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ABSTRACT

Neural tube closure has been studied for many decades, across a
range of vertebrates, as a paradigm of embryonic morphogenesis.
Neurulation is of particular interest in view of the severe congenital
malformations — ‘neural tube defects’ — that result when closure fails.
The process of neural tube closure is complex and involves cellular
events such as convergent extension, apical constriction and
interkinetic nuclear migration, as well as precise molecular control
via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP
signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2.
More recently, biomechanical inputs into neural tube morphogenesis
have also been identified. Here, we review these cellular, molecular
and biomechanical mechanisms involved in neural tube closure,
based on studies of various vertebrate species, focusing on the most
recent advances in the field.
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Introduction

How the neural tube (NT) forms is a central issue in developmental
biology. Vertebrate neurulation is a complex morphogenetic process
that requires the coordination of many cellular and molecular events,
and is regulated by more than 300 genes in mammals (Wilde et al.,
2014). Primary neurulation (see Glossary, Box 1) — the process by
which the NT closes from an open neural plate (NP) — is achieved
sequentially in distinct steps (Fig. 1): the NP is initially induced to
differentiate, it then undergoes bending to create the neural folds,
which elevate towards the dorsal midline, and finally the neural fold
tips fuse to complete the NT. However, primary neurulation varies
between species (see Box 2). For example, there is also a sequence
of neurulation events along the body axis that involves multi-site,
progressive closure (‘zippering’) in mammals, a somewhat simpler
sequence of closure events in birds, and almost simultaneous
closure at all axial levels in amphibia (Fig. 2). Although mammals,
birds and amphibians have differences in primary neurulation all
undergo ‘secondary’ neurulation (Fig. 1; see Glossary, Box 1) in an
apparently similar manner. In this process, a solid cord of NT
progenitor cells in the developing tail bud becomes ‘canalized’ to
form a neuroepithelium (NE) surrounding a lumen, without
formation or closure of neural folds (Copp et al, 2015).
Neurulation in teleost fish has been likened to secondary
neurulation in higher vertebrates.
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These neurulation mechanisms involve not only the NE itself but
also the surrounding tissues. Indeed, the non-neural (surface)
ectoderm (NNE), mesoderm and notochord have all been implicated
in regulating NT closure (NTC). Importantly, failure of the dynamic
morphological changes of neurulation lead to perturbations in NTC,
generating neural tube defects (NTDs, see Box 3) which are among
the most common human birth defects (Greene and Copp, 2014).
Thus, an understanding of the mechanisms governing NTC may
ultimately assist in the development of methods for predicting and
preventing NTDs.

In this Review, we describe recent advances in our understanding
of neurulation mechanisms, focusing on the key signalling
pathways, their transcriptional control, the cellular behaviours and
the resulting physical forces that need to be coordinated in a
regulated spatiotemporal manner. The risk factors for human NTDs
and their primary prevention with nutritional supplements,
including folic acid, are briefly summarized in Box 4.

The initiation of NTC: the role of CE

In all of the model species in which NT formation has been studied,
an initiating process involves the mediolateral (ML) convergence
and anterior-posterior (AP) (or rostro-caudal) extension of axial
tissues, including the NP. This process of convergent extension
(CE; see Glossary, Box 1), which is responsible for shaping the NP
before closure, is classically linked with the non-canonical Wnt/
planar cell polarity (PCP) pathway. Accordingly, mutants in which
PCP signalling is perturbed display NTDs caused by aberrant CE
(where examined). As we discuss below, the study of such PCP
mutants has revealed key insights into the cellular and molecular
events that control CE during NTC.

Identifying a role for the PCP pathway during NTC

The non-canonical Wnt/PCP pathway is strongly conserved from
Drosophila to higher vertebrates. It involves six core PCP proteins
(see Box 5) that, in Drosophila, localize proximally or distally at
planar polarized cell-cell junctions, forming complexes that are
required for signalling function and that act to polarize cells within
the plane of a tissue (reviewed by Gray et al., 2011). The
significance of PCP-dependent CE in NTC was first demonstrated
in post-gastrulation Xenopus embryos (Goto and Keller, 2002;
Wallingford and Harland, 2002); defective CE in the midline,
following the disruption of Wnt/PCP signalling, caused the NP to be
too wide for the neural folds to reach the midline and fuse. Failed CE
(resulting in a wide NP and short AP axis) is also observed in mice
carrying mutations in core PCP genes such as Vangl2 (Greene et al.,
1998). These mice fail to undergo closure 1 (see Glossary, Box 1),
resulting in craniorachischisis (see Glossary, Box 1) a severe NTD
in which the midbrain, hindbrain and the entire spinal region remain
open (Greene et al., 1998; Murdoch et al., 2001). Similar
phenotypes with a broad and short body axis have been observed
in zebrafish PCP mutants (Ciruna et al., 2006; Tawk et al., 2007).
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Box 1. Glossary

Anencephaly: Absence of brain and skull vault due to neural tissue
degeneration following failed cranial neural tube closure.

Apical constriction: Contraction of the apical side of a cell.

Closure 1: The initial neural tube closure event; at the hindbrain/cervical
boundary in mice.

Convergent extension (CE): The process by which a tissue narrows
along its mediolateral axis (convergence) and elongates along its
anteroposterior/rostrocaudal axis (extension).

Craniorachischisis: An open neural tube defect involving the midbrain,
hindbrain and entire spinal cord.

Exencephaly: Failure of neural tube closure in the developing brain; the
precursor of anencephaly.

Filopodia: Spike-like cellular actin-containing cellular protrusions.
Holoprosencephaly: Severe brain defect resulting from failure of the
forebrain to divide into bilateral hemispheres.

Interkinetic nuclear migration (IKNM): The movement of nuclei along
the apicobasal axis, depending on the cell cycle in a pseudostratified
epithelium.

Junctional exchange: Cellular partner rearrangements, such as those
seen during convergent extension of epithelial intercalation, in which
existing cell junctions are replaced by novel junctions with different cells.
Lamellipodia (ruffles): Sheet-like cellular actin-containing cellular
protrusions.

Neuromesodermal progenitors: Bi-potential progenitor cells found in
the tailbud that give rise to both neuroepithelial and mesodermal
derivatives.

Primary neurulation: Formation of the neural tube by bending of the
neuroepithelium to generate the neural folds that elevate and fuse in the
midline.

Secondary neurulation: Formation of neural tube in the lower sacral
and coccygeal regions by an internal process of epithelialization, without
neural fold formation or closure.

Spina bifida or spina bifida aperta: A congenital malformation of the
developing spinal cord due to failure of neural tube closure (also called
myelomeningocele).

Importantly, PCP mutations have been identified in humans with
NTDs (reviewed by Juriloff and Harris, 2012) and evidence of
abnormal CE has been observed in human foetuses with
craniorachischisis (Kirillova et al., 2000). Furthermore, while
homozygotes for PCP mutations display craniorachischisis, PCP
heterozygotes (e.g. Vangl2”’*) and compound heterozygotes (e.g.
Vangl2'?"" with mutations in Ptk7, Sec24b or syndecan 4) can
develop spina bifida (see Glossary, Box 1), indicating that later
events of spinal neurulation are also under the control of PCP
signalling (Escobedo et al., 2013; Lu et al., 2004; Merte et al.,
2010). However, even in embryos with craniorachischisis (e.g.
Vangl2t»'tp), the forebrain NT is generally closed, suggesting that
Wnt/PCP signalling may not be limiting for NTC at the most rostral
levels (Greene et al., 1998; Murdoch et al., 2003).

The Fat/Dachsous/Four-jointed pathway, which functions
upstream or in parallel with core PCP signalling in Drosophila (see
Box 5), has also been implicated in vertebrate NTC. Fat/™'~ mice
display holoprosencephaly/exencephaly (see Glossary, Box 1)
depending on the genetic background (Badouel et al., 2015; Ciani
et al., 2003; Saburi et al., 2012), whereas Fat4~'~ mice have caudal
defects with a broad spinal cord (Saburi et al., 2008). In addition,
members of the Fat/Dsch/Fjx pathway has been shown to interact
during cranial NT closure as Fat!™~;Fat4~~ and Fatl™~;FjxI~~
double mutants both display exencephaly/anencephaly (see Glossary,
Box 1) whereas Fjx/ ™'~ single mutants have no NTDs (Badouel etal.,
2015; Saburi et al., 2012). It remains to be determined whether the
NTDs of these mutants arise from defective CE.

