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Abstract 

Congenital hypopituitarism is a complex variable genetic disorder that is known to be 

caused by multiple mutated genes, both in isolation and in variably penetrant cases 

of digenic inheritance. In only <10% of cases, a mutation in a known causative gene 

has been identified in the patient, leaving the vast majority of patients yet to have a 

genetic mutation detected that is responsible for the pathogenicity and that has 

functional significance to their condition. This study investigates novel genes and 

pathways involved in hypothalamo-pituitary development. Our large cohort of 

consanguineous and non-consanguineous pedigrees with hypothalamo-pituitary 

disease are routinely screened for variants in the known causative genes. In 

pedigrees where there are no variants in these particular genes, exome sequencing 

in collaboration with GOSgene is carried out to uncover novel genes and regions of 

interest that are abnormal in the individual. Upon the identification of any novel variant 

in known or novel genes, functional assays are conducted to further show the 

significance of the change. Firstly this study identifies the first novel homozygous 

mutation in the LHX4 gene, p.T126M, in two deceased brothers from a pedigree with 

combined pituitary hormone deficiency with subsequent fatal consequences. 

Functional luciferase assays showed that there was no significant difference between 

mutant p.T126M and WT constructs in transactivating the αGSU and prolactin 

promoters, and that mutant LHX4 could synergise with POU1F1 similar to WT LHX4. 

Secondly, six new candidate genes; CTPS2, RNPC3, PRMT6, FASN, APEX2 and 

EIF2S3, were identified in phenotypically unique pedigrees submitted to GOSgene 

for exome sequencing. The human embryonic expression profiles of these novel 

candidate genes were analysed in this study in a hypothalamo-pituitary context, as 

well as in related tissues that are affected in the individuals. Thirdly, the role of eIF2γ, 

encoded by EIF2S3, which was found to be mutated in an X-linked pedigree with 

congenital hypopituitarism, hypothyroidism and hyperinsulinism causing 
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hypoglycaemia, was investigated in this study. A lentiviral shRNA knock out of the 

EIF2S3 gene in human pancreatic cells resulted in significantly higher apoptosis 

compared to WT cells. This study has used both a Sanger sequencing and an exome 

sequencing approach to identify novel variants in known and novel candidate genes 

respectively.   
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1.1. Hypothalamo-pituitary development 

The pituitary gland is a major endocrine gland, also known as the hypophysis, the 

function of which is to control growth, metabolism, reproduction and development. It 

regulates the function of other endocrine glands in the body. The pituitary gland is 

situated within the sella turcica recess of the sphenoid bone at the base of the brain 

and is made up of three lobes; the anterior, intermediate and posterior (Figure 1.1) 

that have a dual embryonic origin. The anterior and intermediate derive from the oral 

ectoderm, whilst the posterior originates from the neural ectoderm (see Figure 1.2 for 

murine pituitary development, similar to human embryogenesis) (Cohen, 2012, 

Bancalari et al., 2012). Hypothalamo-pituitary development is determined by the 

communication between the oral and overlying neural ectoderm. This occurs through 

a complex spatio-temporal genetic cascade of transcription factors and signalling 

molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch, 

the primordium of the anterior pituitary (AP) (Kelberman et al., 2009), which when 

fully developed will become a central regulator of growth, reproduction and 

homeostasis (Davis et al., 2010).  
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Figure 1.1: The pituitary gland and its position within the brain. Diagrams taken 

and adapted from two different web pages respectively; (www.usmanscience.com, 

www.Emaze.com). (A) A schematic diagram showing the location of different 

segments of the brain. (B) An enlarged diagram of the pituitary gland showing the 

anterior and posterior lobes, and their link to the hypothalamus via the infundibulum.   

 

 

Figure 1.2: Development of the murine pituitary gland. Taken from Sheng et al. 

(Sheng et al., 1997), animated sagittal sections during mouse embryonic 

development. (a) At E8.5 the thickening of the oral ectoderm signifies the onset of 

pituitary organogenesis. (b) Twenty four hours later the rudimentary pouch 

invaginates towards the overlying ventral diencephalon. (c) The definitive Rathke's 

pouch is formed as its connection to the oral ectoderm is severed. The posterior 

pituitary forms by the infundibulum evaginating from the ventral diencephalon. (d) 

Progenitors of the hormone-secreting cell types proliferate and terminally differentiate 

to produce the mature pituitary gland consisting of the anterior lobe, intermediate lobe 

and posterior lobe. E = Embryonic day; I = infundibulum; NP = neural plate; N = 

notochord; PP = pituitary placode; OM = oral membrane; H = heart; F = forebrain; MB 

= midbrain; HB = hindbrain; RP = Rathke's pouch; AN = anterior neural pore; O = oral 
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cavity; PL = posterior lobe; OC = optic chiasm; P = pontine flexure; PO = pons; IL = 

intermediate lobe; AL = anterior lobe; DI = diencephalon; SC = sphenoid cartilage.  

 

1.1.1: The intermediate lobe and posterior lobe 

The intermediate lobe contains a group of endocrine cells called the melanotrophs 

that essentially synthesise a precursor protein called proopiomelanocortin (POMC). 

This in turn generates biologically active peptides, such as adrenocorticotropic 

hormone (ACTH), endorphins and melanocyte-stimulating hormone (MSH), through 

proteolytic cleavage (Lamacz et al., 1991). In humans, by adulthood the intermediate 

lobe is either very small or totally absent. The posterior lobe of the pituitary contains 

neuronal axon projections which stem from magnocellular neurosecretory cell bodies 

that reside in the hypothalamus. Two main hormones are synthesised in these 

hypothalamic nuclei; arginine vasopressin (AVP) in the supraoptic nuclei and oxytocin 

in the paraventricular nuclei, which in turn travel via the hypothalamo-

neurohypophyseal tract and short portal vessels to the posterior lobe of the pituitary 

where they are released (Zimmerman and Antunes, 1976, Duncan and Shipston, 

2016). 

 

A series of tightly regulated steps that result in cell proliferation and differentiation, 

give rise to the five different specialized AP cell types that secrete six different 

hormones: somatotrophs [growth hormone (GH)], thyrotrophs [thyroid-stimulating 

hormone (TSH)], gonadotrophs [luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH)], lactotrophs [prolactin (PRL)] and the corticotrophs 

[adrenocorticotropic hormone (ACTH)] (Figure 1.3) (Alatzoglou and Dattani, 2009). 
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Figure 1.3: A basic overview of the temporal expression of different genes 

during embryonic murine pituitary development. A spatio-temporal genetic 

cascade of transcription factors and signalling molecules, culminating in the 

differentiation of the five anterior pituitary cell types. Image taken from Romero CJ et 

al (Romero et al., 2011). 

 

1.1.2. The anterior pituitary hormones 

The synthesis of each one of the six anterior pituitary hormones is stimulated by 

specific ligands. Many of these ligands are released from the hypothalamus that then 

travel via the hypophyseal portal system into the bloodstream, a transport system that 

allows rapid communication and migration of hormones to the anterior pituitary. The 

ligands bind to their respective receptors on each specific anterior pituitary cell type, 

giving rise to the six hormones that have distinct roles in endocrine regulation 

elsewhere in the body. The stimulation of each anterior pituitary cell type, the 

hormones secreted, and their role in the maintenance of growth, reproductive 

development and homeostasis, are discussed in this section.  
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The growth hormone-releasing hormone receptor (GHRHR), expressed on 

somatotroph cells, binds its ligand GHRH that is released from the hypothalamus. 

Binding to the receptor results in the synthesis and release of GH, in the presence of 

the transcription factor POU1F1 (Iguchi et al., 1999). GH then binds to its receptors 

on target tissues, primarily the liver, leading to the release of insulin-like growth factor 

1 (IGF1) and its binding protein, IGFBP3, which in turn form a ternary complex with 

the acid-labile subunit (ALS), to promote cell growth through mitosis, with inhibition of 

apoptosis (Boisclair et al., 2001, Baxter and Dai, 1994). In addition to the promotion 

of growth, IGF1 stimulates glucose uptake from the blood, enhances glucose 

utilization by peripheral tissues, and suppresses hepatic glucose production in a 

similar manner to insulin (Boulware et al., 1992). Hypothalamic thyrotrophin releasing 

hormone (TRH) binds to its receptor on the thyrotroph cells of the pituitary. It 

stimulates gene expression of the TSHβ subunit, and the conjugation of TSH α and 

β subunits to form TSH molecules, as well as regulating its glycosylation which results 

in TSH secretion from the thyrotrophs. TSH then binds with receptors on the thyroid 

gland to stimulate the production of the thyroid hormone, thyroxine (T4), which can 

feed back to the hypothalamus and pituitary to inhibit the production and secretion of 

TRH and TSH. Additionally, T4 is converted into triiodothyronine (T3) via deiodinase 

enzymes, type I and II (D1 and D2), and enters cell nuclei to bind to thyroid receptor 

α and β isoforms that are differentially expressed in tissues, thereby regulating gene 

transcription (Yamada and Mori, 2008). The thyroid hormones are essentially 

required for normal development, the regulation of metabolism, linear growth and 

bone maintenance.  

 

During embryogenesis, gonadotrophin-releasing hormone (GnRH) neurons migrate 

with olfactory neurons from the olfactory placode to their normal position in the 

hypothalamus (Wierman et al., 2004). GnRH is secreted from the hypothalamus in a 

pulsatile fashion, to bind to its receptors (GnRHR) on the gonadotroph cells, thereby 
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stimulating the release of the gonadotrophins, LH and FSH. Following the withdrawal 

of placental steroids at birth, gonadotrophins rise and remain elevated for the first 1–

2 years in girls, and first 6 months in boys, with a subsequent decrease during the 

remainder of childhood. Pulsatile gonadotrophin secretion then resumes again at 

puberty, with pulses occurring approximately every two hours in adult males. In 

females, the pulses are more variable, depending on the time of the menstrual cycle 

(McCartney, 2010, Ehlers et al., 2013). LH and FSH bind to receptors on the 

reproductive organs, the testes and the ovaries, stimulating sex steroid production. In 

men, LH stimulates Leydig cells to produce testosterone, which in turn provides 

negative feedback to both the anterior pituitary and the hypothalamus. FSH release 

stimulates the Sertoli cells in men to produce sex hormone-binding globulin (SHBG) 

and inhibin, thereby stimulating spermatogenesis and giving negative feedback to the 

anterior pituitary to decrease FSH secretion, respectively (Jin and Yang, 2014). In 

women, there is a surge of LH and FSH that triggers ovulation during the mid-cycle 

of menstruation, where the oocyte lives for up to only 24 hours without fertilisation. 

FSH stimulates the ovaries to produce oestrogen, with the most potent and prevalent 

oestrogen being oestradiol, during the follicular phase, and LH stimulates 

progesterone from the corpus luteum during the luteal phase of the menstrual cycle. 

Oestrogen is part of a negative feedback loop to the hypothalamus that inhibits 

gonadotrophin release (Hillier, 2001).  

 

In contrast to the other anterior pituitary hormones so far discussed, the production 

of prolactin is normally suppressed by a hypothalamic hormone, dopamine, rather 

than stimulated by one. Dopamine binds to its receptors on the lactotroph cells and 

thus inhibits prolactin secretion. Therefore when this suppression is interrupted by 

specific hormones, which interfere with dopamine secretion or receptor binding, it 

leads to an enhanced secretion of prolactin (Torre and Falorni, 2007). Thus, if 

transcription factors and signalling molecules involved in prolactin regulation are 
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mutated, then respective disorders more often elicit an increase in prolactin, 

diagnosed in patients as hyperprolactinaemia (Turankar et al., 2013), rather than a 

decrease as seen in most other anterior pituitary hormone abnormalities. Prolactin is 

positively regulated by TRH, GnRH, vasoactive intestinal polypeptide, and oestrogen. 

The latter increases in the blood stream in late pregnancy, elevating concentrations 

of prolactin, thus preparing the mammary glands at the end of gestation for lactation 

after delivery of a baby. Furthermore, prolactin has a multitude of roles in reproduction 

other than lactation, in addition to possessing multiple homeostatic roles (Freeman et 

al., 2000, Guclu et al., 2015).  

 

The release of ACTH, also known as corticotrophin, from corticotroph cells, is 

stimulated by vasopressin and catecholamines, but most potently by corticotrophin-

releasing factor (CRF) released from the hypothalamus. CRF activates both 

adenylate cyclase and cAMP-dependent protein kinase to stimulate ACTH secretion. 

CRF also upregulates POMC expression, the precursor of ACTH within the anterior 

pituitary (Reisine et al., 1985). In contrast ACTH secretion in the corticotrophs is 

negatively regulated by serum glucocorticoids (Birnberg et al., 1983). The main 

essential role of ACTH is to stimulate cortisol production and release from the cortex 

of the adrenal gland in a circadian rhythm. Thus, concentrations of ACTH are 

generally higher in the morning and fall throughout the day, in conjunction with cortisol 

release. Moreover, ACTH has additional roles in the production of various chemical 

compounds that trigger an increase in other hormones, such as adrenaline and 

noradrenaline. As cortisol concentrations rise in the bloodstream, a negative 

feedback loop to the hypothalamus slows CRF release, thereby decreasing ACTH 

production and its stimulating abilities on cortisol. This is counteracted by physical or 

psychological stress, which inhibits this feedback, thus stimulating cortisol secretion 

once again (Dallman, 2005).    
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1.2. Human conditions arising from disordered hypothalamo-pituitary 

development 

Congenital hypopituitarism (CH) is a syndrome with a wide variation in severity, which 

may present early in the neonatal period or later in childhood. CH is characterized by 

deficiencies in one or more of these 6 hormones mentioned above, with GH being the 

predominant hormone deficiency, often seen in isolation (Kelberman et al., 2009). 

Midline and craniofacial structural abnormalities are often associated with CH, giving 

rise to a range of characterized disorders; from incompatibility with life, to 

holoprosencephaly (HPE), septo-optic dysplasia (SOD) and hypogonadotropic 

hypogonadism (HH) (McCabe et al., 2011b). Thus disordered embryogenesis can 

cause variable phenotypes involving a range of craniofacial midline defects, 

associated with hypothalamo-pituitary disorders. The isolated and combined 

deficiencies, and the spectrum of these disorders are discussed in this chapter.   

 

1.2.1. Isolated growth hormone deficiency 

The most common isolated deficiency is congenital isolated GH deficiency (IGHD) 

with an incidence varying between 1/4000 to 1/10,000 live births. The majority of 

cases are sporadic with a small percentage (3-30%) of familial cases, although for 

most patients its aetiology remains unknown (Alatzoglou et al., 2015, Alatzoglou et 

al., 2014b). IGHD essentially involves short stature ranging from moderate to severe, 

delayed growth velocity, and delayed skeletal maturation. Children with GHD are 

treated with recombinant human GH (rhGH), and generally respond well to this 

treatment (Alatzoglou et al., 2014b). Heterozygous dominant negative mutations in 

the GH1 gene usually affect splicing and lead to the most common autosomal 

dominant form of GHD, known as type II GHD. Exon skipping occurs as a result of 

such mutations, in which one exon is essentially missed out of the transcript. For 

example one such shorter GH isoform of 17.5kDa has been reported to exert a 

dominant negative effect on GH secretion, of which expression levels directly relate 
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to the severity of the disorder (Ryther et al., 2003). GHD type II patients have variable 

height deficit and severity of GHD, and may develop additional pituitary hormone 

deficiencies over time, including ACTH, TSH and gonadotrophin deficiencies 

(Alatzoglou et al., 2015). Autosomal recessive IGHD type IA present with severe 

growth failure in the first 6 months of life with undetectable GH concentrations, and 

patients frequently develop anti-GH antibodies after receiving exogenous GH. These 

antibodies can prevent the growth response that is usually expected after patients 

receive rhGH therapy (Cogan and Phillips, 2006). Patients with IGHD type IA were 

first described to have homozygous GH1 deletions (Wagner et al., 1998); however, 

other severe loss of function GH1 gene mutations have since been described in such 

cases. Patients with severe autosomal recessive type IB GHD, also known as Sindh 

dwarfism (Baumann and Maheshwari, 1997), often have mutations in the GHRHR 

gene, which is more common in pedigrees from Brazil or the Indian subcontinent 

(Baumann, 1999), that are often consanguineous. This GHD type IB elicits a 

phenotype that is not of the classic IGHD phenotype, in that these patients have 

minimal facial hypoplasia and no microphallus, but do manifest anterior pituitary 

hypoplasia (APH) on their magnetic resonance imaging (MRI) (Shohreh et al., 2011). 

The vast majority of GHRHR mutations have a complete loss of function that usually 

affects cAMP production, such as p.K329E which failed to show any cAMP response 

following GHRH treatment in in vitro studies (Salvatori et al., 2002). However a recent 

study performed by myself and colleagues described a novel partial loss of function 

homozygous GHRHR mutation, p.P79L, which gives rise to an unusually mild form of 

IGHD in two unrelated families. The patients were compound homozygous, with the 

second homozygous variant in GHRHR, p.R4Q, suggesting a possible founder effect 

of these variants in patients with IGHD that originates from a certain area of South-

East Asia (Gregory et al., 2016). In addition to GH1 and GHRHR, mutations have 

occasionally been described in IGHD patients in genes encoding early (HESX1, 
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SOX2, SOX3 and OTX2) or late (PROP1 and POU1F1) transcription factors 

(Alatzoglou et al., 2014b, Ashkenazi-Hoffnung et al., 2010, Thomas et al., 2001) 

 

1.2.2. Other isolated hormone deficiencies and abnormalities 

Congenital functional failure of a single lineage has been reported for all pituitary cell 

types, giving rise to isolated hormone deficiencies other than IGHD, such as isolated 

TSH deficiency (TSHD), isolated gonadotrophin (LH and FSH) deficiency; namely 

isolated HH (IHH) (discussed in section 1.2.6), isolated ACTH deficiency (IAD) and 

very rarely isolated PRL deficiency (PRLD) (Douchi et al., 2001). As briefly 

mentioned, abnormalities associated with prolactin are more often due to an increase 

as opposed to a decrease in the hormone. Hyperprolactinaemia may emanate from 

a prolactinoma, a benign prolactin-secreting tumour in the lactrotroph cells, or is 

sometimes apparent in pregnancy when production of prolactin is above the normal 

threshold. There is a higher prevalence for this condition in women, not only due to 

problems during pregnancy, but also due to the fact that most prolactinomas are 

present in women rather than men. Phenotypic features of this disorder include sexual 

dysfunction and infertility, neurological and visual problems, and headaches (Hayes 

et al., 2000). Interestingly, hyperprolactinaemia has also been reported in some 

patients with primary hypothyroidism (Bahar et al., 2011). Patients with the latter have 

elevated TRH concentrations, which are therefore directly thought to be the cause of 

the prolactin upregulation (Croissandeau et al., 1994). Although rare, isolated PRLD 

may occur and clinically manifests only in women as a failure in puerperal 

alactogenesis; namely the production of milk in breastfeeding (Kauppila, 1997). There 

have been very few reports of this, one such familial case involved a mother and 

daughter who between them had eight pregnancies all followed by puerperal 

alactogenesis that resulted from isolated PRLD (Zargar et al., 1997). The etiology of 

isolated PRLD is yet unknown and candidate genes often screened are those found 

to be mutated in patients with PRLD as part of combined pituitary hormone deficiency 
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(CPHD) that are known to be involved in the lineage differentiation of lactotroph cells, 

such as POU1F1, PROP1, LHX3, LHX4, HESX1, and OTX2 transcription factors 

(Iwama et al., 2013). PRLD, also termed hypoprolactinaemia, may also result from a 

hypophysectomy; surgical removal of the pituitary gland often performed to treat 

craniopharyngiomas, or from pharmacological suppression of the pituitary, which in 

turn have been reported to adversely affect the luteal phase of the menstrual cycle 

(Kauppila et al., 1988). A recent report identified elevated autoantibodies in an 

isolated PRLD patients’ serum that specifically recognized a subset of PRL-secreting 

cells but not PRL itself or any other pituitary cells or hormones, thus uncovering a 

new autoimmune etiology for the condition (Iwama et al., 2013).  

 

In TSHD inadequate thyroid hormone biosynthesis occurs, due to defective 

stimulation of the thyroid gland by TSH, therefore causing central, or secondary, 

hypothyroidism in the patient. In some rare cases, mutations in genes controlling the 

TSH biosynthetic pathway, TSHB, TRHR, IGSF1, have been described in patients 

with isolated TSHD (Garcia et al., 2014). IGSF1 mutations have been reported to be 

responsible for an X-linked type of central hypothyroidism associated with 

macroorchidism (Sun et al., 2012); however this latter phenotypic feature is not 

present in all patients with such mutations (Hughes et al., 2016). Interestingly, 

parental heterozygous female carriers of these IGSF1 mutations may sometimes 

manifest mild hypothyroidism (Joustra et al., 2013). Lastly, IAD is a very rare 

heterogeneous condition making diagnosis very difficult, due to the varied clinical 

presentation. It can be a lethal condition due to the hypocortisolism, and has in turn 

been known to cause neonatal hypoglycaemia, convulsions, hypercalcaemia and/or 

cholestasis that can reach a 20% mortality rate in the latter if unrecognised (Alsaleem 

et al., 2016) (Bigos and Carnes, 1982). IAD patients have also presented with an 

empty sella and severe hyponatraemia. Usually patients with an empty sella remain 

asymptomatic, however in those who develop IAD, corticosteroid treatment should be 



36 
 

commenced to avoid fatal consequences (Doroftei et al., 2016). The TBX19 gene has 

a critical role in the terminal differentiation of the corticotroph and melanotroph cell 

types, the pituitary POMC lineages. Mutations in TBX19 have been associated with 

IAD, and been found in up to 2/3 of neonatal cases, with complete or severe loss of 

function in DNA binding and/or transactivation (Lamolet et al., 2001). These TBX19 

mutations are most often substitutions in the DNA binding Tbox domain, thus 

producing impaired DNA binding or protein-protein interaction. However premature 

stop codons, aberrant splicing and chromosomal deletions have also occurred in this 

gene (Couture et al., 2012). Mutations in the POMC gene have also been reported in 

IAD, in which patients usually have the distinct phenotypic hallmarks of early-onset 

obesity and red hair pigmentation, in addition to adrenal insufficiency (Krude et al., 

1998). In contrast to IAD, excess amounts of ACTH may be secreted from a benign 

pituitary tumour namely an adenoma within the corticotroph cells, termed Cushing's 

disease. This disease may cause a wide variety of non-specific symptoms such as 

abnormal weight gain, polycystic ovary syndrome, deep vein thrombosis, localized 

adiposity amongst many others, thus often making the diagnosis delayed and highly 

challenging  (Broder et al., 2016). 

 

1.2.3. Combined pituitary hormone deficiency 

Combined pituitary hormone deficiency (CPHD) is the presence of at least two or 

more pituitary hormone deficiencies including GH, TSH, PRL, ACTH and 

gonadotrophin deficiencies. Depending on which deficiencies are present in the 

patient, the phenotypic features may include hypothyroidism, delayed or absent 

puberty which may lead to infertility, intellectual disability, midline defects such as 

cleft lip or palate, short stiff neck (specifically caused by LHX3 mutations), and 

underdeveloped optic nerves. Mutations in transcription factors PROP1, POU1F1, 

LHX3, and LHX4 underlie CPHD, and as they act at different stages of pituitary 

development, they often result in unique patterns of hormonal deficiencies that reflect 
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their differential expression during organogenesis (Pfaffle and Klammt, 2011). For 

example, the early acting transcription factors LHX3 and -4, as opposed to the later 

acting PROP1 and POU1F1, cause deficiencies of most, if not all, pituitary hormones, 

often referred to as panhypopituitarism or multiple pituitary hormone deficiency 

(MPHD). All four genes, when mutated, are known to affect somatotroph cell 

development and therefore can all give rise to severe forms of short stature, thus 

reasoning that GHD is the most prevalent deficiency to occur. Additionally, mutations 

in HESX1, SOX3 and OTX2 may occasionally give rise to CPHD with different 

combinations of endocrine deficits (Thomas et al., 2001, Woods et al., 2005, Diaczok 

et al., 2008). Mutations in the Kallmann syndrome (KS) genes, discussed in section 

1.2.6, have also been described in such cases, once again demonstrating the genetic 

overlap that diseases related to hypopituitarism can have. For example, a CPHD 

patient with right microphthalmia, right renal aplasia and severe developmental delay 

had a hemizygous variant in KAL1 that was predicted to cause functional damage by 

in silico analysis (Takagi et al., 2014). The known PROKR2 p.R85H mutation 

previously identified in KS, was also found in a patient diagnosed with CPHD. This 

patient manifested GH, TSH, ACTH, LH and FSH deficiencies with a microphallus, 

with the latter suggesting neonatal GnRH deficiency (Raivio et al., 2012) and thus 

features that overlap with HH and KS in this case. In addition a recent report described 

a novel PROKR2 variant, p.R248W, predicted to be deleterious, in a patient with 

CPHD. This substituted residue at this highly conserved region had previously been 

mutated to glutamine in a patient with HH (Asakura 2015). Mutations in FGFR1, 

another Kallmann gene, have also been implicated in this disorder, for example a 

novel loss of function mutation, p.R448W, was recently identified in a patient with GH 

and TSH deficiency (Correa et al., 2015). Despite these reports implying a genetic 

overlap in CPHD and HH/KS cases, digenic inheritance cannot be ruled out here. 

There may be an unidentified additional mutation in another gene other than the 

mutation in the Kallmann gene described in these patients that is involved in the 
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etiology of one of the deficiencies in their CPHD. Despite the genes reported in the 

aetiology of this heterogeneous disease, the majority of CPHD cases remains 

unexplained, suggesting the involvement of other genes yet to be identified.  

 

1.2.4. Holoprosencephaly  

HPE is a complex heterogeneous brain malformation resulting from incomplete 

cleavage of the prosencephalon, the two hemispheres of the brain, affecting both the 

forebrain and the face (Dubourg et al., 2004). The 3 classic types of HPE include 

alobar (virtually no forebrain division) with the most severe cases resulting in cyclopia, 

semilobar (some degree of hemispheric cleavage), and lobar HPE (more complete 

separation) (Figure 1.4). Mildly affected patients may have a normal central nervous 

system (CNS) but often have microform features of HPE, with microcephaly, 

hypotelorism, a single central maxillary incisor, and cleft lip and/or palate being 

among the most common (Solomon et al., 2010). Several recurrent chromosomal 

anomalies, termed cytogenetic abnormalities, are estimated to be present in ~25-50% 

of HPE patients (Bendavid et al., 2010). These have implicated a spectrum of 

candidate genes in the aetiology of HPE, many of which are components of the Sonic 

Hedgehog (SHH) signalling pathway. SHH signalling is required during multiple 

stages of rostroventral midline development, and many heterozygous mutations in its 

pathway have been identified in HPE patients (Hong and Krauss, 2013). Previous 

studies have shown that mutations in the SHH gene affect distinct steps of SHH 

biogenesis to attenuate its activity to variable levels. Thus contributing to the 

phenotypic variation seen in HPE patients (Singh et al., 2009). Haploinsufficiency of 

the SHH gene represents the most frequent genetic cause identified in these patients, 

with most being loss-of-function mutations (Lami et al., 2013). The GLI family zinc 

finger 2 (GLI2) transcription factor is a component of the SHH signalling pathway and 

is a known causative gene that when mutated is widely known to cause 

holoprosencephaly (Roessler et al., 2003). Unlike mutated SHH which fundamentally 
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causes HPE in the hypothalamo-pituitary spectrum, mutated GLI2 is also associated 

with CH without the presence of midline brain defects (Gregory et al., 2015a, Arnhold 

et al., 2015). Mutated ZIC2, SIX3 and TGIF1 genes are other SHH pathway 

components implicated in HPE on rare occasions (Gripp et al., 2000, Wallis et al., 

1999, Brown et al., 1998). These have in turn led to the identification of a larger array 

of causative genes that include PTCH1, DISP1, TDGF1, GAS1, EYA4, and FOXH1 

(Bendavid et al., 2010). Mutations in the FGF8 gene, important for GnRH neuronal 

development, are usually associated with Kallmann syndrome (KS). However, a 

homozygous FGF8 mutation has been implicated in a consanguineous family with 

semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency (McCabe et al., 

2011b), making this Kallmann gene a new candidate for HPE. Digenic inheritance 

has recently been described in cases of HPE, where two mutations in different genes 

have given rise to the phenotype (Mouden et al., 2016). Furthermore, sub-

microscopic deletions at a number of loci believed to be implicated in HPE have been 

identified in a number of patients (Rosenfeld et al., 2010), suggesting that there are 

many more mutations that need to be defined and characterized for this disease. 
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Figure 1.4: MRI scans of holoprosencephaly patients. Taken and adapted from 

Plawner et al. (Plawner et al., 2002). (A, B and C) MRI of a patient with alobar 

holoprosencephaly (HPE). (A) A transverse image with incomplete separation of the 

two hemispheres, striatum, and thalami, and a large dorsal cyst (dc). (B) Coronal 

image showing continuity of grey matter over the two hemispheres without an 

interhemispheric fissure. The ventricular system is composed of a single midline 

ventricle, monoventricle (mv). (C) Sagittal image with absence of the corpus callosum 

and a monoventricle that communicates freely with the dorsal cyst. (D, E and F) MRI 

of two patients with semilobar HPE. (D-E) Transverse and coronal images 

respectively, from the same patient. Posterior portions of the hemispheres are well 

separated, however the anterior cerebral hemispheres are not cleaved and there is 

presence of a dorsal cyst (dc). Posterior horns of the lateral ventricles are well formed 

but frontal horns are poorly developed. (E) Posteriorly there is a monoventricle 

demonstrated on a coronal image. (F) Sagittal image showing that the posterior 

portion of the corpus callosum is formed (arrowhead), however the anterior portion is 

not developed; highly characteristic of semilobar or lobar HPE. (G, H and I) MRI of a 

patient with lobar HPE. (G) Transverse image of the cerebral hemispheres showing 

fair separation both anteriorly and posteriorly. There is some development of the 

frontal horns (arrowheads). (H) Coronal image showing failure of complete cleavage 

of the frontal lobe. (I) Sagittal image showing that the posterior portion of the corpus 

callosum (arrowhead) is formed, however the anterior portion is not developed. (J-K) 

MRI scans from a normal control individual for comparison to all other images A - I. 

(J) A sagittal image showing a normal fully formed corpus callosum (arrowhead). (K) 

A coronal image showing normal separation of the two hemispheres of the brain.   
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1.2.5. Septo-optic dysplasia 

SOD, also known as de Morsier Syndrome, occurs in 1/10,000 live births with equal 

prevalence in males and females. It is a heterogeneous disorder with a variable 

phenotype, loosely defined by any combination of the triad of optic nerve hypoplasia 

(ONH), midline neuroradiological abnormalities (such as agenesis of the corpus 

callosum and absence of the septum pellucidum), and pituitary hypoplasia with 

consequent endocrine deficits (De Morsier, 1956, Brodsky and Glasier, 1993). 

Although an absent septum pellucidum is usually associated with endocrine deficits, 

around 40% of SOD patients may actually present with normal endocrinology. 

