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Background: Roles of the multifunctional kinase PKC� in bone are unknown.
Results: Female Prkca�/� mice form bone in their medullary cavities associated with higher osteoblastic differentiation. Bone
and spleen changes in Prkca�/� mice resemble features of Gaucher disease.
Conclusion: PKC� regulates osteoblast differentiation and bone architecture.
Significance: PKC�-targeting therapies may benefit low bone mass conditions, including Gaucher disease and osteoporosis.

Bones’ strength is achieved and maintained through adapta-
tion to load bearing. The role of the protein kinase PKC� in this
process has not been previously reported. However, we observed
a phenotype in the long bones of Prkca�/� female but not male
mice, in which bone tissue progressively invades the medullary
cavity in the mid-diaphysis. This bone deposition progresses
with age and is prevented by disuse but unaffected by ovariec-
tomy. Castration of male Prkca�/� but not WT mice results in
the formation of small amounts of intramedullary bone. Osteo-
blast differentiation markers and Wnt target gene expression
were up-regulated in osteoblast-like cells derived from cortical
bone of female Prkca�/� mice compared with WT. Additionally,
although osteoblastic cells derived from WT proliferate follow-
ing exposure to estradiol or mechanical strain, those from
Prkca�/� mice do not. Female Prkca�/� mice develop spleno-
megaly and reduced marrow GBA1 expression reminiscent of
Gaucher disease, in which PKC involvement has been suggested
previously. From these data, we infer that in female mice, PKC�
normally serves to prevent endosteal bone formation stimulated
by load bearing. This phenotype appears to be suppressed by
testicular hormones in male Prkca�/� mice. Within osteoblastic
cells, PKC� enhances proliferation and suppresses differentia-
tion, and this regulation involves the Wnt pathway. These find-
ings implicate PKC� as a target gene for therapeutic approaches
in low bone mass conditions.

Age-related failure of bones’ intrinsic ability to match their
mass and architecture to their functional load bearing results in
fragility and increased incidence of fractures characteristic of
osteoporosis (1). Part of this process involves thinning of the

load-bearing cortices of long bones due to expansion of the
medullary cavity in both women and men (2, 3). This weakens
the bone structure and predisposes to fracture (4). Deteriora-
tion of bone structure is a consequence of chronic failure of the
cells that form bone (osteoblasts) to adequately compensate for
the activity of those that resorb it (osteoclasts). This may in part
be due to aging-related deficiencies in osteoblast proliferation
and differentiation (5, 6). The identification of molecular path-
ways that enhance osteoblast function has led to novel agents
entering clinical trials for the treatment of osteoporosis, includ-
ing, most recently, neutralizing antibodies against the Wnt
antagonist sclerostin, which potently inhibits bone formation
(7).

Wnt signaling following sclerostin down-regulation natu-
rally occurs in bones subjected to mechanical loading, correlat-
ing with subsequent bone formation (8 –10). Osteoblast lineage
cells’ responses to their mechanical loading-engendered strain
environment constitute the primary functional determinant of
bone mass and architecture (11). The cellular outcomes of
mechanical strain-initiated signaling include site-specific acti-
vation of bone formation through osteoblast differentiation and
proliferation (9, 12, 13). Molecular mechanisms facilitating
these responses include ligand-independent functions of the
estrogen receptors (ERs)4 (14 –16) and the Wnt/�-catenin sig-
naling pathway (10, 17–19). Both Wnt and ER signaling are
established drug targets for the treatment of osteoporosis. Both
of these potently osteogenic pathways are also regulated by the
ubiquitous kinase protein kinase C� (PKC�) (20 –23), leading
us to hypothesize that PKC� may critically regulate osteoblast
function.

PKC� has been implicated in major disease processes (24) in
part through its role as a critical regulator of proliferation in
various cell types (21, 22, 25), yet its roles in osteoblasts are
largely unknown. PKC� regulates ER� activity in osteoblast-
like cells (23, 26) and inhibits Wnt/�-catenin signaling in can-
cer cell types (27, 28). Exposure to mechanical strain rapidly
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activates PKC� in osteoblast-like cells (29), and PKC signaling
has been implicated in the regulation of various mechanically
responsive genes, including the osteoblast differentiation
marker osteocalcin (30 –32). A role for PKC� in regulating
osteoblastic cell differentiation has been suggested previously
(33). Furthermore, pharmacological activation of PKC signal-
ing rescues defective proliferation of marrow-derived osteo-
blastic cells in a mouse model in Type I Gaucher disease (34).
This disease involves debilitating osteoporosis and architec-
tural deterioration together with hematological abnormalities
associated with mutation of the GBA1 gene (34, 35). General-
ized inhibition of PKC signaling has been proposed to contrib-
ute to the etiology of this disease (34, 36), but the effects of
global impairment of PKC isoforms on Gaucher-related pheno-
types have not been investigated.

In this study, we characterize the bone phenotype of previ-
ously generated Prkca�/� mice in which the Prkca gene was
disrupted by homologous recombination to generate a mouse
constitutively lacking expression of PKC� (37). This mouse has
been used to demonstrate roles for the gene in a number of
tissues. Cardiac contractility has been shown to be increased in
Prkca�/� mice, and gene deletion protects against heart failure
induced by pressure overload and dilated cardiomyopathy (37).
PKC� has also been shown to mediate hypertonicity-stimu-
lated urea transport in the collecting ducts of the kidney (38)
and has been shown to be critical for secretion of granule con-
tents from platelets (39). Here we show that targeted deletion of
Prkca leads to a marked increase in endosteal bone formation,
progressively invading the medullary cavity at diaphyseal sites
of load-bearing bones in female mice. In the experiments
reported here, we sought to establish the mechanisms involved
by examining the effects on bone architecture in vivo of age,
gender, loading, and ovariectomy in Prkca�/� compared with
WT mice and in vitro on osteoblast proliferation and differen-
tiation. We also documented similarities in the Prkca�/� mice
with Gaucher disease in humans.

EXPERIMENTAL PROCEDURES

Cell Culture and Treatment—17�-estradiol (E2) was from
Sigma and dissolved in ethanol. Wnt3a was from Tocris (Bris-
tol, UK) and dissolved in PBS according to the manufacturer’s
instructions. Calphostin C and phorbol 12-myristate 13-acetate
(PMA) were from Tocris and dissolved in ethanol and dimethyl
sulfoxide, respectively. Cells were maintained in phenol red-
free DMEM containing 10% heat-inactivated FCS (PAA, Som-
erset, UK), 2 mM L-glutamine, 100 IU/ml penicillin, and 100
IU/ml streptomycin (Invitrogen) (complete medium) in a 37 ºC
incubator at 5% CO2, 95% humidity as described previously
(19).

