∣∣∣∣ ∑
n≤1

R

√
`γ
2πq

χ2(n)nσ−1−iγ

∣∣∣∣∣
2

� T 3/2−σ+ε = o(N(T )).

Finally we use the Cauchy–Schwarz inequality, (2.14), (2.15), and the above two equations to
estimate all other terms in (2.11) as o(N(T )). �

2.2. Proof of Proposition 2.2. Since B(s, P ) is a finite Dirichlet polynomial it is bounded
independently of T . Thus, to estimate

∑
γ≤T |A(γ)|2, it suffices to estimate∑

0<γ≤T

|L(s, χ1)|2|L(s, χ2)|2 = O(N(T )). (2.20)

The approximate functional equation for L(s, χ1), as in the proof of Proposition 2.1, gives

L(s, χ1) =
∑

n≤
√
q`t
2π

χ1(n)n−s +X(s, χ1)
∑

n≤
√

qt
2π`

χ1(n)ns−1 +O(t−σ/2 log t+ t−1/4)

= W1 +X(s, χ1)W2 +O(t−σ/2 log t) +O(t−1/4).

Similarly,

L(s, χ2) = Y1 +X(s, χ2)Y2 +O(t−σ/2 log t) +O(t−1/4),

where
Y1 =

∑
n≤
√
q`t
2π

χ2(n)n−s, Y2 =
∑

n≤
√

`t
2πq

χ2(n)ns−1.

We have ∑
0<γ≤T

Y1Y 1W1W 1 =
∑

0<γ≤T

∑
m,n,µ,ν≤

√
q`γ
2π

χ1(m)χ2(n)χ1(µ)χ2(ν)

(mnµν)σ

( µν
mn

)iγ
. (2.21)
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Again, we consider the diagonal terms separately from the rest of the sum. The number of
solutions to mn = µν = r is at most the square of the number of divisors of r, d(r)2. Thus

∑
0<γ≤T

(q`γ/2π)1/2∑
mn=µν

χ1(m)χ2(n)χ1(µ)χ2(ν)

(mn)2σ
�
∑

0<γ≤T

∞∑
r=1

d(r)2

r2σ
� N(T ), (2.22)

since the inner series converges. For the off-diagonal terms set µν = r and mn = s. We can
treat the cases s < r and s > r separately. In the following analysis we assume m, n, µ, ν ≤
(q`T/2π)1/2. Consider first the terms with s < r in (2.21). We have that

Z2 =
∑

r≤q`T/2π

∑
s<r

∑
m|s, µ|r

χ1(m)χ2(s/m)χ1(µ)χ2(r/µ)

rσsσ

∑
K≤γ≤T

(r
s

)iγ
, (2.23)

where K = min(T, (2π/q`) max(m2, s2/m2, µ2, r2/µ2)). Applying Gonek-Landau Formula (1.1)
to Z2 gives

Z2 =
∑
r�T

∑
s<r

∑
m|s, µ|r

χ1(m)χ2(s/m)χ1(µ)χ2(r/µ)

rσ+1/2sσ−1/2

 ∑
0<γ≤T

(r
s

)ρ
−
∑

0<γ<K

(r
s

)ρ
= Z21,2 + Z23 + Z24 + Z25,

with

Z21,2 =
∑
r�T

∑
s<r

∑
m|s, µ|r

χ1(m)χ2(s/m)χ1(µ)χ2(r/µ)

rσ+1/2sσ−1/2

K − T
2π

Λ
(r
s

)
,

Z23 �
∑
r�T

∑
s<r

∑
m|s, µ|r

1

rσ+1/2sσ−1/2

r

s
log

2Tr

s
log log

3r

s
,

Z24 �
∑
r≤cT

∑
s<r

∑
m|s,µ|r

χ1(m)χ2(s/m)χ1(µ)χ2(r/µ)

rσ+1/2sσ−1/2
log

r

s
min

(
T,

r/s

〈r/s〉

)
,

and

Z25 �
∑
r�T

∑
s<r

∑
m|s, µ|r

1

rσ+1/2sσ−1/2
log 2T min

(
T,

1

log(r/s)

)
.