Intriguingly SOD is associated with a younger maternal age compared with isolated 

defects of the hypothalamo-pituitary axis (McNay et al., 2007). The reason for this 

SOD maternal age bracket has remained unknown, but has been suggested to be 

associated with increased maternal drug and alcohol abuse. (Webb and Dattani, 

2010, Lippe et al., 1979). Approximately 75–80% of patients exhibit ONH, which may 

be unilateral or more commonly bilateral (88% as compared with 12% unilateral 

cases), and may be the first presenting feature with later onset of endocrine 

dysfunction (Kelberman and Dattani, 2007a). In rare cases, the eye abnormality may 

be more severe, resulting in microphthalmia or anophthalmia (Kelberman and 

Dattani, 2008); where one or both of the eyes are abnormally small or completely 

absent respectively. The association of midline abnormalities with hypopituitarism has 

long been established, suggesting a common developmental origin (Mehta et al., 

2009). Mutated HESX1, a transcriptional repressor, is known to play a role in the 

pathogenesis of rare cases of SOD (McCabe et al., 2011a, Dattani et al., 1998). 

Significant insights into the pathogenesis of the disorder were provided by the original 

studies, whereby murine transgenesis resulted in murine phenotypes highly 

reminiscent of SOD. Thereafter, human mutations have been cloned into mouse 

models and studied in depth; such as the first HESX1 mutation p.R160C ever 

identified (Sajedi et al., 2008b). The SOX2, SOX3 and OTX2 genes have been shown 
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to be mutated in rarer forms of SOD, often involving bilateral eye defects including 

microphthalmia or anophthalmia in patients harbouring SOX2 and OTX2 mutations, 

and often abnormalities in the infundibulum and the corpus callosum in patients with 

SOX3 mutations (Woods et al., 2005). Mutations in the Kallmann genes have also 

been linked with SOD, such as two heterozygous KAL1 mutations that were identified 

in three females from two unrelated families with SOD, through work undertaken by 

my colleagues and I (McCabe et al., 2015). Prior to this, three SOD patients were 

reported to have heterozygous mutations in FGFR1 that altered receptor signalling, 

with one predicted to affect splicing (Raivio et al., 2012). The same report also 

identified the heterozygous loss of function mutation, p.R268C, in the PROKR2 gene 

in a Caucasian and African SOD proband respectively, that had previously been 

implicated in normosmic HH and KS. In addition they identified a PROKR2 variant in 

a third proband that was predicted to be a loss of function mutation (Raivio et al., 

2012). Thus broadening the spectrum of candidates to span the Kallmann genes 

associated with this rare disorder. Aside from mutations in the Kallmann genes, two 

TCF7L1 missense variants were identified in two unrelated SOD patients in a very 

recent report (Gaston-Massuet et al., 2016). SOD can be associated with a wide 

range of phenotypic variability, highlighting the complexity of the disorder and 

suggesting the impact of both genetic and environmental factors involved in the 

aetiology of the disease (Polizzi et al., 2006). Other associated features include 

developmental delay, seizures, visual impairment, sleep disturbance, precocious 

puberty, obesity, anosmia, sensorineural hearing loss and cardiac anomalies (Webb 

and Dattani, 2010).  
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1.2.6. Hypogonadotropic hypogonadism 

Congenital HH and KS are rare disorders with an occurrence rate of 1-10 in 100,000 

births (Fraietta et al., 2013). The major underlying cause is a failure to activate 

pulsatile secretion of GnRH, causing deficiencies in gonadotrophins (LH and FSH), 

and thus sex hormones; namely oestrogen in girls and testosterone in boys. This in 

turn causes a delay in the onset or a complete/partial failure of puberty in patients 

(Layman, 2007). HH is difficult to differentiate from a diagnosis of constitutional delay 

in puberty, making it challenging for clinicians to make a diagnosis. GnRH testing can 

be useful, and may be used in combination with human chorionic gonadotrophin 

(hCG) testing to discriminate between the two and to make a reliable diagnosis 

(McCabe et al., 2014, Segal et al., 2009). It is associated with genital abnormalities 

such as micropenis (Bin-Abbas et al., 1999), and/or systemic abnormalities such as 

cleft lip/palate, renal agenesis, synkinesis (Conrad et al., 1978) and hearing defects 

(Bianco and Kaiser, 2009). Additionally, anosmia; a total or partial loss of olfaction 

(sense of smell), often accompanies HH and occurs in approximately 60% of HH 

patients. It results from incomplete embryonic migration of GnRH-synthesizing 

neurons, and when present in patients is termed KS (Cariboni and Maggi, 2006). 

Isolated HH (IHH) and KS are both clinically and genetically heterogeneous, with over 

25 known causative genes implicated to date (Boehm et al., 2015). All such genes 

encode proteins that have a role in regulating GnRH neuronal development, their 

migration from the nasal placode to the hypothalamus, and GnRH secretion and/or 

action. The genes that have been found to be most frequently mutated in IHH/KS 

patients are: KAL1 in approximately 5% of cases, PROKR2 or PROK2 in ~9%, 

FGFR1 in ~10% and FGF8 in ~2%, which are known as the Kallmann genes. GnRHR 

is the most commonly mutated gene in IHH; in approximately ~11% of cases 

(Topaloglu and Kotan, 2016). However these only account for <37% of cases 

cumulatively. Many other mutated genes have been reported in a few cases 

respectively, with an increasing number of novel candidate genes constantly being 
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identified (known causative genes associated with HH are listed in Table). For 

example, a recent next generation sequencing study has implicated an additional 19 

new candidate genes in IHH/KS patients (Quaynor et al., 2016) not listed in Table 

1.1. This heterogeneity indicates that IHH/KS can arise from a multitude of different 

genetic sources to give rise to a variable phenotype. This signifies great difficulty in 

identifying a genotype in these patients and makes genetic screening a timely and 

costly ordeal. Exome sequencing would be beneficial in such cases to uncover 

mutations that are bespoke to each particular patient, enabling future personalised 

treatments that can be suited to the individual’s need. Furthermore, the optimal timing 

of treatment in these individuals is critical to their sexual development and 

progression through puberty, as well as for their bone and metabolic health, which 

can otherwise result in debilitating consequences both physically and psychologically 

for the patient. 
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Hypogonadotropic hypogonadism known causative genes 

Mechanism affected Mutated 

Disorders of the embryonic migration of 

GnRH neurons (KS) 

KAL1, FGFR1, PROK2, PROKR2, FGF8, 

HS6ST1, CHD7, WDR11, SEMA3A, FGF17, 

IL17RD, DUSP6, SPRY4, FLRT3, NELF, 

FEZF1 

Disorders of the GnRH pulse generator TAC3 (IHH), TACR3 (IHH), KISS1 (IHH), 

KISS1R (IHH), GNRH1 (IHH) 

Disorders of the pituitary gonadotrophs GNRHR (IHH), FSHB, LHB 

Developmental disorders of the 

hypothalamo-pituitary region 

DAX1, HESX-1, LHX3, PROP-1, SOX2, 

OTX2 

Disorders of IHH associated with obesity LEP, LEPR, PC1 

Disorders of IHH associated with 

neurodegenerative syndromes 

POLR3A, POLR3B, PNPLA6, RNF216, 

OTUD4, STUB1, RAB3GAP1, RAB3GAP2, 

RAB18, TBC1D20 

 

Table 1.1: Genetic causes of isolated hypogonadotropic hypogonadism (IHH) 

and Kallmann syndrome (KS). Adapted from Topaloglu et al. (Topaloglu and Kotan, 

2016). The six genes highlighted in red are the most common genes to be mutated 

in patients in the known IHH/KS population. All other genes listed have occurred less 

frequently in reported cases. The four genes that have been found to be mutated in 

IHH only and not KS patients are denoted with ‘(IHH)’.   
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1.3. Genes implicated in human hypothalamo-pituitary disorders 

 

1.3.1. Genetic analysis and known causative genes 

The majority of CH cases are sporadic, although familial cases have been described. 

The latter have led to the identification of mutations in key developmental genes that 

are involved in normal pituitary development; including HESX1, SOX2, SOX3, OTX2, 

ARNT2, LHX3, LHX4, POU1F1 and PROP1 (Alatzoglou and Dattani, 2009). These 

genes are commonly screened for mutations, and many are functionally deleterious 

in the form of missense point mutations, frameshifts, insertions and deletions that 

have been identified and shown to most likely account for hypothalamo-pituitary 

phenotypes (Reynaud et al., 2012). Variable penetrance is often apparent where a 

patient has a heterozygous mutation with functional consequences that is also 

present in the unaffected parent (Ming and Muenke, 2002). Additionally, digenic 

inheritance may account for the variable penetrance in some cases, as is well 

established in KS (Falardeau et al., 2008), where more than one mutation in the 

Kallmann genes has been known to be inherited from either parent causing the 

phenotype (Dode et al., 2006). The apparent overlap in KS, CPHD and SOD 

genotypes opens up a new source of potential genetic associations (Bancalari et al., 

2012, Raivio et al., 2012).  

 

A vast array of genes, which is constantly increasing, encoding transcription factors 

and signalling molecules, have been reported to be mutated and give rise to the 

different hypothalamo-pituitary disorders that have been discussed. The known 

causative genes are among the most prevalent to be mutated, and thus the ones 

routinely screened in our laboratory. These genes are discussed in the following 

section.  
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1.3.2. HESX1 

The transcription factor HESX1 is a member of the paired-like class of homeodomain 

proteins which acts as a transcriptional repressor essential for pituitary 

organogenesis (Dattani et al., 1998). Binding partners of human HESX1 such as 

transducing-like enhancer of split 1 (TLE1) (ortholog of Groucho in Drosophila), the 

nuclear corepressor (N-COR) and DNA methyltransferase 1 (DNMT1), can all form 

complexes to enable it to exert this repressive activity (Dasen et al., 2001, Sajedi et 

al., 2008a). Hesx1 is one of the earliest markers of murine pituitary development, 

expressed initially during gastrulation in the region fated to form the forebrain and 

ventral diencephalon, and is then restricted to Rathke’s pouch by embryonic day (E) 

9.0 (Thomas and Beddington, 1996). Hesx1 continues to be expressed in the 

developing AP until E12, when it then disappears in a spatio-temporal sequence that 

corresponds to progressive pituitary cell differentiation (Kelberman and Dattani, 

2009). Hesx1 transcripts have totally disappeared from the entire ventral portion by 

E13, giving rise to the anterior lobe of the pituitary (Hermesz et al., 1996). A 

homozygous null mutation in mice results in a phenotype that resembles SOD, with 

5% of Hesx1 null mice exhibiting a severe phenotype with no AP (Dasen et al., 2001). 

This is consistent with an insertion mutation in exon 3 in the ‘Alu’ element; a sequence 

that encodes the major part of the homeodomain of HESX1, which was identified in 

a retinal coloboma patient with aplasia of the AP. Thus patients have subsequent 

undetectable concentrations of all AP hormones (Sobrier et al., 2005). Patients with 

HESX1 mutations have phenotypes ranging from evolving hypopituitarism in the 

absence of midline and eye defects, through to SOD and pituitary aplasia (Kelberman 

and Dattani, 2007b). Hesx1 null mice show great variability with features that include 

a reduction in forebrain tissue, craniofacial dysplasia with a short nose and absence 

of developing optic vesicles. These mice also have significantly decreased head size, 

absence of telencephalic vesicle or infundibulum development, absence of olfactory 

placodes, hypothalamic abnormalities and irregular morphogenesis of Rathke’s 



49 
 

pouch (Dattani et al., 1998). Rathke’s pouch formation was variably affected, and 

abnormal bifurcations were apparent resulting in multiple pituitary glands, due to 

multiple invaginations in the oral ectoderm in a proportion of the mice (Newbern et 

al., 2013, McCabe et al., 2011a, Dattani et al., 1998). Although of variable severity, 

both neonatal and adult homozygous mutant mice manifested phenotypes that 

presented with eye defects such as microphthalmia and anophthalmia, with 

abnormalities of the septum pellucidum and corpus callosum, closely resembling 

SOD in humans (section 2.5). 

 

1.3.3. SOX2 and SOX3 

SOX2 and SOX3 are members of the SOXB1 subfamily of ‘SRY-related HMG box’ 

transcription factors. They have an N-terminal domain of unknown function, a DNA-

binding High Mobility Group (HMG) box domain and a longer C-terminal domain 

involved in transcriptional activation (Stevanovic et al., 1993). Members of the SOXB1 

subfamily are expressed throughout the CNS and are among the earliest neural 

markers that play a role in neuronal determination (Hutton et al., 2009). Murine Sox3 

is shown to be involved in neurogenesis through its expression in actively dividing 

undifferentiated neural progenitor cells, and is maintained throughout development 

(Bylund et al., 2003). Expression of Sox3 is also seen in the ventral diencephalon, 

infundibulum and presumptive hypothalamus, a similar expression pattern to that of 

Wnt5a expression (Solomon et al., 2004). Due to the importance of inductive signals 

from these areas in the normal formation of the AP, hypopituitarism with consequent 

endocrine dysfunction may be associated with Sox3 mutations. Sox3, as well as Tcf4 

and Wnt5a, deficient mice exhibit expanded BMP and FGF signalling domains as well 

as abnormalities in Rathke's pouch (Rizzoti et al., 2004), suggesting a possible 

mechanism underlying the hypopituitary phenotype in these mutants (Potok et al., 

2008). The mutant mice exhibited variable complex phenotypes including craniofacial 

abnormalities, midline CNS defects and a reduction in size and fertility (Rizzoti et al., 
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2004). Duplications as well as loss-of-function mutation expansions of the polyalanine 

tract in SOX3 have been described in a number of patients with hypopituitarism 

(Woods et al., 2005). Mutations such as these are usually associated with infundibular 

hypoplasia and an ectopic or undescended PP, and have been shown to result in 

aggresome formation (a mass of misfolded proteins in the cell) and impaired 

transactivation (Wong et al., 2007). Submicroscopic duplications on chromosome 

Xq27.1, which include SOX3, are associated with variable hypopituitary phenotypes 

including CPHD, absence or hypoplasia of the infundibulum, and an abnormality of 

the corpus callosum (Woods et al., 2005). Additionally, a 2.31-Mb deletion on Xq27 

incorporating SOX3, was identified in a patient with CH and the unusual phenotype 

of a persistent craniopharyngeal canal (Alatzoglou et al., 2014a). Furthermore, an 

18bp deletion in the polyalanine tract of SOX3 was identified in a CH patient, resulting 

in an increase in transcriptional activation (Alatzoglou et al., 2011b). These data 

highlight the critical gene dosage of SOX3 in normal development of the diencephalon 

and infundibulum, and consequently the AP. 

 

SOX2 is expressed in neural progenitor populations throughout the developing and 

adult CNS, and is necessary to maintain their progenitor identity (Hutton and Pevny, 

2011). After gastrulation, murine Sox2 expression is restricted to the presumptive 

anterior neuroectoderm and by E9.5 is expressed throughout the CNS, brain, sensory 

placodes, branchial arches, gut endoderm, oesophagus and trachea. Homozygous 

null Sox2 mice fail to survive and die shortly after implantation (Avilion et al., 2003), 

whereas heterozygous mice have hypoplasia and abnormal morphology of the AP, 

with subsequent reduction in GH, LH, ACTH and TSH concentrations (Kelberman et 

al., 2006). Other studies have shown that retinal progenitor cells with conditionally 

ablated Sox2 lose competence to both proliferate and terminally differentiate. 

Additionally, Sox2 hypomorphic/null mice, with a 40% reduction of Sox2 expression 

compared to wild-type (WT) mice, present with variable microphthalmia as a result of 
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aberrant neural progenitor differentiation. Furthermore, this study suggests that 

Sox2/SOX2 activity functions in a dose-dependent manner in retinal progenitor cell 

differentiation (Taranova et al., 2006). The first description of SOX2 mutations in 

humans was in a cohort of individuals with severe eye phenotypes. De novo 

mutations were associated with bilateral anophthalmia, or severe microphthalmia, 

with accompanying developmental delay, learning difficulties, oesophageal atresia 

and genital abnormalities (Williamson et al., 2006). Conclusively, the majority of 

males with SOX2 mutations had abnormalities in genital development. SOX2 

expression in humans is observed throughout the human brain, including the 

developing hypothalamus, as well as Rathke’s pouch, and the eye (Kelberman et al., 

2008). Following on from these studies, SOX2 mutations have also been associated 

with AP hypoplasia and HH (Kelberman et al., 2006), and are usually loss of function 

mutations. These result in a loss of DNA binding, nuclear localisation or transcriptional 

activation, suggesting that the phenotypes arise as a result of haploinsufficiency of 

SOX2 in development. In the murine pituitary, conditionally deleted Sox2 mutant mice 

have abnormal gonadotrophin secretion as well as TSH and GH deficiencies. This 

suggests a likely role for Sox2 in the hypothalamus and/or the developing pituitary, 

particularly with respect to GnRH neurons (Jayakody et al., 2012), which reflects the 

SOX2 mutations described in HH patients. In addition, loss of function SOX2 

haploinsufficiency mutations have been implicated in the generation of slow 

progressing pituitary tumours of early onset in patients (Alatzoglou et al., 2011a). 

Furthermore, a very recent study (Goldsmith et al., 2016) has implicated a role for 

SOX2 in melanotroph cell fate acquisition, independent of its early role in promoting 

progenitor proliferation. This study showed that SOX2 is maintained at low levels in 

melanotrophs (Goldsmith et al., 2016) where its expression is likely regulated by P27 

(Li et al., 2012). 
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1.3.4. OTX2 

OTX2 (Orthodentic homeobox 2) is a transcription factor that is required for the 

formation of anterior structures and maintenance of the forebrain, and has been 

implicated in 2–3% of anophthalmia/microphthalmia related syndromes in humans 

(McCabe et al., 2011a). In mice, the expression of Otx2 is localised to developing 

neural and sensory structures of the brain such as the cerebellum, the eye, nose and 

ear, and is required at multiple steps in brain development and neuronal differentiation 

(Frantz et al., 1994). Mice homozygous for mutations die from severe brain 

abnormalities after exhibiting malformations in both the forebrain and the eye due to 

impaired gastrulation. Heterozygous mice can display a range of phenotypes from 

normal to severe forms of eye/brain abnormalities such as anophthalmia and 

holoprosencephaly (Ang et al., 1996). During retinal development, Otx2 regulates 

retinal pigment epithelium specification, and photoreceptor and bipolar cell 

differentiation and maturation, with expression being maintained in these three cell 

types throughout life (Housset et al., 2013). Otx2 transcripts and protein are normally 

detectable at E10.5 in both the ventral diencephalon and Rathke’s pouch. By E12.5 

Otx2 transcripts are undetectable in Rathke’s pouch, but persist in the ventral 

diencephalon until E14.5, and by E16.5 no Otx2 transcripts are detected in either 

structure (Mortensen et al., 2011). A previous study showed that Otx2 expression in 

Rathke’s pouch in Prop1-mutant mice continued until E16.5; four days after Prop1 

peak expression, and two days after any pituitary defects become apparent 

(Mortensen et al., 2011). This study suggests that Prop1 regulates expression of other 

factors that suppress Otx2; implying a role for Otx2 in murine pituitary development. 

Another study reported an HH phenotype in GnRH-neuron-Otx2 knockout mice 

(Diaczok et al., 2011). These murine data are consistent with OTX2 human mutations, 

where phenotypes exhibit highly variable pituitary defects ranging from IGHD, 

panhypopituitarism through to HH. All of which commonly include the accompanying 

severe ocular malformations discussed (Gorbenko Del Blanco et al., 2012). Despite 



53 
 

this knowledge, the role of OTX2 in hypothalmo-pituitary development still remains 

largely unclear (Bancalari et al., 2012).  

 

1.3.5. ARNT2 

ARNT2 (aryl-hydrocarbon receptor nuclear translocator 2) is a member of the basic-

helix-loop-helix-Per-Arnt-Sim (bHLH-PAS) superfamily of transcription factors. This 

protein forms heterodimers with sensor proteins from the same family that then bind 

regulatory DNA sequences. Arnt2(-/-) embryos die perinatally and exhibit impaired 

hypothalamic development (Keith et al., 2001). Recent studies showed expression 

of ARNT2 within the CNS, including the hypothalamus, as well as the renal tract 

during human embryonic development. A homozygous frameshift ARNT2 mutation 

has been associated with congenital hypopituitarism, progressive neurological 

abnormalities, renal tract abnormalities and post-retinal visual pathway dysfunction in 

certain individuals. This is an example of how ARNT2 is essential in hypothalamo-

pituitary development, post-natal brain growth, and visual and renal function in 

humans (Webb et al., 2013). 

 

1.3.6. LHX3 and LHX4 

LHX3 and LHX4 are members of the ‘LIM homeobox’ protein family, containing the 

characteristic two LIM domains; unique cysteine-rich zinc-binding domains known to 

play a role in transactivation and protein-protein interaction (Pfaeffle et al., 2008, 

Tajima et al., 2010, Takagi et al., 2012). These proteins are multifunctional as they 

act as scaffolds and adaptors to mediate interactions that modulate target gene 

transactivation. LHX3/LHX4 are transcription factors that possess overlapping but 

distinct functions during the establishment of the specialized cells of the mammalian 

pituitary gland and the nervous system (Colvin et al., 2009). In mice, Lhx3 and Lhx4 

are expressed at embryonic day 9.5 (E9.5) in Rathke’s pouch. By E12.5, Lhx4 is 

concentrated in the tissue that will become the anterior lobe of the pituitary gland 
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whereas Lhx3 expression continues throughout the pouch. Later transcription from 

the Lhx4 gene is reduced and transcripts are found at lower levels than Lhx3 in the 

mature gland (Sheng et al., 1997). Both Lhx3/4 work in conjunction to form a definitive 

Rathke’s pouch and regulate proliferation and differentiation of pituitary lineages; 

pituitary development halts at the rudimentary pouch stage in mice lacking both of 

these genes. In humans and rodents, LHX4/Lhx4 expression is in the developing 

hindbrain, cerebral cortex, pituitary gland and spinal cord (Liu et al., 2002). Lhx3 null 

mutant pituitary precursor cells cease to proliferate before differentiation, whereas in 

Lhx4 null mutants, these cells differentiate albeit in reduced numbers. A lack of 

cellular proliferation in Lhx4 mutants causes failure to respond to inductive signals 

and subsequent misregulation of other transcription factor genes e.g. Lhx3, which 

inevitably leads to increased cell death. Following on from this, mouse studies have 

shown that Lhx4 is required for the correct temporal expression of regulatory genes 

such as Lhx3 (Pfaeffle et al., 2008). Therefore patients with LHX4 mutations may 

have a partial loss of LHX3 function. Mutations in LHX3 may give rise to CPHD, and 

in specific cases loss of neck rotation resulting in a short stiff neck, considered to 

result from nervous system abnormalities (Netchine 2000). Mice homozygous for 

Lhx4 mutations die shortly after birth with immature lungs that fail to inflate, whereas 

heterozygous mice appear normal (Li et al., 1994). Additionally, Lhx4 null mice exhibit 

incomplete pituitary gland development. Heterozygous LHX4 mutations in humans 

are usually associated with variable and variably penetrant CPHD (Pfaeffle et al., 

2008), and are usually due to haploinsufficiency rather than having a dominant-

negative effect. 
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1.3.7. POU1F1 and PROP1 

POU Class 1 Homeobox 1 (POU1F1), formally known as PIT1, is a pituitary-specific 

transcription factor characterised by the presence of a highly conserved bi-partite 

DNA binding domain, comprising the POU-specific domain (POU-S) and the POU 

homeodomain (POU-H) (Herr and Cleary, 1995). POU1F1 is expressed during 

differentiation steps that take place at later stages in the development of the AP gland, 

and its expression is restricted to the somatotroph, thyrotroph and lactotroph cell 

lineages. This is consistent with functional studies of this protein which show that 

expression of the GH, PRL, TSH-β subunit and GHRHR genes is regulated by 

POU1F1 (Dattani, 2004). Furthermore, studies have also shown that Pou1f1/POU1F1 

binds to its own proximal promoter and upregulates its own expression (Delhase et 

al., 1996). Homozygous loss-of-function mutations in a lesion in the Pou1f1 gene 

have been reported to give rise to the Snell dwarf mouse model phenotype (Camper 

et al., 1990), which results in the absence of the three cell types in which Pou1f1 is 

expressed, as mentioned above. Mutations in POU1F1, that are usually homozygous 

recessive, have been implicated in CPHD, with the spectrum of hormone deficiency 

varying considerably in patients. Patients usually manifest with GH and PRL 

deficiencies initially, often with the development of secondary hypothyroidism (Pfaffle 

et al., 1992), although some maintain a normal TSH concentration (Turton et al., 

2005). In addition, a recent study has described an autosomal dominant heterozygous 

missense POU1F1 mutation in a large family with IGHD (Sobrier et al., 2016). Thus 

presenting a novel aetiology for IGHD and demonstrating further variability in patients 

with POU1F1 mutations. The first POU1F1 mutation; a homozygous nonsense 

mutation, resulted in a severely truncated protein of 171 amino acids, lacking half of 

the POU-S and all of the POU-H domain (Tatsumi et al., 1992). This first novel 

mutation was identified in a patient with GH, PRL and TSH deficiencies, due to the 

mutant POU1F1 protein being completely incapable of binding to the GH and prolactin 

promoters and resulting in loss of transcription. The Prophet of Pit-1 (PROP1) 
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pituitary-specific paired-like homeodomain transcription factor is important for the 

production and secretion of GH, PRL, TSH and gonadotrophins, and is believed to be 

required for the expression of POU1F1. This was first characterized in the Ames dwarf 

mouse model, which harbours a homozygous missense Prop1 mutation (p.S83P) 

causing a lack of Pou1f1 gene activation and absence of progression to mature cells 

(Andersen et al., 1995, Dattani, 2004). It is known that mutant PROP1 causes failure 

of cells to differentiate, due to retained progenitor cells in the periluminal area (Ward 

et al., 2005). In addition, recent studies have shown that PROP1 stimulates stem cells 

to undergo an epithelial to mesenchymal transition-like process, which is essential for 

cell migration and differentiation (Perez Millan et al., 2016). Thus suggesting that 

PROP1 is a central transcriptional component of pituitary stem cell differentiation. 

Mutations in Prop1/PROP1 can elicit a CPHD phenotype commencing initially with 

GH, PRL and TSH deficiencies, often with evolution of secondary hypogonadism, 

although this may also be present at birth (Pfaffle et al., 1999). Other phenotypic 

features include evolving ACTH deficiency (Bottner et al., 2004), as well as an 

enlarged anterior pituitary suggestive of a tumour (Mendonca et al., 1999), that can 

regress with time and lead to complete pituitary involution and an empty sella 

syndrome. POU1F1 and PROP1 are the best characterized intrinsic signalling 

molecules in terms of function in both humans and mice (Dattani, 2004).  
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1.4. Investigating the genotype of patients  

 

1.4.1 Genetic analysis 

CH patients are routinely screened for mutations in respective known causative genes 

in the laboratory via a polymerase chain reaction (PCR) and direct sequencing 

analysis approach, also known as Sanger sequencing. Instead of screening one gene 

at a time in this way, which can be a time consuming process, with low frequency hit 

rates due to a large number of genes with many exons, panel screening is often the 

preferred choice. Multi-gene panel tests use next-generation sequencing to screen 

several known causative genes simultaneously, which enables variants to be 

identified, or for mutations in all these known genes to be excluded, more rapidly and 

cost effectively than Sanger sequencing provokes (Slavin et al., 2015). Despite these 

known genes implicated in CH and related phenotypes, the potential genetic cause 

remains unknown in the majority of cases (80% according to our unpublished data). 

This signifies the need for further investigation into genes involved in pituitary 

development and that may be potentially responsible for the phenotypic manifestation 

of the disease. A range of different genetic strategies are now used in the search for 

novel candidate genes, and these include homozygosity mapping and exome 

sequencing. Homozygosity mapping uses single nucleotide polymorphisms (SNPs) 

to compare the DNA of affected individuals from a consanguineous pedigree, to find 

regions that are homozygous by descent, reflecting potential loci of interest (Bocquet 

et al., 2013). Identified areas of homozygosity can then be further sequenced using 

next generation sequencing, to identify novel genes of interest related to a particular 

disease. Exome sequencing can be used to sequence the entire coding region of the 

genome, identifying any variants in the affected patients. Following any variants 

identified, comparisons are made within the family and online control databases are 

consulted for their presence, such as 1000 Genomes, dbSNP, EVS and the ExAC 

Browser. Variants found in genes or regions that are known to be involved in pituitary 
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development, or genes that are expressed in specific areas of the midline brain 

structures that are affected in the individual, can then be identified and studied further. 

The flowchart below illustrates the filtering process of how patient genotypes were 

analysed in this study (Figure 1.5).
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Figure 1.5: A summary of the gene screening process. The flowchart illustrates 

how the patients in our cohort are screened for mutations in genes, and how unknown 

genes and regions of interest associated with hypothalmo-pituitary development are 

identified and characterised.  

 

1.4.2. Expression studies 

Upon the identification of a mutated novel gene of unknown function in an individual, 

expression will initially be analysed in relevant tissues in mice. If the expression 

pattern is already known, this information will be available on the mouse genome 

informatics (MGI) database (www.informatics.jax.org). The expression pattern can 

then be verified in human embryonic tissue, if available. We have access to human 

embryonic tissue that forms part of a unique resource at the ICH with the Institute of 

Genetic Medicine in Newcastle, organised by the MRC Wellcome Trust Human 

Developmental Biology Resource (HDBR). This resource provides valuable human 

embryonic tissue sections for in situ hybridisation analysis of new candidate genes. 

A detailed hypothalamo-pituitary expression profile for the gene is then established 

before any functional analysis is undertaken. It is important to perform this first to see 

whether the gene is expressed in the hypothalamo-pituitary axis, as well as in tissues 

that are affected in the patient phenotype, before designing an appropriate functional 

assay that can potentially allow for comparison between the WT and mutated gene. 

These would include, for example, luciferase reporter transactivation assays or DNA-

binding assays in the case of transcription factors. This particular procedure is 

executed through the generation of genetic constructs, involving the insertion of 

relevant variants into a specific plasmid via site-directed mutagenesis. Changes in 

the function induced by the mutated allele can then be assessed via a functional 

assay, such as a dual-luciferase reporter assay, which is just one of the many assays 

described in this thesis. However, one needs to bear in mind that if expression is 
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absent from a particular tissue it should not be completely excluded from further 

study, as the secreted protein in which the gene encodes may act on target tissues 

that do not express the relevant gene. Therefore the expression profile determined 

should act as a guide and not an absolute criterion for further study of a gene. 

 

1.4.3. Cohort of patients 

We have a large cohort of patient DNA (>2000) here at Great Ormond Street Hospital 

(GOSH) and the UCL ICH, consisting of both consanguineous and non-

consanguineous pedigrees from many different ethnic backgrounds around the world. 

These patients have a variety of different hypothalamo-pituitary phenotypes that 

range in severity. Essentially these patients have forms of congenital hypopituitarism, 

with phenotypes ranging from IGHD, CPHD/MPHD, HPE, SOD and HH/KS. 