Cortical long bone-derived mouse osteoblastic cell (CLBOb)
extractions from adult female mice were as described previ-
ously (6, 15, 19) and were always used at passage 1. For differ-
entiation studies, CLBObs were seeded at 25,000 cells/cm2 and
treated with or without 50 �M ascorbic acid and 10 mM �-glyc-
erol phosphate. Alkaline phosphatase assays were using p-ni-
trophenyl phosphate Sigma FastTM according to the manu-
facturer’s instructions and normalized relative to total protein
content using the crystal violet method (6, 40, 41). Mineralized

nodules fixed in ice-cold methanol on ice for 5 min were air-
dried, washed in phosphate-buffered saline, stained in 2% aliz-
arin red solution, pH 4.2, for 5 min, and cleared under running
water, also as reported previously (6, 40, 41).

For strain experiments, cells were cultured on custom-made
plastic strips, and strain was applied as described previously (6,
30, 42) through a brief period of 600 cycles of four-point bend-
ing of the strips with a peak strain of 3,400 �� on a Zwick/Roëll
materials testing machine (Zwick Testing Machines Ltd.,
Leominster, UK) with strain rates on and off of �24,000 ��/s,
dwell times on and off of 0.7 s, and a frequency of 0.6 Hz.

To determine the effect of treatment with the PKC activator
PMA, cells were cultured for 7 days and then treated twice with
0.1 �M PMA at 12-h intervals and harvested 12 h after the sec-
ond treatment.

Proliferation Studies and Ki-67 Staining—Proliferation stud-
ies and Ki-67 staining, including in situ cell cycle analysis, were
as described previously by our group (6, 19). For proliferation
studies, CLBObs were seeded at an initial density of 10,000
cells/cm2, whereas Saos-2 cells were seeded at 5,000 cells/cm2

and allowed to settle overnight, flooded with complete medium
for 24 h, and then serum-deprived in 2% charcoal/dextran-
stripped serum overnight before strain or treatment. To deter-
mine cell number, random images of DAPI-stained nuclei were
taken at �4 magnification on a Leica DMRB microscope with
an Olympus DP72 digital camera, binarized, and automatically
analyzed using ImageJ (National Institutes of Health, version
1.46d). Ki-67-positive cells were counted using ImageJ on five
randomly chosen images per slide at an original magnification
of �20. Cycle stage analysis was performed on 190 � 22 posi-
tive nuclei/slide imaged at �40. Key results were independently
verified by two observers (G. L. G. and L. B. M.). Representative
images of the pattern of Ki-67 distribution in Saos-2 cells and
CLBObs in different stages of the cell cycle have been published
previously by our group (6, 19).

Quantitative Reverse Transcriptase PCR—In order to isolate
marrow and bone fractions, bones were rapidly dissected of all
surrounding tissues, and the epiphyses were removed. The
diaphyses containing marrow were placed upright in custom-
made plastic straws inside 2-ml tubes, which were then centri-
fuged at 10,000 r.p.m. for 10 s at 4 °C. Bones were snap-frozen
for RNA extraction with RNEasy Plus Universal kits (Qiagen,
Sussex, UK), whereas marrow was lysed directly in RNEasy Plus
lysis buffer (Qiagen) and stored at �80 °C.

qRT-PCR was performed as described previously (18, 43).
Mouse �2-microglobulin (�2 mg), osteocalcin, and Wnt-
induced secreted protein 2 (Wisp2) were as follows: �2 mg, ATG-
GCTCGCTCGGTGACCCT (forward) and TTCTCCGGTGG-
GTGGCGTGA (reverse); osteocalcin, CTGACCTCACAGAT-
CCCAAGC (forward) and TGGTCTGATAGCTCGTCA-
CAAG (reverse); Wisp2, GGTTTCACCTGCCTGCCGCT
(forward) and TCACACACCCACTCGGGGCA (reverse).

All other primer sequences were from the Harvard Primer-
Bank (43) (Table 1). Gene panels representing osteoblast differ-
entiation and Wnt targets were predetermined, and all quanti-
fied genes are presented here.

Western Blotting—Cells were cultured as for proliferation
studies and lysed in radioimmune precipitation buffer contain-

PKC� Regulates Bone Architecture and Osteoblast Activity

25510 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 37 • SEPTEMBER 12, 2014



ing protease inhibitors (Sigma). Lysates were sonicated prior to
quantification of protein content by a bicinchonic acid assay
(Sigma). Lysate protein content was standardized to 500 �g/ml
and solubilized in reducing Laemmli sample buffer. Proteins
were resolved by SDS-PAGE and then transferred to PVDF
membranes. Membranes were blocked with 10% BSA and sub-
jected to immunoblotting with anti-PKC� (New England Bio-
labs Ltd., Hitchin, UK); anti-PKC�, -�, -�, and -� (BD Biosci-
ences); and anti-PKC� (Insight Biotechnology Ltd., Wembley,
UK) and �-tubulin (Sigma) as a loading control.

Histochemistry—Sclerostin immunodetection on decalcified
bone sections was as described previously (9). Hematoxylin and
eosin (H&E) staining was done following standard protocols.

Hematological Analysis—Blood was taken from 4-month-old
mice via cardiac puncture into 50 mM EDTA (1:10, v/v). Sam-
ples were immediately analyzed on a Horiba Pentra ES60 hema-
tology analyzer (Horiba UK Ltd., Northampton, UK).

Determination of Bone Structure and the Effects of Sciatic
Neurectomy, Ovariectomy, and Castration—Prkca�/� mice
were as described previously (39). All procedures complied
with the UK Animals (Scientific Procedures) Act 1986 and were
reviewed and approved by the University of Bristol ethics com-
mittee. Breeding pairs of Prkca�/� mice were crossed to gener-
ate Prkca�/� and Prkca�/� for experimentation as littermate
matched pairs. Following sacrifice, legs were stored in 70% eth-
anol, and whole femur or tibia was imaged by microcomputed
tomography (�CT) using the SkyScan 1172 system (SkyScan,
Kontich, Belgium) with a voxel size of 4.8 �m (110 �m3). The
scanning, reconstruction, and method of analysis have been
reported previously (6, 44) and were performed according to
American Society for Bone and Mineral Research guidelines
(45).