A Primary neurulation

B Secondary neurulation

Tail-bud cells

Condensation Notochordal precursor Secondary neural tube

Fig. 1. An overview of primary and secondary neurulation. (A) Schematic
representation of primary neurulation involving elevation of the neural folds (left
panel), followed by their bending (middle panel) and fusion (right panel).
DLHP, dorsolateral hinge point; MHP, median hinge point; NC, notochord; NE,
neuroepithelium; NNE, non-neural ectoderm; PM, paraxial mesoderm.

(B) Secondary neurulation. Tail-bud cells condense (left panel) in the midline
to form the medullary cord. The medullary cord undergoes epithelialization
(middle panel) around a lumen (red) while the notochordal precursor remains
solid, generating the secondary neural tube and notochord (right panel).

Cellular mechanisms of CE

Although CE appears essential for NTC across vertebrates, the
actual cellular mechanisms of CE may vary owing to differences in
NP structure between animal groups (Fig. 2). The neural ectoderm
in Xenopus laevis, for example, consists of two components: a
superficial layer of epithelial cells overlying a deep layer of
mesenchyme-like cells (Elul et al., 1997). In zebrafish, NP
organization has been variously described as single-layered,
bilayered (resembling amphibians) or multilayered, probably
depending on the AP level (Araya et al., 2016b; Clarke, 2009),
and NP cells have a columnar, epithelial-like phenotype and lack
apicobasal polarity, which is established later at the neural rod stage
(Girdler et al., 2013; Hong and Brewster, 2006). By contrast, the
avian and mammalian NP is a single pseudostratified, columnar
epithelium in which cells have obvious apicobasal polarity with
nuclei positioned at different apical-basal positions within the
epithelium due to interkinetic nuclear migration (IKNM; see
Glossary, Box 1) (Spear and Erickson, 2012).

The cellular mechanisms of neural CE in Xenopus involve the ML
intercalation of deep neural cells to form a longer and narrower NP
and NT. Cell shape change and cell division do not appear to play any
role. Cell movement is cell-autonomous and is accomplished by
polarized protrusions that exert traction between intercalating cells
(Davidson and Keller, 1999; Elul et al., 1997; Ezin et al., 2003, 2006).
In parallel, the underlying mesoderm also undergoes autonomous
CE, involving the formation of mediolaterally oriented bipolar
protrusions (Shih and Keller, 1992). The mesoderm and midline
structures dictate the behaviour of the neural cells: in their presence,
NP cells exhibit lateral monopolar protrusions directed towards the
NP midline (termed the ‘notoplate’ or floor plate at later stages),
whereas they display mediolaterally oriented bipolar protrusions
when mesoderm or midline structures are absent (Elul et al., 1997;
Ezin et al., 2003, 2006). CE in both neural and mesodermal cells is
regulated by the Wnt/PCP pathway, and the perturbation of PCP/CE
in the NP results in NTDs (Wallingford and Harland, 2001).
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Box 2. Variations in neurulation between vertebrates

Neurulation varies across species, both with regard to the number of
closure points, their timing and the order in which these points close. In
mice, the initial neural tube (NT) closure point (closure 1; see Glossary,
Box 1) is at the hindbrain/cervical boundary, with a second independent
initiation point (closure 2) at the forebrain/midbrain boundary. Closure
(‘zippering’) proceeds both rostrally and caudally from these sites
(Fig. 2A). A third initiation point (closure 3) is located at the most rostral
end of the forebrain and closure proceeds backwards from this site
towards closure 2 (Fig. 2A) (Copp and Greene, 2010). These multiple
closure initiation sites create three neuropores (open regions of the NT):
the anterior and hindbrain neuropores in the cranial region and the
posterior neuropore (PNP) in the low spinal region. Neurulation in
humans appears to be slightly different: human embryos between
Carnegie stages 8 and 13 display two closure initiation sites,
corresponding to mouse closures 1 and 3, whereas there is no
apparent equivalent to closure 2 in humans (O’Rahilly and Muller,
2002). In non-mammalian vertebrates, there is progressively more
divergence in the neurulation process with increasing evolutionary
separation. The chick, for example, has two points of closure initiation: at
the level of the future midbrain and at the hindbrain-cervical boundary,
with bi-directional zippering between the sites (Fig. 2B) (Van Straaten
et al., 1996). By contrast, Xenopus embryos exhibit closure almost
simultaneously along the entire body axis and in teleost fish there is no
formation of neural folds at all; rather, the NP cells coalesce to form a
neural keel and the NT lumen opens subsequently within this structure.

In zebrafish, the perturbation of Wnt/PCP signalling (e.g. in
Vangl2 mutants) results in a rather broad and thick NE (Ciruna et al.,
2006; Tawk et al., 2007) due to faulty cell intercalation (Ciruna
et al., 2006). Wnt/PCP signalling seems to be important for the
repolarization and integration of daughter cells in the neural keel
after the transient loss of polarity during division (Ciruna et al.,
2006). Moreover, mirror-image NTs have been observed when Wnt/
PCP signalling is abrogated, due to divisions happening at the right
time but in a late-converged NE (Tawk et al., 2007). Convergence
movements of the mesoderm also play a key role during CE of the
zebrafish NE (Araya et al., 2014), due to the coupling role of
extracellular matrix (ECM) between the two tissues (Araya et al.,
2016a), although Wnt/PCP signalling seems to be important
predominantly in the NE (Ciruna et al., 2006).

In mice, axial extension at E7.5-8.5, prior to closure 1, was
demonstrated by vital cell labelling and shown to depend on
functional Wnt/PCP signalling (Ybot-Gonzalez et al., 2007b).
Vangl2”'?  embryos exhibit severely diminished midline
extension, resulting in widely spaced neural folds that fail to
initiate NTC (Greene et al., 1998). Chimaera analysis shows that the
requirement for PCP during CE is cell-autonomous, as Vangl2-/t?
cells exhibit reduced midline intercalation even when intermixed
with wild-type cells in the same embryo (Ybot-Gonzalez et al.,
2007b). Live imaging reveals that neuroepithelial cells organize into
tetrads and multicellular rosettes as the AP-oriented junctions
contract (Williams et al., 2014). These rosettes then resolve and new
ML junctions are formed, leading to neighbour exchange and tissue
elongation (apical junctional intercalation). In parallel, cells
elongate basally along the ML axis, exhibiting protrusive activity
and driving cells to undergo ML intercalation. These intercalation
events are adversely affected in PCP mutants and result in defective
CE (Williams et al., 2014).

Molecular mechanisms controlling CE
Recent studies are beginning to provide insights into how PCP

signalling functions at the molecular level during the initial stages of
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Fig. 2. Comparative schematic summary of neurulation in different
vertebrates. Key features of neurulation are shown for (A) mouse, (B) chick,
(C) Xenopus and (D) zebrafish. Cross-sections of the mouse, chick and
Xenopus neural tube are shown with typical appearance in anterior and
posterior embryonic regions; for zebrafish, cross-sections of the midbrain after
closure and during neural keel formation are shown. The arrows in A and B
indicate directions of closure. Arrowheads indicate hinge points. EVL,
envelope layer; NE, neuroepithelium; NNE, non-neural ectoderm.

NTC. However, Wnt/PCP signalling interfaces with cytoskeletal
remodelling and thus could also participate in the regulation of later
cytoskeleton-driven events, for example NP bending.

The core PCP proteins display a highly polarized cellular
distribution in Drosophila epithelia and, recently, similar cellular
polarization has been described in vertebrate CE, during inner ear
development in mammals (May-Simera and Kelley, 2012). In
Xenopus, NP cells also display anteriorly polarized Vangl2
localization. This polarization is dependent on the formation of a
complex between Vangl2 and Prickle, and Wnt-dependent
phosphorylation of Vangl2, which is important for normal NTC
(Ossipova et al., 2015). Moreover, Vangl2 polarization depends on
Rho kinase-induced phosphorylation of myosin light chain (pMLC),
and it has further been shown that Vangl2 depletion abrogates MLC
phosphorylation, suggesting a feedback loop between Wnt/PCP
signalling and actomyosin dynamics (Ossipova et al., 2014, 2015).