Endocrine dysfunction includes different combinations of deficiencies; GH, TSH, 

ACTH, FSH, LH, PRL deficiencies, and sometimes arginine vasopressin deficiency 

(AVPD), with GHD occurring in the majority. Accompanying craniofacial midline 

defects and other associated abnormalities are present in many of the individuals, 

including cleft lip and/or palate, anophthalmia/microphthalmia, blindness, micropenis, 

microcephaly, hydrocephalus, obesity and developmental delay amongst many 

others. Usually, a number of known causative genes are initially screened for 

mutations in the CH patients in our cohort. If no mutations are identified we then, in 

selected familial cases, proceed to perform exome sequencing analysis to potentially 

uncover novel variants in new genes that are not previously implicated in the aetiology 

of congenital hypopituitarism. However, some pedigrees within our cohort have a very 

unique phenotype, including hypopituitarism in combination with an additional 

phenotype, e.g. hyperinsulinism, that has not been previously reported in the 

literature. Pedigrees such as these may be more efficiently analysed by exome 

sequencing in the first instance due to there being no clear known genes that are 

implicated in congenital hypopituitarism that could account for these new and unusual 
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phenotypes. Patients such as these are also often likely to have more than one, or 

multiple, mutations that are contributing to their unique phenotype, which exome 

sequencing analysis would be able to identify. 

 

1.5. Aims and objectives  

This thesis describes novel genetic variants leading to novel phenotypes in pedigrees 

within this large cohort, using both a Sanger sequencing approach (Chapter 3) and 

an exome sequencing approach (Chapters 4, 5) respectively. The first aim of this 

study is to investigate the functional significance of the homozygous LHX4 (p.T126M) 

variant identified by Sanger sequencing, in two deceased siblings that had CPHD. 

Protein modelling, western blot analysis and luciferase assays were used to 

investigate the p.T126M mutation, and its effect on the transactivation of αGSU 

(glycoprotein hormones alpha subunit) and prolactin reporters, as well as its ability to 

synergise with POU1F1, compared to WT LHX4. Additionally, novel variants in new 

candidate genes that have not been previously associated with CH, have been 

identified in a subset of phenotypically unique pedigrees submitted to GOSgene for 

exome sequencing. An expression profile in human embryonic tissue is established 

in this study for each of these potential novel candidate genes, in a hypothalamo-

pituitary context, as well as in tissues that are known to be affected in the respective 

patients. Patients from one of these pedigrees (Pedigree 8) with severe short stature 

and GHD, central hypothyroidism and hyperinsulinism causing hypoglycaemia, 

harboured a novel variant in the EIF2S3 gene, p.P432S. The role of this mutation in 

this potential novel candidate gene has been functionally analysed in this study in a 

hypothalamo-pituitary and pancreatic context. 
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2.1. Primer Design 

Primers for PCR were designed using the Ensembl Genome Browser 

(http://www.ensembl.org/index.html), the UCSC genome browser 

(https://genome.ucsc.edu/) and the Primer3 input (version 0.4.0) 

(http://bioinfo.ut.ee/primer3-0.4.0/) databases. Specifications were entered and 

altered from the default within Primer3 as follows: product size ranges: 150 - 1000, 

number of primers to return in output: 25, primer temperature (Tm): 55°C - 65°C, 

maximum Tm difference: 2°, GC%: minimum 30, optimum 45, maximum 60, 

maximum self-complementarity: 5, maximum poly X (number of same bases in a row): 

4.   

 

2.2. PCR and direct sequencing analysis 

DNA was extracted from blood samples taken from our patients and was screened 

for variants in known causative genes, namely HESX1, PROP1, POU1F1, LHX3, 

LHX4, SOX2, SOX3, OTX2, SHH, GLI2, KAL1, PROK2, PROKR2, FGFR1, FGF8, 

WDR11 and NELF, in accordance with the patient phenotype. The coding regions of 

these genes were amplified by PCR using the BIOTAQ™ DNA Polymerase kit 

(Bioline, BIO-21060) and exon flanking primers, on an Eppendorf Thermocycler; 

initially heating the reaction to 95°C for 2 minutes (mins) followed by 35 cycles of: 

95°C for 30 seconds (denaturation step), 55°C - 62°C for 30 seconds (annealing step) 

and 72°C for 45 seconds (extension step). PCR products were treated with 

MicroClean reagent (Web Scientific, 2MCL-10) in order to clean the product, spun on 

a centrifuge at 4000rpm, and subsequently upside down on tissue paper at 600rpm 

to remove liquid. The precipitate was sequenced with either the forward or reverse 

respective primer at any one given time, using the BigDye® Terminator v1.1 Cycle 

Sequencing Kit (Life Technologies Ltd., 4337450). The sequencing plate was put into 

an Eppendorf Thermocycler and heated to 95°C for 2 mins, followed by 39 cycles of 

95°C for 30 seconds, 55°C for 15 seconds and 60°C for 4 mins. The sequencing 

http://www.ensembl.org/index.html
https://genome.ucsc.edu/
http://bioinfo.ut.ee/primer3-0.4.0/
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products were washed by spinning with 100% ethanol containing 3 molar (M) sodium 

acetate for 40 mins, followed by 70% ethanol for 5 mins, and upside down on tissue 

paper to remove liquid for 1 min, on a centrifuge at 3050, 3000 and 300rpm 

respectively. The precipitate was then resuspended in 1M TE buffer before analysis 

on a 3730XL DNA Analyzer (Applied Biosystems/Hitachi, Japan, cat # 625-0020). 

Detailed PCR conditions for each exon in each gene are available upon request 

including primer sequences, amplicon sizes, annealing temperatures, which range 

from 55°C to 62°C, and whether dimethyl sulfoxide (DMSO) was added to the PCR 

reaction or not. For any variants identified, control databases were consulted; 1000 

Genomes (www.1000genomes.org), dbSNP NCBI National Institutes of Health 

(www.ncbi.nlm.nih.gov/SNP/), Exome Variant Server (EVS) 

(www.evs.gs.washington.edu/EVS/), and The Exome Aggregation Consortium 

(ExAC) Browser (www.exac.broadinstitute.org) which includes approximately 

100,000 reference alleles per gene alone.  

 

Aside from screening many patients for mutations in the known causative genes listed 

above, specific to this study, I have screened the following: 103 patients for variants 

in the EIF2S3 gene and 95 patients for RNPC3 variants (please refer to Chapters 4-

5 for more details on each cohort screening respectively). 
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2.3. Functional Studies for LHX4 variants 

 

2.3.1. Cell culture 

Human embryonic kidney (HEK293T) cells were maintained in a humidified CO2 

incubator at 37oC in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, Cat: 

D5796) supplemented with 5% penicillin/streptomycin (penstrep) (Invitrogen) and 

10% fetal calf serum (PAA). Media was replaced every 2 days, cells were washed 

with x1 phosphate buffered saline (PBS) (VWR International) and passaged when 

80% confluent. The cells were tested for mycoplasma and cell identity before use. 

 

2.3.2. Preparation of constructs for qualitative analysis 

Variants were introduced by site-directed mutagenesis (2.4.11) into full length human 

LHX4, in the mammalian expression vector pc.DNA3.1 that contained a FLAG-tag 

(Invitrogen), using the following primer pairs respectively: 

 

LHX4_R84C_F: GGACTTCTTCAAGTGCTTCGGC 

LHX4_R84C_R: GCCGAAGCACTTGAAGAAGTCC 

 

LHX4_T126M_F: GGCAGCTGGCCATGGGGGACGAATTC 

LHX4_T126M_R: GAATTCGTCCCCCATGGCCAGCTGCC 

 

These PCR products were then transformed using XL10 ultracompetent cells. 

Colonies from each reaction were then picked and grown overnight in liquid broth (LB) 

at 37oC on a shaker, and amplified via miniprep the following day (QIAprep Spin 

Miniprep Kit, Qiagen, Cat: 27106). An aliquot of each miniprep was sent to Source 

Bioscience for the whole LHX4 cDNA inserts to be verified by direct sequencing 

analysis, to check that the correct bases and that no unwanted errors had been 

introduced. Maxipreps were then made for each verified construct using the HiSpeed 
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Plasmid Maxi Kit (Qiagen, Cat: 12662) to yield enough DNA for multiple transfections 

and other subsequent experiments. 

 

2.3.3. Western Blot for LHX4 protein 

Protein extracts were taken from 80% confluent T25 flasks of HEK293T cells 

transfected with the constructs expressing WT LHX4 (wtLHX4), LHX4 (p.R84C) and 

LHX4 (p.T126M) mutants respectively. Protein extracts were quantified using a 

bicinchoninic acid assay (BCA assay) (Pierce, Thermo Scientific, Cat: 23225) and a 

total of 10µg of each was added to each well. The negative control used in this assay 

was a pcDNA3.1 empty vector. Rabbit anti-FLAG Tag polyclonal primary antibody 

(SIGMA, Cat: SAB4301135) and goat anti-rabbit Immunoglobulin G (IgG) 

Horseradish Peroxidase (HRP)-conjugated secondary antibody (Cell Signaling, Cat: 

#7074S) were used to stain for LHX4. Please refer to the protocol used for the EIF2S3 

western blot analysis (Chapter 2.4.8), including the antibodies used to stain for 

GAPDH, as this is the same method used for the LHX4 western blot. 

 

2.3.4. Transfection of constructs for qualitative analysis 

HEK293T cells were seeded into 24-well plates at 1 x 106 cells/well 48 hours prior to 

transfection. Transient transfection of mutant and wtLHX4 constructs were conducted 

using Fugene-6 transfecting reagent (Promega, Cat: E2691). The cells were co-

transfected with 125ng/well of firefly-luciferase reporter plasmid with either an αGSU 

or prolactin promoter, and 62.5ng/well of expression plasmid; these values were 

consistent with the reporter/expression vector concentrations/ratios used in previous 

established LHX4 transfection studies (Pfaeffle et al., 2008). In addition, the cells 

were transfected with 50ng/well of Renilla-luciferase reporter vector (pRL-TK from 

Promega) and 10ng of mCherry vector (Cherry-N1 from Clontech) as a control and to 

visualise transfection efficiency under the microscope during the 24 hours after 

transfection respectively. All wells contained the same DNA concentration. In assays 



68 
 

analysing synergy between LHX4 and POU1F1, a lower dose of 31.25ng/well of 

expression vector was also applied in addition to the described value (62.5ng/well) to 

look at dose dependency; pcDNA3.1 empty vector was added to the wells containing 

the lower dosage to maintain the same concentration of DNA per well. Cells were 

lysed 24 hours after transfection using Passive Lysis Buffer (Promega) and 

measurement of luciferase activities was performed using the Dual-Luciferase 

Reporter Assay System (Promega) on a luminometer (FLUO star, Optima, BMG 

Labtech). Two-sample Wilcoxon rank-sum (Mann-Whitney) non-parametric statistical 

tests, and two-tailed unpaired parametric T-tests were performed on the data 

generated from these assays. Results are shown as means ± SD of 3 independent 

experiments in triplicate.  
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Figure 2.1: Constructs transfected into HEK293T cells. Four different expression plasmids containing mutant and WT LHX4 genes and the 

WT POU1F1 gene respectively, were transiently transfected into wells seeded with HEK293T cells in a 24-well plate. These were either 

transfected alone at a concentration of 62.5ng/well, or in combination with another at 31.25ng/well, as noted in the diagram. A firefly luciferase 

reporter plasmid containing either an αGSU or a prolactin promoter that directly drives luciferase was also transfected at 125ng/well. In addition 

a Renilla-luciferase reporter plasmid (pRL-TK from Promega) at 50ng/well driven by the HSV-TK promoter, and an mCherry reporter plasmid 

(Cherry-N1 from Clontech) at 10ng/well driven by the CMV promoter, were both added to every well. The black arrow-headed shapes with 

labelling beginning with ‘p’ in the constructs represent the plasmid promoter that drives expression of the gene noted in the respective adjacent 

labelled black shape in that construct. HSV-TK, herpes simplex virus thymidine kinase; CMV, cytomegalovirus.  
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2.4. Functional studies for EIF2S3 

 

2.4.1. Cell culture 

A hybrid cell line (1.1B4 cells) formed by the electrofusion of a primary culture of 

human pancreatic islets with PANC-1, a human pancreatic ductal carcinoma cell line, 

were obtained from Public Health England (PHE) (Cat: 10012801). The cells were 

maintained in a humidified CO2 incubator at 37°C in Roswell Park Memorial Institute 

(RPMI) medium 1640 containing L-glutamine (Life Technologies, Cat: 21875-034), 

supplemented with 10% fetal calf serum (PAA-The Cell Culture Company) and 5% 

penstrep (Invitrogen). The cells were washed in x1 Hanks Balanced Saline Solution 

(HBSS) bought in as x10 stock (Gibco, Cat: 14185045) and diluted with autoclaved 

water, and trypsinised with x1 tryspin bought in as x10 stock (Gibco, Cat: 15400054) 

and diluted with x1 HBSS in line with manufacturer’s instructions. Mouse insulinoma 

pancreatic beta cells (MIN6) were obtained from Professor Peter Jones’ laboratory at 

Kings College, London. The cells were maintained in a humidified CO2 incubator at 

37°C in DMEM supplemented with 15% fetal calf serum (PAA), 5% penstrep 

(Invitrogen) and 5% L-Glutamine. Cells were washed in x1 PBS (VWR International) 

and trypsinised with x1 tryspin containing phenol red (Life Technologies, Cat: 

25300054). All cells were passaged when >80% confluent. All cells were tested for 

mycoplasma and cell identity before use. 

 

2.4.2. Constructs containing shRNA cassettes 

Four different GFP-IRES-Puromycin-Zeomycin plasmids (pGIPZ) (11,744bp) referred 

to in this study as Clone 1-4 respectively, were obtained from the UCL Cancer 

Institute that contained small hairpin RNA (shRNA) cassettes targeting the EIF2S3 

human gene. The shRNA cassette sequence of each had been validated by the UCL 

Cancer Institute prior to being obtained and matched 100% with the expected hairpin 
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sequence according to the Open Biosystems library database. An additional pGIPZ 

plasmid containing a scrambled shRNA sequence was also obtained that was non-

silencing and used as a control in transduction experiments. All five plasmids had a 

lentiviral (LV) backbone, which essentially consists of two long terminal repeats 

(LTR’s) and a packaging signal that allow the genome to be packaged into LV 

particles. In the LV vectors used in this study, one of these repeats contains a deletion 

to prevent the LV particles replicating, making this virus self-inactivating and therefore 

a safer option to use in the laboratory. There is a promoter in front of the transgene 

(in this case the EIF2S3 shRNA cassette) to drive expression, and also a woodchuck 

post-transcriptional regulatory element (WPRE) that is known to improve translation 

of the protein in mammalian cells (Zufferey et al., 1999). In addition to the shRNA 

cassette, the pGIPZ plasmids also contained green fluorescent protein (GFP) and a 

puromycin-resistance cassette. This co-expression enabled the cells to be monitored 

for GFP expression and puromycin selected following transduction (the standard map 

of the pGIPZ plasmid is available upon request). A maxiprep of each plasmid was 

prepared and used in LV packaging and transduction assays. 
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2.4.3. Lentiviral packaging 

LV packaging was carried out in the Immunology lab in the ICH with a trained licensed 

member of staff, due to this procedure being classed as a Safety Activity Class 2, 

which requires specific Health Safety Executive project notifications. LV particles 

were produced by transient co-transfection of HEK293T cells (4.0x105 cells/well of a 

6 well plate seeded 24h prior transfection) with 500ng of the pGIPZ vector constructs, 

333ng of encapsidation plasmid (p8.9) and 333ng of VSV-G envelope expressing 

plasmid (pMDG2). The transfecting agent used was Fugene HD (3.5µl/well) 

(Promega, Cat: E2311) and the total volume pipetted into each well was 80µl made 

up with opti-mem media (Thermo Fisher Scientific, Cat: 31985070). Mastermixes 

were made for each pGIPZ plasmid for ease when pipetting, and each was 

transfected as above, in duplicate. The cells were then incubated at 37°C for 24 

hours, after which the medium was changed and incubated for an additional 24 hours 

before harvesting the viable lentiviruses. Infectious titres were determined by doing 

limiting dilution of LVs on HEK293T cells. Titres were comprised between 105 and 106 

transducing units/ml.  

 

2.4.4. Transduction of 1.1B4 cells using packaged LV vectors for stable gene 

knockdown 

1.1B4 cells were seeded into 6-well plates and transduced at a multiplicity of infection 

(MOI) of 5, using the previously generated lentivirus under strict sterile and contained 

conditions. MOI refers to the number of transducing LV particles per cell. Cells were 

then incubated at 37°C for 72 hours, after which the media was removed from each 

well. Fresh RPMI medium containing 10% serum and 5% penstrep that was also used 

on non-transduced cells, was supplemented with puromycin and added to the cells to 

positively select the transduced cells expressing the respective shRNA. The cells 

were monitored and kept under puromycin selection for a further 10 days, trypsinised 
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when confluent and expanded into T25cm² flasks respectively. The cells were washed 

in x1 HBSS, the media was changed when appropriate, and the cells were visualised 

under an Olympus IX71 inverted Fluorescence microscope for the presence of GFP 

until ready for lysing.  

 

2.4.5. Cell lysis and RNA extraction 

Media was removed from all wells and 1.1B4 cells were washed with HBSS. An 

aliquot of RNeasy lysis buffer (RLT) was prepared by adding β-mecaptoethanol at a 

ratio of 10µl/1ml. The β-mecaptoethanol is added to completely inactivate the activity 

of RNases. RLT buffer mix was then added to each well (350µl/well in a 12-well plate). 

A cell scraper was used followed by pipetting the buffer up and down for 2-3 mins to 

lyse the cells. Lysates were transferred into fresh labelled Eppendorf tubes on ice. 

RNA was then extracted from the lysate using an RNeasy MiniKit (Qiagen, Cat: 

74104). The standard protocol from this kit was followed with the addition of a DNase 

digestion step using the RNase-Free DNase Set (Cat: 79254 Qiagen). Aliquots of 

RNA were then stored at -80°C until use. 
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Population of RNA RNA concentration in 

ng/µl 

Non transduced  652 

Scrambled non-silencing 1700 

Clone 1 300 

Clone 2 1575 

Clone 3 1310 

Clone 4 99 

 

Table 2.1: RNA concentrations derived from transfected cells. The concentration 

of RNA derived from 1.1B4 cells transduced with shRNA cassette-containing pGIPZ 

LV constructs. These values were used to calculate the reverse transcription 

quantities (Table 2.2). LV, lentiviral. 

 

2.4.6. Reverse transcription 

The High Capacity RNA-to-cDNA Kit (Cat: 4387406 Applied Biosystems, Life 

Technologies LTD) was used to yield cDNA from each RNA population. 891ng of 

each RNA (protocol suggests using up to 2µg) was used to make the cDNA due to 

Clone 4 having the lowest RNA concentration (99ng/µl) (Table 2.1) and needing the 

whole 9µl volume allowance in the protocol, which was equal to 891ng in total. The 

standard concentration of components were added to each reaction consistent with 

the supplied kit, please see Table 2.2. 
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Reaction 

component 

Constructs used in transduction on 1.1B4 cells 

 
Non 

transduced 

Scrambled Clone 1 Clone 2 Clone 3 Clone 4 

2X RT buffer 10 10 10 10 10 10 

20X RT Enzyme 

Mix 

1 1 1 1 1 1 

Sample (891ng of 

RNA) 

1.37 0.52 2.97 0.57 0.68 9 

Nuclease-free 

water 

7.63 8.58 6.03 8.43 8.32 0 

Total per reaction 20 20 20 20 20 20 

 

Table 2.2: The volume of RNA and reagents used in reverse transcription. The 

values are calculated based on the RNA concentrations in Table 2.1. All volumes are 

in µl. Scrambled: non-silencing shRNA. 

 

2.4.7. qPCR primer design and analysis 

The Fast SYBR Green Master Mix (Life Technologies, Cat: 4385612) was used in the 

qPCR reactions in this study and the standard protocol was followed, as 

demonstrated in Table 5 below. Primers for qPCR were designed using the Universal 

Probe Library database by Roche 

(lifescience.roche.com/shop/CategoryDisplay?identifier=Universal+Probe+Library), 

which generate intron flanking primers in the default setting. This database was used 

for the target gene (EIF2S3) and the three housekeeping genes (GAPDH, β-ACTIN 

and HPRT), as the primers generated bind to complementary bases within the 

exon/DNA coding region (cDNA), and not within introns which are absent at the qPCR 

stage due to the DNase digestion step performed during the RNA extraction 
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procedure. This ensures that complete complementary binding will occur during the 

qPCR reaction.  

A pilot qPCR was performed initially with serial dilutions of the non-transduced cDNA 

as follows: undiluted, 1:5, 1:10, 1:20, 1:50 and 1:100, to define which dilution of cDNA 

began exponential growth at the appropriate cycle number and thus which would be 

used in future qPCR experiments with all cDNA populations.  

The cDNA derived from the reverse transcription was diluted 1:5 in all further qPCR 

reactions. Nuclease-free water was used as the blank for each gene in all qPCR 

assays. 

 

 

SYBR green Real time 

PCR 

x1 reaction (per well) in 

µl 

x18 reactions 

(Mastermix) in µl 

SYBR green 2X 10 180 

Forward primer (10µM) 

stock = 100uM 

1 18 

Reverse primer (10µM)  

stock = 100uM 

1 18 

Nuclease-free water 7 126 

cDNA (1:5) 1 - 

TOTAL   

          

20  

 

Table 2.3: Volumes and concentrations of reagents and primers used in qPCR. 

The table contains volumes for 1 well/reaction and volumes for 18 wells/reactions, a 

mastermix. The forward and reverse primer volumes in the table are from 1:10 

dilutions of the stock primer aliquots respectively. 
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2.4.8. Western Blot analysis – Method used for both LHX4 and eIF2γ protein 

analysis 

 

2.4.8.1. Protein extraction  

Human 1.1B4 cells were trypsinised respectively in a 15ml falcon tube by spinning for 

5 mins at 1000rpm and supernatant was removed carefully leaving the smallest 

volume of media possible. The cell pellet was then washed with x1 HBSS by re-

suspending the pellet in 5ml and by spinning as before. The HBSS buffer was 

carefully removed and the pellet resuspended in as small amount of RIPA buffer 

(Sigma, Cat: R0278-50ML) containing a protease inhibitor (Complete™, Mini, EDTA-

free Protease Inhibitor Cocktail. Roche Cat: 11836170001), as possible; e.g. for a 

pellet derived from a confluent T25 flask, 200-350µl of RIPA buffer was added. The 

resuspended pellet was vortexed and put on ice for 60 mins. It was then vortexed 

briefly and centrifuged for 20 mins at 4°C at 13,000rpm (top speed). The supernatant 

was transferred into a fresh tube, being careful not to disturb the pellet containing the 

insoluble substance, and aliquots were snap frozen on dry ice and stored at -80°C 

until use. A BCA protein assay (Pierce, Thermo Scientific, Cat: 23225) was conducted 

on these lysates using manufacturer’s instructions, to quantify the total protein 

concentrations of each population.    

 

2.4.8.2. Running the gel 

The x20 stock of NuPAGE MOPS SDS Running Buffer (Life Technologies Ltd, Cat: 

NP0001) was diluted to x1 using MilliQ H20. The green protective strip was removed 

from the bottom of a Mini-PROTEAN TGX Stain Free gel (4-20%) (Biorad, Cat: 

4568094) and placed into a gel clamp inside a tank, with another gel or plastic balance 

on the opposing side. The middle chamber of the holder was filled with the x1 running 

buffer, and the combs were carefully removed, before topping up the tank with x1 

running buffer to the bottom of the gel, to enable the electric current to pass through. 
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The wells were washed out by pipetting up and down with an empty pipette before 

the samples were loaded. 

 

The BCA values generated were used to normalize the protein quantity thus 

determining the volume of lysate needed to total the desired protein concentration 

(5µg, 10µg, 30µg). Please refer to Table 2.4 for the samples that were loaded into 

wells in the pilot assay performed. This pilot assay used total protein derived from 

HeLa cells and human 1.1B4 non-transduced cells. The HeLa cell lysate was used 

as a positive control for the anti-EIF2S3 antibody as recommended by the 

manufacturer.  

 

Cell 

population 

Protein  

lysate 

concentration 

(µg/µl) 

Total 

protein 

added into 

well (µg) 

Protein 

lysate 

volume 

added to 

well (µl) 

ddH20 

added to 

well (µl) 

x4 Laemmli 

buffer added 

to well (µl) 

(Total volume 

40µl) 

Hela (1:10)  1.39 5 3.60 26.40 10 

Hela (1:10)  1.39 10 7.19 22.81 10 

Hela (1:10)  1.39 30 21.58 8.62 10 

1.1B4 WT  1.34 5 3.73 26.27 10 

1.1B4 WT  1.34 10 7.46 22.54 10 

1.1B4 WT  1.34 30 22.38 7.62 10 

 

Table 2.4: The calculation of protein samples used in the pilot western blot 

assay. The pilot western blot assay used HeLa cell lysate and 1.1B4 WT cell lysate 

at three different concentrations respectively. 1:10, 1 in 10 dilution of the stock lysate 

was used in the HeLa protein calculation. WT, wild-type. 
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Following preparation of the samples calculated in Table 2.4, 2µl of DTT (10%) was 

added to each sample aliquot and then denatured at 95°C for 5 mins using a heat 

block.   

 

10µl of Pageruler prestained protein ladder (Generon, Cat: 26616) was loaded into 

the first well and up to 40-50µl of each sample respectively into subsequent wells. 

The gel was run at ~100 volts (V) until the blue dye was only ~5 mm from the bottom 

of the gel; approximately 45 mins depending on protein size.  

 

2.4.8.3. Transfer  

A Trans-Blot Turbo Transfer Pack, PVDF, 7 x 8.5 cm (BioRad, Cat: 1704156) was 

used for transfers. The side labelled ‘bottom’ was laid into the Trans Blot Turbo 

machine tray, with the attached membrane facing up. The supplied roller was used to 

roll over the membrane to remove any bubbles. The gel was then prized out of the 

plastic after it had finished running using the supplied green device and placed onto 

the membrane manually. The roller was used again to smooth out the gel, and the 

side labelled ‘Top’ was placed on top of the gel (either side can face up). The tray 

applicator was closed, making sure all 4 edges were clipped in before slotting into the 

Trans Blot Turbo machine. To operate this machine the following options were 

pressed: ‘Turbo’, ‘1 mini gel’ (or however many gels are transferring), ‘A run’ ‘B run’ 

or both, depending on which draw (A or B) had the gel in. The gel took 7 mins to 

transfer completely. Whilst the above was transferring, blocking agent was prepared 

in a 50ml falcon tube: 2.5g of milk powder in 50ml of x1 TBS/TWEEN detergent 

(Calbiochem, Cat: 524753-1EA). 

 

When transferred, the transfer ‘sandwich’ was separated and the membrane placed 

in approximately 20ml of blocking agent in a falcon tube and put on a rotator for 1 

hour at room temperature.  
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The membrane was incubated with the primary antibody; 10ml of blocking agent 

containing 20µl of anti-EIF2S3 rabbit polyclonal antibody (Proteintech Europe, 

Cambridge Bioscience, Cat: 11162-1-AP) to result in a 1:500 dilution and rotated on 

a roller at 4°C overnight. The supplier of the antibody used the gene name for the 

antibody rather than the protein name, therefore it is termed as ‘anti-EIF2S3’, as 

opposed to ‘anti-eIF2γ’, throughout this study. A monoclonal mouse anti-GAPDH 

(Merck Millipore, Cat: MAB374) primary antibody, diluted to 1:4000, was used as the 

control. 

 

The next day, the membrane was taken out and washed in 40ml of x1 TBS/TWEEN 

for 10-15 mins x4 times in a rotating 50ml falcon tube.  

 

The membrane was incubated with a secondary antibody; 10ml of blocking agent 

containing 2µl (1:5000 dilution) of goat anti-rabbit IgG HRP-conjugated antibody (Cell 

Signaling, Cat: #7074S), and rotated on a roller for 1 hour at room temperature. For 

the GAPDH control, a polyclonal goat anti-mouse IgG HRP-conjugated secondary 

antibody (Dako, Cat: P0447) diluted to 1:4000 was used. The membrane was then 

washed at least x4 times in the x1 TBS/TWEEN as before (the washing is essential 

at this stage).  

 

The developing mix was prepared using Clarity Western ECL substrate (Biorad, Cat: 

1705061) at a 1:1 ratio and 2ml was pipetted onto the membrane. It was incubated 

for 5 mins and developed on the ChemiDoc via the following settings: ‘single channel’, 

‘Blot’, ‘Higher Chemi sensitivity’, ‘Setup’: start at 1 second, end at ~30 seconds and 

set to take 5 images. Manual exposure at 0.5 was set for the first analysis and the 

exposure time was adjusted if no image emerged. 
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2.4.9. Insulin Secretion Assay 

Krebs Ringer Bicarbonate (KRB) Buffer (1x) was prepared in a final volume of 1 

Litre of MilliQ water (store at 4°C) using the volumes in Table 2.5. A magnetic stirrer 

was used to dissolve the powder into solution and the pH was adjusted to 7.4 using 

a pH meter. 

 

Solution Volume in grams Concentration mM 

NaCl 7.95 34 

KCL 2.5 1.175 

KH2PO4 0.163 0.3 

NaHCO3 0.42 1.25 

MgSO4 (7H20) 0.295 0.3 

 

Table 2.5: How to make KRB buffer. The volume and concentration of chemicals 

used to make the KRB buffer for use in an ultrasensitive insulin ELISA assay. KRB, 

Krebs Ringer Bicarbonate. 

 

Pre-incubation buffer was prepared by adding 0.5g of bovine serum albumin (BSA) 

powder and 2mM of glucose (0.18g) to 500ml of the 1x KRB buffer. This was then 

aliquoted into 50ml falcons and stored at 4°C in cold room. 

 

Day 1 

MIN6/1.1B4 cells were plated at 3 x 105 per well in a 6-well plate, in a total volume of 

2ml of each cell types respective media, and left overnight in an incubator at 37°C 

until cells grew to 80-90% confluency (usually 24 hours).  
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Day 2 

The media was removed and 2ml of the pre-incubation buffer was added and left for 

60 mins before turning the plate upside down onto tissue paper to remove the 

solution. Test agents were added (1ml/well) (Chapter 2, Table 2.6) and incubated at 

37°C for 24 hours. Media was aspirated carefully so as not to blow holes in the cells, 

aliquoted and frozen at -20°C until use.  

 

1x KRB buffer only (0% glucose) Make as Table 2.5 states 

1x KRB buffer with 10mM glucose (0.09g 

in 50ml) 

Measure 0.09g glucose and dissolve 

in 50ml of the 0% glucose 1x KRB 

buffer to make 10mM glucose buffer 

Forskolin 10µM (with 10mM glucose) Stock powder comes at 10mg. 