Sciatic neurectomy, ovariectomy, and castration were per-
formed to investigate the effects of these interventions on
intramedullary bone. Sciatic neurectomy was as described pre-
viously by our group (44). Female mice were subjected to uni-
lateral sciatic neurectomy of the right tibia at 15 weeks of age
and sacrificed 3 weeks later at 18 weeks of age. Ovariectomy was
also performed as described previously by our group (46).

Female mice were ovariectomized at 8 weeks of age and sacri-
ficed 10 weeks later at 18 weeks of age. Similarly, male mice
were castrated at 8 weeks of age and sacrificed 10 weeks later at
18 weeks of age. The left limbs of ovariectomized or castrated
mice were compared with the left control limbs of non-oper-
ated mice of the same age.

Statistical Analysis—Data are presented as means � S.E.
Comparisons between two groups, including comparisons
within gender, were by Student’s t test following Levene’s test
for homogeneity of variance. Comparisons between more than
two groups were by analysis of variance with post hoc Bonfer-
roni or Games-Howel tests. Genotype by age interactions and
genotype by intervention interactions were determined by
mixed model analysis with Bonferroni adjustment performed
in SPSS (version 17).

RESULTS

PKC� Deletion Causes Age-dependent and Sex- and Site-spe-
cific Changes in Bone Structure—Bone structure was investi-
gated by �CT, which revealed that the medullary cavity of
female, but not male, Prkca�/� mice was characterized by the
invasion of disorganized bone in the diaphyses of the femur
(Fig. 1A), humerus, and tibia. This invasion was sufficient to
significantly reduce the area of the medullary cavity and
increase bone area fraction (Fig. 1B) due to endosteal bone for-
mation (Fig. 1C). Total tissue area enclosed within the perios-
teum was not significantly different between either male or
female WT and Prkca�/� mice (Fig. 1D), suggesting that PKC�
specifically influences the endosteal surface. Male Prkca�/�

mice had reduced cortical thickness in various skeletal sites
(Fig. 1E), but this parameter could not be accurately assessed in
females with extensive intramedullary bone or cortical pores.
Both males and females developed large cavities throughout the
diaphyseal cortices (Fig. 1F). Although reminiscent of the cav-
ities that carry blood vessels in normal bone, these are much
larger than any seen in WT mice. No differences in body weight
or bone lengths were observed between WT and Prkca�/� mice
(not shown).

The intramedullary bone phenotype was not evident in
12-week-old mice but became evident by 18 weeks (Fig. 2A). In
both genotypes, 12-week-old female mice had shorter femurs
than 18-week-old mice and were thus not skeletally mature
(Fig. 2B). 12-Week-old Prkca�/� mice had significantly lower
cortical thickness before intramedullary bone was observed
(WT � 0.18 � 0.006 and Prkca�/� � 0.16 � 0.005, p � 0.05).
However, the presence of intramedullary bone increased the
bone area fraction at 18 weeks and even more so at 22 weeks of
age in Prkca�/� mice (Fig. 2C). This was because of a progres-
sive reduction in medullary area (Fig. 2D). Consequently, sig-
nificant genotype by age interactions were detected by mixed
model analysis for both marrow area and bone area fraction
(Fig. 2, C and D).

Intramedullary bone was consistently localized to �30% of
the femur’s length from the proximal end and did not extend
into the cancellous regions at the bones’ ends (Fig. 3, A and B).
Expression of the mature osteocyte product sclerostin was
detected by immunohistochemistry, indicating the presence of
mature osteocytes within the intramedullary bone (Fig. 3C). A

TABLE 1
List of PrimerBank IDs for PCR primers used in this study

Gene
PrimerBank

ID

Osteoblast markers
Runx2 (also a Wnt target) 225690525b1
Osterix 18485518a1
Collagen 1 A1 (Col1A1) 118131144b1
Osteoprotegerin (also a Wnt target) 113930715b1
Receptor activator of NF-	B ligand (RANKL) 114842414b1
Osteocalcin 13811695a1

Wnt targets
cMyc 293629266b3
Cyclin D1 (CCND1) 119672895b1
Axin2 158966712b1
Cyr61 239937453b1

Adipocyte markers
Peroxisome proliferator-activated receptor � (PPAR�) 187960104b1
cAMP element-binding protein � (C/EBP�) 131886531b2

Osteoclast markers
Receptor activator of NF-	B (RANK) 110350008b1
Tartrate-resistant acid phosphatase (TRAP) 156151432b1
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similar distribution was observed in the tibia, where we fully
characterized the location of this intramedullary bone by
adapting the method of �CT analysis such that 2,000 cross-
sectional measurements were made along the length of the tibia
between 20 and 80% of the bone’s length. This demonstrated a
significant deviation in bone area due to bony invasion of the
tibial medullary cavity only in the mid-diaphysis (Fig. 3, D–F).
The distribution of intramedullary bone in the tibia approxi-
mately corresponds to the region of bone predicted by our-
selves and others to experience the greatest bending (strain)
during axial load bearing (10, 47).

Prkca Deletion Parallels Aspects of Gaucher Disease—Sites of
intramedullary bone and surrounding marrow were further
characterized by histology. Within the marrow, amorphous
eosinophilic cells reminiscent of Gaucher cells (48) were
observed in regions with intramedullary bone (Fig. 4A). Type I
Gaucher disease is a condition associated with debilitating skel-
etal pathologies (49) and has previously been suggested to
involve suppression of PKC signaling (34, 36). Other similari-
ties with Gaucher disease observed in Prkca�/� mice, including
reduction in cortical thickness described above and impaired
platelet aggregation previously reported (39), led us to investi-
gate further parallels. Platelet number has previously been
reported not to be significantly different between WT and

Prkca�/� mice (50), and further hematological analysis
revealed no significant differences in circulating total white
blood cell numbers between WT (n � 4) and Prkca�/� (n � 8)
mice (Prkca�/� 96 � 5% of WT, p � 0.28).

Human Gaucher patients develop a distinct “Erlenmeyer
flask” deformity in which the proximal femur narrows relative
to the distal femur (49). The ratio of Feret’s diameter (maxi-
mum diameter) between the distal and proximal femur was
greater in female Prkca�/� than in WT mice, indicating a sim-
ilar narrowing of the proximal relative to the distal femur (Fig.
4B). Splenomegaly is another common feature of Gaucher dis-
ease (49). Progressive, age-related splenomegaly was observed
in female but not male Prkca�/� mice (Fig. 4C). To determine
whether Prkca deletion alters expression of the gluocerebrosi-
dase 1 (Gba1) gene causally mutated in Gaucher disease (49),
bone marrow was collected from 22-week-old male and female
Prkca�/� mice, and Gba1 expression was quantified by qRT-PCR.
Gba1 expression was lower in marrow from female but not
male Prkca�/� mice relative to WT (Fig. 4D).