Similarly, in chick neuroepithelial cells, the Wnt/Fz-PCP
component Celsrl displays polarized localization specifically at
AP junctions. Celsrl recruits Dvl, which activates Daam1, which
in turn binds and activates PDZ-RhoGEF. This likely leads to
RhoA activation and myosin contraction (Fig. 3), resulting in

DEVELOPMENT



REVIEW

Development (2017) 144, 552-566 doi:10.1242/dev.145904

Box 3. Human neural tube defects

Neural tube defects (NTDs) are among the commonest of birth defects,
with a frequency that typically ranges between 0.5 and 2 per 1000
pregnancies (Copp et al.,, 2015). However, in some geographical
regions, e.g. Northern China, frequencies as high as 10 per 1000
births have been reported (Li et al., 2006). Failure of fusion in the cranial
region results in exencephaly, which progresses to anencephaly (see
Glossary, Box 1), and affected foetuses are stillborn or die postnatally.
Open NT in the spinal region leads to a variety of NTDs with the most
severe being myelomeningocele (also called open spina bifida or spina
bifida aperta; see Glossary, Box 1). Disability in NTDs results not from
abnormal differentiation of the neural tissue but rather from its
progressive degeneration through contact with the amniotic fluid,
making foetal surgery to cover and protect the lesion a promising
therapeutic approach (Adzick et al., 2011). In addition, there is a wide
spectrum of closed (skin covered) spinal dysraphisms probably caused
by defective secondary neurulation, in view of their low axial level. The
recent identification of neuromesodermal progenitors (Henrique et al.,
2015; see Glossary, Box 1) in the tail bud might explain the poor
separation of neural and mesodermal tissues in these lesions, and the
frequent association with lipomas (lipomyelomeningocele) (Finn and
Walker, 2007). More than 300 genes have been identified to cause NTDs
in mice (Wilde et al., 2014), whereas in humans 82 genes have been
considered as genetic risk factors (Pangilinan et al., 2012). Even though
the risk of an affected NTD pregnancy is increased with a previous NTD
occurrence, human NTDs exhibit features of multigenic inheritance with
an important role for non-genetic factors (see Box 4).

midline convergence as well as NP bending in the ML direction
(Nishimura et al., 2012). In support of this sequence was the
observation that pMLC is detected only in a subpopulation of
adherens junctions in the bending NP of chick embryos (Nishimura
and Takeichi, 2008), whereas, in mouse, basal (but not apical)
myosin IIB is enriched preferentially along the AP axis (Williams
et al., 2014). This polarity is disturbed in mouse PCP mutants,
consistent with the lack of ML intercalation (Williams et al., 2014).

In Xenopus, diversin, another PCP component that is required for
NTC, was found to be polarized along the ML axis of the NP
(Ossipova et al., 2014). Rabll, a protein that is involved in
endosome recycling and is also important for NTC, was found to be
polarized and regulated by diversin, with pMLC acting as a
downstream effector (Ossipova et al., 2014).

Box 4. Environmental risk factors and prevention of
neural tube defects

Recognized environmental influences on the development of neural tube
defects (NTDs) include factors such as maternal anticonvulsant usage in
early pregnancy (Werler et al., 2011) and poor nutritional status
(especially low folate intake). Indeed, peri-conceptional folic acid
supplementation can prevent a proportion of NTDs, as demonstrated
in clinical trials (Blom et al., 2006). Although supplementation with folic
acid is recommended for women planning a pregnancy, it is only
countries with mandatory fortification of food with folic acid that have
seen significant reductions in NTD prevalence. Some NTDs are not
preventable by folic acid, and inositol has emerged as a potential
preventive agent in ‘folate non-responsive’ NTD mouse models (Burren
etal., 2010; Greene and Copp, 1997). A recent pilot clinical trial reported
no recurrences of NTD in highly predisposed women who took inositol
peri-conceptionally (Greene et al., 2016). However, larger-scale studies
are needed to establish whether inositol is effective in preventing NTDs.
Inositol supplementation in mouse embryo culture also rescued NTDs
induced by hyperglycemia (Baker et al., 1990) raising the possibility that
inositol could be beneficial in counteracting the increased risk of NTDs in
maternal diabetes (Bell et al., 2012).

The available evidence suggests, therefore, that PCP-dependent
polarized protein localization in both the AP and ML axes is
important for CE, NP bending and ultimately NTC. Hence,
vertebrate  PCP  signalling appears to function similarly to
Drosophila planar polarization. The downstream regulator of this
polarized expression across species is the phosphorylation of MLC,
which is important for both CE and bending of the NP in Xenopus,
chick and mouse embryos (Nishimura et al., 2012; Rolo et al., 2009;
Williams et al., 2014). It remains to be determined to what extent
MLC activation is required for vertebrate neurulation because of its
role in CE, as opposed to its involvement in the later events of NP
bending and neural fold elevation.

Bending of the NP and elevation of the neural folds

Once CE is under way, shaping the future CNS along its AP and
ML axes, the margins of the NP begin to elevate, forming neural
folds that eventually meet in the dorsal midline and fuse to create
the NT (Fig. 1A). Amphibia undergo neural fold bending,
elevation and fusion at all axial levels over a relatively short
time-frame, whereas birds and mammals display a much more
protracted progression of closure along the body axis (Fig. 2).
Moreover, the morphology of neural fold elevation differs between
cranial and spinal regions (Fig. 2). In the mouse midbrain, the
neural folds are initially biconvex with their tips orientated away
from the midline. Then dorsolateral bending occurs, generating
biconcave neural folds and orienting the tips towards the midline
for fusion (Morriss-Kay, 1981). This biphasic sequence has been
related to an initial expansion of the underlying cranial mesoderm,
which causes the neural folds to adopt the biconvex morphology
(Zohn and Sarkar, 2012), and to subsequent actomyosin-
dependent dorsolateral bending to generate the biconcave
morphology (Morriss-Kay and Tuckett, 1985). In addition, the
emigration of cranial neural crest, which begins before closure
(unlike in the spine where it follows closure), may enable
dorsolateral bending (Copp, 2005). The mammalian spinal
region, by contrast, does not exhibit a biconvex elevation phase:
the neural folds remain straight except for focal bending sites at the
midline (the MHP; median hinge point) and dorsolaterally
(DLHPs; paired dorsolateral hinge points). Moreover, as the
wave of closure progresses along the spinal region, bending shifts
from being predominantly MHP mediated to mainly DLHP
mediated (Shum and Copp, 1996).

Cellular mechanisms involved in NP bending

Epithelial bending during development is often represented as
resulting from a generalized reduction in apical surface area (apical
constriction; see Glossary, Box 1). Indeed, in Xenopus embryos,
apical constriction of the superficial NP layer leads to invagination
at the midline and neural fold bending along the body axis. The
anterior NP region additionally exhibits paired dorsolateral
bending points, in which apical constriction is particularly
marked (Fig. 2C) (Haigo et al., 2003; Lee et al., 2007). The
disruption of apical constriction, e.g. by depletion of Shroom3
(Haigo et al., 2003) or of GEF-H1, a RhoA-specific GEF (Itoh
et al., 2014), leads to NTC failure. Recently, it was shown that
apical constriction in Xenopus is the result of Ca®>*-dependent
asynchronous and cell-autonomous actin contractions followed by
calpain 2-dependent stabilization steps (Christodoulou and
Skourides, 2015). In zebrafish, although neural folds do not
form per se, structures resembling DLHPs have been described as
playing a role in lumen formation within the NT (Fig. 2D) (Hong
and Brewster, 2006; Nyholm et al., 2009).
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Box 5. The planar cell polarity pathway
Core PCP pathway
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The core planar cell polarity (PCP) module consists of six proteins that
localize in adherens junctions: three transmembrane receptors —
Frizzled (Fz), Strabismus (Van Gogh or Vangl in vertebrates) and
Flamingo [known as starry night (Stan) or Celsr in vertebrates] — and
three cytosolic proteins — Dishevelled (Dsh; known as Dvl in vertebrates),
Prickle (Pk) and Diego (Dgo; known as diversin in vertebrates). In
Drosophila, these components display an asymmetric localization, but in
vertebrates their distribution has not been well characterized.
Downstream signalling involves small Rho-GTPases, activation of
Daam1 and c-Jun N-terminal kinase (JNK), leading to a variety of
cellular responses, including cytoskeletal and (in Drosophila)
transcriptional regulation (Kibar et al., 2007; Roszko et al., 2009). The
Fat/Dachsous module, which has been suggested to act upstream or in
parallel to the PCP pathway, comprises the atypical cadherins Fat and
Dachsous (Dchs) that bind each other through their large extracellular
domains, and are regulated by the cytosolic kinase Four-jointed (Fjx1).
Evidence from Drosophila suggests that polarized localization of Fat and
Dachsous provides a cue for directional processes such as oriented cell
division (Hale and Strutt, 2015; Matis and Axelrod, 2013). Other PCP-
related proteins implicated in vertebrate convergent extension include
Scribble and Ptk7 (protein tyrosine kinase 7).