Dissolve all in 2.44ml of DMSO to 

make a 10mM stock and dilute this 

1:1000 by adding 10µl into 10ml of 1x 

KRB buffer with 10mM glucose 

IBMX 100µM (with 10mM glucose) Stock IBMX is 100mM. Dilute this 

1:1000 by adding 10µl into 10ml of 1x 

KRB buffer with 10mM glucose 

Table 2.6: Insulin secretion assay test agents. A simple guide to calculate test 

agent concentrations, used in insulin secretion assays. IBMX, 3-

isobutylmethylxanthine. 

 

Insulin secretion was then measured in each sample using an ultrasensitive insulin 

Elisa kit (MERCODIA, Cat: 10-1132-01) using the standard protocol. MIN6 cells were 

used in this insulin secretion assay as a control and were plated at the same density 

as 1.1B4 cells. 
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2.4.10. Apoptosis assay 

MIN6/1.1B4 cells were seeded into white 96-well sterile tissue culture treated 

microplates with clear bottoms (PerkinElmer, Cat: 6005181), at 10,000 cells/well in a 

total volume of 200µl of cell-type specific media, and incubated overnight at 37°C. 

Media was removed by inversion of the plate and 100µl of cytokine mix containing 

the following was added to respective triplicate wells: 1L-1β (50 U/ml), TNF-α (1000 

U/ml), INF-γ (1000 U/ml); diluted in media and incubated for 16 hours at 37°C. 

 

Caspase-Glo 3/7 reagent (Promega, Cat: G8090) was added at a 1:1 ratio of 

reagent:sample (100µl) to each well and incubated for 1 hour at room temperature 

before reading the luminescent signal generated on the luminometer. There were 

triplicate wells of each of the following: 

- Blank wells: had no cells but had cytokine mix added. These wells emitted 

background luminescence associated with Caspase-Glo reagent. This value 

was subtracted from experimental values. 

- Basal caspase activity: wells containing cells with media not containing 

cytokine mix.  

- Cytokine-stimulated caspase activity: wells containing cells with respective 

cytokine mix added. 

 

Two-sample Wilcoxon rank-sum (Mann-Whitney) non-parametric statistical tests, 

two-way ANOVA tests, and two-tailed unpaired parametric T-tests were performed 

on the data generated from these apoptosis assays.
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2.4.11. Single site-directed mutagenesis 

The QuikCHANGE II XL site-directed mutagenesis kit (Agilent Technologies, Cat: 

200521) was used to alter the BamHI site that was within the EIF2S3 insert in the 

pCMV-SPORT6 vector containing the full cDNA EIF2S3 sequence (Source 

Bioscience). This is the same vector that was used to make RNA probes for the in 

situ hybridization studies (Chapter 2.5). The BamHI site already within the EIF2S3 

cDNA had to be mutated so that the insert would not be cut in half during the BamHI 

digestion step. This BamHI site had one nucleotide substituted during this step 

without changing the amino acid, thus keeping the WT protein sequence intact and 

unaltered. Therefore when adding the BamHI enzyme at a later stage to cleave the 

EIF2S3 insert out of this pCMV-SPORT6 vector it would only cut at the ends of the 

insert yielding the full EIF2S3 sequence. The EIF2S3 insert had to have BamHI sites 

at either end, as the cloning site within the host LV-IRES vector that the inserts have 

to ligate into was within two BamHI sites. The primers used in this reaction to alter 

one base of the BamHI sequence (GAATCC) were as follows, with the altered 

nucleotide highlighted in red: 

 

BamHI_alter_F:  GCTCATGGTGAACATAGGCTCCCTGTCAACAGGAGG 

BamHI_alter_R:  CCTCCTGTTGACAGGGAGCCTATGTTCACCATGAGC 

 

The above primers were diluted to 125ng/μl and the vector to 10ng/μl. 1μl of this 

diluted vector was pipetted into a tube on ice and the following was added: 

1μl of each diluted primer 

1μl of dNTPs 

5μl of x10 buffer 

3μl Quikchange  

38μl of double distilled water   
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Lastly, 1μl of pfu enzyme (2.5 U/μl) was added to each well to total 50μl/well and the 

Thermocycler machine was set to run the following protocol: 

 

 

STAGE 1 STAGE 2 (x12)   STAGE 3 

95c 95c 60c 68c 68c 

1min 50secs 50secs 6mins * 7mins 

*This time length relates to 1 min per kb of DNA, reflecting the size of the vector 

containing the insert, which in this case was 5.815kb. 

 

Following the above PCR reaction, the wells were put on ice to cool slightly before 

1μl of Dpn I restriction enzyme was added into each well and mixed thoroughly with 

a pipette. The plate was then put into an incubator at 37°C for 1 hour to dissolve the 

parental supercoiled DNA.  

 

XL10 ultracompetent cells (provided in kit) were thawed on ice and 45μl of cells were 

aliquoted into labelled tubes. 2μl of β-mecaptoethanol (provided in kit) was added into 

each tube and left on ice for 10 mins whilst being flicked occasionally to mix. 2μl of 

the PCR product was pipetted into the respective tube, stirred with a pipette tip and 

left for approximately 30 mins on ice. During this time, S.O.C medium (Invitrogen, 

Cat: 15544034) was warmed to 42°C. 

 

After the 30 mins, the cells were heat shocked at exactly 42°C in a water bath for 

precisely 30 seconds and put back on ice immediately for 2 mins. Then 500μl of the 

pre-warmed S.O.C medium was pipetted into the tubes and shaken at 37°C for 1 

hour, during which time, ampicillin-resistant agar plates were warmed to 37°C.  
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The transformed cells were pipetted into the middle of their respective plate 

(250μl/plate) and a sterile spreader was used to equally spread them before 

incubation at 37°C overnight (not on a shaker). The following day ~4-6 colonies from 

each plate were picked using a pipette tip and dropped into ~3ml of ampicillin 

supplemented liquid broth (LB) in a 15ml falcon tube respectively. The tubes were 

incubated overnight at 37°C on a shaker and minipreps were carried out for each on 

the following day, using manufacturer’s instructions.  

 

Four primers were used to verify the full cDNA sequence of EIF2S3, (the EIF2S3_1R 

covered the beginning of the gene): 

 

 

EIF2S3_1F:  5’ GATCTTGTGGGAGCAGTACACC 3’ 

EIF2S3_2F:  5’ CCAAGAGACTTTACTTCAGAGCC 3’ 

EIF2S3_3F:  5’ CCGGGCTGACAGAATGGTGGGG 3’ 

EIF2S3_1R:  5’ CCGTTCAGCATAGTAGCCATC 3’  
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2.4.12. LV-IRES Vector digest  

The LV backboned host vector was obtained from the Immunology lab (ICH) (see 

Chapter 2.4.2 for details on LV vectors such as this). An unwanted insert was 

removed from this vector using the BamHI restriction enzyme (Promega, Cat: R6021) 

by adding the reagents listed in Table 2.7 to a sterile tube, briefly spinning down in a 

centrifuge and incubating at 37°C for <4 hours. 

 

 

Reagent Volume (μl) 

Nuclease-free water 83 

Restriction enzyme 10x Buffer E  10 

BSA (10μg/μl) 1 

Vector DNA (1680ng/μl) 3 

Mix by vortex at this stage 

BamHI enzyme (10U/μl) 3 

 Total volume = 100 μl 

 

Table 2.7: The volume of reagents used to digest the LV-IRES vector. Reagents 

were added into a sterile Eppendorf tube in the order listed. 

 

 

2.4.13. Alkaline Phosphatase treatment 

The linearized BamHI cut LV-IRES vector was dephosphorylated by treatment with 

calf intestinal alkaline phosphatase (CIAP) (Promega, Cat: M1821) to prevent the 

BamHI cut vector ends ligating back together. As per manufacturer’s instructions, the 

digested DNA was purified before dephosphorylation by ethanol precipitation: 10μl of 

sodium acetate (3M) and 250μl of 100% ethanol was added to the 100μl of digested 
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DNA, and centrifuged at 13,000rpm for 10 mins. The supernatant was removed and 

200μl of 70% ethanol was added and spun as before, to wash the pellet. The 

supernatant was removed and the pellet was allowed to air dry for >10 mins at room 

temperature. Nuclease-free water (43 μl) was added to resuspend the pellet, followed 

by 5μl of 10x CIAP buffer and 1μl of stock CIAP enzyme (Promega, Cat: M1821), and 

incubated at 37°C for 30 mins. A further 1μl of CIAP stock enzyme was added to 

make a final volume of 50μl, and was incubated at 37°C for a further 30 mins. 

  

2.4.14. Gel extraction  

The dephosphorylated cut vector was run over 2 wells on a 20-well 1% agarose gel 

at 100V for 1 hour before being excised using a scalpel under UV light. The weight of 

an empty Eppendorf tube was subtracted from the weight of the gel and tube together 

to give the weight of the gel. A QIAquick Gel Extraction Kit protocol (Qiagen, Cat: 

28704) was then followed as by manufacturer’s instructions to yield purified vector 

DNA, which was then stored at -20°C. 

 

2.4.15. Amplification of the EIF2S3 insert 

The full coding region of the EIF2S3_WT insert was amplified out of the original 

pCMV-SPORT6 plasmid (Source Bioscience, IRATp970H0941D, IMAGE ID: 

4419438). Primers were designed with the BamHI sequence flanking the EIF2S3 

coding region (highlighted in red):  

 

EIF2S3_BAMHI_F:   5’ GGACTCGGATCCATGGCGGGCGGAGAAGCTGG 3’ 

EIF2S3_BAMHI_R:   5' CGCTTAGGATCCTCAGTCATCATCTACTGTTGG 3' 
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An AccuPrime pfx Supermix (Invitrogen, Cat: 12344-040) containing a proofreading 

3’ to 5’ exonuclease activity with a higher fidelity than the pfu proof reading 

polymerase enzyme, was used in the PCR reaction. 

 

 

Reagent Volume (μl) 

10ng of DNA maxiprep (diluted stock to 

10ng/μl) 

1 

Accuprime pfx supermix (containing 

MgSO4, dNTPs and polymerase 

enzyme) 

22.5 

Forward and reverse primer (diluted 

100uM stock 1:10 to give 10uM) 

1 of each primer 

 Total volume: 25 

 

Table 2.8: Amplification of the EIF2S3 cDNA insert. Reagents and volumes used 

in the PCR reaction to amplify the EIF2S3 gene out of the pCMV-SPORT6 vector.  

 

The above PCR reaction was prepared on ice in a 96-well sequencing plate, put into 

a Thermocycler and run using the following protocol:  

 

Step1 (x1 cycle) 

95°C for 5 mins   

 

Step 2 (x35 cycles) 

95°C for 15 seconds 

60°C for 30 seconds  
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68°C for 2 mins (~1 min for every kb in insert: EIF2S3 = 1.419kb) 

 

Step 3 (x1 cycle) 

Cool to 4°C for >10 mins 

 

5μl was then run on a 1% agarose gel slowly at 90 V for 90 mins next to a 1kb DNA 

ladder (Hyperladder I, Bioline, Cat:33053), to verify that the EIF2S3 insert was the 

correct size and had been amplified.  

 

2.4.16. Polyadenylation 

The addition of adenine bases (a Poly(A) tail) on the 3’ end of the amplified 

EIF2S3_WT PCR product was necessary for ligation of the inserts into the pGEM-T 

Easy vector (TA-cloning). This was achieved using Terminal Transferase (New 

England Biolabs LTD (NEB), Cat: M0315S). Manufacturer’s instructions were 

followed: 

 

Adenine tailing reaction  

5μl 10X Terminal Transferase buffer (TdT)  

5μl 2.5mM CoCI2 solution (provided in kit) 

20μl EIF2S3 PCR product 

0.5μl 10mM dATP (from dNTP set, 100mM, Bioline, Cat: 39025) 

0.5μl Terminal Transferase (20units/μl) 

Deionized (nuclease-free) water up to 50μl total volume (19μl) 

 

Incubate at 37°C for 30 mins and then stop the reaction by heating the mix to 70°C in 

a heat block for 10 mins. The PCR product was then column purified using the 

QIAquick PCR Purification Kit (Qiagen, Cat: 28104). 
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2.4.17. TA-Cloning: Ligation of the cDNA EIF2S3_WT insert into the pGEM-T 

Easy vector 

The polyadenylated EIF2S3_WT PCR product was cloned into the pGEM-T Easy 

vector (pGEM-T Easy Vector System II, Promega Cat: A1380) using the following 

standard equation for ligation of insert into vector: 

 

ng of vector x kb size of insert         x         insert:vector molar ratio = ng of insert 

           kb size of vector   

 

The pGem-T Easy vector kit recommends to use 50ng of the vector at a 3:1 

insert:vector ratio. Therefore the following values were put into the above equation to 

calculate how many ng’s of insert (EIF2S3 PCR product) were needed in the ligation 

reaction: 

 

50ng of vector  x  1.419kb insert           x        3            =  70.95ng of insert  

                 3.0kb vector               1 

 

The following table (Table 2.9) presents the volumes of DNA and reagents that were 

pipetted into sterile 0.5ml tubes for the ligation of the EIF2S3_WT insert into the 

pGEM-T Easy vector. The reactions were mixed by pipetting and incubated at room 

temperature for 1 hour.  
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Reagent EIF2S3 WT 

ligation 

Positive control 

2X Rapid ligation buffer 

for T4 ligase 

5 5 

pGEM-T Easy vector 

*(50ng) 

1 1 

Respective EIF2S3 

insert PCR product 

*(70.95ng) 

1.48 (stock DNA 

= 48ng/μl) 

- 

Control insert DNA - 2 

T4 DNA ligase (3U/μl) 1 1 

Nuclease-free water to 

a final concentration of 

10μl 

1.52 1 

 

Table 2.9: EIF2S3 ligation into the pGEM-T Easy vector. The volumes of reagents 

used in the ligation of the EIF2S3 amplified insert into the pGEM-T Easy vector. All 

volumes are in μl. *The concentration of DNA needed in the final reaction to give a 

3:1 ratio of insert:vector.   

 

2.4.18. Transformation of pGEM-T Easy vector 

The two products from the ligation reactions above; EIF2S3_WT and the positive 

control, were transformed in duplicate, respectively, on LB agar/ampicillin/IPTG/X-

GAL plates with ampicillin. JM109 High Efficiency Competent Cells (supplied in the 

pGEM-T Easy vector II kit) were thawed on ice (5 mins) and mixed by gently flicking. 

2μl of each ligation reaction was pipetted into sterile 1.5ml tubes on ice (x2 for each 

ligation), and 50μl of the JM109 cells were added to each. The tubes were gently 
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flicked to mix and placed on ice for 20 mins. The cells were then heat-shocked for 45 

seconds in a heat block at exactly 42°C and immediately returned to ice for 2 mins. 

950μl room temperature S.O.C medium was added to each tube and incubated for 

1.5 hours at 37°C on a shaker (~150rpm). During the last 30 mins of this incubation, 

x6 LB agar plates containing ampicillin were spread with 100μl of 100μM IPTG and 

50μl of 20μg/μl X-GAL to enable blue/white staining, and incubated at 37°C (without 

shaking). 100μl of each transformation culture in duplicate was plated onto labelled 

LB agar/ampicillin/IPTG/X-GAL plates and incubated overnight (16 hours) at 37°C. 

(The positive control ligation was diluted 1:10 with S.O.C medium before 100μl was 

plated in duplicate.) 

 

The following day white colonies were picked from each ligation and incubated in 3ml 

of LB with ampicillin in 15ml falcon tubes overnight (~16 hours) at 37°C on a shaker. 

The x8 tubes were then amplified via miniprep following manufacturer’s instructions. 

An aliquot from the EIF2S3_WT pGEM-T Easy plasmid miniprep was sent to Source 

Bioscience for the complete cDNA EIF2S3 insert to be sequenced (using the same 

four primers listed in Chapter 2.4.11) to check for unwanted errors.  

 

JM109 competent E.Coli cells were used in the transformation of the EIF2S3 insert 

into LV-backboned vectors as these cells contain mutations in the genes recA1 and 

endA1. These mutations aid in minimizing recombination and ensuring plasmid 

stability, therefore these cells are a better choice than DH5 alpha E.Coli cells when 

transforming LV-backboned vectors especially, as they yield a high quality plasmid 

DNA (Sigma).   
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2.4.19. Enzyme digest to cut out inserts from p.GEM-T vector 

Upon sequence verification of the EIF2S3_WT insert within the pGEM-T Easy vector, 

the insert was digested with BamHI, using the following protocol: 

 

Reagent Volume (μl) 

Nuclease-free water 17.5 

Restriction enzyme 10x Buffer E  5 

BSA (10μg/μl) 0.5 

p.GEM-T vector containing insert 25 

Mix by vortex at this stage 

BamHI enzyme (10U/μl) 2 

 Total volume =  50μl 

 

Table 2.10: Enzyme digest reaction.  The volume of reagents used to digest the 

EIF2S3_WT insert out of the pGEM-T Easy vector using the BamHI restriction 

enzyme. Reagents were added into a sterile Eppendorf tube in the order listed. 

 

The above reagents were briefly spun down in the tube in a centrifuge and incubated 

at 37°C for <4 hours. These were all run on a 1 % agarose gel and purified by gel 

extraction as previously described, using the QIAquick Gel Extraction Kit (Qiagen, 

Cat: 28704).  
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2.4.20. Ligation of EIF2S3 into LV-IRES vector 

The EIF2S3_WT purified insert was ligated into the linearized dephosphorylated LV-

IRES vector using T4 DNA ligase and 100ng of the vector at a 3:1 ratio of insert:vector 

as per manufacturer’s instructions (Promega, Cat: M1801): 

 

100ng of vector  x  1.419 kb insert           x        3            =  40 ng of insert  

                 10.5 kb vector                  1 

 

The reaction was incubated overnight on a Thermocycler at 15°C for 16 hours. The 

ligation product was then transformed with JM109 cells overnight using the same 

method used in transforming the pGEM-T Easy vector (Chapter 2.4.18). Colonies 

were picked and minipreps were made. Aliquots of each miniprep (x6) from six 

different colonies were sent to Source Bioscience with one primer (EIF2S3_1R) to 

verify that the insert had ligated into the LV-IRES vector in the correct orientation. The 

miniprep containing the EIF2S3 insert in the correct orientation was then taken 

forward for multi-site-directed mutagenesis. 

 

2.4.21. Multi-site-directed mutagenesis 

The patient EIF2S3 (p.P432S) mutation was introduced into the EIF2S3_LV-IRES 

ligated vector, in addition to correcting the altered BamHI site (as discussed in section 

2.4.11) within the EIF2S3 insert sequence. This was carried out to yield the final 

EIF2S3 (p.P432S) mutant construct used in further studies. The two primers used in 

this reaction were: 

 

EIF2S3_P432S_F: GTTTTGACCAATTCAGTGTGCACAGAGG 

BamHI correct_F: GCTCATGGTGAACATAGGATCCCTGTCAACAGGAGG 
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The protocol for this multi-site-directed reaction differs to the single site-directed 

reaction and is described in Table 2.11.  

 

Reaction component For templates >5kb 

10x Quikchange Multi reaction buffer 2.5 μl 

Double-distilled water X μl to final volume of 25 μl 

QuikSolution 0–0.75 μl (titrate for each template) 

Ds-DNA template X μl of (100ng) 

Mutagenic primers X μl (112ng of EIF2S3_P432S_F 

primer, 144 ng of BamHI_correct_F 

primer)  

dNTP mix 1 μl 

Quikchange multi enzyme blend 1 μl 

 

Table 2.11: Multi-site directed mutagenesis. Both primers used in this reaction are 

forward primers only (one for each mutation introduced), the ng’s of these primers 

added are relative to the number of nucleotides in them e.g. 25 bases = 100ng of 

primer is needed in the reaction, therefore a primer with 36 bases = 144ng of primer 

needed. This is consistent with the multi-site-directed mutagenesis protocol 

instructions. 
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The reaction in Table 2.11 was run on the Thermocycler machine as follows: 

 

Segment Cycles  Temperature  Time  

1 1 95 1 min 

2 30 95 1 min 

55 1 min 

65 2 mins/kb of plasmid length  

(EIF2S3-LV-IRES = ~12kb) 

 

 

A single site-directed mutagenesis reaction using the described method (Chapter 

2.4.11) was performed on the EIF2S3-LV-IRES plasmid to revert the single nucleotide 

back to give the original BamHI site within the EIF2S3 insert. This yielded the exact 

original EIF2S3_WT cDNA sequence and thus the final EIF2S3_WT construct used 

in further studies. This reaction corrected the previously altered BamHI site within the 

EIF2S3 cDNA by using the following primer pair: 

 

BamHI correct_F: GCTCATGGTGAACATAGGATCCCTGTCAACAGGAGG  

BamHI correct_R: CCTCCTGTTGACAGGGATCCTATGTTCACCATGAGC 

 

Both PCR products from both the single and multi-site-directed mutagenesis 

reactions above were transformed in JM109 cells as previously described (Chapter 

2.4.18). Colonies were picked and minipreps were made. An aliquot of a miniprep 

from both EIF2S3_WT and EIF2S3 (p.P432S) constructs respectively was sent to 

Source Bioscience for sequencing with the same four primers as before (Chapter 

2.4.11). This was to verify the whole cDNA EIF2S3 insert sequence to check if the 

site-directed reactions above had introduced the correct bases and that no unwanted 
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errors had occurred. Upon verification that the sequences in both constructs were 

correct, maxipreps of these plasmids were then generated.  

These final constructs: EIF2S3_WT and EIF2S3 (p.P432S) in the LV-IRES vector, 

were constructed in order to be packaged into viable LV particles and transduced into 

1.1B4 cells using the previously described method (Chapter 2.4.3 – 2.4.4).
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Cloning flowchart 

 

 

 

Figure 2.2: A summary of the cloning process. The steps performed in cloning the 

EIF2S3 insert into the LV-IRES vector and yielding the two constructs: EIF2S3_WT 

and EIF2S3 (p.P432S) used in further studies. 
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2.4.22. Transfection of the EIF2S3 constructs 

Both 1.1B4 and MIN6 cells were seeded at 3 x 105 per well in a 6-well plate in their 

specific complete media (10% FBS and 5% penstrep) and incubated (Chapter 2.4.1). 

The LV-IRES empty vector, EIF2S3_WT and EIF2S3 (p.P432S) constructs were 

transfected into cells using both Fugene-6 as previously described (Chapter 2.3.4) 

and lipofectamine 2000 (Life Technologies Ltd, Cat: 11668027) transfecting agents 

respectively on separate occasions, using standard manufacturer protocols. When 

using lipofectamine, 4μg of DNA and 10μl of lipofectamine in a total of 250μl opti-

mem media (Thermo Fisher Scientific, Cat: 31985070) was added to each well. Media 

was changed 24 hours after transfection and cells were observed for GFP 48 and 72 

hours after transfection. 

 

2.4.23. Cell sorting 

Seventy-two hours after transfection, cells were trypsinised and suspended in 1ml of 

respective media containing 1.5% FBS in 15ml falcon tubes and transported on ice. 

The cells were put into a BD FACS Aria III cell sorter, which has four different lasers: 

405nm, 488nm, 561nm and 633nm. The 530/30 filter from the 488nm laser was used 

in detecting the green fluorescing cells from each population: empty vector, 

EIF2S3_WT and EIF2S3 (p.P432S) LV-IRES transfected cells, which were collected 

in 1ml of complete media in 15ml falcon tubes. These green fluorescing cells were 

then plated into culture plates for expansion.  
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2.5. In situ hybridization 

 

2.5.1. Linearizing plasmids 

Fully sequenced human purified cDNA clones containing the full coding sequence of 

their respective gene, were obtained from Source Bioscience 

(http://sourcebioscience.com/). They were digested with specific restriction enzymes 

(Promega) (see Table 2.12 for all clones and enzymes used) that did not cut within 

our gene of interest, via the following protocol: 

 10μg DNA (circular plasmid) 

 1  restriction enzyme buffer (10μl of the x10 stock) 

 20-50U restriction enzyme (5μl of the 10U/μl stock)   

 Make up to 100μl with double distilled water (ddH2O)   

The reactions were then incubated for 2 hours at the enzymes’ optimum temperature, 

which in each case was 37°C. 1μl of the original circular plasmid was run next to the 

linearized clone on a 1.5% agarose gel with 5μl of 1kb ladder. The linearized plasmids 

were cleaned using a QIAquick PCR purification kit (Qiagen, Cat: 28104). 

 

2.5.2. DIG probe transcription 

The purified linearized plasmids (Table 2.12) were labelled with digoxigenin (DIG), 

using 1μg of DNA, 2μl of DIG RNA labelling mix (stock at x10) (Roche, 11277073910), 

1μl of transcription buffer (stock X10), 1μl of protector RNA inhibitor (Roche, 

03335399001), 1μl of either T3, T7 or SP6 RNA polymerase (Roche), made up to a 

final volume of 20μl with RNase and DNase free water and incubated for 2 hours at 

37°C. 2μl of RNA probe was run for 5 mins at 150V on a 1% agarose gel to assess 

the efficiency of transcription. Good probes are usually ten-fold brighter than the DNA 

band in the 1kb ladder. The DIG probes were diluted with DEPC-water up to a total 

of 100μl and purified using spin columns (Chroma-spin, Clontech-100).  

http://sourcebioscience.com/
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Gene 

Name 

Source 

Bioscience 

reference 

Plasmid Cloning 

site 

Restriction 

enzyme and 

polymerase 

used for 

sense probe 

Restriction 

enzyme and 

polymerase 

used for 

antisense 

probe 

EIF2S3 IRATp970H0941D 

IMAGE ID: 4419438 

pCMV-

SPORT6 

5s: SalI 

3s: NotI 

XhoI, SP6 AgeI, T7 

CTPS2 IRATp970A0631D 

IMAGE ID: 5268973 

p.BluescriptR 5s: SalI-

XhoI 

3s: BamHI 

KpnI, T7 EcoRI, T3 

RNPC3 IRATp970A029D 

IMAGE ID: 3873751 

pCMV-

SPORT6 

5s: SalI 

3s: NotI 

XhoI, SP6 AgeI, T7 

PRMT6 IRATp970A0595D 

IMAGE ID: 5212478 

pCMV-

SPORT6 

5s: EcoRV 

3s: NotI 

XhoI, SP6 AgeI, T7 

FASN IRATp970A1078D 

IMAGE ID: 6172538 

pCMV-

SPORT6 

5s: SalI 

3s: NotI 

XhoI, SP6 AgeI, T7 

APEX2 IRAUp969F1116D 

IMAGE ID: 3537317 

pOTB7 5s: EcoRI 

3s: XhoI 

BglII, SP6 EcoRI, T7 

 

 

Table 2.12: Details of IMAGE cDNA clones used in in situ experiments. 

Restriction enzymes that were used to linearize plasmids, deciphered from plasmid 

maps supplied with the respective IMAGE clone from Source Bioscience. The RNA 

polymerase used during transcription of sense and antisense probes.   
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2.5.3. Human embryonic sections 

Slides with sections of human embryonic tissue were selected at different stages of 

development: Carnegie stage (CS) 16, 19, 20, 23 and at late 8 post conception week 

(pcw) and prepared and obtained from the Human Developmental Biology Resource 

(HDBR). Slides were treated with RNAse as an extra control to avoid non-specific 

binding/hybridisation and were subject to the following steps: 

 

2.5.4. Pre-hybridisation treatment  

The sections were placed into solutions in different sterilized troughs (all equipment 

was RNAse-free), beginning with Histoclear solution (Agar Scientific), which helps 

preserve and clean wax from the tissue, followed by a series of washing steps with 

decreasing dilutions of ethanol to hydrate the tissue. Following this; 4% 

paraformaldehyde in 1x PBS (PFA) to ‘fix’ the sections, PBS to wash them, 

Proteinase K (PK) for precisely 8 mins to perforate the tissue, PFA to re-fix, a second 

PBS wash, 0.1M Triethanolamine with acetic anhydride to break up the bonds and 

make RNA accessible, a third PBS wash ending with a dehydration step with 

increasing ethanol concentrations and subsequent air drying on the bench. 

 

2.5.5. Hybridisation 

A solution of Hybmix, of which ingredients are listed below, RNAse inhibitor, tRNA 

and the EIF2S3 probe made earlier was added to each slide (100ul to each), then 

covered with a clean cover slip avoiding bubbles and placed into a humid chamber 

overnight at 65°C. 

Hybmix solution: 

50% formamide 

0.3M sodium chloride 

20mM Tris HCL at pH7.0 

5mM EDTA 
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10% Dextran sulphate 

1x Denhardt’s solution (a mixture of blocking agents) 

 

2.5.6. Post-hybridisation washing 

All following steps and solutions were at 65°C and not RNAse-free. The cover slips 

were removed from the slides which were placed into a rack, in a trough containing 

pre-warmed 2x saline-sodium citrate (SSC) (a hybridisation buffer) in a 65°C water 

bath. The following washes then took place: 

- Rack of slides was washed in fresh 2x SSC solution for 30 mins. 

- Washed with formamide twice for 30 mins.  

- Washed twice in 2x SSC for 30 mins. 

- Washed in 0.2x SSC for 30 mins. 

- The trough was then emptied and filled with 0.2x SSC and allowed to cool to 

room temperature. 

 

2.5.7. Antibody detection 

The slides were transferred into a rack and washed twice in buffer 1 (0.1MTris pH 

7.6, 0.15M sodium chloride), followed by a blocking step for 1 hour in buffer 1 

containing 10% fetal calf serum (FCS). After draining the slides, the antibody solution; 

anti-DIG fab antibody at 1:1000 in buffer 1, was added and covered with parafilm 

before being incubated in a humid chamber overnight at 4°C. The fragment antigen-

binding (Fab) fragment is the region on the antibody that binds to the antigen, which 

in this case is DIG. Therefore the anti-DIG fab antibody recognises and binds to the 

DIG-labelled probe that is bound to the respective RNA transcripts in the section. The 

following day the parafilm was removed and slides were washed in buffer 1. Finally 

the developing solution (polyvinyl alcohol (PVA), Nitro-blue-tetrazolium-chloride 

(NBT) and Bromo-chloro-indolyl-phosphate (BCIP) separating solution) (Roche) was 

added to each slide and allowed to develop, resulting in a purple colour change 
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reaction detectable by eye showing the presence of the anti-DIG antibody and thus 

where the RNA transcripts are located. 
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Chapter 3 

 

 

 

Novel lethal form of congenital hypopituitarism  

associated with the first recessive LHX4 mutation 
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3.1. Introduction 

Due to our laboratory screening patients on such a large scale, other hospitals across 

the world contact and send us DNA from patients with hypothalamo-pituitary related 

phenotypes for us to screen. One such case, was a hospital in Karachi, Pakistan 

where Dr Humayun, an endocrinologist from the Aga Khan University Hospital, sent 

us DNA from two male deceased siblings from a pedigree (Pedigree 1) that had had 

CPHD related symptoms with fatal consequences.  