PKC� Influences the Balance between Osteoblastic Prolifera-
tion and Differentiation in Vitro—Marrow-derived osteoblastic
cells from a mouse model of Gaucher disease have previously
been reported to have impaired proliferation that could be res-
cued by PKC activation (34). In order to investigate whether

FIGURE 1. Prkca deletion causes intramedullary bone formation in female mice. A, representative three-dimensional �CT reconstructions showing 30% of
the bone’s length from the proximal end, indicated on the radiograph, in 22-week-old WT and Prkca�/� female and male mice. B, �CT quantification of
medullary area (Ma.Ar) and bone area per tissue area (BA/TA) in female and male WT and Prkca�/� 22-week-old mice (n � 5). C, dynamic histomorphometry
with calcein (green) and alizarin (red) fluorochromes illustrating medullary double-labeling in the tibia midshaft of 18-week-old female Prkca�/� but not WT
mice (scale bar, 0.5 mm). D, total tissue area (Tt.ar) was quantified by �CT 30% of the femur’s length from its proximal end in 22-week-old male and female WT
and Prkca�/� mice. E, male Prkca�/� mice had lower cortical thickness (Cs.Th) in the midshaft of the tibia, radius, and ulna than WT males as determined by �CT
analysis. F, cortical holes, indicated by the arrowhead, were observed in all long bones tested in Prkca�/� male and female mice. H&E staining illustrates a hole
in the humerus of a female Prkca�/� (scale bar, 1 mm). *, p � 0.05; **, p � 0.01; ***, p � 0.001 versus WT of the same gender. Error bars, S.E.
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FIGURE 2. Intramedullary bone invasion progresses with age in adult female Prkca�/� mice. A, representative three-dimensional reconstructions of the
femoral 30% site in a 22-week WT mouse and 12-, 18-, or 22-week-old female Prkca�/� mice indicating medullary in-filling with age. B, quantification of femoral
length in female mice of the indicated ages. Shown are quantifications of bone area per tissue area (BA/TA) (C) and medullary area (Ma.Ar) (D) in female
12-week-old (n � 6), 18-week-old (n � 6), and 22-week-old (n � 5) mice. Statistical significance of the genotype by age interactions is indicated. #, p � 0.05; ##,
p � 0.01; ###, p � 0.001 versus 12-week-old mice of the same genotype. Bars, mean � S.E. (error bars) *, p � 0.05; **, p � 0.01 versus WT mice of the same age.

FIGURE 3. Intramedullary bone expansion in the bones of female Prkca�/� mice occurs at specific sites. A, quantification of bone area per tissue area
(BA/TA) in three different sites along the length of the femur of 22-week-old female WT and Prkca�/� mice (n � 5). B, representative three-dimensional
reconstructions of �CT images of female WT and Prkca�/� trabecular bone in the distal femur. Images represent 100 �CT lines taken 100 lines above the growth
plate, approximately indicated on the radiograph. C, immunolocalization of sclerostin in the humeral diaphysis from a female Prkca�/� mouse, indicating
sclerostin expression in both the IM and cortical bone. WT cortical bone is shown as a positive control, and a non-immune IgG is shown as a negative control.
Scale bar, 250 �m. D–F, approximately 2,000 measurements were made along the length of the tibia of female WT or Prkca�/� mice (n � 3 in each case), with
each measurement representing a single �CT line (4.8 �m). Shown are medullary area (Ma.Ar) (D), cortical area (Ct.Ar) (E), and bone area per tissue area (BA/TA)
(F). Bars and dots, mean � S.E. (error bars). *, p � 0.05; **, p � 0.01; ***, p � 0.001 versus WT at the same site.
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differences in osteoblast proliferation and differentiation might
contribute to the bony invasion of the medullary cavity in
female Prkca�/� mice, we investigated the effect of Prkca dele-
tion on primary cultures of osteoblast-like cells derived from
the load-bearing cortices of mouse long bones (CLBObs).
CLBObs have been extensively characterized by our group and
are able to respond to osteogenic stimuli, including Wnts,
estradiol, and physiological mechanical strain (15, 18, 19, 31, 47,
51, 52). Robust PKC� expression was detected in CLBObs from
WT mice, whereas no expression was detected in cells from
Prkca�/� mice by Western blotting (data not shown). None of
the other PKC isoforms tested (PKC�, PKC�, PKC
, and
PKC�) were expressed differently between cells of the two gen-
otypes (data not shown). PKC� was not detected in either gen-
otype (data not shown).

CLBObs from adult female Prkca�/� mice were less prolif-
erative than those in similar cultures derived from WT mice
(Fig. 5A). Ki-67 in situ cell cycle analysis revealed that this was
due to a greater proportion of cells from Prkca�/� mice being in
a Ki-67-negative, quiescent state with no significant differences
observed between proliferating cells in different stages of the
cell cycle (not shown). Consistent with a shift in the prolifera-
tion-differentiation balance away from proliferation, CLBObs
from female Prkca�/� mice showed spontaneously increased
activity of the early osteoblastic differentiation marker alkaline
phosphatase by 14 days of culture (Fig. 5B). Osteogenesis
induction medium increased alkaline phosphatase activity fur-
ther in both WT and Prkca�/� cultures (Fig. 5B), whereas acti-
vation of PKC signaling by phorbol ester PMA (0.1 �M) reduced
alkaline phosphatase activity in WT but not Prkca�/� cultures
(Fig. 5C). By day 21 of treatment with osteogenesis induction
medium, cells from female Prkca�/� mice had mineralized a

greater proportion of their cell culture surface than cells from
WT mice (Fig. 5, D and E). Expression of markers of osteoblas-
tic differentiation was also higher in CLBOb cultures from
Prkca�/� than in those from WT mice (Fig. 5F).

To validate these findings in vivo, osteoblastic differentiation
markers were quantified in both marrow and cortical bone
extracted from 22-week-old female and male Prkca�/� mice.
Runx2 and osterix expression was significantly elevated in mar-
row from female, but not male, Prkca�/� mice (Fig. 6, A and B),
whereas collagen 1 A1 (Col1A1) was elevated in Prkca�/� mice
of both genders (Fig. 6C). Surprisingly, none of these differ-
ences were observed in the bone tissue predominantly repre-
senting terminally differentiated osteocytes; nor were oste-
oclast-related markers differently expressed (not shown).
Consistent with enhanced osteoblast lineage commitment at an
early stage of differentiation, markers of adipogenic differenti-
ation were significantly lower in marrow from female but not
male Prkca�/� mice (Fig. 6, D and E). We also detected an effect
of age on Prkca expression; levels were lower in marrow of
19-month-old (aged) female, not male, WT mice compared
with levels in 18-week-old (adult) mice (Fig. 6F).