In birds and mammals, the NP is pseudostratified, raising the
issue of what constitutes ‘apical constriction’ in such an epithelium.
Neuroepithelial cell shape is determined by nuclear position, which
varies from apical (during mitosis) to basal (during S-phase of the
cell cycle) due to the process of IKNM (Fig. 3). In most parts of the
NP, cells are randomly distributed throughout the IKNM cycle,
whereas the midline contains a high proportion of S-phase cells with
awedge shape, owing to their basally located nuclei. This generates
local bending at the MHP directly overlying the notochord
(McShane et al., 2015; Schoenwolf and Smith, 1990). The NP of
the lower spine also bends at paired DHLPs, but these show no
consistent association with nuclear position or cell cycle phase
(McShane et al., 2015; Schoenwolf and Franks, 1984), suggesting
an alternative cellular mechanism of bending at DLHPs.

Actomyosin dynamics also appear to play a role in NP bending in
amphibia, birds and mammals (Fig. 3), where actin filaments, along
with pMLC and Rho GTPases, are found in the apical junctions of
neuroepithelial cells (Escuin et al., 2015; Kinoshita et al., 2008; Rolo
et al., 2009). Thus, the actomyosin machinery is located at the right
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place to act as cellular ‘purse strings’, generating the force to pull the
neural folds together (Sawyer et al., 2010). Indeed, mice with
mutations affecting actin-associated proteins exhibit cranial NTDs,
although, with the exception of Shroom3 and MARCKS-related
protein mutants, these mutants notably do not develop spinal NTDs
(Copp and Greene, 2010). Moreover, inhibition of actin
polymerization using cytochalasin D or latrunculin B in cultured
mouse embryos does not prevent the formation of MHP and DLHPs,
and NTC proceeds in the spinal region (Escuin et al., 2015; Ybot-
Gonzalez and Copp, 1999). Recent work has shown that spinal
closure requires ROCK-dependent disassembly of actin filaments
(Fig. 3). After ROCK inhibition, apical actomyosin accumulates,
resulting in a stiff NP that resists closure, despite the presence of MHP
and DLHPs. The actin turnover inhibitor, jasplakinolide, and
mutation of the actin-severing protein cofilin 1, produce a similar
phenotype of NTC failure coupled with actomyosin accumulation
(Escuin et al., 2015). Hence, spinal closure in mammals requires
regulated turnover of actomyosin apically in the NE.

Molecular regulation of NP bending

The pattern of NP bending in higher vertebrates is regulated, like the
later stages of neuronal and glial specification, by ventral influence
from the notochord (e.g. Shh) and dorsal influence from the NNE
(e.g. bone morphogenetic proteins; BMPs) (Fig. 3). MHP formation
is notochord dependent (Smith and Schoenwolf, 1989), with Shh
playing a role in MHP induction. Other notochordal factors are also
required, including the BMP antagonist chordin (Patten and Placzek,
2002). Indeed, in the chick midbrain, BMP signalling (detected as
Smadl, Smad5 and Smad8 phosphorylation) is downregulated at the
MHP, whereas TGFp signalling (detected as Smad2 and Smad3
phosphorylation) is strongly active (Fig. 3). Cross-repression between
the two pathways regulates MHP formation via effects on the
localization of junctional proteins either apically in tight junctions (e.
g. PAR complex) or basolaterally (e.g. lethal giant larva; LGL)
(Fig. 3) (Amarnath and Agarwala, 2016; Eom et al., 2011; Eometal.,
2012). Interestingly, whereas MHP formation is required for chick
midbrain NTC (Amarnath and Agarwala, 2016), it is dispensable for
the progression or completion of mouse spinal NTC; notochordless
embryos, induced either experimentally or genetically, lack a MHP
but are able to close their spinal NT (Davidson et al., 1999). This is
because Shh is necessary and sufficient to inhibit the formation of
DLHPs in the spinal NT, so that notochordless embryos that lack Shh
ventrally display enhanced DLHP formation and are able to complete
NTC (Fig. 3) (Ybot-Gonzalez et al., 2002).

The dorsal NNE is also crucial for the formation of DLHPs in both
the chick cranial region and mouse caudal region (Hackett et al.,
1997; Ybot-Gonzalez et al., 2002). The suggestion that the chick
NNE may generate a physical force, leading to neural fold elevation
(Alvarez and Schoenwolf, 1992), seems unlikely as only a small
fragment of NNE is required on the neural fold to promote NTC
(Ybot-Gonzalez et al., 2002). NNE cells secrete BMP2 (Furuta et al.,
1997) and this is sufficient to prevent the formation of DLHPs. When
Shh expression in the notochord is strong, during upper spinal NTC,
noggin expression in the dorsal NP is repressed, so BMP2 action is
unopposed and DLHPs are therefore absent. As spinal closure
progresses to lower levels, Shh weakens, noggin is de-repressed and
BMP2 action is opposed, leading to DLHP formation (Fig. 3) (Ybot-
Gonzalez et al., 2007a). In mice, therefore, DLHP formation is a
‘default’ outcome that normally ensures spinal NTC can occur.

In conclusion, NP bending is a dynamic process that differs
between axial levels (cranial versus spinal), vertebrate groups (e.g.
Xenopus versus mammals) and cellular mechanisms (apical
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Fig. 3. Schematic representation of key neural tube closure regulatory mechanisms. A number of mechanisms involved in neural tube closure (NTC) are
depicted. (1) Transcriptional regulation: Grhi2 (grainyhead-like 2) regulates the expression of E-cadherin and Cldn4 (claudin 4) in non-neural ectoderm (NNE) cells
during mouse cranial neurulation. (2) Protrusions: NNE cells display Rac1-dependent protrusions that make the first contact during neural fold (NF) fusion in the
mouse spinal region. (3) Proteases: a pathway involving membrane-bound serine proteases (e.g. protease-activated receptor 2, Par2) is active in NNE cells.

(4) Interkinetic nuclear migration (IKNM): nuclei migrate apically to divide, with daughter nuclei returning to a basal position for S phase. As neuroepithelial cell cycles
are not synchronized, the neural plate (NP) is a pseudostratified epithelium. (5) Dorsolateral hinge point (DLHP) regulation: the formation of DLHPs is regulated by
antagonistic interactions between bone morphogenetic protein 2 (BMP2), sonic hedgehog (Shh) and Noggin. (6) BMP and transforming growth factor (TGF)
signalling: active BMP (detected by pSMAD1/5/8) and TGF (detected by pSMAD2/3) signalling are found along the neural ectoderm (NE) in a cell-cycle dependent
manner. Antagonism between the pathways is important for the formation of the median hinge point (MHP) in chick midbrain, by affecting the localization of apical
(e.g. PARBS) or basolateral (e.g. lethal giant larva; LGL) junctional proteins. (7) Planar polarized actomyosin contraction: planar cell polarity (PCP)-controlled apical
constriction (actin fibres in red) causes bending along the mediolateral axis in the cranial neural tube of the chick. Basal nuclear localization causes wedge-shaped
cells in the midline NP of both chick and mouse embryos. (8) Actomyosin turnover and extracellular matrix (ECM): the assembly and disassembly of apical actin
filaments is under ROCK/RhoA regulation. ECM proteins (e.g. fibronectin, perlecan, glypican 4) and their receptors (e.g. integrins) affect NTC.

constriction versus IKNM). Real-time evaluation of actin/pMLC
organization and morphogenetic processes in a cell cycle-dependent
context would ideally reveal the interconnected mechanisms
important for NP bending in different vertebrates.

each side comprise the continuous ectodermal layer of the neural
fold. During fusion, tissue remodelling disrupts the NE/NNE
continuity, and two new epithelia are formed: the inner NT covered
by the outer NNE, which subsequently develops into the epidermis
(Fig. 1) (Copp et al., 2003). Although epithelial tissue remodelling
during fusion is characterized by apoptosis in the boundary
ridges between the NE and NNE (Yamaguchi et al., 2011),
pharmacological inhibition of programmed cell death does not
prevent epithelial remodelling (Massa et al., 2009b). The presence

Neural fold adhesion and tissue fusion: the role of cellular
protrusions

Completion of NTC involves ‘fusion’ of the opposing neural folds
to create the NT (Fig. 4). Before fusion, the NE and the NNE on
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Fig. 4. Morphology of the mouse spinal neural tube during closure.