 

3.1.1. Pedigree 1 

A non-consanguineous Pakistani pedigree consisted of three siblings (Pedigree 1, 

Figure 3.1); one female and two males. The first child, a daughter (IIIa), was born with 

a birth weight of 2.4kg and a birth length of 46cm (DNA not available). She had poor 

tone and respiratory effort with grunting, persistent hyponatraemia, mid-facial 

hypoplasia, small nose with depressed nasal bridge, antimongoloid slant of eyes and 

low set crumpled ears. She had no cleft of lip or palate. She was started on nasal 

continuous positive airway pressure followed by ventilation. The second child, a son 

(IIIb), was born with a birth weight of 2.44kg and a birth length of 51cm. He presented 

with poor tone and respiratory distress marked by grunting, upon which he was 

started on ventilation. Examination showed signs of panhypopituitarism, normal tone 

and reflexes, low set crumpled ears, small upturned nose with depressed nasal 

bridge, mid-facial hypoplasia, hypoplastic nipples and nails, micropenis (1.7cm) and 

absent scrotal rugae with undescended testes. His free thyroxine was 200μg/L, TSH 

0.01mU/L, basal cortisol 2.9μg/dL and ACTH was undetectable. The third child, a 

male (IIIc), was born with a birth weight of 2.6kg and a birth length of 37.5cm (Table 

3.1). He had poor tone, low blood glucose, respiratory distress with grunting, and was 

started on ventilation. Examination showed signs of panhypopituitarism, normal tone 

and reflexes, low set crumpled ears, small upturned nose with depressed nasal 

bridge, mid-facial hypoplasia, micropenis (1.5cm), absent scrotal rugae, and a 
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palpable right testis with a left undescended testis. Persistent hyponatraemia and 

intestinal perforation complicated the clinical phenotype. His free thyroxine was 

350μg/L, basal TSH 0.004mU/L, basal PRL <0.5μg/L, peak GH <0.05μg/L, basal 

cortisol <1.1μg/dL with an undetectable ACTH (Table 3.1). In spite of the rapid 

commencement of hydrocortisone and thyroxine, all three children died within the first 

week of life with what was presumed as fulminant sepsis, with klebsiella sepsis 

confirmed as the cause of death only in the first born male. 

 

 

Pedigree 1  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Pedigree 1 harbouring the LHX4 (p.T126M) variant. The three affected 

sibling, female and two males, are represented by the fully shaded circle and squares 

respectively; the two affected brothers harboured the homozygous LHX4 (p.T126M) 

variant. The shapes containing a dot represent heterozygous asymptomatic carriers. 

Un-shaded shapes indicate normal control individuals, and shapes crossed with a 

diagonal line indicate that the individual is deceased.  
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II 
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Patient  IIIa IIIb IIIc 

Sex Female Male Male 

GA 35 35 38 

Birth weight SDS (kg) -2.3 (2.4) -2.4 (2.44) -2 (2.6) 

Birth length SDS (cm) -2.2 (46) -0.02 (51) -1.8 (47.5)  

FT4 (ng/dL) (NR) - 0.20 (NR 0.93-1.7)  0.35 (NR 0.93-1.7)  

Basal TSH (mU/L) - 0.01 <0.01 

Basal Cortisol (μg/dL) - 2.9 <1.1 

ACTH - Undetectable Undetectable 

Peak GH (μg/L) - - <0.05 

Basal Prolactin (μg/L) - - <0.5 
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Other features - Antimongoloid slant of 

eyes 

- Persistent 

hyponatraemia 

- Poor muscle tone 

- Poor respiratory 

effort, grunting 

(started on ventilation) 

- CXR: atelectasis and 

RDS-like picture 

- Low set crumpled 

ears 

- Small upturned nose 

with depressed nasal 

bridge 

- Mid-facial hypoplasia 

- Poor muscle tone 

- Small phallus (1.7cm) and 

absent scrotal rugae 

- Undescended testes 

- Poor respiratory effort, 

grunting (started on 

ventilation) 

- CXR: atelectasis and RDS-

like picture 

- Low set crumpled ears 

- Small upturned nose with 

depressed nasal bridge 

- Mid-facial hypoplasia 

- Poor tone and reflexes 

- Small phallus (1.5cm) and 

absent scrotal rugae 

- Left undescended testis 

- Low blood glucose 

- Persistent hyponatraemia 

- Poor respiratory effort, 

grunting (started on 

ventilation) 

- CXR: atelectasis and 

RDS-like picture 

- Low set crumpled ears 

- Small upturned nose with 

depressed nasal bridge 

- Mid-facial hypoplasia 
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Table 3.1: Endocrinology and phenotypes of the three patients in Pedigree 1. *GA, gestational age; SDS, standard deviation score; 

NR, normal range; TSH, thyroid-stimulating hormone; ACTH, adrenocorticotropic hormone; GH, growth hormone; CXR, chest X-ray; 

RDS, respiratory distress syndrome.  
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MRI of patient IIIb from Pedigree 1 showed a complete absence of the anterior 

pituitary and an ectopic posterior pituitary (EPP) gland (Figure 3.2 C-D). A comparison 

between a normal control individual and patient IIIb MRI scans are presented in 

Figure 3.2 where a different position and size of the pituitary gland is noted in the 

patient. The two other patients; IIIa and IIIc did not have an MRI available. The three 

siblings were reported to have atelectasis of the lungs, with chest X-rays of patients 

IIIa and IIIb showing a ground-glass appearance (a hazy increased attenuation of the 

lungs) typical of hyaline membrane disease, which is now more commonly known as 

classical respiratory distress syndrome (RDS) (Figure 3.2 E-F). Chest X-ray images 

were not available for patient IIIc. 
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Figure 3.2: The MRI scan of patient IIIb and chest X-rays of patients IIIa and IIIb 

from Pedigree 1. (A-B) Taken from the Fipa patients database 

(www.fipapatients.org). (A) A sagittal MRI view of a normal control individual showing 

the correct size and position of both the anterior and posterior lobes of the pituitary 

gland. (B) A magnified image of the area of the brain highlighted by the white box in 

‘A’, however the image is taken from a different normal control individual. (C) A 

sagittal MRI view of patient IIIb showing complete absence of the AP and an EPP 

gland. (D) A magnified image of ‘C’ in the area highlighted by the white box. (E-F) 

Chest X-rays of patients IIIa and IIIb respectively, showing a ground-glass opacity 

typical of hyaline membrane disease, also known as classical RDS. AP, anterior 

pituitary; EPP, ectopic posterior pituitary; RDS, respiratory distress syndrome. 

http://www.fipapatients.org/
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3.2. Results 

LHX4 is a member of the LIM/homeobox protein family which are multifunctional. 

Please refer to Chapter 1.3.6 for a detailed account of LHX4 and its past association 

with hypopituitarism. Heterozygous LHX4 mutations in humans are usually 

associated with variable and variably penetrant CPHD (Pfaeffle et al., 2008), making 

LHX4 a known causative gene and thus why it is routinely screened in our cohort of 

CPHD patients. The proband and his younger brother from Pedigree 1 sent to us from 

Pakistan were therefore screened for variants in the LHX4 gene by direct sequencing 

analysis (Chapter 2.1 – 2.2). 

 

 

3.2.1. Mutational analysis 

Direct sequencing analysis revealed a novel homozygous missense variant in exon 

3 of LHX4 (ENST00000263726), c.377C>T, p.T126M, in the two deceased brothers 

(Pedigree 1) (Figure 3.3 A). The variant was not present in 1000 Genomes, dbSNP, 

EVS or the ExAC Browser databases, with the latter including a total of >100,000 

control alleles of which >16,000 were of a South Asian background and thus more 

relevant to refer to for this variant in Pedigree 1. The mutated residue is located within 

a highly conserved region across multiple species as well as with other members of 

the LHX-family (Figure 3.3 B). Causative genes LHX3, HESX1, PROP1, POU1F1 and 

SOX3 were also screened for mutations in the patients in Pedigree 1, but were 

negative for mutations.  
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Figure 3.3: The electropherogram and conservation of the LHX4 (p.T126M) 

variant. (A) An electropherogram showing the homozygous missense variant, 

c.377C>T (p.T126M), in exon 3 of LHX4 in pedigree 1 (indicated by the arrow) with 

the WT sequence shown below the patient coding sequence. (B) The conservation 

of the LHX4 residue that is mutated. The threonine residue (represented by the green 

‘T’) at location p.T126 is highly conserved between multiple species and other 

members of the LHX-family of proteins. This residue is substituted by methionine in 

the proband and his sibling in pedigree 1. WT, wild-type. 

 

This detected LHX4 (p.T126M) variant is located within the LIM2 domain where 

previous reported mutations in LHX4 have been located. Other mutations have also 

been identified in the LIM1 and homeodomain, as well as along the whole protein 

(Figure 3.4). 

Patient 

WT 

B 
                                  LHX4 p.T126M 

Human:      R--Q--L--A--T--G--D--E--F 

Chimpanzee: R--Q--L--A--T--G--D--E--F 

Mouse:      R--Q--L--A--T--G--D--E--F 

Cow:        R--Q--L--A--T--G--D--E--F 

Dog:        R--Q--L--A--T--G--D--E--F 
Elephant:   R--Q--L--A--T--G--D--E--F 

Chicken:    R--Q--L--A--T--G--D--E--F 

Rabbit:     R--Q--L--A--T--G--D--E--F 

Xenopus:    R--Q--L--A--T--G--D--E--F 

Zebrafish:  R--Q--L--A--T--G--D--E--F 

Human LHX3: R--Q--L--A--T--G--D--E--F 

Human LHX6: R--Q--L--S--T--G--E--E--F 

Human LHX8: R--Q--L--S--T--G--E--E--F 

A 
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Figure 3.4: A schematic diagram of the LHX4 protein. Previously published exonic heterozygous mutations in LHX4 and the novel 

homozygous variant, T126M, located in the LIM2 domain (highlighted in red). The numbers depict the protein position of the mutated 

residue, and at what residue the domains begin and end respectively.  
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 3.2.2. Western blot analysis 

In the first instance, western blot analysis was performed on total protein extracted 

from cell lysates following transfection with wtLHX4, LHX4 (p.T126M) and LHX4 

(p.R84C) constructs respectively to investigate the amount of LHX4 protein that was 

being produced in each population. The known partial loss of function mutation LHX4 

(p.R84C) was used as a control in the transfection assays in this study, and therefore 

was also run on the western blot. This LHX4 (p.R84C) mutated protein is known to 

be of comparable size to wtLHX4 protein (Pfaeffle et al., 2008). Total protein was 

quantified using a BCA assay and a western blot was performed as described in 

Chapter 2.3.3, with GAPDH used as a control. Results indicated that protein extracted 

from LHX4 (p.T126M) transfected cells produced a protein product of comparable 

size to wtLHX4 and LHX4 (p.R84C) transfected cells (Figure 3.5).  

 

 

 

 

 

 

 

 

 

 

 

LHX4 

GAPDH 

EV wtLHX4 R84C T126M 
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Figure 3.5: LHX4 western blot analysis. Western blot analysis using an anti-LHX4 

antibody showing a specific band at 42kDa, indicative of LHX4, at the same significant 

intensity in wtLHX4, LHX4 (p.R84C) and LHX4 (p.T126M). An anti-GAPDH antibody 

was used to stain GAPDH as a control, which is shown in the specific band at 38kDa. 

‘EV’; empty vector, ‘wtLHX4’; wild-type LHX4.  

 

3.2.3. Protein prediction modelling 

Online prediction models Polyphen2 and SIFT were initially consulted for the LHX4 

(p.T126M) variant, showing a score of 1.000 on Polyphen2 termed ‘possibly 

damaging’ and a score of 0 on SIFT interpreted as ‘damaging’. An actual protein 

prediction model was created by our collaborator; Dr Jose Saldanha from the Division 

of Mathematical Biology, National Institute for Medical Research, Mill Hill, using the 

RasMol software (www.RasMol.Org) database. He is an expert in this field and 

interpreted the model to give the prediction discussed here. This was carried out in 

order to analyse what happens to the structure of the LHX4 protein when the p.T126M 

variant is introduced. The model showed that normally the threonine at position 126 

in LHX4 likely interacts with arginine at position 103 (Figure 3.6). Substitution of this 

threonine by methionine, as seen in the patients in Pedigree 1, is predicted to disrupt 

this interaction by affecting stability of the protein. Additionally, the threonine is on the 

surface within a turn of the protein structure (Figure 3.6), suggesting direct 

involvement in protein-protein interaction.  
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Figure 3.6: A protein prediction model of the LHX4 (p.T126M) variant. The 

RasMol software (www.RasMol.Org) database; a computer program commercially 

used for molecular visualization of protein models, was used to create the LHX4 

(p.T126M) protein model. The threonine at p.T126 is on the turn of the protein. The 

threonine interacts with an arginine residue at p.R103, labelled. This interaction is 

predicted to be disrupted when this threonine is substituted for methionine (p.M126) 

as seen in Pedigree 1. The yellow shapes signify beta-strands, thus p.R103 is in a 

beta strand. The light blue represents a turn region in the protein and therefore T126 

is on a turn. The dotted lines depict hydrogen-bonds and the red spheres represent 

water molecules. Thr; threonine, Arg; arginine. 
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3.2.4. Gene activation assays 

The LHX4 (p.T126M) variant identified in Pedigree 1 is located in the LIM2 domain; 

known to play a role in transactivation and protein-protein interaction. This knowledge 

led me to perform transactivation assays to investigate whether the p.T126M variant 

would affect the activation of known LHX4 downstream targets; αGSU and prolactin 

(Prl). In these assays, luciferase (Luc) was used as the reporter that was measured 

to compare activation of the mutant LHX4 (p.T126M) against the WT LHX4 (wtLHX4), 

at two different doses (Chapter 2.3.4). The constructs transfected into cells is 

illustrated in Figure 2.1. 

 

3.2.4.1. Non-parametric test: Part 1 (data refers to Figure 3.7 A and Appendix 1 

A) 

A two-sample Wilcoxon rank-sum (Mann-Whitney) test was used to test the 

hypothesis that the two independent samples (WT group and T126M group) come 

from populations with identical luciferase/protein (luciferase normalised to total 

protein values) distribution (in other words, to compare WT luciferase/protein values 

to T126M luciferase/protein values). There was no significant difference in 

luciferase/protein between WT LHX4 and T126M (p = 0.4015). 

 

Group (Cell population?) N Rank sum Expected 

WT 9 76 85.5 

T126M 9 95 85.5 

Combined 18 171 171 

 

Both wtLHX4 and LHX4 (p.T126M) similarly activated the αGSU-Luc reporter (Figure 

3.7 A), showing that the LHX4 (p.T126M) variant does not result in a change of 

function in the context of activating the αGSU-Luc promoter. Thereafter, the 

synergistic activity of wtLHX4 and LHX4 (p.T126M) with POU1F1, a known protein 



122 
 

partner of LHX4 (Pfaeffle et al., 2008) were compared respectively on the Prl 

promoter.  

 

Mann-Whitney tests were used to compare the normalised luciferase values (each 

raw measurement divided by the average EV for that particular assay). 

 

3.2.4.2. Non-parametric tests: Part 2 (data refers to Figure 3.7 B and Appendix 

1 B) 

A significant difference was found between LHX4 and lhx4 (p = 0.0003). 

Group (Cell population?) N Rank sum Expected 

LHX4 9 126 85.5 

lhx4 9 45 85.5 

Combined 18 171 171 

 

A significant difference was found between lhx4 and lhx4+pou1f1 (p = 0.0003). 

 

 Group (Cell population?) N Rank sum Expected 

lhx4 9 45 85.5 

lhx4+pou1f1 9 126 85.5 

Combined 18 171 171 

 

No evidence of a difference between lhx4 and t126m (p = 0.2332). 

 

Group (Cell population?) N Rank sum Expected 

lhx4 9 99 85.5 

t126m 9 72 85.5 

Combined 18 171 171 

 

There was evidence to suggest that T126M and lhx4 are significantly different (p = 

0.0007). 

 

Group (Cell population?) N Rank sum Expected 

T126M 9 124 85.5 

lhx4 9 47 85.5 

Combined 18 171 171 
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Evidence to suggest that there is a difference between lhx4 and t126m+pou1f1 (p = 

0.0003). 

 

Group (Cell population?) N Rank sum Expected 

lhx4 9 45 85.5 

t126m+pou1f1 9 126 85.5 

Combined 18 171 171 

 

No evidence to suggest a difference between LHX4 and T126M (p = 0.4529). 

 

Group (Cell population?) N Rank sum Expected 

LHX4 9 94 85.5 

T126M 9 77 85.5 

Combined 18 171 171 

 

Evidence of a difference between POU1F1 and pou1f1 (p = 0.0092). 

 

Group (Cell population?) N Rank sum Expected 

POU1F1 9 115 85.5 

pou1f1 9 56 85.5 

Combined 18 171 171 

 

Evidence of a difference between t126m and T126M (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

t126m 9 45 85.5 

T126M 9 126 85.5 

Combined 18 171 171 

 

Significant difference between t126m and t126m+pou1f1 (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

t126m 9 45 85.5 

t126m+pou1f1 9 126 85.5 

Combined 18 171 171 

 
No evidence to suggest a difference between lhx4+pou1f1 and t126m+pou1f1 (p = 
0.4015). 
 

Group (Cell population?) N Rank sum Expected 

lhx4+pou1f1 9 76 85.5 

t126m+pou1f1 9 95 85.5 

Combined 18 171 171 
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3.2.4.3. Non-parametric tests: Part 3 (data refers to Figure 3.7 C and Appendix 

1 C) 

Significant difference between LHX4 and lhx4 (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

LHX4 9 126 85.5 

lhx4 9 45 85.5 

Combined 18 171 171 

 

Significant difference between lhx4 and lhx4+pou1f1 (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

lhx4 9 45 85.5 

lhx4+pou1f1 9 126 85.5 

Combined 18 171 171 

 

Significant difference between lhx4 and r84c (p = 0.0013). 

 

Group (Cell population?) N Rank sum Expected 

lhx4 9 122 85.5 

r84c 9 49 85.5 

Combined 18 171 171 

 

Significant difference between lhx4 and lhx4+r84c (p = 0.0071). 

 

Group (Cell population?) N Rank sum Expected 

lhx4 9 55 85.5 

lhx4+r84c 9 116 85.5 

Combined 18 171 171 

 

Significant difference between lhx4 and r84c+pou1f1 (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

lhx4 9 45 85.5 

r84c+pou1f1 9 126 85.5 

Combined 18 171 171 

 

 

 

 

 

 



125 
 

Significant difference between LHX4 and R84C (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

LHX4 9 126 85.5 

R84C 9 45 85.5 

Combined 18 171 171 

 

Significant difference between lhx4+pou1f1 and lhx4+r84c (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

lhx4+pou1f1 9 126 85.5 

lhx4+r84c 9 45 85.5 

Combined 18 171 171 

 

Significant difference between lhx4+pou1f1 and r84c+pou1f1 (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

lhx4+pou1f1 9 126 85.5 

r84c+pou1f1 9 45 85.5 

Combined 18 171 171 

 

Significant difference between r84c and R84C (p = 0.0009). 

 

Group (Cell population?) N Rank sum Expected 

r84c 9 48 85.5 

R84C 9 123 85.5 

Combined 18 171 171 

 

Significant difference between r84c and lhx4+r84c (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

r84c 9 45 85.5 

lhx4+r84c 9 126 85.5 

Combined 18 171 171 

 

Significant difference between r84c and r84c+pou1f1 (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

r84c 9 45 85.5 

r84c+pou1f1 9 126 85.5 

Combined 18 171 171 
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Significant difference between pou1f1 and POU1F1 (p = 0.0017). 

 

Group (Cell population?) N Rank sum Expected 

pou1f1 9 50 85.5 

POU1F1 9 121 85.5 

Combined 18 171 171 
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3.2.4.4. Parametric tests: Two-tailed unpaired T-tests 
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Figure 3.7: Transient transfection gene activation assays in HEK293T cells 

using the LHX4 (p.T126M) variant. (A-C) Results are shown as the mean ± SD of 3 

independent experiments with each assay performed in triplicate. The average mean 

values from each triplicate assay 1, 2, 3 are shown in Appendix 1. The error bars 

represent the standard deviation (SD) of the mean. Two-tailed unpaired T-tests were 

the statistical tests used here. (A) Luciferase activity on the αGSU promoter following 

transfection with wtLHX4 and LHX4 (p.T126M) expression constructs respectively, 

co-transfected with the αGSU-Luc reporter construct. Luciferase activity was 

normalized to the amount of total protein and showed no significant difference 

between wtLHX4 and LHX4 (p.T126M). EV: empty vector was used as a negative 

control. (B) Luciferase activity on the Prl-Luc following transfection with wtLHX4, 

wtPOU1F1 and LHX4 (p.T126M). The lower dose (31.25ng/well) is indicated by the 

lower case lettering (lhx4, pou1f1) and the higher dose (62.5ng/well), which is the 

concentration consistent with previous studies, is indicated by the upper case lettering 

(LHX4, POU1F1). Luciferase activity was normalized to Renilla-luciferase activity. 

There was a significant increase in luciferase activity between wtLHX4 transfected 

alone, and wtLHX4 co-transfected with wtPOU1F1 on activating the Prl-Luc (p<0.05) 

indicated by *. In addition, there was significant difference in luciferase activity 

between LHX4 (p.T126M) alone, and LHX4 (p.T126M) co-transfected with 

wtPOU1F1 (p<0.01) indicated by **. (C) Luciferase activity on Prl-Luc following 

transfection with two doses, as described in ‘B’, of each expression construct: 

wtLHX4, wtPOU1F1 and LHX4 (p.R84C) alone, in addition to wtLHX4 and LHX4 

(p.R84C) (lower dose) co-transfected with wtPOU1F1 (lower dose). The significant 

increase in luciferase activity between wtLHX4 transfected alone, and wtLHX4 co-

transfected with wtPOU1F1 was replicated in this assay on activating the prolactin 

promoter but to a higher degree (p<0.001), indicated by ***. There was also a 

significant increase in activity between LHX4 (p.R84C) alone, and LHX4 (p.R84C) co-

transfected with wtPOU1F1 (p<0.01) indicated by **. There was a significant 
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difference in luciferase activity between wtLHX4 co-transfected with wtPOU1F1, and 

LHX4 (p.R84C) co-transfected with wtPOU1F1 (p<0.05), indicated by *. Luc, 

luciferase; Prl-Luc, prolactin-luciferase. 

 

When activating prolactin-luciferase (Prl-Luc), the individual constructs alone 

(wtLHX4 and LHX4 (p.T126M)) resulted in a dose-dependent increase in luciferase 

activity. When each of these constructs were co-transfected with wtPOU1F1, there 

was a significant increase in activity compared to transfection with LHX4 alone. 

Results are shown as the mean ± SD of 3 independent experiments with each assay 

performed in triplicate; wtLHX4 with wtPOU1F1, 4.44 ± 1.28 vs 30.01 ± 10.23; 

p=0.013 and LHX4 (p.T126M) with wtPOU1F1, 3.92 ± 1.01 vs 33.60 ± 9.95; p=0.007. 

However, there was no significant difference in synergistic transactivation of the Prl-

Luc reporter between wtLHX4 and LHX4 (p.T126M), co-transfected with and without 

wtPOU1F1 (Figure 3.7 B). The significant increase in activity between wtLHX4 

transfection alone and wtLHX4 co-transfection with wtPOU1F1 was replicated, 4.22 

± 1.43 vs 30.26 ± 3.73; p=0.0004 in another set of transfection assays that activated 

the Prl-Luc reporter (Figure 3.7 C). This is a higher significant difference in 

transactivation between wtLHX4, and wtLHX4 with wtPOU1F1, compared to what 

was observed the first time (p=0.0004 vs p=0.013) (Figure 3.7 B), showing variability 

between assays with a stronger transactivation in this final assay (Figure 3.7 C). In 

these final transfections, the known partial loss of function mutation, LHX4 c.250C>T, 

p.R84C (Pfaeffle et al., 2008), was used as a control. There was no significant 

difference in activation of the Prl-Luc reporter when transfecting the LHX4 (p.R84C), 

both alone and in the presence of wtLHX4, compared to wtLHX4 alone. Additionally, 

co-transfection of LHX4 (p.R84C) with wtPOU1F1 led to an increase in transcriptional 

activity compared to LHX4 (p.R84C) alone, 2.12 ± 0.45 vs 17.13 ± 3.44; p=0.002, 

however, activation was significantly lower than that achieved by co-expression of 
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wtLHX4 with wtPOU1F1, 30.26 ± 3.73 vs 17.13 ± 3.44; p=0.011 (Figure 3.7 C), 

demonstrating the reported partial loss of function of LHX4 (p.R84C). The use of this 

reported mutant construct, indicates that the assays performed in this study work well 

and that the results are a true representation. As the wtLHX4 and the LHX4 (p.T126M) 

showed similar positive activities, it is suggested that both are well expressed, thus 

complementing the western blot analysis (Figure 3.5).   

 

3.4. Discussion 

The homozygous LHX4 variant identified in the three siblings from Pedigree 1 causes 

a change in a highly conserved region of the LIM2 domain of the protein (Figure 3.3 

B), and has outcomes that parallel the Lhx4 homozygous null mutant mouse model 

(Li et al., 1994). This is the first homozygous LHX4 mutation to be described in 

humans in association with hypopituitarism, I therefore wished to further test the 

impact of the mutation on LHX4 function. Mutations affecting LIM domains have been 

known to affect transactivation as well as interaction of protein partners, however 

functional studies have been performed in a relatively small number of mutant LHX4 

proteins. Previous functional studies on the partial loss of function mutation, LHX4 

(p.R84C), showed reduced activation of the αGSU and TSHβ reporters and inactivity 

on the POU1F1 promoter reporter gene (Pfaeffle et al., 2008). Another study looked 

at the LHX4 (p.V101A) mutant which was completely unable to activate the POU1F1 

and FSHβ subunit gene promoters (Tajima et al., 2010). Additionally, the LHX4 

(p.V75I) mutation located in the LIM1 domain was associated with a partial 

impairment of the capacity to transactivate POU1F1 and αGSU, without any 

dominant-negative effects (Takagi et al., 2012).  
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As transactivation of both the αGSU-Luc and Prl-Luc promoters were not affected by 

LHX4 (p.T126M), it is suggested that gene activation is perhaps not the mechanism 

affected by this variant. It is understood that there are other promoters to explore in 

this context such as TSHβ, POU1F1 and FSHβ; however it cannot be certain that 

these are genuine physiological targets of LHX4 as they may be expressed at 

different developmental stages and at very particular doses. Thus the lower and 

higher doses used in the transactivation assays in these studies may not be mirroring 

the in vivo doses that occur in the body. In addition, LHX4 and POU1F1 may not be 

present in equal doses in vivo, as they have been in the analysis of these assays; the 

quantities of both proteins most likely vary within the biological system making it 

extremely difficult to mimic what occurs physiologically in in vitro studies. Essentially, 

the complete target gene set of LHX4 is unclear and many mechanisms taking place 

in vivo might underlie the defect associated with this mutation. Therefore 

controversially it cannot be ignored that the possibility of the LHX4 (p.T126M) 

substitution may be effecting an as yet undetermined function of the protein. It should 

also be noted that as this variant was identified via a Sanger sequencing approach, it 

cannot be excluded that another undetected genetic abnormality or deletion 

elsewhere in the genome may be contributing to the phenotype as only the known 

causative genes were screened in this Pedigree: LHX3, HESX1, PROP1, POU1F1 

and SOX3. 

 

Mutations located in the LHX4 homeodomain often cause a loss of DNA-binding, as 

seen in reported mutations p.L190R and p.A210P (Pfaeffle et al., 2008). A 

heterozygous frameshift mutation, p.T99Nfs*53, was previously identified in LIM2 of 

LHX4 in two brothers with GH and TSH deficiencies, pituitary hypoplasia and a poorly 

developed sella turcica. The youngest also had corpus callosal hypoplasia and an 

EPP. This mutation led to a loss of transcriptional activity on the POU1F1, PRL and 

GH promoters due to abolished DNA-binding, which was a result of complete 
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truncation of the homeodomain (Castinetti et al., 2008). As the p.T126M substitution 

is not located and does not affect transcription of the homeodomain, it is not predicted 

to affect DNA-binding. Therefore it would not be necessary to perform an experiment 

such as an electrophoretic mobility shift assay (EMSA) for example, which is a 

common affinity electrophoresis technique used to study protein–DNA or protein–

RNA interactions, as the homeodomain in our patients is intact and should have a 

normal DNA-binding ability.   

 

LIM domains are involved in protein-protein interaction, as observed in both LHX3 

and LHX4. Sloop et al. (Sloop et al., 2001) previously analysed the binding abilities 

of purified LHX3 protein (mutant and WT) with partners Ldb1/NLI and POU1F1. 

Through in vitro binding assays, they tested whether the LHX3 (p.Y111/116C) 

substitution, located in the LIM2 domain, disrupts structure and binding to putative 

partner proteins. Interaction of LHX3 (p.Y111/116C) with POU1F1 was reduced 

compared to wtLHX3, which may explain the reduction in the ability of LHX3 

(p.Y111/116C) to activate the Prl promoter in the presence of POU1F1 (Sloop et al., 

2001). Studies such as this led me to investigate the protein-protein interaction of 

LHX4 and POU1F1 and its synergistic ability to activate the Prl promoter. Despite no 

significant difference being apparent in these synergistic assays, the LHX4 (p.T126M) 

may be affecting other such interactions with partner proteins even though interaction 

with POU1F1 seems to be unaffected. One needs to bear in mind that the partners 

with which LHX4 interacts are largely unknown, therefore the LHX4 (p.T126M) 

mutation may affect interaction with a partner yet to be identified. Alternatively likely 

partners such as Ldb1 for example may demonstrate impaired complex formation and 

be a possible mechanism whereby LHX4 (p.T126M), especially in its homozygous 

state, leads to the phenotype seen in Pedigree 1. Furthermore, the RasMol protein 

prediction model concluded that the threonine that is substituted by methionine in 

Pedigree 1, is on the surface within a turn of the protein (Figure 3.6), suggesting an 



133 
 

involvement in protein-protein interaction. Moreover, online prediction models 

Polyphen2 and SIFT predict the p.T126M variant to be damaging (Table 3.2).  

 

Protein prediction 

model software used 

Website reference 

to software 

Score 

generated 

from model if 

applicable 

Result determined 

from model 

Polyphen2 genetics.bwh.harva

rd.edu/pph2/ 

1 Possibly damaging 

SIFT sift.jcvi.org/ 0 Damaging 

RasMol www.RasMol.Org N/A Predicted to alter 

stability and 

protein-protein 

interaction 

 

Table 3.2: Protein prediction models used for the LHX4 (p.T126M) variant. Two 

that generate a score reflecting the level of pathogenicity; Polyphen2 and SIFT, and 

one that illustrates a molecular model of the p.T126M variant; Rasmol. 

 

The p.T126M variant was present in both brothers (IIIb, IIIc) in Pedigree 1. 