Because the Wnt pathway is a critical regulator of osteoblast
differentiation, we investigated whether Wnt signaling was
altered in Prkca�/� mice by quantifying the expression of
selected Wnt target genes in marrow and bone from Prkca�/�

and WT mice. The proliferating cell marker cMyc was overex-
pressed in marrow from both female and male Prkca�/� mice
(Fig. 7A). Cyr61, which is involved in the promotion of osteo-
blast differentiation by Wnts (53), was dramatically elevated in
female but not male Prkca�/� marrow (Fig. 7B). Female
Prkca�/� marrow had elevated, whereas males had reduced,
expression of Axin2 (Fig. 7C), and female, but not male,

FIGURE 4. Deletion of Prkca�/� mimics features of type 1 Gaucher disease in female mice. A, representative images of female WT and Prkca�/� bone
stained with hematoxylin and eosin showing Gaucher-like cells in the Prkca�/� marrow in the same region as the IM bone infiltration. Scale bar, 50 �m. B, Feret’s
diameter was calculated 25% (proximal) and 75% (distal) of the femur’s length from its proximal end. The ratio of distal to proximal in 22-week-old mice of each
genotype is shown. C, spleen weights of WT and Prkca�/� mice of each sex, sacrificed at different ages for different uses, expressed as a proportion of body
weight. p values shown are for the slope indicating progression with age only in the female Prkca�/�. D, marrow from 22-week-old WT and Prkca�/� mice was
harvested, and Gba1 expression was analyzed by qRT-PCR. Bars, mean � S.E. (error bars) (n � 5). *, p � 0.05 versus WT.
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FIGURE 5. Osteoblast-like cells from female Prkca�/� mice have an enhanced differentiation state in vitro. CLBObs were derived from female WT and
Prkca�/� mice. A, growth curves were determined by counting the cell number at the indicated time points. B, CLBObs derived from WT and Prkca�/� mice
were cultured for the indicated period of time with or without treatment with osteogenesis induction medium (OIM). Alkaline phosphatase activity was
determined and normalized to total protein content (n � 12). Unless indicated, comparisons are relative to vehicle-treated cultures of the same genotype at
the same time point. C, cultures from WT and Prkca�/� mice were treated with the PKC activator PMA. Alkaline phosphatase activity was determined
normalized to total protein content, and the percentage change in activity relative to vehicle-treated controls is shown. D, quantification of the proportion of
culture area stained with alizarin red after 21 days of treatment with osteogenesis induction medium (n � 12). E, representative cultures from WT and Prkca�/�

mice fixed following 21 days of treatment with vehicle (veh) or OIM and stained with alizarin red. F, qRT-PCR quantification of osteoblastic differentiation
markers in CLBObs after 14 days of culture (n � 12). �2-MG housekeeping gene expression is shown per �g of RNA. Bars, mean � S.E. (error bars). *, p � 0.05;
**, p � 0.01; ***, p � 0.001 versus WT controls. ###, p � 0.001 versus the percentage change in WT cultures.

FIGURE 6. Prkca deletion alters marrow expression of differentiation markers in a sex-specific manner. Marrow was harvested from pooled tibiae and
femurs of male and female WT and Prkca�/� mice and processed by qRT-PCR analysis of the osteoblastic differentiation markers Runx2 (A), osterix (B), and
Col1A1 (C) and the adipogenic markers PPAR� (D) and C/EBP� (E) (n � 5). F, Prkca expression was quantified in marrow from young adult (17-week-old) or aged
(19-month-old) male and female mice (n � 8). Bars, mean � S.E. (error bars). *, p � 0.05; **, p � 0.01; ***, p � 0.001 versus the respective WT controls.
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Prkca�/� marrow had elevated expression of Wisp2 relative to
WT (Fig. 7D). Thus, in the marrow of female mice, deletion of
PKC� up-regulated the expression of all Wnt target genes
tested. Furthermore, PKC activation with PMA reduced the
proportion of �-catenin in the active (dephosphorylated) form
in CLBObs from WT but not Prkca�/� mice (Fig. 7, E and F),
demonstrating that PKC� suppresses active �-catenin in a
manner that cannot be redundantly achieved by activation of
other PKC isoforms in these cells.

PKC� Promotes Osteoblastic Proliferation in Vitro following
Strain and Estradiol, not Wnt3a—To investigate the role of
PKC� in proliferation of osteoblastic cells following mitogenic
stimuli, CLBObs were first serum-depleted in 2% charcoal/dex-
tran-stripped (c/d) fetal calf serum. As expected (54), this
reduced proliferation of WT CLBObs but surprisingly had no
effect on the proportion of cells stained positive for Ki-67 in
cultures from female Prkca�/� mice (Fig. 8A). Expression of the
proliferating cell marker cyclin D1 was confirmed to be greater
in serum-depleted CLBObs from Prkca�/� than in those from
WT mice (Fig. 8B). Serum depletion altered the distribution of

proliferating cells in the cell cycle similarly in both genotypes,
such that the only difference between the genotypes was the
initial step whereby quiescent cells become Ki-67-positive (Fig.
8C). Treatment with Wnt3a (10 ng/ml), known to increase
osteoblastic cell proliferation (19), similarly increased cell num-
ber and the proportion of cells stained for Ki-67 in both geno-
types (Fig. 8, D and E).

Given that canonical Wnt signaling is activated in osteoblas-
tic cells subjected to mechanical strain (18) and contributes to
the mechanisms by which strain induces osteoblastic cell pro-
liferation (19, 53, 55), we exposed cells to mechanical strain by
four-point bending of their substrate. This increased prolifera-
tion of WT-derived CLBObs, as expected (19, 53, 55), but did
not increase proliferation of cells similarly derived from
Prkca�/� mice (Fig. 9, A and B). The involvement of PKC� in
strain-responsive signaling was further investigated by compar-
ing the expression of the known strain target genes Cox-2, Egr2,
and IL-11 (15, 31). In both genotypes, Cox-2 was up-regulated
to a similar degree 1 h after strain (Fig. 9C). In contrast,
although Egr2 was significantly up-regulated in both genotypes,
this was to a significantly lower extent in cells from Prkca�/�

mice (Fig. 9D). IL-11 was up-regulated in CLBObs from WT but
not Prkca�/� mice (Fig. 9E).

