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Gemistocytic astrocytoma represents a small subgroup accounting for approximately 5% of diffuse 

astrocytic glioma. The WHO classification defines gemistocytic astrocytoma by presence of “a 

conspicuous, though variable, fraction of gemistocytic neoplastic astrocytes” [5].  These cells should 

account for at least 20% of the tumor cells. The term “gemistocytic” was coined by Nissl in 1904 for 

cells with homogeneous, faintly eosinophilic cytoplasms with short branching processes. It originates 

from the German word “gemästet” (filled, stuffed, swollen), sometimes also referred back to the 

Greek “gemistos” with similar meaning.  

The neoplastic nature of gemistocytic cells in astrocytoma could be clearly demonstrated by binding 

of an IDH1R132H mutant protein specific antibody [1].  However, so far no molecular drivers 

characteristic for this gemistocytic differentiation have been identified.  Previous molecular analyses 

reported higher frequencies of TP53 and PTEN mutations [14], lower frequency of IDH mutations, 

and alterations in RRAS and ERCC1 [7]. Several studies found shorter progression-free-survival in 

gemistocytic astrocytoma cases compared to fibrillary astrocytoma [4,8-10], whilst others did not 

confirm this finding [a reference should be given here].. However, there appears to be a 

contradiction between the accelerated progression and alower proliferative activity of gemistocytes 

compared to other tumor cells in the same sample, or in general in diffuse glioma [2-4,15] . 

To identify potentially recurrent alterations associated with gemistocytic morphology in astrocytoma 

we performed high-throughput high-resolution genetic and epigenetic analysis on a set of 24 

gemistocytic astrocytomas. The control group consisted of 47 IDH mutant astrocytomas WHO grade 

II, 104 IDH mutant anaplastic astrocytomas WHO grade III, and 293 IDH wild-type glioblastomas WHO 

grade IV.  

 

The Illumina Infinium HumanMethylation450 BeadChip (450k) array data was used for methylation 

profiling and to calculate a low-resolution copy number profile (CNP) as previously described [12]. 



Targeted re-sequencing was performed on the genes and with the technology as reported previously 

[11]. 

 

A distinctive feature of tumours with gemistocytic histology was a recurrent numerical aberration in 

the telomeric region of chromosomal arm 12p, encompassing CCND2 (Figure 1A). An integrated 

analysis of copy-number variation (Stichel et al., in preparation) in all gemistocytic astrocytoma of 

our cohort also indicated 12p as the most consistently altered locus (Figure 1B). 

In particular, focal gain of CCND2 and adjacent regions was seen in 8 of 9 gemistocytic astrocytomas 

WHO grade II and in 13 of 15 anaplastic astrocytomas with distinct gemistocytic morphology (Table 

1). Instead, this alteration was observed in only 5 of 47 fibrillary astrocytomas WHO grade II and in 

only 19 of 104 anaplastic astrocytomas lacking gemistocytic morphology. The alterations detected by 

analysis of copy number plots based on 450K analysis were confirmed by FISH in a subset of 18 cases 

(11 gemistocytic cases, 7 fibrillary cases), yielding concordance in 17 out of 18 (94%) cases (Figure 

1B). The single non-concordant case was an anaplastic gemistocytic astrocytoma without indications 

of chromosome 12 gain by 450k but low-level gain detected by FISH probe directed against 12p12 

encompassing CCND2.  

This difference was highly significant within grade II and grade III gliomas, respectively (each 

p<0.0001, Fisher’s exact test). Also, the event of 12p/CCND2 gain was significantly associated with 

gemistocytic histology over the entire diffuse astrocytic glioma cohort (p<0.0001, Table 1). 

Unsupervised clustering of methylome profiles from gemistocytic and fibrillary astrocytoma did not 

separate these from each other (data not shown).  

To assess the mutational landscape of gemistocytic astrocytoma, 17 tumours were further analysed 

by panel sequencing. All cases harboured IDH1R132 mutations (16/17 IDH1R132H, 1/17 IDH1R132G) 

and TP53 mutations. Other recurrently mutant genes were ATRX (10/17), ALK (2/17), CSF1R (2/17), 

FGFR1 (2/17), GSE1 (2/17), MSH6 (2/17), NF1 (2/17), and SMO (2/17, not affecting the activating hot-

spots). These findings are in line with studies describing high rates of TP53 mutations in gemistocytic 

astrocytomas, but contrasts reports on high frequencies of PTEN mutations of which none was found 

in the present set.   

Recent reports suggested aberrations of copy number and methylation of ERCC1 and RRAS as a 

possible marker for gemistocytic astrocytoma [7]. However, we could not detect these aberrations in 

our dataset (mean beta values for ERCC1 promoter sites 0.09 and 0.1, for RRAS promoter sites 0.08 

and 0.09, in gemistocytic and control samples, respectively).  

Upregulation of CCND2 due to higher copy abundance also provides an explanation for several prior 

observations on this sub-entity: CCND2 is physiologically upregulated in radial glial cells of the 

subventricular zone during brain development, and activating CCND2 mutations result in 

megalencephaly whilst abrogation of CCND2 leads to microcephaly [6]. The higher abundance of 

CCND2 protein might also disrupt the regular cell cycle, preventing the transition from S to G2 phase, 

and explain lower mitotic activity but higher pleomorphism with higher number of multi-nucleated 

cells in such cases. Moreover, the recent approval of inhibitors of the CDK4/6 axis [13], both 

interacting with CCND2, also opens an additional therapeutic approach for this glioma subtype. 

 

  



Table 1 Subtypes of diffuse glioma and 12p status 

Subtype 12p gain 12p balanced/del 
all AII (56) 13 (23%) 43 (77%) 
All gem (9) 8 (89%) 1 (11%) 
AII non-gem (47) 5 (11%) 42 (89%) 
all AIII (119) 29 (24%) 90 (76%) 
AIII gem (15) 13 (87%) 2 (13%) 
AIII non-gem (104) 19 (18%) 85 (82%) 
all GBM (293) 32 (11%) 261 (89%) 
 

Figure 1 

  

Figure 1 Representative copy-number profile of a gemistocytic astrocytoma (A). Integrated copy-

number analysis across all gemistocytic astrocytoma (B). Fluorescence in-situ hybridization of a case 

with amplification (left) and low-level gain of CCND2 (middle, higher magnification right).  
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