(A) Whole-mount staining of the closing mouse neural tube (NT) using
CellMask (green) to label cell membranes, phalloidin (blue) to label F-actin and
DAPI (red) to label nuclei. Optical sectioning across different levels (B-E, as
indicated by dotted lines) highlights: (B) open neural folds; (C) neural folds
bending at dorsolateral hinge points; (D) NT closure point; and (E) the closed
NT. Scale bars: 100 ym.

of'apoptosis at sites of neural fold remodelling may reflect ‘anoikis’:
the triggering of the death pathway in cells deprived of anchorage to
other cells or matrix (Massa et al., 2009a).

In all vertebrates studied, neural fold fusion involves the formation
of cellular protrusions that span the midline gap and represent the first
points of attachment of the neural folds (Fig. 3; Fig. 5) (Mak, 1978;
Waterman, 1976). These protrusions are dynamic actin-rich structures
that, as with in vitro cell culture models, are categorized as spike-like
filopodia (see Glossary, Box 1) or sheet-like lamellipodia (‘ruffles’ in
three dimensions; see Glossary, Box 1). The cell type — NE or NNE —
from which the cellular protrusions originate is a topic of some
debate. In mice, the initial contact is made by NNE cells in the
midbrain and hindbrain but by NE cells in the forebrain (Geelen and
Langman, 1977, 1979), and both ruffles and filopodia have been
observed (Geelen and Langman, 1977, 1979; Massarwa and
Niswander, 2013; Pyrgaki et al., 2010; Waterman, 1976). In chick,
NNE and NE cells in the cranial region make the initial contact
simultaneously, whereas NNE cells in the spinal region carry
filopodia-like protrusions (Schoenwolf, 1979). In Xenopus, NNE
cells make the initial contact (Davidson and Keller, 1999) and ruffles
have been observed (Mak, 1978). Hence, cellular protrusions of both
filopodial and lamellipodial types participate in neural fold fusion,
apparently mediating contact between NE or NNE cells, depending
on axial level.

A requirement for cellular protrusions in mouse spinal NTC has
recently been reported. Filopodia were predominately observed in
the early stages of neurulation, whereas ruffles or a hybrid filo-
lamellipodial protrusion type were observed during the later stages
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(Fig. 5) (Rolo et al., 2016). Importantly, it was shown that the
ablation of Rac1, which is required for cellular protrusion formation
in vitro, in NNE cells results in low spina bifida and a concomitant
loss of ruffles, with absent protrusions or a switch to filopodia. By
contrast, Cdc42 ablation in NNE cells at early or late stages does not
produce detectable NTC closure defects. Furthermore, deleting
Racl or Cdc42 from NE cells does not affect either NTC or
protrusion type (Rolo et al., 2016). These findings suggest that NNE
cells, not NE cells, produce lamellipodia-like protrusions, under the
control of Racl, that are vital for NTC in late mouse spinal
neurulation (Fig. 3; Fig. 5).

It can be seen, therefore, that the process of neural fold adhesion,
fusion and remodelling is becoming understood in terms of the
cellular events and genetic regulation. We know much less about the
molecular mechanisms of cell-cell recognition during fusion.
Although ephrinA-EphA interactions have been implicated in this
process (Abdul-Aziz et al., 2009; Holmberg et al., 2000), there is a
need for further research to reveal the underlying mechanisms.

Cell-matrix interactions during NTC

Understanding the role of the ECM in NTC is complicated by
the number and variability of ECM proteins and their receptors.
The ECM contains proteoglycans, collagens, non-collagenous
glycoproteins (laminin, fibronectin) and elastins that are all secreted
into the extracellular space in a highly regulated manner, leading to
variations in overall ECM composition as development proceeds. In
addition to providing mechanical support for tissues, most ECM
proteins function as ligands for integrins, which are heterodimeric
transmembrane cell surface receptors. The ECM ligands can bind to
several integrin receptors, and vice versa, generating considerable
functional complexity and initiating signalling cascades that are
important for imparting cell polarity, regulating cell adhesion and
cytoskeletal dynamics, and generating morphogenetic signals, all of
which play a role in NTC (Rozario and DeSimone, 2010).

ECM deposition during NTC

Several ECM components, particularly fibronectin, laminins, collagen
IV and some proteoglycans, are already present in the cranial and
spinal regions of mouse and chick embryos from the earliest stages of
neurulation. A primitive basement membrane is deposited between the
NP and underlying mesoderm, together with a fibronectin-rich
interstitial matrix between mesoderm cells. As the neural folds
elevate, an additional area of ECM deposition appears along the
interface between the dorsal NE and the overlying NNE (Fig. 3)
(Martins-Green, 1988). Hence, the elevating dorsal neural fold is a
sandwich of ECM between the basal surfaces of two directly apposed
epithelia. A similar pattern is observed in Xenopus, where cells in the
deep layer first come into contact with fibronectin, then, as closure
proceeds, these contacts are lost and ECM-mediated connections arise
between the NNE and dorsal NT (Davidson et al., 2004). In zebrafish,
fibronectin and laminin are found between the NP and the mesoderm
(Araya et al., 2016a; Trinh and Stainier, 2004).

Fibronectin

There is much evidence for a crucial role of fibronectin and its
integrin receptor subunits (a5, av and B1) in early vertebrate
development, including during neurulation (Fig. 3). Fibronectin
deletion or the blockade of fibronectin signalling in Xenopus
embryos results in defective CE due to perturbation of cellular
protrusive activity during gastrulation (Davidson et al., 2006). In
zebrafish, reduced expression of fibronectin is compatible with
continued neurulation, although double knockdown with laminin
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Fig. 5. Cellular protrusions in the closing neural tube. Scanning electron micrographs of mouse embryos at early (A, 10 somites) and late (B, 25 somites)
stages of spinal neurulation. High magnification of the neural tube (NT) closure points (shown in the insets) reveal the varying morphology of cellular protrusions
emanating from the non-neural ectoderm (NNE): filopodia characterize early stage NT fusion (A, inset), while ruffles typify the late stages of spinal closure (B,

inset). Scale bars: 100 pm in A and B; 10 um in the insets.

C1 produces a more severe phenotype than laminin knockdown
alone, indicating a possible dual requirement for laminin and
fibronectin (Araya et al., 2016a). In mice, even though fibronectin-
null mutants exhibit a severe phenotype, they do not have NTC
defects but instead display a kinked NT caudally and small,
distorted head-folds cranially (George et al., 1993).

Fibronectin is the sole ligand for the o5B1 integrin receptor, and
integrin o5 subunit knockout mice show a similar, albeit somewhat
milder, phenotype to fibronectin knockouts. Fibronectin deposition
appears normal in integrin o5 knockouts (Yang et al., 1993),
whereas double a5/ov mutants arrest at gastrulation and fail to
assemble any fibronectin (Yang et al., 1999), suggesting functional
redundancy among fibronectin-binding integrins. Even earlier
lethality, around implantation, is seen in integrin Bl knockouts
(Stephens et al., 1995). Hence, fibronectin-integrin interactions are
vital for mouse development, but the early lethality of knockouts
means that a conditional gene targeting approach will be required to
determine functional requirements during NTC.