For Z21,2 we set r = sk. Since d(x)� xε and K ≤ T , we get

Z21,2 � T
∑
k�T

∑
s�T/k

Λ(k)kεsε

kσ+1/2s2σ
= O(T ).

We also have

Z23 � log T log log T
∑
r�T

rε

rσ−1/2

∑
s<r

sε

sσ+1/2

� log T log log T
∑
r�T

rε

rσ−1/2
= o(N(T )).

We can rewrite Z24 as∑
r≤cT

(χ1 ∗ χ2)(r)

rσ+1/2

∑
s<r

(χ1 ∗ χ2)(s)

sσ−1/2
log

r

s
min

(
T,

r/s

〈r/s〉

)
, (2.24)

where ∗ denotes the Dirichlet convolution. Let r = us+ t, where −s/2 < t ≤ s/2, and separate
the terms where u is not a prime power to Z24,1, and denote the remaining terms by Z24,2. We
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use (2.13) to see that

Z24,1 �
∑
s≤cT

∑
u�cT/s+1

∑
|t|<s/2

sε(us+ t)ε

sσ+1/2(us+ t)σ−1/2
log

(
u+

t

s

)
. (2.25)

Rewriting yields

Z24,1 � log T
∑
s≤cT

s2ε

s2σ

∑
u�cT/s+1

∑
|t|<s/2

(
u+

t

s

)1/2−σ+ε

.

The terms in u can be bound from above by (u− 1)1/2−σ+ε. Thus

Z24,1 � log T
∑
s≤cT

s1+2ε−2σ

(
cT

s

)3/2−σ+ε

� T 3/2−σ+εT 1/2−σ+ε log T = O(N(T )).

For Z24,2 let ′ in summation denote that the sum extends only over prime powers. We need to
estimate∑

s≤cT

∑′

u≤b cTs c+1

∑
06=|t|<s/2

(χ1 ∗ χ2)(us+ t)(χ1 ∗ χ2)(s)

(us+ t)σ+1/2sσ−1/2
log

(
u+

t

s

)
min

(
T,
us+ t

|t|

)
as O(N(T )). This can be rewritten as∑

s≤cT

(χ1 ∗ χ2)(s)

s2σ

∑′

u≤b cTs c+1

∑
06=|t|<s/2

(χ1 ∗ χ2)(us+ t)

(u+ t
s )σ+1/2

log

(
u+

t

s

)
min

(
T,
us+ t

|t|

)
.

By taking absolute values and using the triangle inequality we find that

Z24,2 � log2 T
∑
s�T

s2ε−2σ+1
∑

u�T/s

u1/2−σ+ε

� T 3/2−σ+ε log2 T
∑
s�T

sε−σ−1/2 = O(N(T )),

as required. It remains to estimate Z25. We use the same method as in Proposition 2.1. Let
s = r − k, and 1 ≤ k < r to get

Z25 � log T
∑
r�T

∑
k<r

1

rσ+1/2−ε(r − k)σ−1/2−ε
r

k

� log T
∑
r�T

1

rσ−1/2−ε

∑
k<r

1

k
= o(N(T )).

Finally, if s > r we can consider the complex conjugate of (2.21) to obtain the same estimate.
The rest of the proof proceeds in the same way as in Proposition 2.1. We obtain trivially the
estimates ∑

0<γ≤T

|W1|4 � N(T ), (2.26)

∑
0<γ≤T

|Y1|4 � N(T ). (2.27)
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Also, by modifying the argument slightly we find that∑
0<γ≤T

|W2|4 � T 2σ−1+εN(T ), (2.28)

∑
0<γ≤T

|Y2|4 � T 2σ−1+εN(T ). (2.29)

We also need to estimate the derivative of |X(s, χ)|4. By estimate (2.19) from Proposition 2.1
we get

d

dγ
|X(s, χ)|4 � γ1−2σγ−2σ � γ1−4σ.