Intriguingly, this pattern of gene regulation following strain
is similar to that observed in CLBObs lacking the activation
function 1 domain of ER� (15), the receptor that facilitates
osteoblast proliferation following both strain and estradiol
treatment (19, 56). Estradiol treatment (0.1 �M) was unable to
increase cell number or Ki-67 positivity in CLBObs from
Prkca�/� mice as it did in cultures from WT mice (Fig. 9, F and
G). Treatment with Wnt3a, strain, or estradiol did not alter the
cell cycle distribution of proliferating cells in either genotype
(not shown).

PKC involvement in estradiol- and strain-induced osteoblast
proliferation was substantiated in cells of the human female
osteoblastic Saos-2 line in which PKC signaling was blocked by
pretreatment with 0.1 �M photoactivated calphostin C before
strain or estradiol treatment (Fig. 10, A–D). Thus, osteoblast
proliferation in response to these anabolic stimuli is impaired
when PKC signaling is inhibited.

Disuse Prevents Intramedullary Bone Invasion in Female
Prkca�/� Mice—The inability of osteoblast-like cells from
Prkca�/� mice to proliferate following strain or estradiol treat-
ment, together with the gender and site specificity of the IM
bone phenotype in Prkca�/� mice, led us to hypothesize that
IM bone formation may be related to load bearing and/or cir-
culating estrogens. To investigate the influence of load bearing,
we substantially reduced it from the right tibiae of Prkca�/�

and WT mice by unilateral sciatic neurectomy and compared
subsequent bone mass with that in the contralateral left tibia,
which acted as an internal control. The effect of Prkca deletion
on the response to disuse was assessed at 37% of the bone’s
length from the proximal end, as reported previously (44). At
this site, the bone structure was similar between WT and
Prkca�/� mice, and the absence of PKC� in Prkca�/� mice did
not influence bone loss (Fig. 11, A–D), which was not signifi-
cantly different from that in WT at this site.

FIGURE 7. Prkca suppresses Wnt/�-catenin signaling. A–D, marrow was
harvested from pooled tibiae and femurs of male and female WT and
Prkca�/� mice and processed by qRT-PCR analysis of the proliferation marker
cMyc (A) and other direct Wnt target genes Cyr61 (B), Axin2 (C), and Wisp2 (D)
(n � 5). E and F, CLBObs from WT and Prkca�/� female mice were treated with
a 0.1 �M concentration of the PKC activator PMA twice at 12-h intervals and
lysed 12 h following the second treatment. Active (dephosphorylated) and
total �-catenin levels were determined by Western blotting relative to �-tu-
bulin. E, the percentage change in active versus total �-catenin was calculated
(n � 6). F, representative Western blots. Bars, mean � S.E. (error bars). *, p �
0.05; **, p � 0.01 for the effect of PMA treatment; ##, p � 0.01 versus the
change in WT controls.
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However, at the 50% site where IM bone is present in the
Prkca�/� mice, disuse resulted in significantly less IM bone
(Fig. 11A), such that the medullary area of neurectomized limbs
in Prkca�/� mice was not significantly different from that of the
control limbs of WT mice (p � 0.16). The overall reduction in
bone area was similar between the two genotypes due to signif-
icantly smaller total tissue area in the disused limb of WT but
not Prkca�/� mice (Fig. 11, B and C). This suggests that the
invasion of the medullary cavity by intramedullary bone in
female Prkca�/� mice is promoted by load bearing.

The effect of ovarian hormones on IM bone formation was
investigated by subjecting young female mice to ovariectomy
(OVX). OVX was performed at 8 weeks of age, before IM bone
forms, and the presence of IM bone was analyzed 10 weeks
later. OVX resulted in smaller marrow area and smaller total
tissue area in both WT and Prkca�/� mice (Fig. 12, A–D).
These effects of OVX were similar in both genotypes (genotype
by OVX interaction, p 	 0.8, as determined by mixed models).
Bone area in OVX Prkca�/� mice was greater than in non-
ovariectomized wild-type mice (p � 0.05), demonstrating that
loss of ovarian hormones did not prevent IM bone development
(Fig. 12A).

We therefore next investigated whether the lack of intramed-
ullary bone in the long bones of male Prkca�/� mice is due to
androgens in males rather than high levels of ovarian steroids in
females. 10 weeks following castration, small amounts of
intramedullary bone were observed in the tibia of Prkca�/� but
none in WT mice (Fig. 13A). Remarkably, this IM bone in male
mice occurred in the tibial midshaft (50% of the bone’s length)
at the same site as it did in female Prkca�/� mice. Castration
significantly reduced tibial midshaft cortical thickness in the
WT but not Prkca�/� mice, potentially due to the presence of
intramedullary bone at this site (Fig. 13B). At the proximal 37%

FIGURE 8. Prkca deletion alters recruitment of osteoblast-like cells to the cell cycle but not Wnt3a-induced proliferation. A, CLBObs female from WT and
Prkca�/� mice were cultured under permissive (10% FCS) or serum-depleted (2% c/d FCS, used for subsequent proliferation studies) for 24 h. The proportion of cells
stained positive for Ki-67 was determined. B, CCND1 expression was quantified in qRT-PCR in serum-depleted (2% c/d FCS) subconfluent cultures of CLBObs from WT
and Prkca�/� female mice (n � 6). C, the proportion of Ki-67-positive cells with a pattern of staining consistent with the indicated cell cycle stages was determined in
CLBObs from female WT and Prkca�/� mice cultured under permissive (10% FCS) or serum-depleted (2% c/d FCS, used for subsequent proliferation studies) for 24 h
(n � 8). Cells were treated with Wnt3a and fixed 48 h later for cell number analysis (C) or 24 h later for Ki-67 analysis (D). Bars, mean � S.E. (error bars). *, p � 0.05; **, p �
0.01; ***, p � 0.001 versus WT controls. #, p � 0.05 versus WT with 2% FCS. a, p � 0.05; b, p � 0.01 versus Wnt3a-treated cells from Prkca�/� mice.