Laminins

Laminins are heterotrimeric glycoproteins consisting of o, § and y
chains that are largely confined to basement membranes. During
mouse spinal neurulation, the NNE is the principal producer of
laminin chains in contrast to the NE, which produces few, and the
mesoderm, which secretes no laminin trimers (Copp et al., 2011). In
functional terms, laminins are strongly implicated in gastrulation
and neurulation: e.g. antisense suppression of the laminin receptor
subunit, integrin o6, in Xenopus embryos leads to arrested
development around neurulation with severe axial defects (Lallier
et al., 1996). Laminins are also involved in mouse NTC, as laminin
a5, y1 and o3/a6 double mutants all show NTDs, although these
mainly affect cranial rather than spinal neurulation (De Arcangelis
et al., 1999; Halfter et al., 2002; Miner et al., 1998).

Proteoglycans

Proteoglycans comprise a core protein bearing covalently linked
glycosaminoglycan (GAG) chains; in embryonic tissues, the GAGs
are usually heparan or chondroitin sulphates. Heparan sulfate
proteoglycans (HSPGs) include cell-surface molecules that are
anchored by a transmembrane domain (e.g. syndecans 1-4), or a
glycosylphosphatidylinositol (GPI) linkage (glypicans 1-6), as well

as proteoglycans that are secreted into the ECM (e.g. perlecan)
(Poulain and Yost, 2015). Such HSPGs modulate signalling through
a variety of pathways, in particular via their binding and presentation
to cell surface receptors of ligands, including FGFs, Wnts and BMPs
(Poulain and Yost, 2015), and several have been implicated in NTC.

Overexpression or knockdown of the Xenopus HSPG syndecan 4
(xSyn4) inhibits CE, resulting in NTDs (Munoz and Larrain, 2006;
Munoz et al., 2006). xSyn4 has been found to interact with Fz7 and
Dsh in a fibronectin-dependent manner, promoting the translocation of
Dsh to the plasma membrane and activating Wnt signalling (Munoz
and Larrain, 2006; Munoz et al., 2006). Moreover, xSyn4 promotes
NP development through the FGF/ERK and PKC pathways
(Kuriyama and Mayor, 2009). By contrast, syndecan 4 knockout in
mice does not cause NTDs (Echtermeyer et al., 2001; Ishiguro et al.,
2000), although VangI2"? and syndecan 4 interact genetically to cause
spina bifida. However, overall inhibition of proteoglycan sulfation
in Vangl2"” embryos leads to a more severe NTD phenotype
(craniorachischisis) than in syndecan 4/Vangi2™” double mutants
(Escobedo et al., 2013), suggesting that other sulphated proteoglycans
could interact with Wnt/PCP signalling to regulate NTC.

The GPIl-anchored HSPG glypican 4 (Fig. 3) has also been
implicated in NTC: gain or loss of glypican 4 function in Xenopus
(Xgly4) results in CE defects leading to NTDs. Mechanistically,
disruption or overexpression of Xgly4 inhibits the translocation of Dsh
to the membrane, thereby preventing Wnt/PCP signalling. In addition,
Xgly4 has been found to interact directly with Fz7 and with ligands
such as Wnt5, Wntl1 and FGF2 (Galli et al., 2003; Ohkawara, 2003).
Similarly, during zebrafish gastrulation, glypican 4 (knypek) mutants
exhibit defects in CE in a Wntl 1-dependent manner (Topczewski
et al., 2001). In mice, glypican 4 is not expressed in the NE at the site
of initiation of NTC, making it unlikely to affect CE (Ybot-Gonzalez
et al., 2005); moreover, glypican 4 knockout mice are viable and
NTDs have not been reported (Allen et al., 2012).

Another HSPG associated with NTDs is the basement membrane
proteoglycan perlecan (Fig. 3). Although perlecan null mutants
show exencephaly, these NTDs do not appear to result from faulty
NTC but instead have been attributed to a weakened basement
membrane around the cranial NT that cannot withstand increasing
interventricular pressure, leading to rupture (Costell et al., 1999).

Hence, there is much circumstantial evidence to implicate ECM
ligands and their integrin receptors in vertebrate NTC. A challenge
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for future research will be to determine the specific roles that
ECM-integrin signalling plays in the cellular/tissue events of
neurulation.

Proteases involved in neural tube closure

Several lines of evidence implicate cell surface- associated proteases
and protease-activated receptors (PARs) in the regulation of NTC
(Fig. 3). PARs are G-protein-coupled receptors (GPCRs) activated
by cleavage of their extracellular domain to generate a new N
terminus that acts as a tethered ligand for the receptor, triggering
intracellular signalling (Adams et al., 2011). Both Parl and Par2 are
expressed during neurulation in mice, and Par2 in particular is
expressed in NNE cells and activated by proteases, including
matriptase (which is encoded by St/4) to activate downstream
signals such as Gj, and Racl (Camerer et al., 2010). Individual
knockout of Par1 and Par2 (encoded by F2r and F2rl1, respectively)
in mice, causes partial embryonic lethality but not NTDs (Connolly
etal., 1996; Damiano et al., 1999). However, F2r~/~; F2rl]~~double
mutants develop both exencephaly and spina bifida (Camerer et al.,
2010), demonstrating a vital role for PARs in NTC.

Although PARSs require proteases for activation, loss-of-function
mutants for the membrane-anchored serine proteases matriptase or
prostasin (encoded by Prss§) do not exhibit NTDs, but die
postnatally due to defects in epidermal barrier formation (List
et al., 2002; Peters et al., 2014). Moreover, combined ablation of
Par2 and matriptase or prostasin does not prevent NTC, although
placental defects result in embryonic lethality at later stages (Szabo
etal., 2014). Hence, matriptase and prostasin appear dispensable for
Par2 activation during NTC (Szabo et al., 2014). However, excess
protease activity has been implicated in NTDs, as indicated by the
phenotypes of mice in which the transmembrane serine protease
inhibitors HAI-1 (hepatocyte growth factor activator inhibitor;
encoded by Spintl) and HAI-2 (encoded by Spint2) are inactivated.
Spint2 knockouts are embryonic lethal prior to completion of NTC
due to early defects and/or abnormal placental development (Szabo
etal., 2009, 2012). The concomitant reduction of matriptase and/or
prostasin activity prevents embryonic lethality in these mice, and
NTDs (principally exencephaly, but also spina bifida) become

evident, with penetrance of the former being dependent on the St/4
gene dose (Table 1) (Szabo et al., 2009, 2012).

During NTC, prostasin, matriptase and Par1/2 are co-expressed in
NNE cells, raising the issue of whether there is an interaction between
the membrane-anchored serine protease and PAR pathways.
However, Par2 ablation does not prevent NTDs in matriptase
haploinsufficient Spint2~~ mice (Szabo et al., 2012). Further
morphological analysis of NTDs in Spint2~/~ and F2r~'=; F2rll~~
double mutants suggests that cranial defects are more severe in
Spint2~~ mice, with defects appearing earlier in development, and
with absent DLHPs (Szabo et al., 2012). Thus, these two models
appear to involve different pathogenic mechanisms, leading to failure
of closure at different stages, resulting in differing NTD severities.

Transcriptional regulation of neural tube closure

A number of transcription factors have been implicated in the
regulation of NTC, based on the observation of NTDs in mouse
gene knockouts (Harris and Juriloff, 2010). Here, we review recent
data that have highlighted roles for members of the Grhl, Cdx, Pax
and Zic gene families.