The rest of the proof now follows from estimating∑
0<γ≤T

|X(s, χ1)|4|W2|4 = O(T 1−2σ+εN(T )),

and similarly for Y2, and applying the Cauchy–Schwarz to the remaining terms in the expansion
of the product in (2.20). �

2.3. Proof of Proposition 2.3. Let

D =

∞∑
n=1

dnχ2(n)

n2σ
, E =

∞∑
n=1

enχ1(n)

n2σ
.

By Proposition 2.2 it is sufficient to show that D − E 6= 0. First, we need to compute the dn
and en’s explicitly. Let us denote the set of primes smaller than P by P = {p1, p2, . . . , ph, P}.
Suppose P is large enough so that q, ` ∈P. The coefficients dn are defined by the Euler product∏

p≤P

(1− χ2(p)p−s)×
∏
p>P

∞∑
n=0

χ1(pn)

pns
.

If p2 | n, p ∈ P, then n disappears from the expansion, i.e. dn = 0. If n has no prime factors
from the set P, then we just get the usual coefficient from L(s, χ1). On the other hand, if some
prime p ∈P divides n exactly once then it contributes −χ2(p). Hence

dn =


χ1(n), if p - n for all p ∈P,

(−1)kχ1

(
n

pi1 ···pik

)
χ2(pi1 · · · pik), if pij ‖ n for pij ∈P for all j,

0 otherwise.

Similarly for en. Hence for p > P the Euler factors of D are of the form

(1− χ1(p)χ2(p)p−2σ)−1,

while for E one obtains the complex conjugate. On the other hand, for p ≤ P we have

1 + dpχ2(p)p−2σ + dp2χ2(p2)p−4σ + · · · = 1− χ2χ2(p)p−2σ = 1− p−2σ,

unless p = `, and similarly for the second series. Now, suppose that D = E, then∏
p≤P
p 6=`

(1− p−2σ)
∏
p>P

(1− (χ1χ2)(p)p−2σ)−1 =
∏
p≤P
p 6=q

(1− p−2σ)
∏
p>P

(1− (χ1χ2)(p)p−2σ)−1.

We cancel out the common terms in the product over p < P , which yields

(1− q−2σ)z = (1− `−2σ)z̄,
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where
z =

∏
p>P

(1− (χ1χ2)(p)p−2σ)−1.

Hence,
1− q−2σ

1− `−2σ
=
z̄

z
.

Taking absolute values yields
1− q−2σ

1− `−2σ
= 1,

which is a contradiction. �

3. Proof of Theorem 1.2

We now sample the values of L(s, χ) at precisely the non-trivial zeros of ζ. In this case we
do not assume RH. Off the critical line we used the method of Gonek–Landau to prove linear
independence. On the critical line, however, this becomes very difficult. This is mainly because
of the corresponding Z24 term in the first proposition. We would need to control sums of the
form ∑

n≤X

∑
m<n

χ1(m)χ2(n)

n
log
( n
m

)
min

(
T,

n/m

〈n/m〉

)
,

where X = qT/2π
√

log T . This should be o(N(T ) log T ), which we cannot prove. In the proof of
Conrey et al. [1] they make a reduction to the discrete mean values of one L-function at a time.
We have been unable to find such a reduction in our case. Garunkštis et al. [6] presented a more
suitable method through contour integration and a modified Gonek Lemma (see Lemma 1.2).

Denote the characters in Theorem 1.2 by χ1 and χ2 with distinct prime moduli q and `.
For any Dirichlet character χ modulo n, we denote the principal character modulo n by χ0.
Moreover, put B(s, p) = ps for some prime p to be determined later. Then,

A(γ) := B(ρ, p) (L(ρ, χ1)− L(ρ, χ2))

is non-zero precisely when the two L-functions assume distinct values.