Unfortunately the daughter’s (IIIa) DNA was not available; however, her clinical 

presentation suggests that it was highly likely that she carried the same homozygous 

variant in addition to her brothers. Previously, patients carrying heterozygous LHX4 

mutations have manifested variable CPHD incorporating GH +/- TSH, PRL, ACTH, 

LH and FSH deficiencies. Phenotypes have included dysmorphic features, a small 

AP, an EPP, a poorly developed sella turcica, Chiari malformation, respiratory 

distress syndrome and corpus callosal hypoplasia (Castinetti et al., 2008, Pfaeffle et 

al., 2008, Dateki et al., 2010, Tajima et al., 2007). Both brothers in Pedigree 1 

presented with severe panhypopituitarism (Table 3.1) and showed anterior pituitary 

atrophy and an EPP, similar to previously reported carriers of LHX4 mutations. One 
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such previous report describes a maternally inherited heterozygous 1.5-megabase 

microdeletion in 1q25.2-q25.3, which spans LHX4 (q25.2), in a CPHD patient with 

minor physical anomalies, suggestive of a midline defect, and heart failure (Filges et 

al., 2012). Additionally, a de novo interstitial deletion of chromosome 1q24.3q31.1, 

again incorporating LHX4, was defined by array-comparative genomic hybridization 

(array-CGH) in a patient with pituitary hormone deficiencies, severe cognitive 

impairment, bilateral cleft lip/palate and other associated abnormalities. The deletion 

of LHX4 was considered to be largely causative of the diminished growth and CPHD 

in this patient (Capra et al., 2014). The CPHD observed in Pedigree 1 is consistent 

with these previous data, however the fact that all three patients died supports the 

hypothesis that the presence of a homozygous LHX4 mutation elicits fatal 

consequences. 
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3.5. Conclusion 

To date, described LHX4 mutations have been heterozygous, and often variably 

penetrant with outcomes likely caused by haploinsufficiency (McCabe and Dattani, 

2014) (Figure 3.4). This is the first report describing a homozygous variant in a patient 

identified through Sanger sequencing. Exome sequencing was not performed in this 

pedigree. Given the lethality of recessive mutations in rodents (Li et al., 1994), the 

homozygous p.T126M variant is likely to be responsible for this pedigree’s lethal 

phenotype, although the presence of another genetic abnormality contributing to their 

fatal phenotype cannot be ruled out. All three siblings presented with respiratory 

distress due to atelectasis of the lungs, echoing the mouse model in which null 

mutants died within the first week of life from immature lungs that failed to inflate (Li 

et al., 1994). Based on the phenotypic characterization of this mutant, this previous 

study concludes that Lhx4 plays a critical role in the development of early postnatal 

respiratory control mechanisms and in the normal growth and maturation of the lung 

in the mouse, as this study also suggests in humans. However the etiology of how 

mutant Lhx4/LHX4 elicits this fatal lung phenotype is as yet unknown. The high 

conservation between murine Lhx4 and human LHX4 indicates the fundamental 

importance of this protein in maintaining life across species and that recessive 

mutations in Lhx4/LHX4 are lethal. 
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Chapter 4 

 

 

 

New candidate genes identified through exome sequencing and their 

expression profiles in a phenotype-related context 
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4.1. Introduction 

At Great Ormond Street Institute of Child Health (ICH) we have access to over 2000 

DNA samples from around the world, that have hypothalamo-pituitary related 

phenotypes in whom no genetic diagnosis has been made. Aside from screening the 

known causative genes in the quest to find the genotype responsible for certain CH 

patient phenotypes, an alternative strategy of exome sequencing is demonstrated in 

this study. Many pedigrees that are negative for mutations in the known 

hypopituitarism genes, and phenotypically unique pedigrees that do not have any 

obvious genes to be screened, have been put forward for exome sequencing, in 

collaboration with GOSgene, to potentially highlight regions of interest in the exome 

that can be investigated further. The phenotypically unique cohort includes 

consanguineous and non-consanguineous families with varying hypothalamo-

pituitary disorders that have unusual accompanying phenotypes that have not been 

described in collaboration with the CH spectrum in the literature before. This chapter 

describes seven different unrelated Pedigrees (Pedigrees 2-8) with unusual 

phenotypes of this nature, that have had novel variants in novel genes revealed 

through exome sequencing as potential targets for hypothalamo-pituitary related 

phenotypes. An example of how exome sequencing data is filtered is illustrated in 

Appendix 2.  How each exome sequencing project (Pedigrees 3-7) was filtered is 

displayed in Appendix 3, and a summary table of the phenotypes and identified 

variants of Pedigrees 2-7 is shown in Appendix 4. Albeit the final pedigree (Pedigree 

8) discussed in this chapter, these novel variants will be functionally investigated in 

future projects through various analyses that are specific to each gene and the 

pathway in which it is involved. In this study, expression analysis has been conducted 

for each of the genes in which potentially causative variants have been identified, 

focusing on the hypothalamo-pituitary axis in human embryonic development, and 

any related tissues relevant to the patient phenotype. Initially following identification 

of a novel gene, it is very important to establish an expression profile in the context 
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of the tissues affected in the pedigree. If no expression is apparent in these areas 

there is less evidence to say that the gene is contributing towards the phenotype. As 

well as their expression profile, an introduction to the potential function of each 

respective gene and the phenotype of the patients that harbour these potential 

pathogenic variants, is reviewed in this chapter. Each gene appears to be unique in 

terms of expression pattern, function and impact on the phenotype. Establishing the 

exact hypothalamo-pituitary expression as in these data, will potentially benefit and 

complement future functional studies enabling delineation of the role of the relevant 

gene in development and disease.  

 

A total of six potential novel CH candidate genes have been identified through exome 

sequencing in these seven different families (Pedigrees 2-8). These genes, that were 

found to be mutated in the patients from these pedigrees, are: CTPS2, RNPC3, 

PRMT6, FASN, APEX2 and EIF2S3. An antisense and sense DIG-labelled RNA 

probe was generated from IMAGE clones for each gene, and in situ hybridisation was 

performed on human embryonic tissue at different stages of development as 

described in Chapter 2.5. All control sense probes for the genes were negative for 

any mRNA transcript staining; presenting with no visible colour image under the 

microscope, thus confirming that the expression data generated from this study are 

reliable.  
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4.2. CTPS2 

4.2.1. Pedigree 2 

A 23 year old female patient of Afro-Caribbean non-consanguineous background 

presented with congenital panhypopituitarism; GH, TSH, ACTH, LH and FSH 

deficiencies. Her complex phenotype additionally included left microtia; an absent 

pinna, with severe conductive hearing loss, ciliary dyskinesia, complete situs inversus 

with dextrocardia, hypoplasia of the mandible, severe eczema, learning difficulties, 

left facial nerve palsy with left sided hemiparesis and learning difficulties (Pedigree 2, 

Figure 4.1).  

 

Pedigree 2 

 

 

Figure 4.1: Pedigree 2 with the patient harbouring the CTPS2 (p.F166L) variant. 

The Afro-Caribbean non-consanguineous Pedigree 2 with the affected daughter, 

indicated by the shaded circle and arrow, that harbours the heterozygous de novo 

CTPS2 (p.F166L) variant. The roman numerals on the left of the image refer to the 

generation within the pedigree. The unshaded square and circle represent that the 

parents are unaffected. 

 

4.2.2. Exome sequencing results: CTPS2 

A heterozygous missense de novo variant in CTPS2 (ENST00000443824), 

c.498C>A, p.F166L, was identified in this patient (Pedigree 2). This is in a highly 

conserved region across multiple species (Figure 4.2) and is not present on any 

II 
  

 I 
  



140 
 

control database, including 1000 Genomes, dbSNP, EVS or the ExAC Browser, with 

the latter including over >87,000 control alleles; with >52,421 alleles from an African 

origin, which is a more relevant control cohort to this patient.  

 

CTPS2 (p.F166L) 

Human:      A--F--R--Q--F--Q--F--K--A 

Mouse:      A--F--R--Q--F--Q--F--K--A 

Chimpanzee: A--F--R--Q--F--Q--F--K--A 

Cow:        A--F--R--Q--F--Q--F--K--A 

Dog:        A--F--R--Q--F--Q--F--K--A  

Chicken:    A--F--R--Q--F--Q--F--K--A  

Xenopus:    A--F--R--Q--F--Q--F--K--A 

 

Figure 4.2: Conservation of the substituted CTPS2 residue. The extent of 

conservation across multiple species of the substituted amino acid (highlighted in 

green), and the spanning protein sequence, in CTPS2.  

 

4.2.3. CTPS2 function 

The coding region of Cytidine 5'-Triphosphate Synthase II (CTPS2) is 1.761kb in 

length, comprising of 19 exons on the X chromosome. CTPS2 catalyses the 

amination of UTP to CTP with the concomitant deamination of glutamine to glutamate 

(Bearne et al., 2001). It is the rate-limiting enzyme in the synthesis of cytosine 

nucleotides which play an important role in various metabolic processes and provide 
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the precursors necessary for the synthesis of RNA and DNA. CTPS2, like its family 

member CTPS1, regulates intracellular CTP levels through interactions with the four 

ribonucleotide triphosphates (Endrizzi et al., 2004). A recent report describes a loss-

of-function homozygous mutation (rs145092287) in CTPS1 in a patient with a novel 

life-threatening immunodeficiency, characterized by an impaired capacity of activated 

T and B cells to proliferate in response to antigen receptor-mediated activation (Martin 

et al., 2014). This mutation affected a splice donor site producing a transcript lacking 

exon 18 of CTPS1, of which expression was absent from lysates derived from 

Epstein-Barr Virus (EBV)-transformed B and T cells from patients. Functional assays 

performed in this previous study restored normal T-cell proliferation in CTPS1-

deficient cells by expressing WT CTPS1 or by the addition of CTP, or its nucleoside 

precursor cytidine (Martin et al., 2014). CTPS2 may also be referred to as an 

oncogene, as cancer cells that exhibit increased cell proliferation also exhibit an 

increased activity of this encoded protein, making it a potential target for 

chemotherapy (www.ncbi.nlm.nih.gov). Previous studies have shown that a reduction 

in CTPS2 expression increases resistance of colorectal cancer cell lines to the drug 

5-fluorouracil (5FU). This was reflected in their study in vivo, where patients with low 

CTPS2 did not gain a survival benefit from 5FU treatment, while those with high 

expression did (Tan et al., 2011).  

Murine Ctps2 is expressed in multiple systems including the reproductive, respiratory, 

nervous, olfactory, auditory and visual systems with many more listed as having 

transcript staining (MGI). Human CTPS2 expression is highest in the prostate, ovarian 

follicles, testis, areas of the brain, lymph nodes, tonsils and the parathyroid gland as 

well as other areas of the body according to the Human Protein Atlas.  
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4.2.4. CTPS2 expression results 

The hypothalamo-pituitary axis of the brain has not previously been studied for 

CTPS2 in detail. Expression analysis conducted in this study show expression in the 

neural tube and Rathke’s pouch (the primordium of the anterior pituitary) at CS16 and 

CS19 (Figure 4.3A-B, D). In the diencephalon, telencephalon (Figure 4.3C), 

trigeminal ganglia at CS19 (Figure 4.3D), spinal cord and spinal ganglia at CS19 

(Figure 4.3E). In the developing neural retina of the eye at CS19 and at late 8 post 

conception week (pcw) (Figure 4.3F-G), and in the oesophagus and the lungs; 

bronchi at CS19 (Figure 4.3H-I). CTPS2 expression was also noted in parts of the 

developing ear; in the cochlea at CS23 and in the semi-circular canal and the utricle, 

which is one of the vestibular sensory organs at CS19 (Figure 4.4A-D). Due to the 

patient having dextrocardia, sections of the heart at CS19 were also analysed in this 

study, however they showed no significant transcript expression.  
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Figure 4.3: CTPS2 expression in the developing hypothalamic-pituitary axis, 

eyes and lungs during human embryogenesis. In situ hybridization using the 

antisense probe against the human CTPS2 mRNA transcript (hCTPS2) on human 

sections from different Carnegie stages (CS) during embryogenesis. Scale bars in 

each image depict 200µM. (A-E) Transverse sections, (F-G) sagittal sections, (H-I) 

transverse sections (A) CS16: expression is seen in the neural tube, Rathke’s pouch 

and the eye. (B) CS16: Rathke’s Pouch and the hypothalamus show high CTPS2 

expression. (C) CS19: expression in the telencephalon and diencephalon, (D) CS19: 

in the trigeminal ganglia and Rathke’s pouch. (E) CS19: expression is observed in 

the spinal cord and spinal ganglia, (F) CS19 a gradient of expression in the 

developing neural retina of the eye. (G) Late 8 post conception week (pcw): 

expression in the developing neural retina of the eye. (H-I) CS19: expression in the 

oesophagus and bronchi of the lungs. The black boxes in ‘A’ and ‘H’ reflect the section 

of the image that is magnified in ‘B’ and ‘I’ respectively. RP, Rathke’s pouch; Hyp, 
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hypothalamus; T, telencephalon; D, diencephalon; TG, trigeminal ganglia; S, spinal 

cord; SG, spinal ganglia; R, retina; B, bronchi; O, oesophagus. 

 

Figure 4.4: CTPS2 expression in the developing ear. In situ hybridization 

performed on human transverse sections using the antisense probe against the 

human CTPS2 mRNA transcript (hCTPS2). The scale bar in ‘A’ represents 500µM 

and the scale bars in ‘B-D’ depict 200µM. (A-C) CS19: expression is seen in the utricle 

(a vestibular sensory organ) and the semi-circular canal of the ear. The black boxes 

in ‘A’ are the sections of the image that are magnified in ‘B’ and ‘C’ respectively. (D) 

CS23: expression in the cochlea structure of the ear, highlighted by the arrowheads. 

U, utricle; SC, semi-circular canal; C, cochlea.
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4.3. RNPC3 and PRMT6 

4.3.1. Exome sequencing results of Pedigrees 3-6 

Exome sequencing revealed an area of homozygosity in four unrelated Turkish 

consanguineous pedigrees (Pedigrees 3-6, Figure 4.5) where the probands 

manifested a unique phenotype characterized by IGHD and primary ovarian failure in 

the affected females, with male patients manifesting IGHD. Six out of the seven 

affected individuals in Pedigrees 3-6; four females and two male patients, and the 

unaffected father of the female patient in pedigree 5, had exome sequencing 

performed (Figure 4.5). This area contained a novel homozygous missense variant in 

RNPC3 (ENST00000423855), c.1449A>T, p.L483F, and a novel homozygous 

missense variant in PRMT6 (ENST00000370078), c.1049C>G, p.P350R. The 

affected males have not been reported to have testicular problems, however limited 

detailed clinical information from these Turkish pedigrees are currently available. 
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Pedigree 3 

Pedigree 4 

Pedigree 5 

Pedigree 6 
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Figure 4.5: Pedigrees 3-6 harbouring the RNPC3 (p.L483F) and PRMT6 

(p.P350R) variants. Four unrelated pedigrees (Pedigrees 3-6) from Turkish origin. 

Shaded squares and circles indicate affected family members, squares for males, 

circles for females. Shapes joined by two lines indicate consanguinity between those 

individuals. The arrows and arrowhead highlight the probands in each pedigree. A 

diagonal line through a shape indicates that the individual is deceased. The roman 

numerals down the left hand side refer to the generation within that Pedigree. All 

affected individuals illustrated in these pedigrees had exome sequencing performed, 

with the exception of the affected male patient in Pedigree 5. In addition, exome 

sequencing was also performed in the unaffected father of the female patient in 

Pedigree 5. 

 

The novel missense substitution, RNPC3 (p.L483F), is highly conserved across 

multiple species (Figure 4.6A) and is not present on control databases; 1000 

Genomes, dbSNP, EVS or the ExAC Browser, with the latter including >111,000 

alleles; incorporating >67,000 from a European background which is where any 

Turkish control alleles would be categorized and thus are more relevant controls to 

Pedigrees 3-6. The novel PRMT6 (p.P350R) missense substitution is conserved 

across four species (Figure 4.6B) and is not present in homozygous form on control 

databases; 1000 Genomes, dbSNP, EVS or the ExAC Browser. However, a 

substitution of the Proline by a Threonine residue at position 350 is present in 

heterozygous form in two alleles from European origin on the ExAC Browser, out of 

a total of >66,000 control alleles; 60,174 of which were from the European cohort. 

The role of PRMT6 is discussed in section 4.3.4 of this chapter. 
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A) RNPC3 (p.L483F)  

Human:      A--A--K--A--L--K--E--A--N 

Mouse:      A--A--K--A--L--K--E--A--N 

Chimpanzee: A--A--K--A--L--K--E--A--N 

Cow:        A--A--K--A--L--K--E--A--N  

Dog:        A--A--K--A--L--K--E--A--N 

Chicken:    A--A--K--A--L--K--E--A--N 

 

B) PRMT6 (p.P350R)  

Human:      S--R--D--N--P--R--R--L--R 

Mouse:      S--P--D--N--P--R--R--L--R 

Chimpanzee: S--R--D--N--P--R--R--L--R 

Elephant:   A--R--D--N--P--R--R--L--R 

 

 

Figure 4.6: Conservation of the substituted RNPC3 and PRMT6 residues. The 

extent of conservation across multiple species of each substituted amino acid, (A) 

RNPC3 and (B) PRMT6 (highlighted in green), and the spanning protein sequences. 

Any spanning amino acid residues that differ from the normal human reference 

sequence are highlighted in red. 
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4.3.2. RNPC3 function 

There are two types of spliceosomes that catalyse splicing of pre-mRNAs: the major 

U2-type spliceosome removes U2-type introns (99% of pre-mRNA introns) and the 

minor U12-type spliceosome removes U12-type introns, which are rare with distinct 

splice consensus signals. Both the U2- and U12-type spliceosomes consist of several 

small nuclear RNAs (snRNAs) and associated proteins (Sharp and Burge, 1997) 

(Figure 4.7). The RNA-binding region (RNA recognition motifs [RRM]) containing 3 

(RNPC3) coding region is 1.554kb in length, incorporating 16 exons on chromosome 

1. RNPC3 encodes a 65K protein that is a component of the U12-type spliceosome. 

It contains two bipartite nuclear targeting sequences important for nuclear targeting 

for proteins, especially those functioning in the cell nucleus itself (Zhao et al., 2003). 

RNPC3 is located in the cell nucleus and is abundantly expressed in the kidney and 

pancreas (Zhao et al., 2003). This protein’s two RRM’s suggest that it may contact 

one of the small nuclear RNAs of the minor spliceosome (Zhao et al., 2003).  

Defects in the U12-type splicing; via mutations in the U4atac snRNA component of 

the minor spliceosome, have been reported to be associated with the complex 

disorder Taybi-Linder syndrome (also known as microcephalic osteodysplastic 

primordial dwarfism 1), a severe developmental disorder involving brain and skeletal 

abnormalities, and tragically unexplained postnatal death (Edery et al., 2011) (He et 

al., 2011). This is an example of how poorly spliced endogenous U12-dependent 

introns, but not U2-dependent, can specifically cause life-threatening complex 

disorders. Defective U12-type splicing, via a mutation in the tumour suppressor gene 

LKB1 intron, has also been linked to a hereditary intestinal polyposis condition, Peutz-

Jeghers syndrome, which is associated with increased cancer risk (Hastings et al., 

2005). 
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U2-type spliceosome and U12-type spliceosome 

 

Figure 4.7: A comparison of the steps during the formation of the U2- and U12-

type spliceosome. The U2-type major spliceosome forms at introns with a GU 

sequence at their 5’ end and an AG sequence at their 3’ end. The U12-type minor 

spliceosome forms at introns with an AU sequence at their 5’ and an AC sequence at 
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their 3’ end. Both the U2- and U12-type spliceosomes recognise an ‘A’ residue branch 

site in the intron. A series of different small nuclear RNA (snRNA) molecules e.g. U1, 

U2, U11, U12 etc, belonging to either the U2- or U12-type spliceosome, bind in 

succession to the intron to form the spliceosome complexes respectively, resulting in 

the cleavage and thus the splicing of introns. The U5 snRNA is the only common 

component between the U2- and U12-type spliceosome. This image was taken and 

adapted from Will CL, Luhrmann R. Biol. Chem. 2005 Aug; 386(8): 713-24.  
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Murine Rnpc3 is expressed in the nervous and olfactory systems (MGI) yet, to date, 

there is no murine model for Rnpc3 loss of function. However, a study using a 

zebrafish mutant model with an induced lethal point mutation in rnpc3 resulted in 

arrested development of the digestive organs. This phenotype arose from the 

formation of aberrant U11- and U12-containing snRNAs that impaired the efficiency 

of U12-type splicing. This zebrafish model provided a useful and specific model of 

aberrant U12-type splicing in vivo. Analysis of its transcriptome revealed that efficient 

mRNA processing is a critical process for the growth and proliferation of cells during 

vertebrate development (Markmiller et al., 2014).  

Biallelic mutations in RNPC3 have previously been described in three sisters with 

severe IGHD and pituitary hypoplasia, where anomalies were identified in U11/U12 

di-snRNP formation and the splicing of multiple U12-type introns in these patient cells 

(Argente et al., 2014). Through RNA sequencing (RNA seq) the authors identified a 

list of 21 genes with significantly decreased U12/U2 ratios in patient cells, as well as 

aberrant processing events including exon skipping and activation of cryptic U2-type 

splice sites (Argente et al., 2014). A subset of the 21 genes were found to encode 

proteins with relevant functions in pituitary development, such as SPCS2 and SPCS3 

that encode subunits of the signal peptidase complex, implicated in posttranslational 

processing of preprohormones such as preproghrelin to proghrelin (Argente et al., 

2014, Yin et al., 2009), thus themselves becoming candidates for the phenotype. 
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4.3.3. RNPC3 expression results 

Human expression analysis was performed on embryonic tissue from the 

hypothalamo-pituitary axis of the brain (Figure 4.9) in this study. Results showed high 

RNPC3 expression in the telencephalon, diencephalon (Figure 4.9A), trigeminal 

ganglia, hypothalamus and Rathke’s pouch at CS19 (Figure 4.9B-D). Furthermore, 

human embryonic ovarian sections were also requested from HDBR, however 

following staining of these sections it came to light that the tissue was not in fact fully 

ovarian, despite being referenced as so. Therefore the RNPC3 mRNA transcript 

staining is observed in the mesonephros (ducts that later develop into the kidney), 

and in what is possibly the fallopian tube (Figure 4.9 F-K), at 9pcw, in tissue that was 

originally thought to be ovarian. The ovary and mesonephros are attached to each 

other during early female embryonic development, and by the 10pcw stage the 

mesonephros have disappeared as the true kidney is formed (HDBR specialists). 

Unfortunately, the large bulk of the ovary was not present in the 9pcw sections 

acquired in this study, only its smaller counterpart was intact, as demonstrated in the 

comparison below of our section and an image of what it should have looked like 

following sectioning (Figure 4.8) (recent unpublished information from HDBR). There 

are two pairs of genital ducts present in both male and female embryos, the 

mesonephric (wolffian) and paramesonephric (müllerian). In female embryogenesis 

at 9pcw, the mesonephric ducts degenerate but the paramesonephric ducts, by the 

process of fusion that starts caudally and progresses cranially, form the uterovaginal 

canal. This canal later develops into the upper portion of the vagina and uterus, while 

their non-fused portions become fallopian tubes (Grechukhina et al., 2016). In recent 

talks with HDBR, colleagues said that in transverse sections through the lower body 

at 10pcw stage or later, it would be possible to distinguish between the fallopian tubes 

and paramesonephric ducts, however it remains ambiguous here at 9pcw as it is too 

early to tell these structures apart. Therefore I will now acquire sections from at least 
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10pcw from HDBR, with intact ovarian tissue, in order to clarify where the RNPC3 

transcript staining is located.   

 

 

Figure 4.8: Human embryonic tissue sections from the ovary and developing 

kidney. (A) A sagittal section of human embryonic tissue taken from an ovary and 

developing kidney at 9pcw. (B) The 9pcw sagittal section that our study acquired with 

the large section of ovarian tissue missing, that is present in (A). Each specific tissue 

is indicated by the arrows. The scale bar in the image represents 200µM. 
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Figure 4.9: RNPC3 expression in the developing hypothalamic-pituitary axis 

and the ovary during human embryogenesis. In situ hybridization using the 

antisense probe against the human RNPC3 mRNA transcript (hRNPC3) on human 

sections from CS19 and 9pcw during embryogenesis. The scale bars in ‘A-B’ 

represent 500µM and the scale bars in ‘C-K’ represent 200µM. (A-E) Transverse 

sections, (F-K) sagittal sections. (A-D) CS19: high hRNPC3 expression seen in the 

telencephalon, diencephalon, trigeminal ganglia and Rathke’s pouch. (E) CS19: 
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expression can be seen in the spinal cord and spinal ganglia. (F-J) 9pcw: expression 

is noted in the mesonephros of the premature kidney, indicated by the arrows labelled 

‘M’. (J-K) 9pcw: expression is observed in what may be the paramesonephric duct or 

the fallopian tube, indicated by the arrows labelled ‘FT’ in this case. This structure is 

difficult to determine at this early stage of development. The black boxes in (B), (G) 

and (J) indicate the area in the image that has been enlarged in the adjacent image 

respectively. T, telencephalon; D, diencephalon; TG, trigeminal ganglia; RP, Rathke’s 

pouch; Hyp, hypothalamus; S, spinal cord; SG, spinal ganglia; M, mesonephros; FT, 

fallopian tubes.
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4.3.4. PRMT6 function 

A homozygous missense variant in PRMT6, c.1049C>G, p.P350R, was identified in 

the same individuals from the four Turkish families (Pedigrees 3-6, Figure 4.5) that 

possess the RNPC3 (p.L483F) variant, in the same area of homozygosity. Variants 

RNPC3 (p.L483F) and PRMT6 (p.P350R) are evidently inherited from the same allele 

from both asymptomatic heterozygous parents. 

The coding region of Protein arginine methyltransferase 6 (PRMT6) is 1.128kb in 

length, consisting of only one exon on chromosome 1. It catalyses the sequential 

transfer of a methyl group from S-adenosyl-L-methionine to the side chain nitrogens 

of arginine residues within proteins, to form methylated arginine derivatives and S-

adenosyl-L-homocysteine. PRMT6 catalyses both the formation of Omega-N 

monomethylarginine and asymmetrical dimethylarginine (strongly) and specifically 

mediates the asymmetric dimethylation of Arg2 (R2) of histone H3 to yield its 

methylated form, giving it a specific tag for epigenetic transcriptional repression 

(Figure 4.10). PRMT6 forms a complex with and methylates DNA polymerase beta, 

and brings about the stimulation of polymerase activity by enhancing DNA binding 

and processivity (El-Andaloussi et al., 2006).  
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Figure 4.10:  PRMT6 transcriptional repression. A model of the transcriptional repression of Hox genes and Myc-dependent genes by PRMT6. 

Taken and adapted from Litt et al. (Litt et al., 2009). (A) Di and trimethyl of K4 is associated with the recruitment of MLL1 and WDR5 to chromatin 

and transcriptional activation. (B) PRMT6 recruitment and asymmetric dimethylation of R2 (Arg2) of H3 (H3R2) (denoted by the red circle labelled 

Me R2) results in the loss of the MLL complex, absence of H3 and K4 (H3K4) methylation (denoted by the green circle labelled Me K4), and 

decreased transcripts from target genes. The presence of asymmetrical dimethylation of H3R2 inhibited binding of the Ash2 (absent, small, or 

homeotic disc 2)/WDR5 (WD40 repeat-containing protein 5)/MLL (family methyltransferase complex) and methylation of H3K4. Brg1, BRM-

related gene 1; mSin3A, mammalian SIN3A; HDAC2, histone deacetylase 2; RpBP5, retinoblastoma binding protein 5.
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The Human Protein Atlas states that PRMT6 is variably expressed throughout the 

human body, with high expression in the kidney (renal tubules), pancreas (exocrine 

glandular cells), oral mucosa, testes (Leydig cells), breast (myoepithelial cells), 

thyroid gland, tonsils and bronchi (respiratory epithelial cells). Medium expression is 

seen in the ovary, fallopian tubes, cervix, placenta, salivary glands and the 

gastrointestinal tract (stomach, small intestine). In this study, human embryonic whole 

ovarian sections for in situ hybridisation studies were not able to be obtained as 

discussed earlier, therefore we have not yet looked at PRMT6 expression in the 

ovary.    

Murine Prmt6 is expressed in the nervous, olfactory and visual systems (MGI). A 

transgenic mouse model has been developed to ubiquitously express Prmt6 fused to 

the hormone-binding portion of the estrogen receptor (ER). Upon systemic treatment 

with tamoxifen, it becomes stabilized and translocates into the nucleus. Induced ER-

Prmt6 activation results in increased interleukin-6 (IL-6) levels, with expression 

regulated by the nuclear factor-kappa B (NF-κB) transcription factor and with Prmt6 

functioning as a coactivator of the pathway. Prmt6 is recruited to chromatin at 

selective NF-κB target promoters, where it likely impacts the histone code and/or 

methylates other chromatin-associated proteins to facilitate transcription (Di Lorenzo 

et al., 2014).  



160 
 

4.4. FASN and APEX2 

4.4.1. Pedigree 7 

A 19 year old male from a non-consanguineous family (Pedigree 7, Figure 4.11) 

presented at the age of 4 years with a unique complex phenotype characterized by 

panhypopituitarism; GH, TSH, ACTH, LH and FSH deficiencies, short stature, 

dysmorphic features, developmental delay, sensorineural deafness, 

hypoparathyroidism, retinal dystrophy, Reynaud’s syndrome, splenomegaly and 

aortic regurgitation. He failed to respond to high doses of recombinant human growth 

hormone (rhGH) with low IGF1 concentrations. He measures 128 cm at the age of 19 

years and is completely prepubertal. 