Grhl2 and Grhi3

Members of the grainyhead-like (Grhl) family of transcription
factors are expressed from early stages of neurulation: Grhl2 is
uniformly expressed in the NNE at all stages, whereas Grhl3 shows
a more dynamic pattern, with expression in the NNE from ES8.5, in
the NP during spinal closure at E9.5 and in the hindgut at E10
(Auden et al.,, 2006; Gustavsson et al., 2007). This hindgut
expression is implicated in the development of a cell proliferation
imbalance between the hindgut and NE that causes NTDs in the
Grhi3 hypomorphic mutant, curly tail (cf) (Gustavsson et al., 2007).
Both cranial and spinal NTDs are observed in Gril2-null mice,
whereas Grhil3 knockouts display infrequent exencephaly but have
fully penetrant spina bifida (Brouns et al., 2011; Rifat et al., 2010;
Ting et al., 2003; Werth et al., 2010). Grhl2/3 double knockouts
develop a severe phenotype in which NTC arrests completely, after
closure 1 is initiated normally (Rifat et al., 2010). However, the axial
defects (4xd) spontaneous mouse mutant is characterized by

Table 1. NTDs in mouse models for membrane-anchored proteases, their inhibitors and protease-activated receptors

Genotype Molecular effect Phenotype Reference(s)
Fr'=; F2ri1~/- | Par1 and | Par2 (both G protein- Three possible phenotypes recorded: (1) mid-gestation death with  Camerer et al. (2010)
coupled receptors) cardiovascular failure; (2) late-gestation death with oedema and
exencephaly; (3) survival to birth with partially penetrant
anencephaly and spina bifida
St147/- | Matriptase (a membrane-anchored Postnatal lethality with severe dehydration, increased epidermal List et.al. (2002)
serine protease) permeability and defective epidermal differentiation
Prss87'~ | Prostasin (a membrane-anchored Lack of skin barrier formation leading to fatal postnatal dehydration  Peters et al. (2014)
serine protease)
Spint2/- | HAI-2 (a transmembrane serine Early embryonic lethal Szabo et al. (2009

protease inhibitor)
Spint2~/=; St14*- | HAI-2 and | matriptase (partial)

Spint2~'-;St14-/~ | HAI-2 and | matriptase

Spint2~'~; Prss8"*;
St14+-*

Spint2='~; Prss8

Spint2~'~; Prss8":
St14+-*

| HAI-2 and | prostasin (partial)
| Matriptase (partial)

1 HAI-2 and | prostasin (partial)

| HAI-2 and | prostasin (partial)
| Matriptase (partial)

Partial rescue of early lethality in Spint2~/~ with occurrence of
NTDs: 96% exencephaly; 89% curly tail; and 11% spina bifida
Significant rescue of exencephaly but not spina bifida

Almost complete rescue of exencephaly

Almost complete rescue of exencephaly
Complete rescue of exencephaly

(2009)
Szabo et al. (2012)
Szabo et al. (2009)
Szabo et al. (2012)
Szabo et al. (2009)
Szabo et al. (2012)
Szabo et al. (2012)

Szabo et al. (2012)
Szabo et al. (2012)

*Prss8™ is a spontaneous hypomorphic mutation of Prss8 (frizzy).

F2r, coagulation factor Il (thrombin) receptor; F2ri1, coagulation factor Il (thrombin) receptor-like 1; HAI-2, hepatocyte growth factor activator inhibitor 2 protein
encoded by Sprint2; NTDs, neural tube defects; Par, protease-activated receptor; Prss8, gene encoding prostasin; St14, suppressor of tumorigenicity 14 gene

encoding matriptase.
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increased expression of Grhl2. In contrast to the null mutant, fully
penetrant spinal NTDs and no cranial NTDs are observed in Axd
homozygotes (Brouns et al., 2011).

Grhl2 downstream targets (Fig. 3) include components of
adherens and tight junctions, and members of their recycling
machinery, including E-cadherin, claudin 4, epithelial cell adhesion
molecule (EpCAM) and Rab25 (Pyrgaki et al., 2011; Senga et al.,
2012; Werth et al., 2010). As these proteins are crucial for the
integrity of embryonic epithelia, this raises the possibility that
adhesion-associated molecules could mediate the requirement for
Grhl2 in NTC. Consistent with this, oligonucleotides that interfere
with E-cadherin function cause cranial NTDs in cultured rat embryos
(Chen and Hales, 1995). Grhl2 loss also results in upregulation of N-
cadherin in mammalian epithelial cells (Werth et al., 2010),
suggesting a possible role for overexpression of this cell adhesion
molecule in NTDs. In zebrafish, N-cadherin depletion blocks NT
formation due to defects in convergence and intercalation (Hong and
Brewster, 2006; Lele et al., 2002). However, neither inactivation nor
overexpression of N-cadherin expression in mice, Xenopus or chick
embryos has led to NTC failure, although a disorganized NT is
observed (Bronner-Fraser et al., 1992; Detrick et al., 1990; Radice
etal., 1997). In some cell types, Grhl2 may act to repress epithelial-
to-mesenchymal transformation (EMT) and its loss of function is
associated with some cancers. A parallel function has been
suggested in mouse embryos, as Grhl2 deficiency leads to the
expression of mesenchymal markers in NNE cells in association
with cranial NTDs (Ray and Niswander, 2016).

Although Grhl2 and Grhl3 share consensus binding sites (Boglev
et al., 2011; Ting et al., 2005) and interact functionally in NTC
(Rifat et al., 2010), their transcriptional target genes are only
partially overlapping. Indeed, in mice, Grhl3 regulates the
expression of genes involved in epidermal barrier formation (e.g.
transglutaminase 1) (Boglev etal., 2011; Ting et al., 2005; Yu et al.,
2006), whereas Xenopus Grhl3 can ectopically promote the
expression of genes characteristic of the superficial layer of the
epidermis (Chalmers et al., 2006). However, it should be noted that,
at late foetal and postnatal stages, Grhl3 DNA binding and
transcriptional targets are highly dependent on cellular context
(Gordon et al., 2014). It remains to be determined which of these
Grhl downstream pathways are important for NTC.

Upstream regulation of Grhl factors may involve canonical Wnt/
B-catenin signalling during the specification of NNE cells at the
neural fold border. Specifically, a reduction in Grhl3 expression was
found to partially compensate for anterior axial truncation caused by
deficiency of Dkk1, a canonical Wnt signalling antagonist, and it
was suggested that Dkk1 promotes NE specification by repressing
Grhl3 expression at the NP border (Kimura-Yoshida et al., 2015).
This may identify an earlier role for Grhl3, prior to its participation
in NTC (Ting et al., 2003). An interaction between Grhl3 and non-
canonical Wnt/PCP signalling has also been suggested: the
Vangl2™? mutant allele interacts with both cf and null alleles of
Grhi3 to produce spinal NTDs (Caddy et al., 2010; Stiefel et al.,
2007), although the developmental basis of this interaction has yet
to be determined.

Pax3 and Cdx2

The paired box transcription factor Pax3, which is expressed in the
dorsal neural folds during NTC (Goulding et al., 1991), also appears
to play a crucial role during NTC; Pax3 mutant and null mouse
embryos display both spina bifida and exencephaly (Epstein et al.,
1991). Similarly, Cdx2 — a homeodomain transcription factor — is
expressed in the tail bud, colocalizes with Pax3 in the caudal NE, and

is required for NTC. Knockout mice that bypass the preimplantation
requirement for Cdx2 exhibit posterior axial defects, whereas Cdx1/
Cdx2 double mutants display craniorachischisis (Savory et al., 2011).
Cdx factors are thought to function upstream of Wnt/PCP signalling,
as the expression of the PCP-related gene Ptk7 is reduced in Cdx1/
Cdx2 double mutants, with evidence for direct transcriptional
regulation by Cdx proteins (Savory et al, 2011). However,
expression of both Cdx2 and Pax3 is regulated by canonical Wnt/
B-catenin signalling (Sanchez-Ferras et al., 2012; Zhao et al., 2014).
These results suggest crossregulation between Pax3, Cdx2 and
canonical/non-canonical Wnt signalling in the dorsal NE during
spinal closure.

Zic genes

Several members of the Zic family of zinc-finger proteins have been
implicated in NTC. Loss of function of Zic2, Zic3 or Zic5 disrupts
NTC in mice, leading to variable defects: Zic2 mutants exhibit spina
bifida and exencephaly, whereas Zic3 and Zic5 loss of function both
produce exencephaly (Carrel et al., 2000; Elms et al., 2003; Inoue
etal., 2004; Nagai et al., 2000). Zic2 is expressed in the entire NE of
the spinal NP, whereas it becomes limited to the dorsal NT after
NTC is complete, eventually marking roof plate cells (Nagai et al.,
1997; Sanchez-Ferras et al., 2014; Ybot-Gonzalez et al., 2007a). A
similar dorsal NE expression pattern is seen in frogs and zebrafish
(Brewster et al., 1998; Nyholm et al., 2009). The absence of Zic2
leads to a lack of dorsolateral NP bending (i.e. DLHPs) in mice,
which is responsible at least in part for the severe spinal NTDs
observed in Zic2 mutants (Ybot-Gonzalez et al., 2007a). Similarly,
zebrafish lacking Zic2 fail to develop DHLPs, leading to faulty NT
lumen formation (Nyholm et al., 2009). In Xenopus, deletion of
maternal Zic2 mRNA results in a number of defects, including
abnormal development of the NT, via a repression of Nodal
signalling (Houston and Wylie, 2005). Zic2 and Nodal were
recently shown to interact genetically in mice (Houtmeyers et al.,
2016), defining a molecular pathway leading to holoprosencephaly
that provides a model for ZIC2-related human birth defects (Brown
et al., 1998). Moreover, Zic2 has recently been suggested to play a
role in Pax3 regulation: it directly regulates Pax3 expression and acts
both as a Cdx co-factor and a Shh mediator, controlling the dorsal
restriction of Pax3 expression in mouse caudal NE (Sanchez-Ferras
et al., 2014). Hence, Zic2 seems likely to participate with Pax3 and
Cdx2 in coordinating the behaviour of dorsal NE cells during NTC.