Proposition 3.1. Let C be the rectangular contour with vertices at a + i, a + iT , 1 − a + iT ,
and 1− a+ i with positive orientation, where a = 1 + (log T )−1. Then we have

1

2πi

∫
C

ζ ′

ζ
(s)B(s, p)L(s, χ1) ds ∼ Cχ1

T

2π
log

T

2π
, (3.1)

where
Cχ1

=
G(1, χ1)G(−p, χ1)

q
,

and similarly for χ2.

Then, by the residue theorem, we get∑
0<γ≤T

A(γ) =
1

2πi

∫
C

ζ ′

ζ
(s)B(s, p) (L(s, χ1)− L(s, χ2)) ds.

Proposition 3.2. With the same contour as in Proposition 3.1 we have for j, j′ ∈ {1, 2} that

1

2πi

∫
C

ζ ′

ζ
(s)L(s, χj)L(1− s, χj′) ds� T log2 T.
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This proposition gives us estimates for all the terms in
∑
|A(γ)|2, since B(s, p) can be bounded

independently of T . Finally, we have to prove that the difference coming from Proposition 3.1
is non-zero.

Proposition 3.3. There is a prime p, different from q and `, such that Cχ1
− Cχ2

6= 0.

With these propositions we can prove Theorem 1.2 in the same way as in (2.8). In the proofs
below we make extensive use of the following facts about Gauss sums, see [3, pg. 65 (2)].

G(n, χ1) = χ1(n)G(1, χ1), (3.2)

since q is a prime, and (see [3, pg. 66 (5)])

G(1, χ1)G(−1, χ1) = q, (3.3)

and similarly for χ2.

3.1. Proof of Proposition 3.1. We prove the proposition for χ1 as the case of χ2 is identical.
Denote the integral in (3.1) by I. Then

I =

(∫ a+iT

a+i

+

∫ 1−a+iT

a+iT

+

∫ 1−a+i

1−a+iT

+

∫ a+i

1−a+i

)
ζ ′

ζ
(s)B(s, p)L(s, χ1) ds

= I1 + I2 + I3 + I4.

We can evaluate I1 explicitly to get

I1 =

∫ a+iT

a+i

ζ ′

ζ
(s)L(s, χ1)ps ds

= −i
∑
n,m

Λ(n)χ1(m)

(mnp−1)a

∫ T

1

( p

mn

)it
dt� ζ ′

ζ
(a)ζ(a) + T = O(T ),

where the second term comes from the case mn = p. For I2 we use the following bounds (see [3,
pg. 108]):

ζ ′

ζ
(σ + iT )� log2 T, if − 1 ≤ σ ≤ 2, |T | ≥ 1, (3.4)

and
L(σ + iT, χ1)� |T |1/2 log|T + 2|, if 1− a ≤ σ ≤ a, |T | ≥ 1. (3.5)

These yield I2 = O(T 1/2 log3 T ). Next we consider I3. Changing variables s 7→ 1− s̄ gives

I3 =
−1

2πi

∫ a+iT

a+i

ζ ′

ζ
(1− s̄)L(1− s̄, χ1)p1−s̄ ds.

Conjugating and applying the functional equation of ζ and L(s, χ1) yields

I3 =
p

2πi

∫ a+iT

a+i

(
ζ ′

ζ
(s) +

γ′

γ
(s)

)
L(s, χ1)∆(s, χ1)p−s ds,

where

γ(s) = π1/2−s Γ
(
s
2

)
Γ
(

1−s
2

) ,
and

∆(s, χ1) =
( q

2π

)s 1

q
G(1, χ1)Γ(s)

(
e−πis/2 + χ1(−1)eπis/2

)
.