FIGURE 9. Prkca deletion prevents increased proliferation following
mechanical strain or estradiol and alters strain-related gene regulation.
CLBObs from female WT and Prkca�/� mice were subjected to strain and fixed
48 h later for cell number analysis (A) or 24 h later for Ki-67 analysis (B). C and E,
cells were subjected to strain or kept as static controls and harvested 1 h later to
quantify Cox-2 (C), EGR2 (D), and IL-11 (E). The percentage changes in expression
in strained versus static control slides are shown (n � 12–15). F and G, cells were
treated with 0.1 �M E2 and fixed 48 h later to count cell number or 24 h later for
Ki-67 analysis. Bars for proliferation data represent the mean � S.E. (error bars)
(n � 8). *, p � 0.05; **, p � 0.01; ***, p � 0.001 versus WT controls.
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site of the tibia without intramedullary bone, castration
reduced cortical thickness in both WT and Prkca�/� mice (Fig.
13C). The presence of IM bone was not sufficient to signifi-
cantly alter marrow area or cortical bone area relative to cas-
trated WT mice (not shown).
DISCUSSION

Our observation of a bone phenotype in female mice with
Prkca deletion led us to investigate the potential involvement of
PKC� in key osteoregulatory signaling pathways in whole
bones in vivo and in osteoblasts in vitro. Prkca deletion had no

effect on the medullary cavity in young mice, but this situation
changed with maturity between 12 and 22 weeks of age when
female, but not male, Prkca�/� mice formed diaphyseal
intramedullary bone in various long bones, leaving their peri-
osteal dimensions unaffected. This phenotype is thus remarka-
ble for its age and gender specificity as well as its consistent
presence in restricted bone sites.

Histological investigation of these sites led us to identify
Gaucher-like cells in the bone marrow in affected regions of the
medullary cavity. Various other recognized features of Gaucher

FIGURE 10. PKC inhibition prevents human osteoblastic cell proliferation following strain and estradiol. Saos-2 cells were treated with 1 �M E2 (A and B)
or subjected to strain with or without 30-min pretreatment with 0.1 �M photoactivated calphostin C (C and D) and fixed 36 h later for cell number analysis (A
and C) or 24 h later for Ki-67 analysis (B and D). Bars, means � S.E. (error bars) (n � 8). *, p � 0.05; **, p � 0.01 versus vehicle controls. #, p � 0.05; ##, p � 0.01 versus
the second bar in each graph.

FIGURE 11. Disuse influences intramedullary bone in the tibia of female Prkca�/� mice. Female Prkca�/� mice and WT controls (n � 6) were subjected to
unilateral right sciatic neurectomy (SNx), causing disuse of the right tibia, at 15 weeks of age and sacrificed 3 weeks later. Left limbs served as internal controls.
The effect of sciatic neurectomy was determined at 37 and 50% of the bone’s length from the proximal end. A, representative cross-sectional images are shown
at the 50% site. The percentage change in medullary area (Ma.Ar) (B), cortical area (Ct.Ar) (C), and total tissue area (Tt.Ar.) (D) was determined by comparison with
the left control limbs by �CT. Bars, mean percentage change � S.E. (error bars). *, p � 0.05; **, p � 0.01, indicating the effect of neurectomy. ##, p � 0.01; ###,
p � 0.001 versus the percentage change in WT mice.
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disease have been documented, predominantly in female
Prkca�/� mice, including marrow infiltration, loss of GBA1
expression, splenomegaly, reduced cortical thickness, bone vas-
cular changes, and impaired platelet aggregation (35, 39, 57,
58). Inhibition of PKC signaling due to sphingolipid accumula-
tion is believed to contribute to the etiology of Gaucher disease
(36), and our findings are consistent with this hypothesis, dem-
onstrating that selective global deletion of the Prkca isoform is
sufficient to mimic aspects of the disease. However, loss of
PKC� cannot explain all features of Gaucher disease, including
the increase in bone resorption in patients (35) compared with
the predominant phenotype of deregulated endosteal forma-
tion in these mice. Thus, although we do not consider Prkca�/�

mice a model of Gaucher disease, they may provide insights into
its pathogenesis, particularly with relation to bone involvement
previously suggested to involve PKC (34).

Osteoblastic cells from a mouse model of Gaucher disease
had previously been reported to have deficits in their differen-
tiation and proliferation (34). In the present study, osteoblast
differentiation markers were higher in the marrow of Prkca�/�

mice relative to their WT counterparts, and increased osteo-
blastic differentiation was also observed in vitro using osteo-
blastic cells derived from the long bones of Prkca�/� mice rel-
ative to WT. Consistent with a switch in the balance from
osteoblast proliferation toward differentiation, osteoblastic
cells from Prkca�/� mice were less proliferative than WT-de-
rived cells under permissive culture conditions. The initial step
of recruitment to the cell cycle was the only difference observed
between the two genotypes, illustrating the role of PKC� as a

signaling node promoting proliferation in response to numer-
ous mitogenic stimuli. However, osteoblastic cells from
Prkca�/� mice retain the ability to increase their proliferation,
as demonstrated by their response to Wnt3a, which was similar
to that observed in cells derived from WT mice.

Exposure to a short period of dynamic mechanical strain
change did not increase proliferation of cells from Prkca�/�

mice as it did in WT-derived cells, and the strain-related up-
regulation of EGR2 and IL-11 was also deficient in osteoblastic
cells lacking Prkca. Given that it is the responses of such resi-
dent bone cells to the strains experienced during habitual load-
ing that determine bone architecture (11), perturbation of the
signaling axes involved may account for the reduction in corti-
cal thickness and Erlenmeyer flask-like architecture observed
in Prkca�/� mice, which parallel changes in Gaucher patient
femora (35).

However, not all responses to strain are dependent on PKC�
because Cox-2 up-regulation by strain was similar in both gen-
otypes. This pattern of Cox-2, Egr2, and IL-11 regulation fol-
lowing strain observed in cells from Prkca�/� mice is similar to
the regulation of these genes in osteoblastic cells lacking the
activation function 1 domain of ER� (15). Given that the ER�
activation function 1 domain mediates its interactions with
other proteins, including PKC (59), these findings suggest that
PKC� and ER� contribute to the same signaling pathways ini-
tiated in osteoblastic cells by strain. ER� is also required for
osteoblastic cells to increase their proliferation following strain
and following estradiol treatment (19, 56), and deletion of Prkca
also prevented osteoblastic proliferation following strain or

FIGURE 12. Ovariectomy does not prevent intramedullary bone in the tibia of female Prkca�/� mice. Female Prkca�/� mice (n � 7) and WT controls (n �
5) were subjected to ovariectomy (OVX) at 8 weeks of age and sacrificed 10 weeks later. Their left limbs were compared with the left limbs of non-ovariecto-
mized controls. A, representative cross-sectional images are shown. Medullary area (Ma.Ar; B), total tissue area (Tt.Ar; C), and cortical area (Ct.Ar; D) were
determined by �CT 50% of the tibia’s length from the proximal end. Bars, mean percentage change � S.E. (error bars). *, p � 0.05; **, p � 0.01, indicating the
effect of OVX. #, p � 0.05; ##, p � 0.01 versus similarly treated WT mice.