Biomechanics of neurulation

So far, we have considered the cellular and molecular mechanisms
underlying vertebrate NTC. However, as a paradigm of tissue
morphogenesis, NTC can only be fully understood when its
biomechanical mechanisms are also determined. The shaping,
bending and fusion of the NP, and the propagation of NTC along the
body axis, are all biomechanical events driven by underlying
cellular processes. Moreover, biomechanical influences may
feedback onto cells, changing gene expression and modulating
cell shape, proliferation and survival.

Mechanical influences that oppose closure

The mechanical influences that drive NTC [i.e. the cellular ‘motor(s)’
of neurulation, without which morphogenesis cannot occur] need to
be distinguished from the mechanical influences that arise from
abnormal gene expression and cell behaviour, and lead to NTC failure.
An example of'the last is seen in ¢ mutant mice in which imbalanced
cell proliferation within the hindgut and NP leads to excessive ventral
curvature of the caudal region that mechanically prevents spinal NTC
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(Brook et al., 1991; Copp et al., 1988). Delay of spinal closure due to
changes in tissue curvature can also be demonstrated in chick embryos
cultured on curved substrates (van Straaten et al., 1993). Hence,
NTC can be modulated by extrinsic mechanical forces acting on the
closing NP.

A further demonstration of extrinsic mechanical forces acting
during neurulation comes from studies of amphibian embryos, in
which small incisions in the NNE extend rapidly and evenly in all
directions (Lewis, 1947), suggesting that the NNE withstands
isotropic stresses (Jacobson and Gordon, 1976). Dorsal-anterior
and ventral-posterior retraction following laser ablations is also
observed in the deep layer of Xenopus ectoderm (Morita et al.,
2012). In axolotl embryos, epidermal and neuroepithelial stresses
have been inferred by quantifying the expansion of microsurgical
slits, demonstrating isotropic stresses in the epidermis but
anisotropic stresses within the NE (Benko and Brodland, 2007).
Building on these findings using in silico models, it has been
concluded that excessive tension within the NNE and other
tissues surrounding the NP can oppose apposition of the neural
folds (Brodland et al., 2010). This is in contrast to the essential
role demonstrated for NNE in regulation of NF bending
(Jacobson and Moury, 1995; Moury and Schoenwolf, 1995;
Ybot-Gonzalez et al., 2002), although this role is likely mediated
via a signalling rather than biomechanical function of the NNE
(see above).

Mechanical forces that promote closure

The demonstration that extrinsic forces can prevent NTC implies
that sufficient forces are normally generated to achieve closure.
However, the nature of the cellular ‘motor(s)’ required for the
initiation, progression and completion of NTC is understood in only
a fragmentary way.

The cellular motors described in NT zippering in the ascidian
Ciona intestinalis include myosin II-dependent sequential
contraction and junctional exchange (see Glossary, Box 1) of
cells along the neural/epidermal border directly ahead of the
advancing zipper (Hashimoto et al., 2015). In Xenopus, the motors
required for bending and folding of the NP include actomyosin-
mediated apical constriction of neuroepithelial cells and apical-
basal elongation of the same cell layer (Davidson and Keller,
1999; Inoue et al., 2016). Indeed, morpholino-mediated
knockdown of the actin remodelling protein Shroom3, which is
involved in both apical constriction and cell elongation, prevents
folding of the Xenopus NP in vivo, as expected from in silico
simulations (Inoue et al., 2016). Simulations also suggest that
migration of the deep cell NP layer is required for final closure of
the Xenopus NT following neural fold apposition (Inoue et al.,
2016). In support of this, impairment of migration using
morpholino-mediated knockdown of integrin Bl in Xenopus
causes closure defects (Morita et al., 2012).

Wnt/PCP signalling is also essential for NTC at least in part by
regulating actomyosin-dependent contractility and coordinated cell
movements (Heisenberg and Bellaiche, 2013; Nishimura et al.,
2012; Sokol, 2016). Moreover, the cell migration and intercalation
involved in PCP-dependent CE is itself a force-generating ‘motor’
(Davidson and Keller, 1999; Nishimura et al., 2012; Zhou et al.,
2015). Indeed, cultures of Xenopus explants undergoing CE in
‘force-sensing’ gels, generate ROCK-dependent mechanical
stresses governed by gel stiffness (Zhou et al.,, 2015). This
suggests that, in addition to generating mechanical forces,
Wnt/PCP signalling is itself a mechanosensitive pathway.
Consistent with this, mammalian osteoblasts in culture orient their
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divisions in response to substrate strain through a PCP/Vangl2-
dependent mechanism (Galea et al., 2015). It remains to be
determined how far such biomechanical findings from Ciona and
Xenopus can be generalized to higher vertebrate NTC.

Molecular feedback of biomechanical forces during NTC

How pathways such as Wnt/PCP are themselves regulated by
biomechanical stimuli is beginning to emerge. For example, a
biomechanical feedback loop that determines the activity of the
PCP-interacting Yes-associated protein (YAP), a component of the
mammalian Hippo pathway, is involved in regulating cell
proliferation, differentiation and organ size (Yu et al., 2015). YAP
deletion in future neural crest cells results in cranial NTDs in mice,
suggesting a direct role for YAP in NTC (Wang et al., 2016). In
addition, medaka YAP (hirame) mutant embryos are abnormally
flat due to inability to generate tissue tension (Porazinski et al.,
2015). In vitro, culturing cells on stiff substrates leads to YAP
nuclear translocation and hence activation (Aragona et al., 2013;
Pathak et al., 2014; Sun et al., 2014), whereas culture on soft
substrates promotes neuronal differentiation associated with YAP
nuclear exclusion (Sun et al., 2014), as observed in chick NT cells
(Cao et al., 2008; Hindley et al., 2016). The nuclear translocation of
YAP in cells subjected to mechanical tension involves
mechanosensation through the actin cytoskeleton and particularly
the activity of actin capping or severing proteins such as cofilin
(Aragona et al., 2013), which itself has previously been shown to be
required for NTC (Escuin et al., 2015; Grego-Bessa et al., 2015). It
remains to be determined whether the Hippo/YAP signalling
pathway is involved in force generation and regulation during NTC
in vertebrates.

In summary, NTC is a biomechanical event driven by intrinsically
generated forces required to overcome opposing tissue tensions that
can be perturbed by extrinsic forces. Studies in Xenopus and Ciona
have identified myosin II-dependent cellular constriction and
reorganization events as crucial motors driving neurulation in these
species. Whether the same cellular events are sufficient to achieve
closure of the pseudo-stratified neuroepithelium of mammalian
embryos remains to be determined. However, the involvement of
mechanoresponsive PCP and Hippo/YAP signalling cascades in
NTC raises the possibility that force generating mechanisms during
NTC are adaptable.

Conclusions

As highlighted here, considerable progress has been made in
determining the developmental mechanisms that govern NTC, and
in understanding how the quite dramatic differences in neurulation
morphology between vertebrate groups arise despite some striking
similarities in underlying cellular and molecular mechanisms. As a
result of experimental manipulations, we now have diverse
examples of faulty NTC that, in some cases, provide valuable
models for probing the development and prevention of human
NTDs. Challenges for the future include the application of live
imaging methodology to the events of higher vertebrate neurulation,
particularly in combination with real-time determination of gene
expression changes. Moreover, there is huge scope to characterize
and experimentally evaluate the mechanical forces that act upon
cells of the closing NT, and understand how these forces are
generated and regulated. These and many other issues await the
introduction of new, sophisticated techniques to elucidate the
remaining mysteries of neurulation and to aid in the prevention and
treatment of NTDs, a group of common disabling human birth
defects.
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