Using the definition of ∆ to expand the above we find that

I3 = p (F1 + · · ·+ F4) ,
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where

F1 =
G(1, χ1)

q

1

2πi

∫ a+iT

a+i

γ′

γ
(s)

(
q

2πp

)s
Γ(s) exp

(
−πis

2

)
L(s, χ1) ds,

F2 =
χ1(−1)G(1, χ1)

q

1

2πi

∫ a+iT

a+i

γ′

γ
(s)

(
q

2πp

)s
Γ(s) exp

(
+
πis

2

)
L(s, χ1) ds,

F3 =
G(1, χ1)

q

1

2πi

∫ a+iT

a+i

ζ ′

ζ
(s)

(
q

2πp

)s
Γ(s) exp

(
−πis

2

)
L(s, χ1) ds,

F4 =
χ1(−1)G(1, χ1)

q

1

2πi

∫ a+iT

a+i

ζ ′

ζ
(s)

(
q

2πp

)s
Γ(s) exp

(
+
πis

2

)
L(s, χ1) ds.

We rewrite F1 in the following way

F1 =
G(1, χ1)

q

∫ T

1

γ′

γ
(a+ iτ) d

(
1

2πi

∫ a+iτ

a+i

(
q

2πp

)s
Γ(s) exp

(
−πis

2

)
L(s, χ1) ds

)
. (3.6)

By Lemma 1.2,

1

2πi

∫ a+iτ

a+i

(
q

2πp

)s
Γ(s) exp

(
−πis

2

)
L(s, χ1) ds =

∑
n≤ τq

2πp

χ1(n) exp

(
−2πi

np

q

)
+O(τ1/2+ε).

We can separate the periods to write the sum as
q∑
a=1

χ1(a) exp

(
−2πi

ap

q

) ∑
n≤ τq

2πp

n≡a mod q

1 =
τ

2πp
G(−p, χ1) +O(1).

We integrate by parts in (3.6) and use the standard estimate

γ′

γ
(s) = log

|s|
2π

+O(|t|−1
), |t| ≥ 1,

to see that

F1 =
Cχ1

2πp

∫ T

1

(
log

τ

2π
+O(τ−1)

)
d
(
τ +O(τ1/2+ε)

)
=
Cχ1

T

2πp
log

T

2π
+O(T 1/2+ε).

Similarly by Lemma 1.2, F2 is O(log T ), while F4 = O(1). For F3 we have

F3 =
G(1, χ1)

q

1

2πi

∫ a+iT

a+i

(
q

2πp

)s
Γ(s) exp

(
−πis

2

)
ζ ′

ζ
(s)L(s, χ1) ds

=
−G(1, χ1)

q

∑
mn≤ Tq2πp

Λ(m)χ1(n) exp

(
−2πi

mnp

q

)
+O(T 1/2+ε).

Looking at the summation we decompose it as∑
m≤ Tq2πp

Λ(m)
∑

n≤ Tq
2πpm

χ1(n) exp

(
−2πi

mnp

q

)
.

We separate the periods in the same way as for F1 and write the above sum as∑
m≤ Tq2πp

Λ(m)G(−mp, χ1)
T

2πpm
+O(T ).
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We will show that the summation overm in fact converges. This means that we have F3 = O(T ).
To do this it suffices to consider ∑

m≤X

Λ(m)χ1(m)

m
.

Let
ψ(X,χ1) =

∑
m≤X

Λ(m)χ1(m).

Then, by [3, pg. 123 (8)],

ψ(X,χ1) = −X
β

β
+O(X exp(−c(logX)1/2)),

where the term with β comes from the Siegel zero of χ1 and c is some positive absolute constant.
However, since our q is fixed, we know that β is bounded away from 1. Hence, with summation
by parts we obtain ∑

m≤X

Λ(m)χ1(m)

m
=
ψ(X,χ1)

X
+

∫ X

1

ψ(t, χ1)

t2
dt = O(1)

as required. Finally I4 = O(1) as the integrand is analytic in a neighbourhood of the line of
integration. �

3.2. Proof of Proposition 3.2. We prove the case j = j′ = 1 as the other cases are either
similar or easier. Now, denote the integral by I, i.e.