 

Pedigree 7 

 

 

 

 

Figure 4.11: Pedigree 7 with the patient harbouring the FASN (p.A2132V) and 

APEX2 (p.M422V) variants. The non-consanguineous Pedigree 7 with one affected 

male, indicated by the shaded square and arrow, that harbours both the heterozygous 

de novo FASN (p.A2132V) and the hemizygous APEX2 (p.M422V) variant. The latter 

variant was inherited from the mother, indicated by the circle containing a dot. The 

roman numerals on the left of the image refer to the generation within the pedigree. 
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4.4.2. Exome sequencing results: FASN and APEX2 

A novel heterozygous missense de novo variant in FASN (ENST00000306749) 

located on chromosome 17, c.6395C>T, p.A2132V, has been identified in this 19 year 

old male with a unique phenotype (Pedigree 7), via exome sequencing. This variant 

is highly conserved across multiple species (Figure 4.12A) and is not present on 

control databases, including 1000 Genomes, dbSNP, EVS or the ExAC Browser 

which includes a total of >100,000 control alleles; >10,000 of which are from an 

African origin the same as the mother, and >64,500 alleles which are from a European 

origin (including a mix of controls from different European countries) the same as the 

father, who is white European. These sub-cohorts were individually referenced as 

they are more directly relevant to the patients’ ancestry. This patient also had a novel 

hemizygous missense variant in the APEX2 gene (ENST00000374987) located on 

the X chromosome, c.1264A>G, p.M422V, at a residue conserved in three other 

species; chimpanzee, dog and dolphin (Figure 4.12B). This variant was inherited from 

the heterozygous asymptomatic mother. Furthermore this variant (p.M422V) was 

identified once on control databases; in the ExAC browser in an African heterozygous 

individual out of a total of 86,652 alleles, of which 8405 were from an African origin 

the same as the mother. The role of APEX2 is discussed in section 4.4.5 in this 

chapter. 
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A) FASN (p.A2132V) 

Human:      V--E--A--V--A--H--I--L--G 

Mouse:      V--K--A--V--A--H--I--L--G 

Chimpanzee: V--E--A--V--A--H--I--L--G  

Chicken:    V--E--A--V--A--H--I--L--G 

Xenopus:    V--E--A--V--A--H--I--L--G  

Zebrafish   V--E--A--V--A--H--I--L--G 

 

B) APEX2 (p.M422V) 

Human:      M--S--A--L--M--T--P--K--T 

Chimpanzee: M--S--T--L--M--T--P--K--T  

Dog:        M--G--A--L--M--T--P--K--T  

Dolphin:    L--G--T--L--M--T--P--K--T 

 

Figure 4.12: Conservation of the substituted FASN and APEX2 residues. The 

extent of conservation across multiple species of each substituted amino acid 

(highlighted in green), and the spanning protein sequence, in both (A) FASN, and (B) 

APEX2. Any spanning amino acid residues that differ from the normal human 

reference sequence are highlighted in red.  
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4.4.3. FASN function 

The coding region of Fatty Acid Synthase (FASN) is 7.536kb in length comprising of 

43 exons on chromosome 17. FASN has long been identified as a crucial 

multienzyme composed of two identical 272 kDa polypeptides that have multiple 

functions in which substrates are transferred from one domain to another. More 

precisely, this complex enzyme essentially converts acetyl-CoA and malonyl-CoA into 

long-chain saturated fatty acids such as palmitate in the presence of NADPH, and 

has been reported to have as many as seven different catalytic activities (Wakil, 

1989). Recent studies in mice have shown that hepatocarcinogenesis, induced by 

AKT/c-Met, is fully inhibited by Fasn ablation. Therefore suppression of FASN might 

be highly detrimental for the growth of human hepatocellular carcinoma subsets (Hu 

et al., 2016). In addition, Shh signalling induces FASN, which mediates metabolic 

processes such as proliferating neural progenitors to support rapid growth, which can 

induce lipogenesis and aerobic glycolysis; pathways that are increased in 

medulloblastoma metabolism (Tech and Gershon, 2015). Fasn is highly active in adult 

neural stem and progenitor cells (NSPCs) and conditional deletion of Fasn in mouse 

NSPCs impairs adult neurogenesis (Knobloch et al., 2013). Other studies have shown 

that murine null mutant Fasn-/- embryos die before implantation, and Fasn+/- 

heterozygotes die at various stages of development in utero, suggesting haploid 

insufficiency (Chirala et al., 2003). 

Murine Fasn is expressed in the brain, parathyroids, liver and adrenal, as well as the 

high level of expression observed in adult NSPCs. It is expressed in numerous tissues 

including the limbs, the exocrine and endocrine systems, and the olfactory, 

reproductive, respiratory and connective tissue systems, to name a few (MGI). In 

humans, this multifunctional enzyme has been noted to be highly expressed in the 

glandular and adipocyte cells of the breast (Human Protein Atlas).  
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4.4.4. FASN expression results 

In this study, human embryonic expression in a hypothalamo-pituitary context, 

revealed high FASN expression in the hypothalamus, and in Rathke’s pouch at the 

early stage of CS16 (Figure 4.13A-C). At CS19, expression was noted in the spinal 

cord (Figure 4.13D), spinal ganglia and trigeminal ganglia (Figure 4.13E). However, 

despite expression being maintained in the diencephalon and telencephalon (Figure 

4.13F), there appeared to be no FASN transcript expression in Rathke’s pouch from 

this stage onwards in embryogenesis [shown by the lack of total expression in 

Rathke’s pouch at CS20 (Figure 4.13I)]. Specific FASN expression was observed in 

the retina of the eye at CS20 (Figure 4.13G-H). No specific expression was observed 

in the developing ear, heart or spleen for this gene.  
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Figure 4.13: FASN expression in the hypothalamo-pituitary axis and the eye in 

the developing human embryo. In situ hybridization using the antisense probe 

against the human FASN mRNA transcript (hFASN) on human transverse sections 

from CS16, CS19 and CS20. The scale bars in the images are as follows: 500µM in 

‘A’, 200µM in ‘B’, 100µM in ‘C’, 500µM in ‘D-G’ and 200µM in ‘H-I’. (A-B) CS16: high 

FASN expression in the hypothalamus. (C) CS16: expression in Rathke’s pouch. (D) 

CS19: expression seen in the spinal cord and spinal ganglia, (E) trigeminal ganglia 

and hypothalamus, (F) diencephalon and telencephalon. (G-H) CS20: expression in 

the retina of the eye, (I) Rathke’s pouch shows no FASN expression at CS20. The 
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black boxes in ‘A’ and ‘G’ indicate the area of the sections that are magnified in 

images ‘B’ and ‘H’ respectively. H, hypothalamus; RP, Rathke’s pouch; SG, spinal 

ganglia; S, spinal cord; TG, trigeminal ganglia; D, diencephalon; T, telencephalon; R, 

retina.  

 

4.4.5. APEX2 function 

The coding region of Apurinic/apyrimidinic (AP) endonuclease 2 (APEX2) is 1.557kb 

in length comprising of 6 exons, on the X chromosome. It is a member of the 

endonuclease family that initiates the repair of AP sites formed by spontaneous 

hydrolysis of the N-glycosylic bond, mutagen-induced base release, or damaged-

base excision caused by a DNA repair glycosylase (Hadi et al., 2002). Previous 

functional studies showed, through immunocytochemistry, that APEX2 localises to 

the mitochondria due to the gene having a mitochondrial targeting sequence on its N-

terminus (Tsuchimoto et al., 2001). These studies also showed evidence that APEX2 

participates in mitochondrial base excision repair (BER) as well as in nuclear BER 

(Tsuchimoto et al., 2001). Other studies revealed that Apex2-null mice exhibit a 

growth retardation phenotype (80% the size of WT littermates) with moderate 

dyshaematopoiesis and a severe defect in lymphopoiesis (Ide et al., 2004). In addition 

these mice showed significant accumulation of thymocytes and mitogen-stimulated 

splenocytes in G2/M phase compared to WT, which they concluded implicated 

APEX2 as an essential regulator of efficient cell cycle progression of proliferating 

lymphocytes (Ide et al., 2004). Despite the name, APEX2 exhibits weak AP 

endonuclease activity compared to its strong 3-5-prime exonuclease and 3-prime 

phosphodiesterase activities (Burkovics et al., 2006). According to the Human Protein 

Atlas, expression of the APEX2 transcript is located in the myocytes of the heart.  
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4.4.6. APEX2 expression results 

Human embryonic expression in this study interestingly revealed strong expression 

in areas of the developing oral cavity and throat as well as in the eye (Figure 4.14). 

At CS19 and 20, APEX2 expression was seen in the laryngeal pharynx, laryngeal 

inlet, in the palatine shelf and the developing tongue of the oral cavity (Figure 4.14A-

E, G-H), but is no longer expressed in these areas of the throat by CS23 (Figure 

4.14J). Expression in the eye at CS19 appears to be specifically in the lens and 

around the front of the eye where the cornea will form (Figure 4.14F). By CS23, 

expression in the eye has become more defined and stronger around the developing 

cornea; distinctively in the conjunctival sacs of the eye, whilst remaining in the lens 

(Figure 4.14K). APEX2 expression is also seen partially in the ear (Figure 4.15C-D), 

and in the gonads and the lining of the stomach (Figure 4.15B) in sections taken at 

CS19. Expression is also seen in the bronchi (Figure 4.15A, E-G), trachea (Figure 

4.15F, H) and oesophagus (Figure 4.15F) at CS19 and CS22. Intriguingly at CS23, 

there is highly defined expression along the midline raphe glial system, located 

between the raphe nuclei in the brain (Figure 4.15I-J). The raphe nuclei are a 

moderate-sized cluster of nuclei with the main function of releasing serotonin to the 

rest of the brain. Serotonergic neurons in the raphe nuclei, situated in the brainstem, 

densely innervate the olfactory bulb where they modulate olfactory information 

(Brunert and Tsuno, 2016).  
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Figure 4.14: APEX2 expression in the hypothalamo-pituitary axis, oral cavity 

and the eye in the developing human embryo. In situ hybridization using the 

antisense probe against the human APEX2 mRNA transcript (hAPEX2) on human 

transverse sections from CS19 and CS20. The scale bar in ‘A’ represents 500µM and 

the scale bars in ‘B-H’ represent 200µM. (A-B) CS19: high APEX2 expression in the 

oral cavity; LP, laryngeal pharynx; LI, laryngeal inlet; PS, palatine shelf. (C) CS19: 

expression is observed in the PS, however not in the hypothalamus or Rathke’s 

pouch. (D-E) CS19: high expression in the PS from a different transverse section, 

expression in the body of the tongue can be seen in ‘E’. (F) CS19: expression in the 

lens and the cornea of the eye (also visualised in ‘D’). (G-H) CS20: expression 

remains high in the PS and LI areas of the oral cavity. RP, Rathke’s pouch; Tn, 

tongue; C, cornea; L, lens. 
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Figure 4.15: APEX2 expression in developing human embryonic tissues. In situ 

hybridization using the antisense probe against the human APEX2 mRNA transcript 

(hAPEX2) on human transverse sections from CS19, CS22 and CS23. (A) CS19: 

high APEX2 expression in the bronchi of the lungs. The scale bars in the images are 

as follows: 200µM in ‘A’, 500µM in ‘B’, 200µM in ‘C-D’, 500µM in ‘E’, 200µM in ‘F-H’, 

500µM in ‘I-J’ and 200µM in ‘K’. (B) CS19: expression in the gonads and in the lining 

of the stomach. (C-D) CS19: expression in the ear; at the end of the utricle. (E-H) 

CS22: section of the torso showing APEX2 expression in multiple bronchi, trachea 

and the oesophagus, (H) CS22: high expression in the trachea (image taken from 
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image ‘E’ in the area highlighted by the black box). (I-J) CS23: defined line of APEX2 

transcript expression noted in the midline raphe glial system. There is no expression 

in the palatine shelf at this stage. (K) CS23: high expression in the cornea of the eye; 

in particular the conjunctival sacs at the sides of the eye. B, bronchi; G, gonads; S, 

stomach; U, utricle; T, trachea; O, oesophagus; MR, midline raphe glial system; R, 

raphe nuclei; PS, palatine shelf; CS, conjunctival sac. 

 

4.5. Discussion 

4.5.1. Pedigree 2: Discussion 

It should be noted that individuals from an African origin are known to have more 

genetic variation than those from the non-African population (Song et al., 2017). 

However as the CTPS2 (p.F166L) variant is de novo there is a reasonable body of 

evidence to suggest that this heterozygous variant is likely to be associated with the 

striking phenotype of the proband in Pedigree 2. The strong CTPS2 expression seen 

in the developing hypothalamus and Rathke’s pouch, indicates a role for this gene in 

the formation of the midline forebrain; specifically the pituitary gland, during 

embryogenesis. The expression data make CTPS2 a likely candidate in causing the 

panhypopituitarism seen in the patient carrying the CTPS2 (p.F166L) variant 

(Pedigree 2), and it would therefore be worth taking the gene forward to conduct 

functional studies in this respect. In addition, the high expression of this gene seen in 

the ear is a strong indication that the variant may be contributing to the abnormal 

formation of the ear, with severe hearing loss seen in the patient. Although CTPS2 is 

not expressed in the heart tissue specifically, this does not necessarily rule out a role 

for the gene in the phenotype of situs inversus with dextrocardia observed in the 

patient (Pedigree 2). Rather, this mutated gene may be involved in causing the 

asymmetry seen in the patient and thus would not be expressed in the heart tissue 
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itself. Looking at the phenotype, there are multiple signs of asymmetry diagnosed in 

the patient: the dextrocardia/situs inversus, left microtia, and the left-sided 

hemiparesis including left facial nerve palsy. Therefore it is proposed that CTPS2 

may well be involved in the determination of left-right asymmetry during development. 

Further functional studies need to be undertaken to delineate its role in human 

development. 

 

4.5.2. Pedigree 3-6: Discussion 

Due to the previously published data linking RNPC3 mutations to the phenotype of 

IGHD and pituitary hypoplasia, together with the expression profile elucidated in this 

study, the novel RNPC3 (p.L483F) variant is predicted to be responsible for the GHD 

observed in the patients in Pedigrees 3-6. Interestingly, and without intention, 

expression of RNPC3 was noted in the mesonephros of the premature kidney, and in 

what is potentially the paramesonephric duct or the fallopian tube in 9pcw embryonic 

tissue. The cause of the ovarian failure in these patients remains to be established, 

and future work will begin by looking at the expression of both RNPC3 and PRMT6 in 

>10pcw ovarian sections when tissue is available. Interestingly Markmiller et al report 

that four genes, including the orthologs of the two mutated in Pedigrees 3-6: col11A1, 

rnpc3, prmt6, and ntng1 (Markmiller et al., 2014), are contained within a region on 

chromosome 24 in the zebrafish. This region therefore appears to be syntenic to 

human chromosome 1, illustrating the close relationship between RNPC3 (1p21) and 

PRMT6 (1p13.3) in evolutionary terms. Thus evidently RNPC3 and PRMT6 are co-

located across species, not just in humans, therefore the two mutations, RNPC3 

(p.L483F) and PRMT6 (p.P350R), in Pedigrees 3-6 have co-segregated in all affected 

individuals. Due to all the patients in these consanguineous pedigrees having these 

variants, there is a strong possibility that these four pedigrees are distantly related as 
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they all originate from the same geographical isolated population in Turkey. However 

this is unknown and the families are therefore noted as unrelated. Therefore the co-

segregation of these two variants may be termed as a founder effect. Further work is 

required to clarify the pathogenesis of the ovarian failure, and to understand the 

pathogenesis of IGHD in relation to the role of RNPC3 in pituitary development and 

function. 

 

4.5.3. Pedigree 7: Discussion 

The proband in Pedigree 7 has a unique phenotype with a multi-system disorder. The 

exciting finding of a de novo variant in FASN suggests that this patient’s phenotype 

could at least in part be explained by a disorder of fatty acid synthesis. The role of the 

gene in NSPC proliferation could also suggest a role in hypothalamo-pituitary 

development, supported by the gene in the hypothalamus and developing pituitary. 

Further investigations are underway currently in this patient, and it is clear that the 

patient has consistently elevated fasting concentrations of triglycerides. APEX2 does 

not appear to be expressed in the hypothalamus or in Rathke’s pouch at any stage of 

embryogenesis, whereas FASN is strongly expressed in these areas at a very early 

stage during development (CS16). This indicates that it may be the FASN variant in 

this patient that may be causative of the panhypopituitarism. Additionally FASN is 

expressed in the retina, unlike APEX2, and again these data suggest a role for FASN 

in the aetiology of the retinal dystrophy rather than APEX2, which appears to be 

expressed in the conjunctival sacs near the lens of the eye. Previous studies have 

shown that hyperplastic parathyroids from patients with chronic renal failure strongly 

express fatty acid synthase, indicating that it may be a potential biological indicator of 

highly proliferating parathyroid cells (Alo et al., 1999). However our studies were 

unable to analyse whether parathyroids from a normal embryo express FASN. 
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Therefore we do not have enough evidence to conclude whether the FASN 

(p.A2132V) mutation is contributing to the hypoparathyroidism phenotype at this 

stage. 

The proband in Pedigree 7 has been reported to have had many recurrent episodes 

of choking, which may possibly be linked via some unknown mechanism to the 

APEX(M422V) mutation, given its expression in the developing larynx. APEX2 is also 

expressed in the developing ear (Figure 4.15 C-D) and therefore could be associated 

with the sensorineural hearing loss seen in the patient. It is unknown if the expression 

observed in the midline raphe glial system (Figure 4.15 I-J) is related to the phenotype 

in this patient. However due to serotonergic neurons, which derive from the raphe 

nuclei, densely innervating the olfactory bulb and modulating its information, the 

patients olfactory system should be monitored for any abnormalities, such as sense 

of smell and should perhaps be structurally analysed, if not done so with particular 

focus, by MRI. Given the presence of a de novo variant in a gene that is critical for 

embryonic survival (FASN), and a further variant in a gene that is on the X-

chromosome (APEX2), there is a possibility of a digenic explanation for the highly 

complex phenotype in the patient in Pedigree 7. However further in vivo/in vitro 

functional investigation would need to take place for any clear conclusions to be 

drawn. 
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4.6. Summary of expression profiles 

Expression of CTPS2, RNPC3 and FASN in Rathke’s pouch in the respective patients 

suggests that these three genes may be implicated in the early stages of embryonic 

development of the pituitary. The variants identified in these genes may be 

responsible for the endocrine deficits seen in the respective patients, through 

incomplete development of this primordium of the anterior pituitary in the embryo. 

Expression is used as a strong indicator as to where a gene is active, however 

mutations may have a very different effect on the structure and function of the protein 

in which it encodes, and may differ from each other in pathogenicity, affecting one or 

many other tissues in addition to that showing expression. Thus, certain mutations 

may cause a downstream target effect and have an ultimate end result elsewhere. 

The complex genetic cascades of different multifunctional pathways within the body 

are intertwined and linked directly and indirectly, highlighting the need for 

manipulation and exploitation of these pathways through functional assays that help 

show the significance of a mutation, and shed light on what each individual mutation 

does. In the pedigrees described in this study, we have identified a number of genetic 

variants of interest, and in initial preliminary studies, have explored the expression 

patterns of the novel candidate genes in human embryonic tissue. The expression 

patterns of the genes seem to match the specific phenotypes observed in the patients, 

and act as a guide to functional studies, building evidence towards whether a mutation 

in that gene should be pursued. Given that functional studies are not only difficult to 

perform but also very expensive, we believe that the use of expression studies as an 

initial screen is essential. The expression studies could be performed in murine 

embryos, but given our access to human embryonic sections as part of the HDBR 

resource, I have pursued the route of human gene expression at this stage.  
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4.7. EIF2S3/eIF2γ 

 

4.7.1. Exome sequencing of the X chromosome in Pedigree 8  

Exome sequencing of the X chromosome was performed in a single X-linked non-

consanguineous white European pedigree with GHD, severe hypothyroidism and an 

unusual pancreatic phenotype that fluctuates between hyperinsulinaemic 

hypoglycaemia and hyperglycaemia (Pedigree 8, Figure 5.1). At this time, the 

association of a pituitary and pancreatic phenotype had not been described in the 

literature previously, hence there was no clear defined known gene to screen in this 

unique family. Analysis revealed a novel hemizygous missense substitution in the 

EIF2S3 gene (ENST00000253039.8): ChrX_24091319 C/T, c.1294C>T, p.P432S, 

located at a highly conserved residue across multiple species (Figure 4.16) in the C-

terminal domain of unknown function. Protein prediction models predict this variant to 

be deleterious, Polyphen2: score 0.971, and SIFT: score 0, with SIFT inferring that 

this is most likely due to the loss of Proline, which is well known to be involved in 

protein folding. This variant was absent from control databases; 1000 Genomes, 

dbSNP, EVS and the ExAC Browser, with the latter incorporating a total of >87,000 

control alleles with >52,000 being from a European background and thus ethnically 

relevant to Pedigree 8. GOSgene used their own internal data sets of the X-

chromosome to filter for novel variants in Pedigree 8. The EIF2S3 (p.P432S) was the 

only variant identified that was considered to be a potential pathogenic cause of the 

disease seen in the patients. Therefore this gene was taken forward for functional 

analysis in this study (Chapter 5). 
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eIF2γ (p.P432S) 

Human:      V--L--T--N--P--V--C--T--E 

Mouse:      V--L--T--N--P--V--C--T--E  

Chimpanzee: V--L--T--N--P--V--C--T--E 

Cow:        V--L--T--N--P--V--C--T--E  

Dog:        V--L--T--N--P--V--C--T--E 

Chicken:    V--L--T--N--P--V--C--T--E 

Xenopus:    V--L--T--N--P--V--C--T--E  

Zebrafish   V--L--T--N--P--V--C--T--E  

 

Figure 4.16: Conservation of the substituted eIF2γ residue. The conservation 

across multiple species of the substituted amino acid (highlighted in green), and the 

spanning protein sequence, in eIF2γ.  

 

It has already been established that the murine EIF2S3 homologue, Eif2s3x on the X 

chromosome of the mouse, is highly expressed in the pancreas, hypothalamus and 

pituitary (MGI). However, human EIF2S3 expression studies have not been 

previously performed in depth in a hypothalamo-pituitary context. I therefore 

performed in situ hybridisation to analyse the gene expression profile of the EIF2S3 

gene in human embryonic tissue taken from the brain and the pancreas.   
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4.7.2. EIF2S3 expression results 

Human expression studies using the human EIF2S3 DIG-labelled antisense probe 

showed EIF2S3 mRNA transcript expression in the hypothalamus and Rathke’s 

pouch at CS20, and in the anterior and posterior areas of the pituitary (AP and PP) at 

CS23, however not throughout the whole pituitary tissue (Figure 4.17 A-B). 

Expression was observed in the progenitor cells of the nasal epithelium (Figure 4.17 

C), and in the retina of the eye at CS20 and 23 in the human fetus. At CS23 the retina 

is in the process of differentiating into different cell types, and the gradient of 

expression seen here appears to be within the developing inner nuclear layer, 

possibly in the developing ganglion cells (Figure 4.17 D). Expression seems to be 

excluded from the outer layer which is where cells that form the photoreceptors 

reside. The EIF2S3 transcript was also present in the pancreas of a 13-week old fetus 

in the exocrine component and Islets of Langerhans, in the cells that will become beta 

cells (Figure 4.17 E-F). The EIF2S3 DIG-labelled sense probe was negative for 

staining, in the areas in which the antisense probe stained positive, indicating that the 

expression profile generated from the antisense probe in this study is reliable. 
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Figure 4.17: Human EIF2S3 expression in the hypothalamo-pituitary axis, eye 

and pancreas in the developing human embryo. In situ hybridization using the 

antisense probe against the human EIF2S3 mRNA transcript (hEIF2S3) on human 

sections. Expression is representative of two embryos. The scale bars in the images 

are as follows: 200µM in ‘A’, 100µM in ‘B-C’, 200µM in ‘D’ and 100 in ‘E-F’. (A-C) 

Transverse sections of the brain, (A) mRNA EIF2S3 transcripts were localised to the 

ventral hypothalamus and Rathke’s pouch (CS20). (B) EIF2S3 expression was seen 

in the AP and PP although not throughout the whole pituitary tissue (CS23). (C) 

Defined EIF2S3 transcripts were seen in progenitor cells in the nasal epithelium 

(CS23). (D) Sagittal section of the eye. EIF2S3 transcripts were localised in the retina 

(CS23). (E-F) Sagittal sections from a pancreas obtained from a 13 week old fetus, 

expressing the EIF2S3 transcript in the exocrine component, in the Islets of 
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Langerhans and in the progenitors of beta cells; ‘E’; X5 magnification, ‘F’; X10 

magnification. Abbreviations: Hyp, hypothalamus; RP, Rathke’s pouch; AP, anterior 

pituitary; PP, posterior pituitary; NE, nasal epithelium; R, retina.  

 

The expression profile performed in this study demonstrates the involvement of 

EIF2S3 in early hypothalamo-pituitary and pancreatic development. These data 

support the hypothesis that the EIF2S3 mutation identified in Pedigree 8 may be 

implicated in the phenotype observed in the patients, given the expression pattern of 

the gene in the relevant tissues. Therefore, after establishing this expression profile, 

this gene was taken forward and functionally assessed in this investigation in an 

attempt to understand its biological role, with particular focus on these tissues. 

Chapter 5 of this thesis investigates the role of EIF2S3 and the effect of the p.P432S 

variant using a variety of assays. 
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Chapter 5 

 

 

 

A Novel Mutation in Eukaryotic Translation Initiation Factor 2 Subunit 3 

(EIF2S3) Associated with Severe Hypoglycaemia and X-Linked 

Hypopituitarism 
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5.1 Introduction 

As discussed in Chapter 4 many novel potential candidate genes for hypopituitarism 

and related phenotypes have recently been identified through exome sequencing, in 

collaboration with GOSgene, of specific pedigrees with unique phenotypes. One such 

pedigree is Pedigree 8 (Figure 5.1), a non-consanguineous white European pedigree 

with affected male monozygotic (identical) twin brothers (IIId,e). Patients IIId and IIIe 

have severe short stature and GHD, central hypothyroidism, hyperinsulinism causing 

hypoglycaemia and a small AP on MRI. They have maternal twin cousins; one male, 

one female, with the male manifesting a similar phenotype (IIIc). The exome 

sequencing performed on this single X-linked pedigree (Pedigree 8), revealed a novel 

hemizygous variant in the EIF2S3 gene: ChrX_24091319 C/T, c.1294C>T, p.P432S, 

which segregates fully within the affected members of the family (Figure 5.1). The 

EIF2S3 (p.P432S) variant was inherited from the heterozygous mothers who had 

presented with secondary amenorrhea. 
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Pedigree 8 

 

 

 

Figure 5.1: Pedigree 8 harbouring the EIF2S3 (p.P432S) variant. This pedigree 

consists of three affected individuals that are hemizygous for the EIF2S3 (p.P432S) 

variant, represented by the black shaded squares labelled with ‘EIF2S3 p.P432S’. 

Patients IIId and IIIe are monozygotic twins represented. The circles containing a dot 

highlight the females that carry the variant in heterozygous form. Un-shaded 

squares/circles represent males and females that were negative for the variant 

respectively. The roman numerals on the left of the image depict the generation within 

the pedigree. The letters ‘a’ – ‘e’ distinguish between each individual within that 

generation, which are referred to in the text. 
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5.1.1. Patients in Pedigree 8 

5.1.1.1. The three affected males 

The three males, IIIc, IIId, IIIe, presented with severe recurrent hypoglycaemia, short 

stature and GHD (Figure 5.2), with a low IGF1 and low IGFBP3 concentration (Table 

5.1). They have a unique pancreatic phenotype which fluctuates between 

hyperinsulinaemic hypoglycaemia and hyperglycaemia (Table 5.2). They were 

treated up to the age of 7 years with Diazoxide, and their blood glucose was 

adequately controlled during this time. To date, the cortisol and prolactin 

concentrations have been normal. Additional features in the three boys include 

intestinal lymphonodular hyperplasia and eosinophilic infiltration. MRI of the brain 

revealed a small AP, a normal posterior pituitary and stalk, and a thin corpus 

callosum, with patients IIIc and IIId also having generalised white matter loss, and IIIc 

having ventricular asymmetry (Figure 5.3). Endocrine values for the three patients are 

presented in Tables 5.1 and 5.2. 

 

5.1.1.2. Patient IIIc 

Patient IIIc was the first born of twins via emergency caesarean at 38 weeks 

gestation, with a birth weight of 2.1kg. He presented with poor feeding and 

hypoglycaemia 18 hours after birth. Aside from the clinical phenotypes described 

above he presented with congenital heart disease; total anomalous pulmonary 

venous return, in which the four veins that take blood from the lungs to the heart do 

not attach normally to the left atrium. He also presented with a gastro-oesophageal 

reflux which required a Nissen’s procedure with a complication of dumping syndrome. 

He has IGHD but is having his FT4 and TSH closely monitored, and is currently too 

young to have his gonadotrophins tested as he has not yet reached pubertal age. He 

had a blunted testosterone response to a 3-day HCG test, however he was only 3 
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years of age when this test was performed (Table 5.2). He has global developmental 

delay, behavioural problems and has hepatomegaly. His mother presented with 

secondary amenorrhoea. 

 

5.1.1.3. Twin brothers: patients IIId and IIIe 

The monozygotic twin brothers were born via caesarean at 34 weeks gestation, 

patient IIId had a birth weight of 2.15kg, and patient IIIe a birth weight of 1.93kg. Aside 

from the clinical phenotypes described in the above section (5.1.1.1), they developed 

central hypothyroidism at the age of 2 years and were treated with thyroxine (Table 

5.1). They both presented with hypoglycaemia with seizures at this age, and had a 

microphallus, which increased in size following GH treatment. Patient IIId had small 

pea-sized testes that were initially undescended, however they did descend 

spontaneously. His twin brother, IIIe, had normal descended testes on initial 

examination. The twins had feeding difficulties and poor weight gain, which may have 

been partly due to their dairy free diet, however their feeding is now normal. By the 

age of 4 years the brothers had delayed speech development, and by 6 years they 

had mild conductive hearing loss, global developmental delay, behavioural and 

learning difficulties. A microarray performed in both boys was normal. Patient IIId 

presented with behavioural difficulties, although not as severe as his twin brother 

(IIIe), however he often had episodes of twitching, possibly related to his 

hypoglycaemia. Patient IIId also had hepatomegaly, myopia and a squint, and now 

wears glasses. Both brothers underwent surgery at the age of 4 years to have their 

tonsils removed due to recurrent tonsillitis, their adenoids were removed due to 

recurrent upper respiratory infections and upper airway obstruction, and grommets 

were inserted due to glue ear. Their palates appeared normal on examination. At the 

age of 10 years the brothers had a glucose tolerance test which showed impaired 
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glucose tolerance; the glucose concentrations fluctuated between hypoglycaemia 

and hyperglycaemia. Table 5.3 shows these test results for patient IIId. They have 

recently reached pubertal age and have had their gonadotrophin secretion tested, 

which appears reasonably normal (Table 5.2). Patient IIId had a blunted testosterone 

response to a 3-day HCG test, with his brother IIIe having a borderline testosterone 

response (Table 5.2).  