FIGURE 13. The cortical response to castration is site-specifically altered in Prkca�/� mice due to intramedullary bone formation in the tibial midshaft.
A, representative two-dimensional �CT images of control and castrated male WT and Prkca�/� mice. The arrow indicates the presence of intramedullary bone
only observed in Prkca�/� mice. Cortical thickness (Cs.Th) was quantified in the tibial midshaft (50%) (B) and the proximal 37% site (C). Bars, mean � S.E. (error
bars); controls, n � 6; WT castrated, n � 4; Prkca�/� castrated, n � 6. ns, not significant. **, p � 0.01, *** p � 0.001 versus WT control. #, p � 0.05 versus control
Prkca�/� mice.
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estradiol treatment in the present study. PKC� and ER� phys-
ically interact in osteoblastic cells in a complex involving c-Src
(23), suggesting a potential mechanism for cooperation
between these proteins within the same signaling cascades.
Furthermore, PKC signaling reduces ER signaling in overcon-
fluent osteoblastic cells, which attain a more differentiated state
(26, 60), potentially acting as a cellular context-specific “break”
on ER signaling that is lost in Prkca�/� mice. Although none of
the myriad ER� transgenic mice generated thus far have been
reported to form intramedullary bone, it is intriguing that ER�
deletion only impairs the osteogenic response to loading in
female, not male, mice (15, 61). This sex-specific facilitation of
bone’s adaptation to loading by ER� is ligand-independent and
non-genomic (15), suggesting that it involves interactions with
signaling molecules potentially including PKC�.

Because it is well established that sex hormones and mechan-
ical loading both involve signaling through the ERs (15, 53, 61),
we investigated the effect of load bearing on bone structure in
Prkca�/� mice through sciatic neurectomy-induced disuse and
the potential role of systemic ovarian hormones through cas-
tration or ovariectomy prior to the development of intramed-
ullary bone. The change in cortical bone area triggered by dis-
use was not influenced by loss of PKC�, suggesting that the
increase in resorption due to disuse is not significantly impaired
by loss of PKC�. However, disuse prevented any significant
invasion of the medullary cavity in female Prkca�/� mice. Based
on our current studies, we cannot exclude the possibility that, in
addition to inducing disuse, sciatic neurectomy prevented
medullary invasion by reducing sympathetic stimulation.
Although some authors have reported that the sympathetic
nervous system is involved in bone loss caused by hind limb
suspension (62, 63), sympathetic blockade does not alter bone
gain following loading or bone loss due to neurectomy-induced
disuse (64). Disuse, be it through sciatic neurectomy or hind
limb suspension, reduces Wnt signaling (9, 65). Thus, an alter-
native hypothesis is that disuse prevents medullary bone forma-
tion by locally suppressing the increase in Wnt signaling
observed in the bones of female Prkca�/� mice relative to WT.

In Prkca�/� males, castration resulted in intramedullary
bone formation at the same skeletal sites where it was observed
in female Prkca�/� mice. However, the amount of intramedul-
lary bone formed in castrated male Prkca�/� mice was consid-
erably less than in female Prkca�/� mice of the same age. This is
not surprising because bone had only 10 weeks to form (from
castration to sacrifice). Androgen signaling has previously been
reported to suppress bone’s response to loading (66), which
could explain this result and supports our conclusion that
PKC� signaling may influence bone’s response to load bearing.
This situation contrasts with that following ovariectomy, which
did not alter intramedullary invasion. Thus, site-specific
intramedullary bone formation in female Prkca�/� mice occurs
independently of ovarian hormones but requires physiological
load bearing.

Endosteal responses to disuse normally change with age,
such that medullary expansion with disuse occurs in mature but
not growing animals (67). This may also be relevant to the age
dependence of bone formation observed in the marrow of skel-
etally mature female Prkca�/� mice. Disuse-induced bone loss

involves suppression of Wnt signaling (65), and perturbing
components of the Wnt pathway has previously been shown to
have gender-specific effects on bone mass (68) and on the
responses to disuse (17). The bases for these gender-specific
effects are largely unknown, in part because the interactions
between Wnt and androgen signaling in bone have not been
studied as extensively as those between Wnt and estrogen sig-
naling. The findings of this study suggest that androgen signal-
ing may suppress bone phenotypes observed in female mice.

Our findings demonstrate for the first time that PKC� is a
regulator of the important Wnt signaling pathway in osteo-
blasts. In vivo changes, particularly in gene expression, must be
interpreted with caution, given that the model used in these
studies is a germ line deletion of PKC�, although in vitro studies
support there being cell-autonomous roles for PKC� in osteo-
blasts. PKC� suppresses Wnt signaling, as evidenced by the
reduced proportion of �-catenin in the active form and reduced
activity of the Wnt target gene alkaline phosphatase following
PKC activation when PKC� is present. Because Wnt signaling
is critical for osteoblast lineage commitment (69, 70), this sug-
gests a mechanism whereby PKC� suppresses osteoblast differ-
entiation. It is also possible that loss of PKC� may have, directly
or indirectly, altered Wnt protein levels. However, given that
previous publications have demonstrated that PKC� interacts
with canonical Wnt signaling at the level of �-catenin in other
cell types (27, 28), this possibility was not pursued in the current
study.

In conclusion, deletion of Prkca in mice in vivo leads to age-
related bony invasion of the medullary cavity at specific sites of
the long bones in young adult female but not male mice. This
invasion occurs despite ovariectomy, does not occur in the
absence of functional load bearing, and is observed in orchidec-
tomized PKC� male mice. The effects of PKC�, at least in
female mice, include suppression of osteoblastic differentiation
and suppression of Wnt target gene expression, revealing a
novel role for PKC� in the regulation of Wnt signaling in osteo-
blastic cells. In the absence of PKC�, neither strain nor estradiol
are capable of recruiting quiescent osteoblasts to the cell cycle,
although their capacity to proliferate in response to Wnt3a is
not diminished. From these data, we infer that in female, but
not male, mice, PKC� acts as a suppressor of loading-related
bone formation on the endosteum, with no discernible effect on
the periosteum. Prkca deletion in female mice phenocopies
some aspects of Gaucher disease in humans. As a molecular
regulator of osteoblastic activity, PKC� may be a suitable target
for therapeutic approaches to various bone disorders.
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