I =
1

2πi

∫
C

ζ ′

ζ
(s)L(s, χ1)L(1− s, χ1) ds,

and split it in the same way as in the proof of Proposition 3.1, so that

I = I1 + · · ·+ I4.

We can write I1 as

I1 =
1

2πi

∫ a+iT

a+i

ζ ′

ζ
(s)L(s, χ1)2∆(s, χ1) ds

=
G(χ1)

q

1

2πi

∫ a+iT

a+i

( q

2π

)s
Γ(s)

(
exp

(
−πis

2

)
+ χ1(−1) exp

(
πis

2

))
ζ ′

ζ
(s)L(s, χ1)2 ds

= E1 + E2.

By Lemma 1.2, E2 = O(1). Let us now estimate E1. We have

E1 = −G(χ1)

q

∑
mn≤Tq2π

d(n)χ1(n)Λ(m) exp

(
−2πi

nm

q

)
+O(T 1/2+ε).

Denote the sum over m and n by S. As before, we first separate the periods

S =

q∑
a, b=1

χ1(a) exp

(
−2πi

ab

q

) ∑
mn≤Tq2π

n≡a mod q
m≡b mod q

d(n)Λ(m).
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Now sum over characters η of modulus q to get

=
1

ϕ(q)

∑
η mod q

q∑
a, b=1

χ1(a)η(a) exp

(
−2πi

ab

q

) ∑
mn≤Tq2π

m≡b mod q

d(n)η(n)Λ(m)

=
1

ϕ(q)

∑
η mod q

q∑
b=1

G(−b, χ1η)
∑

mn≤Tq2π
m≡b mod q

d(n)η(n)Λ(m),

and as before

=
1

ϕ(q)2

∑
η, ω mod q

G(−1, χ1η)

 ∑
mn≤Tq2π

d(n)η(n)Λ(m)ω(m)

 q∑
b=1

χ1(b)η(b)ω(b).

The sum over b is non-zero if and only if ω = ω0 and η = χ1; or ω = χ1 and η = η0; or ω 6= ω0

and η = χ1ω. By Perron’s formula

−
∑

mn≤Tq2π

d(n)η(n)Λ(m)ω(m) =
1

2πi

∫ a+iU

a−iU

L′

L
(s, ω)L(s, η)2

(
Tq

2π

)s
ds

s
+O

(
T log3 T

U

)
for some U with |U | ≤ T . Since our characters are fixed, we can use Vinogradov-type zero-free
region [6, pg. 296]. That is, let b1 = 1− c1/(log t)3/4+ε (in fact, any power smaller than 1 would
do), then L(σ + it, χ1) has no zeros in the region σ ≥ b1. Here c1 is some positive absolute
constant. By the approximate functional equation and Stirling asymptotics we have uniformly
for 0 < σ < 1 and |t| > 1 that

L(s, χ1)� |t|
1−σ
2 log(|t|+ 1). (3.7)

Then, by shifting the contour we get

−
∑

mn≤Tq2π

d(n)η(n)Λ(m)ω(m) = Res
s=1

L′

L
(s, ω)L(s, η)2

(
Tq

2π

)s
1

s

− 1

2πi

(∫ b1+iU

a+iU

+

∫ b1−iU

b1+iU

+

∫ a−iU

b1−iU

)
L′

L
(s, ω)L(s, η)2

(
Tq

2π

)s
ds

s
+O

(
T log3 T

U

)
. (3.8)

We need to find the residues in each of the three cases.

Res
s=1

L′

L
(s, ω0)L(s, χ1)2

(
Tq

2π

)s
1

s
= −L(1, χ1)2Tq

2π
,

Res
s=1

L′

L
(s, χ1)L(s, η0)2

(
Tq

2π

)s
1

s
=
Tq

2π

(
ϕ(q)

q

)2
L′

L
(1, χ1) log

Tq

2π
+O(T ),

Res
s=1

L′

L
(s, ω)L(s, χ1ω)2

(
Tq

2π

)s
1

s
= 0.

It remains to estimate the integrals on the right-hand side of (3.8). By (3.4) and (3.7) we see that
the first and third integrals yield O(T aU−b1 log4 U). We split the second integral and estimate
it as(∫ b1+i

b1+iU

+

∫ b1−i

b1+i

+

∫ b1−iU

b1−i

)
L′

L
(s, χ1)L(s, η0)2

(
Tq

2π

)s
ds

s

= O(T b1U1−b1 log4 U + T b1 |b1 − 1|−2
),
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where the second error term comes from the integral over the constant segment. It suffices to
choose U = T 1/2 as then

T aU−b1 log4 U � Te−
1
2 log T+

c1
2 (log T )1/4−ε+4 log log T ,

T b1U1−b1 log4 U � Te−
c1
2 (log T )1/4−ε+4 log log T ,

and

T b1 |b1 − 1|−2 � Te−c1(log T )1/4−ε+(3/2+2ε) log log T ,

which are all O(T ). Therefore we conclude that I1 = O(T log T ).
Next up is I2. We use again the convexity bound writing it as

L(σ + it, χ1)�ε |t|µ0(σ)+ε
,

where ε > 0, −1 < σ < 2 (say), |t| > 1, and

µ0(σ) =


0, if σ > 1,

1−σ
2 , if 0 < σ < 1,

1
2 − σ, if σ < 0.

With this we can write

I2 =
1

2πi

∫ 1−a+iT

a+iT

ζ ′

ζ
(s)L(s, χ1)L(1− s, χ1) ds

�
(∫ 0

1−a
+

∫ 1

0

+

∫ a

1

)
log2 T Tµ0(σ)+εTµ0(1−σ)+ε dσ.

Keeping in mind that σ ≤ a we get

I2 � T a−1/2+ε log2 T + T 1/2+ε log2 T = O(T ).

For I3 we do the usual trick of mapping s 7→ 1− s̄. Taking complex conjugates leads to

I3 =
1

2πi

∫ a+iT

a+i

(
ζ ′

ζ
(s) +

γ′

γ
(s)

)
L(s, χ1)2∆(s, χ1) ds.

As in Proposition 3.1 we split this up into F1, . . . ,F4. Adding up F3 and F4 gives I1, which is
O(T log T ). As before, F2 does not contribute. So we have to estimate F1, that is

F1 =
G(1, χ1)

q

∫ T

1

(
log

τ

2π
+O(τ−1)

)
d

(
1

2πi

∫ a+iτ

a+i

L(s, χ1)2Γ(s) exp

(
−πis

2

)
ds

)
.

Working as in Proposition 3.1 we can write the inner integral (plus an error term) as∑
n≤τq2π

χ1(n)d(n) exp

(
−2πi

n

q

)
.

This is O(τ log τ), which gives I3 = O(T log2 T ). It is not difficult to extend this to an asymptotic
estimate, but for our purposes the upper bound is sufficient. Trivially we also have that I4 =

O(1). Hence I = O(T log2 T ). �

3.3. Proof of Proposition 3.3. By (3.2) and (3.3) we see that

Cχ1
= Cχ2
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if and only if χ1(p) = χ2(p). By Chinese Remainder Theorem and Dirichlet’s Theorem we can
find a prime p different from q and ` that satisfies{

p ≡ 1 mod q,

p ≡ a mod `,

such that χ2(p) = χ2(a) 6= 1, since χ2 is non-principal. This gives 1 = χ1(p) = χ2(p) 6= 1, which
is a contradiction. �
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