Their mother had osteoporosis due to secondary amenorrhoea, with menarche at 13 

years and periods stopping at 16 years, after which she received oestrogen 

supplementation (CycloProgynova). In later life she had a hysterectomy. An MRI 

performed on the mother was reported to be normal. Their mother had a height of 

162.9cm and their father a height of 169cm, with a mid-parental height of -0.34 SDS. 
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Patient Birth 

weight 
kg (SDS) 

(gestation) 

Age at 

presentation 
years 

Height at 

presentation 
cm (SDS) 

Peak GH to 

provocation 
µg/L 

IGF1 
ng/ml 
(NR) 

IGFBP3 
mg/L 
(NR) 

Most 

recent 

cortisol 
nmol/L 

FT4 (pre-

treatment) 
pmol/L 

(NR) 

TSH (pre-

treatment) 
mU/L 

PRL 
mU/L 
(NR)  

IIIc  2.1 (-2.8) 
(38/40) 

 1.13 58.8  
(-6.7)  

<0.1 on 

profile 
 <25  <0.5 315 12.6  

(12 - 22) 
Not treated 

5 360  
(40 - 555) 

IIId  2.15 (-0.3) 
(34/40) 

 2.2 71.5  
(-4.4)  

 1.1 9  
(20 - 158) 

 0.67  
(1.2 - 3.7) 

183 11.4  
(12 - 22) 

2.9 225 

(40 - 555) 

IIIe  1.93 (-1.5) 
(34/40) 

 2.2 69.5  
(-5.2) 

 0.7 10  
(20 - 158) 

 1.2 
(1.2 - 3.7) 

 241 11.3  
(12 - 22) 

3.4 114 

(40 - 555) 

 

Table 5.1: Clinical data from the three affected males in Pedigree 8; IIIc, IIId, IIIe. Patients presented with GH deficiency, and low 

IGF1 and IGFBP3 concentrations. Their cortisol and prolactin concentrations were normal. The twin brothers, IIId and IIIe, developed 

central hypothyroidism and were treated with thyroxine. SDS, standard deviation score; NR, normal range. 
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Patient Peak LH 
IU/L 

(GnRH at age 

12) 

Peak FSH 
IU/L 

(GnRH at 
age 12) 

Peak 

testosterone 

to 3 day HCG 

nmol/L 
(age in years) 

Most recent 

height 
SDS 

(age in years) 

Glucose 
mmol/L 
(age in 

years) 

Insulin 
mU/L 

(age in years) 

HC 
SDS 

(age in 

years) 

Diazoxide 

treatment 
(age in years) 

IIIc N/A N/A  0.992  
(3) 

 -1.03  
(7) 

 3.3  
(0.25) 

 5.9  
(0.25) 

-3.3 
 (2.4)  

0.75 - 6.8 

IIId 6.3 4.0  1.99  
(12) 

 -2.04 
(12.1) 

3.4 
(2.2) 

6.8 
(2.2) 

 N/A 2.5 - 6.7 

IIIe 8.1  3.4  3.64  
(12) 

 -2.23  
(12.1) 

3.2 
(2.2) 

4.9 
 (2.2)  

 N/A 2.5 - 6.7 

 

Table 5.2: Clinical data following gonadotrophin tests from the three affected males in Pedigree 8, IIIc, IIId, IIIe. Values following 

a gonadotrophin secretion test and a 3-day HCG test. HCG, human chorionic gonadotrophin; SDS, standard deviation score; HC, head 

circumference.  
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Glucose tolerance test of patient IIId off Diazoxide 

Time 

(mins) 

-75 0 30 60 90 120 150 180 210 240 270 300 

Glucose 

(mmol/L) 

3.6 3.2 10.2 12.1 8.8 8.4 7.8 6.2 5.5 5.5 4.0 2.7 

Insulin 

(mU/L) 

5.6 4.9 21.2 21.3 19.5 22 22 20.5 19.4 16.1 10.7 5.5 

 

Table 5.3: Glucose tolerance test in patient IIId. A prolonged glucose tolerance test was performed on patient IIId at the age of 10 

years, off Diazoxide treatment. At 0 mins the patient had a high basal glucose with detectable insulin. Glucose increased over time and 

after 2 hours (120 mins) the patient had a high blood glucose above the normal range. Glucose then decreased and by 5 hours (300 

mins) the patient was hypoglycaemic with a detectable insulin. 

 

 

 



189 
 

Growth charts 

 

Figure 5.2: The growth charts from the three affected males from Pedigree 8, IIIc, IIId, IIIe. The labelled red arrows indicate when 

GH treatment was commenced in the three boys respectively.  

 

A B C 
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MRI scans 
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Figure 5.3: The MRI scans from the three affected males, IIIc, IIId, IIIe. A-C: The patients have a small AP with an otherwise 

structurally normal pituitary gland, and a thin corpus callosum, indicated by the labelled white arrows respectively. A (i-ii) Sagittal images 

of patient IIIc showing generalised white matter loss, a small AP and a thin CC. A (iii) A coronal image of patient IIIc showing a small AP 

and ventricular asymmetry with the right ventricle being larger than the left. B (i) A sagittal image of patient IIId showing generalised 

white matter loss, a small AP and a thin CC. B (ii) A coronal image of patient IIId showing a small AP. C (i) A sagittal image of patient 

IIIe showing a small AP and a thin CC. C (ii) A coronal image of patient IIIe showing a small AP. CC, corpus callosum; AP, anterior 

pituitary; WML, white matter loss; VA, ventricular asymmetry.
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5.1.2. EIF2S3 

The Eukaryotic translation initiation factor 2 subunit 3 protein (EIF2S3) gene is located 

on the X chromosome at position p22.11 (ChrX: 24091319), and is 52kDa in size 

comprising 472 amino acids. eIF2 is a heterotrimeric G protein, also known as a 

guanine nucleotide-binding protein, composed of three subunits; alpha, beta and 

gamma, with EIF2S3 coding for the eIF2γ subunit protein (USCN Life Sciences). This 

is the largest subunit of this heterotrimeric guanosine triphosphate (GTP)-binding 

protein, containing all three consensus GTP-binding elements (guanine nucleotide 

binding domains) (Kimball, 1999) (Figure 5.4). When these domains are mutated, the 

binding of GTP/GDP to eIF2γ is greatly decreased, suggesting that it is this subunit 

that contains the primary GTP-binding element (Naranda et al., 1995).  

 

 

Figure 5.4: Domain structure of human eIF2 α-, β-, and γ-subunits. Taken and 

adapted from Kimball SR 1999 (Kimball, 1999). The number of amino acids in each 

eIF2 subunit is shown to the right and just below the open boxes representing the 

polypeptide chains. Known phosphorylation sites are represented by a `P' above the 

http://en.wikipedia.org/wiki/EIF2S1
http://en.wikipedia.org/wiki/EIF2S2
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boxes with the residue number shown below it. Polylysine domains are shown as grey 

boxes, guanine nucleotide binding domains are shown as black boxes, and the 

putative `zinc finger' motif in eIF2β is shown as a box with cross hatching. The eIF2B 

and eIF5 binding domains in eIF2β are denoted by black lines beneath the eIF2β 

polypeptide. This figure has been modified from the original by the addition of the 

GTP-binding domain and the residue positions corresponding, with each guanine 

nucleotide binding region within the GTP-binding domain. In addition the location of 

the variant identified in this study has been added; indicated by the red arrow labelled 

‘p.P432S’. 

 

eIF2 functions in the early steps of protein synthesis by forming a ternary complex 

with GTP and initiator methionyl-tRNA (Met-tRNAi), in which cross-linking analysis 

has implicated the N-terminus of eIF2γ in the binding of the latter (Kimball, 1999). 

This process mediates the association of Met-tRNAi to the peptidyl-tRNA site, known 

as the ‘P’ site, on the 40S ribosomal subunit (Pain, 1996). Prior to this ternary complex 

binding to the 40S ribosomal subunit, another initiation factor (eIF3) binds to the 

ribosome first, whose role is to keep the ribosomal subunits, 40S and 60S, separate 

from each other at this early stage, thus allowing the ternary complex to associate 

with the 40S ribosomal subunit (Hershey, 2015). Following binding of eIF3 and the 

eIF2-GTP-Met-tRNAi ternary complex, a third initiation factor binds (eIF4) to the 

ribosomal subunit, which guides the whole complex to the 5′ end of mRNA where it 

binds to form the 43S pre-initiation complex (Flynn and Proud, 1996). This then scans 

mRNA to select the AUG start codon for protein synthesis (Figure 5.5) by using 

perfect complementarity with the anticodon of initiator tRNA to recognise the AUG 

(Hinnebusch, 2011).  

http://en.wikipedia.org/wiki/Protein_synthesis
http://en.wikipedia.org/wiki/Guanosine_triphosphate
http://en.wikipedia.org/wiki/Transfer_RNA
http://en.wikipedia.org/wiki/40S
http://en.wikipedia.org/wiki/Ribosome
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eIF5 binds to eIF2β and stimulates the hydrolysis of GTP; which is thought to be a 

very important step in this start site selection (Huang et al., 1997). The resultant eIF2-

GDP inactive binary complex is then released from the ribosome (Figure 5.5). It is 

unclear where the GTPase activity that is responsible for catalysing this GTP-

hydrolysis comes from, but it has been proposed to be eIF5 or the β- or γ-subunits of 

eIF2. It is apparent, however, that eIF5 can only stimulate GTP-hydrolysis when eIF2 

is bound in its ternary complex (with GTP and Met-tRNAi) to the 40S ribosome 

(Kimball, 1999), which shows how highly specific this action is.  

 

eIF2 is then recycled and can participate in another round of translation initiation, only 

when the GDP is exchanged for GTP. It has been suggested that eIF2 transfer to the 

60S ribosomal subunit, which in itself is bound to the 80S initiation complex, is 

important for recycling as eIF2 has been found to be associated with this structure 

(Chakrabarti and Maitra, 1992). However, it is the interaction with another translation 

initiation factor, eIF2B, that is directly involved in the recycling process of eIF2 ternary 

complex formation (Figure 5.5) (Kimball, 1999).  
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Figure 5.5: Eukaryotic initiation factor 2 (eIF2): The role of eIF2 in the initiation 

of mRNA translation. Taken from Kimball SR et al. 1999.  

  

The eIF2B protein has been implicated in leukoencephalopathy, which essentially 

involves a neurological condition termed vanishing white matter (VHM), or childhood 

ataxia with central nervous system hypomyelination (CACH) (van der Knaap et al., 

2002). The GDP/GTP exchange reaction is therefore catalysed by eIF2B to reform 

the eIF2-GTP-Met-tRNAi ternary complex (Pavitt and Proud, 2009).  

Studies have shown that phosphorylation of eIF2α regulates eIF2B activity (Pavitt et 

al., 1998), but the actual interaction between these two proteins, eIF2 and eIF2B, 

occurs via eIF2β (Kimball et al., 1998). Therefore it is proposed that a structural 

change occurs from the phosphorylation of eIF2α that alters the structure of eIF2β in 

order to bind to eIF2B. The phosphorylation of eIF2α is a highly conserved signal 

implicated in the cellular adaption to numerous stresses, such as viral infection, 

apoptosis, cell transformation and amino acid limitation. Additionally it has been 

http://www.sciencedirect.com/science/article/pii/S1357272598001289#gr2
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shown that the sole phosphorylation of eIF2α in the mediobasal hypothalamus is 

sufficient to regulate food intake (Maurin et al., 2014). Previous studies have shown 

that inhibition of the phosphorylated eIF2α signalling in the liver leads to a decrease 

in hepatic glucose production, and in addition impairs insulin-stimulated muscle and 

adipose tissue insulin sensitivity. The authors concluded that the hepatic endoplasmic 

reticulum-stress eIF2α signalling pathway affects hepatic glucose production, without 

altering hepatic insulin sensitivity (Birkenfeld et al., 2011). This association of protein 

synthesis and glucose production via eIF2α signalling, suggests that impairments in 

other subunits of eIF2 such as the EIF2S3 (p.P432S) variant may potentially be 

contributing to the glucose dysregulation seen in Pedigree 8. As described, eIF2B 

and eIF2 are protein partners that critically need to bind in order to permit translation 

initiation, which is a vital process routinely carried out in vivo. Insulin rapidly activates 

protein synthesis by activating components of the translational machinery including 

eIFs and eukaryotic elongation factors (eEFs), and interestingly it is insulin that 

indirectly regulates eIF2B activity and thus the recruitment of Met-tRNAi to the 40S 

subunit (Figure 5.6) (Kimball, 1999). 
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Figure 5.6: Formation of the eIF2 ternary complex stimulated by insulin. Taken 

from Proud CG (Proud, 2006). Insulin binds to its receptor on the cell membrane and 

signals through PI3K and PKB to phosphorylate GSK3, causing its inactivation. This 

allows eIF2B to dephosphorylate which promotes its GDP/GTP exchange activity and 

thus in turn the formation of the ternary complex; eIF2-GTP- Met-tRNAi. PI3K, 

phosphatidylinositol-4,5-bisphosphate 3-kinase; PKB, protein kinase B; GSK3, 

glycogen synthase kinase 3; eIF2B, eukaryotic initiation factor 2B. 

 

Therefore as mutations in eIF2B have been shown to cause such drastic phenotypes, 

this suggests that a mutation in eIF2, such as p.P432S in eIF2γ, may also do the 

same through disruption of translation initiation, and thus give rise to the complex 

phenotype observed in the hypopituitary related disease seen in our patients. Further 

evidence to support this theory is that patients IIIc and IIId from Pedigree 8 in this 

study had generalised white matter loss, in addition to previous reported patients with 
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EIF2S3 patients that had global reduction in white matter on MRI in a recent study by 

Moortgat et al, later discussed in this chapter. As white matter loss is a main 

phenotypic finding in patients with eIF2B mutations, this suggests how mutations in 

these protein partners may yield a potential phenotypic overlap. 

Despite the translation initiation role of eIF2 which takes place in the cytoplasm, 

studies by Ting et al have shown that eIF2 localises to the nucleus. In this previous 

study five polypeptides, three of which were the α-, β- and γ- subunits of eIF2, were 

found to interact with DNA-dependent protein kinase (DNA-PK), and stabilize 

formation of a complex containing DNA, DNA-PK and ‘Ku’ (a DNA binding protein). 

They found that eIF2β was phosphorylated by DNA-PK. These analyses suggest that 

eIF2 may also have a physiological role in DNA repair through its interaction with 

DNA-PK, in addition to its role in translation initiation (Ting et al., 1998).   

A missense substitution in the highly conserved GTP-binding (G) domain of EIF2S3, 

p.I222T, has been previously described in three male individuals in the same pedigree 

with clinical features including; moderate-to-severe intellectual disability (ID), 

microcephaly, short stature, epilepsy and facial dysmorphic features (Borck et al., 

2012). Each affected individual had unique additional features consisting of cleft 

lip/palate and behavioural problems, generalised seizures, and postpubertal 

microgenitalism and obesity respectively. Two of the three patients had GHD, 

however no endocrine values or details of diagnosis were given by the authors, thus 

it was not the main phenotypic focus of their study. Therefore, due to the authors 

focusing on the neurological phenotype, they may have overlooked a more detailed 

pituitary phenotype in the patients. Through analysis of the homologous archaeal 

aIF2γ complex, which can functionally replace eIF2γ in binding Met-tRNAi to the 

ribosome and scanning (Dmitriev et al., 2011), this mutation lies within a hydrophobic 

cleft on the backside of the GTP-binding domain which forms the binding site for 

aIF2β. Functional studies involved the corresponding yeast eIF2γ residue being 
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mutated, p.V281T/p.V281K, which substantially impaired/abolished, respectively, 

eIF2β binding to eIF2γ. Overexpression of eIF2β partially restored eIF2γ binding to 

the mutants (Baumann, 1999). This group also showed that the equivalent mutation 

in yeast eIF2γ also impaired translation start codon selection, of which the method is 

discussed in the future work section, 5.4.2, of this chapter. As stated, EIF2S3 is 

located at Xp22.11, which is interestingly part of a region to which a rare X-linked ID 

disorder designated as MEHMO syndrome has previously been mapped by linkage 

analysis (Xp21.1-p22.13) (Steinmuller et al., 1998). MEHMO syndrome patients have 

a life expectancy of less than two years and the disorder is characterized by mental 

retardation, epileptic seizures, hypogonadism and hypogenitalism, microcephaly, and 

obesity, in which all are present in at least one affected individual from the family 

reported by Borck et al.  

Very recently, two novel hemizygous variants in EIF2S3 have been reported in three 

males from two unrelated pedigrees, two brothers and one unrelated male, that were 

inherited from their heterozygous mothers; a missense substitution p.I259M and a 

frameshift p.I465Sfs*4 (Moortgat et al., 2016). Contrastingly, these mutations are 

located within the C-terminal domain, as the p.P432S variant is, and are not within 

the GTP binding domain; as was the case with the p.I222T mutation reported in the 

previous study by Borck et al. These patients had a similar phenotype to the 

previously reported patient, in that they had severe ID, microcephaly, GHD and 

epilepsy with various unique additional features such as spastic quadriplegia, delayed 

puberty and genital abnormalities. However they also had hypoglycaemia (Moortgat 

et al., 2016), as observed in Pedigree 8, although the underlying pathogenesis for the 

hypoglycaemia was not clear in the patients described in their study. Unfortunately 

two unrelated patients from this recent report died, one at 17yrs from severe 

respiratory distress and multi-organ failure, and the other at 12 months from 

multisystemic failure. Moortgat et al. created a morpholino (MO)-based zebrafish 
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eif2s3, the human EIF2S3 ortholog which shares 80.2% protein identity, knock down 

model, which they concluded recapitulated the human microcephaly and short stature 

phenotype, thus supporting the pathogenicity of their EIF2S3 variants identified. 

Injected embryos and uninjected controls were analysed at 0, 1, 2, and 3 days post 

fertilization (dpf) for survival, motility, and morphology. In addition, 30 morphants and 

30 controls were selected at 2 dpf for head width measurements. Their results 

showed that eif2s3 morphants exhibited hypomotility and morphological deficits at 2 

dpf and were shorter with a curved tail. These morphants also had a statistically 

significant reduction in head size (Kruskal–Wallis Test, P<0.0001) with small eyes 

compared with control MO-injected embryos. Following the establishment of the 

knock down phenotype, they then performed rescue experiments by co-injection of 

eif2s3 MO with 500 pg/egg of either WT zebrafish eif2s3 RNA or human EIF2S3 RNA, 

which partially restored the morphant phenotype. The authors also noted that there 

were no significant differences between the standard control MO and the uninjected 

embryos, and therefore concluded that the absence of total rescue was likely due to 

non-specific, or off-target effects of antisense technologies (Moortgat et al., 2016). 

These data, in addition to the phenotype of the patients manifesting both GHD and 

hypoglycaemia, support the hypothesis that the EIF2S3 (p.P432S) is causative of the 

unique phenotype observed in Pedigree 8. Both previous reports describing EIF2S3 

mutations have had phenotypic focus on ID with microcephaly, of which the former is 

not prominent and the latter is not present in our patients. The males in Pedigree 8 

differ vastly from these previous cases in having a much more severe hypopituitarism 

but a milder neurological phenotype. Therefore the EIF2S3 (p.P432S) may have a 

different effect in vivo to previous EIF2S3 mutations, giving rise to this different 

phenotype. 
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5.2. Results 

5.2.1. Cohort screening 

Upon identification of the EIF2S3 (p.P432S) variant in Pedigree 8, I initially screened 

a cohort of patients within our database to see if any additional EIF2S3 variants were 

present in other pedigrees. The full coding region of EIF2S3 was analysed by PCR 

and direct sequencing analysis (Chapter 2.2) in 103 patients with variable 

hypopituitary-related phenotypes to identify any further EIF2S3 variants in other 

patients in our cohort. The phenotype of patients ranged from mild to severe with and 

without structural midline brain defects on MRI: 16 had GHD with no details of further 

anterior pituitary deficiencies, 37 had SOD, 4 had HH/KS and 46 had variable MPHD. 

However no further variants were identified in the EIF2S3 gene in any of these 

patients. No other eukaryotic initiation factors were screened for mutations in this 

cohort, only EIF2S3.  

 

5.2.2. EIF2S3 knock down 

The expression pattern of EIF2S3/eIF2γ in the pituitary, hypothalamus and the 

pancreas, and the unusual phenotype of the patients in Pedigree 8 led me to further 

investigate the role of EIF2S3 in human development. An EIF2S3 KO study on a 

human hybrid pancreatic beta cell line using a viable LV transduction approach was 

carried out in this study, with subsequent insulin secretion and apoptosis assays 

(Chapter 2.4), to compare insulin secretion and cell death in EIF2S3 KO cells 

compared to controls respectively. These assays were performed to help characterize 

the functional role of this initiation factor of protein synthesis (EIF2S3/eIF2γ), and its 

importance in sustaining cell viability.   



202 
 

The four different silencing, and the one non-silencing control, pGIPZ LV-backboned 

plasmids described in Chapter 2.4.2 were packaged into viable LV particles (Chapter 

2.4.3) and, via transduction (Chapter 2.4.4), used to introduce EIF2S3-targeted 

shRNA cassettes into 1.1B4 human pancreatic cells in order to knock down the 

EIF2S3 gene. These plasmids also encoded GFP and a puromycin resistance gene. 

Forty-eight hours after transduction was carried out on the 1.1B4 cells, the cells 

appeared to fluoresce green under the microscope, indicative of GFP expression and 

thus successfully transduced cells. These cells were then under puromycin selection, 

which killed the non-transduced cells therefore allowing for the expansion of 

transduced ones. This method of a stable knock down was used over a transient 

transfection method, so that a KO cell line could be grown and aliquots could be 

frozen over a longer time scale in order to be used in multiple assays and at a later 

date. Transient transfection wears off quicker and shRNA cassettes would have only 

interfered with the gene, and thus knocked it down, for only a fraction of the time that 

a LV vector permits. Following expansion of each cell population, RNA was extracted 

from cells, reverse transcribed and a qPCR was performed (Chapter 2.4.5 – 2.4.7) to 

verify which of the four EIF2S3 shRNA cassette-containing pGIPZ plasmids was the 

most efficient in knocking down the gene. Initially a pilot qPCR assay was carried out 

on RNA derived from non-transduced WT 1.1B4 cells, to determine the most suitable 

dilution of cDNA to use, without using any cDNA samples from transduced cell 

populations. Following transduction using Clone 4, through visual observation the 

cells appeared to not survive for very long and cell viability looked extremely low, 

which would explain why very little RNA was able to be extracted (Chapter 2, Table 

2.1). 
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5.2.3. qPCR analysis 

The qPCR pilot assay concluded that the 1:5 dilution of stock cDNA began 

exponential expression of the genes tested at an appropriate cycle number (20 

cycles) on the StepOne qPCR software. Therefore a 1:5 dilution of cDNA was used 

in further qPCR assays for the different 1.1B4 cell populations that had been 

transduced with the different shRNA-containing constructs described: Scrambled 

non-silencing clone, Clone 1, Clone 2, Clone 3 and Clone 4 shRNA respectively, in 

addition to the non-transduced cells used as a control in all assays (WT 1.1B4 cells). 

 

Results from the qPCR showed that Clone 4 was the most successful construct in 

knocking down the EIF2S3 gene. Clone 4 had a Relative Quantification (RQ) of 0.186 

with a 95% Confidence Interval ranging between 0.127 - 0.274, when compared to 

non-transduced cells (RQ: 1, CI: 0.89 – 1.124) (Figure 5.7, Table 5.4), indicating that 

approximately 82% of EIF2S3 was knocked down. Clone 1-3 were not as efficient in 

silencing the EIF2S3 gene and only appeared to achieve a range between 15-40% 

knock down in the cells.  
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Figure 5.7: qPCR EIF2S3 expression results in cDNA populations. Histogram 

showing the relative quantification of EIF2S3 expression, against GAPDH, β-ACTIN 

and HPRT housekeeping genes in cDNA derived from transduced 1.1B4 cells, 

compared to non-transduced cells. Five different cDNA populations were derived 

from cells transduced with different shRNA cassette-containing constructs: 

Scrambled non-silencing and Clone 1, Clone 2, Clone 3, Clone 4 silencing. All were 

normalised to non-transduced cells.   
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cDNA population 

 

Relative 

Quantification 

(RQ) 

 

95% Confidence Interval 

RQ Minimum RQ Maximum 

Non-transduced 1 0.89 1.124 

Scrambled 1.019 0.913 1.137 

Clone 1 0.638 0.444 0.915 

Clone 2 0.85 0.601 1.201 

Clone 3 0.752 0.66 0.856 

Clone 4 0.186 0.127 0.274 

 

Table 5.4: qPCR EIF2S3 expression results in cDNA populations. qPCR Relative 

Quantification (RQ) values for EIF2S3 expression against GAPDH, β-ACTIN and 

HPRT compared to non-transduced cDNA, with a 95% confidence interval range: 

minimum RQ and maximum RQ, for all five cDNA populations. 
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5.2.4. Western Blot Analysis 

Following transduction as described, protein was extracted from cell lysates and a 

bicinchoninic acid assay (BCA) was performed to quantify the total concentration of 

protein in each sample (Table 5.5), in order to perform western blot analysis to detect 

eIF2γ protein (Chapter 2.4.8). A polyclonal anti-EIF2S3 antibody was used for the 

detection of eIF2γ in the different protein populations. A pilot western blot assay was 

performed on protein derived from HeLa cells, which were suggested to be used as 

a positive control by the antibody manufacturer, and non-transduced 1.1B4 cells 

respectively, at three different concentrations (Figure 5.8). This was to test the 

specificity of the antibody and to determine the optimal protein concentration to load 

into wells to obtain a clear eIF2γ band. 

 

BCA concentrations:  

Protein lysate Total protein 

lysate 

concentration 

(µg/ml) 

Total protein 

lysate 

concentration 

(µg/µL) 

Total protein 

yield (µg/µL) 

HeLa (control) 696.667 0.697 209.1 

1.1B4 WT NT 1339.313 1.339 401.7 

Scrambled 1313.125 1.313 393.9 

Clone 1 1173.375 1.173 351.9 

Clone 2 1287.625 1.288 386.4 

Clone 3 1173.375 1.173 386.4 

Clone 4  134.375 0.134 26.8 

Table 5.5: BCA assay quantification. Total protein lysate concentrations 

determined by a bicinchoninic acid assay (BCA) using a luminometer. WT, wild-type; 

NT, non-transduced. 
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The pilot western blot analysis showed strong unspecific binding of the primary anti-

EIF2S3 antibody in both cell populations, HeLa and non-transduced protein, at all 

three total protein concentrations (5µg, 10µg and 30µg). Additionally, a band just 

above the 55kDa protein ladder band, at approximately 57kDa, was present on the 

blot (Figure 5.8), however I did not believe this to be specific to eIF2γ and therefore 

did not perform a western blot on the extracted protein from Clones 1-4.  

 

Figure 5.8: Western blot analysis using the anti-EIF2S3 primary antibody. (A-B) 

Western blot membrane with WT human 1.1B4 cells and HeLa control protein lysate, 

each at three different concentrations; 5µg, 10µg and 30µg. Images A and B were 

taken from the same membrane. (A) An anti-EIF2S3 primary antibody was used to 

stain eIF2γ at 52kDa, however there was no significant band on the membrane at this 

size. (B) An anti-GAPDH primary antibody was used to stain GAPDH (37kDa) 

indicated by the arrows. WT, wild-type. 
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5.2.5. Insulin secretion ELISA assay 

As mentioned, the patients in Pedigree 8 had hyperinsulinism that caused 

hypoglycaemia. Due to this pancreatic phenotype observed in the patients, 1.1B4 

cells (PHE) were chosen for this study as they are human pancreatic beta cells that 

have been reported to secrete insulin (McCluskey et al., 2011). Upon establishing a 

human EIF2S3 KO cell line that had been verified by qPCR, I wanted to measure 

insulin secretion in these cells and compare it to WT cells, to see if there was a 

significant difference between the two. Initially, I wanted to confirm the insulin 

producing properties in this cell line myself as well as optimise the ultrasensitive 

insulin ELISA assay, before attempting to measure insulin secretion in the EIF2S3 

KO 1.1B4 cell line. Therefore a pilot assay was performed using non-transduced WT 

1.1B4 cells. 

Firstly, 10mM glucose alone was added to the cells, secondly Forskolin (10µM) was 

added in isolation to the cells, as it has been shown to stimulate insulin secretion in 

cell lines e.g. MIN6 cells (Luther et al., 2006). Thirdly, Forskolin (10µM) in combination 

with a phosphodiesterase inhibitor, IBMX (100µM), in a high glucose concentration 

(10mM) was added. IBMX is known to inhibit the breakdown of cAMP and thus further 

increase insulin secretion to a higher final concentration that can be more easily 

detectable (Al-Majed et al., 2004). However after subjecting the 1.1B4 cells to these 

treatments, the cells did not release any insulin above the background/lowest 

standard (Calibrator 0) from the ELISA kit. In further attempts, these test agent 

concentrations used as treatments on the cells were increased by 10 fold; 100mM 

glucose, 100µM Forskolin (in 100mM glucose), and 100µm Forksolin with 1000µM 

IBMX (in 100mM glucose), and yet still did not stimulate any insulin release from the 

human 1.1B4 cells.  
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At this later stage, I acquired MIN6 cells that were negative for mycoplasma from 

Professor Peter Jones, Kings College London, which up until this point had not been 

available. The original test agents made using the 10mM glucose KRB buffer used 

on the 1.1B4 cells (Chapter 2, Table 2.6) were then used to treat these MIN6 cells, 

with simultaneous treatment of 1.1B4 cells, and the solutions from all wells in the plate 

were collected and analysed for insulin secretion. The treatments successfully 

stimulated the MIN6 cells to release insulin (Figure 5.9), however the 1.1B4 remained 

unresponsive and had undetectable insulin secretion levels. 

 

The MIN6 cells secreted insulin after being incubated with three different treatments: 

10mM glucose, 10µM Forskolin (in 10mM glucose), and 10µM Forskolin with 100µM 

IBMX (in 10mM glucose) respectively, with the latter treatment combination being the 

most efficient at stimulating insulin secretion. The human 1.1B4 cells did not secrete 

insulin at a level above the ‘Calibrator 0’ standard after incubation with the same 

treatments.  
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Figure 5.9: Insulin secretion assay in MIN6 cells. Graph showing the mean insulin 

secretion from MIN6 cells in a well from a 6-well plate after incubation with forskolin, 

and forskolin in combination with IBMX. The error bars represent the standard 

deviation of the mean. IBMX, 3-isobutylmethylxanthine. 

 

 

These data suggest that these hybrid human 1.1B4 cells are not secreting insulin, as 

previously described in studies in Professor Peter Flatt’s laboratory. Through helpful 

discussion with a collaborator, namely Professor Peter Jones from Kings College 

London, we hypothesised that the beta insulin-secreting cells in this hybrid may have 

been overtaken by rapid growth of the PANC-1 epithelial cells, and therefore no 

detectable measure of insulin can derive from this cell line as a whole. This revelation 

meant that we were unable to measure the effect of EIF2S3 knock down on insulin 

secretion. 
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5.2.6. Apoptosis Caspase 3/7 Assay 

As mentioned in section 5.2.2, during culturing the cells transduced with the Clone 4 

shRNA cassette-containing construct were challenging to sustain and expand 

compared to the other cell lines (cells transduced with Clones 1-3). This may be due 

to a reduction in cell viability as a result of the highest percentage loss of normal 

EIF2S3, shown by qPCR (Figure 5.7). This led to the hypothesis that there is 

increased apoptosis in these cells due to the lack of eIF2γ protein. Therefore Clone 

4 was analysed for cell viability compared to WT 1.1B4 cells through conducting a 

cell apoptosis assay that measured caspase 3/7 activity in the cell, with and without 

the addition of a cytokine mix, which is known to stimulate caspase activity (Chapter 

2.4.10).  

Initially, a pilot apoptosis assay was performed using both MIN6 and 1.1B4 WT non-

transduced cells. After treatment with cytokines, both cell lines showed an increase 

in caspase 3/7 compared to the cells untreated with cytokines; termed basal caspase 

activity (Figure 5.10).  
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Figure 5.10: A pilot apoptosis assay performed on WT untransduced MIN6 and 

1.1B4 cells. Cells were seeded 24 hours before a 16 hour incubation with a cytokine 

mix. Results are shown as the mean ± SD from an assay performed in triplicate. There 

was a highly significant difference in caspase activity, measured as luciferase activity 

on a luminometer, in the cytokine-treated cells compared to basal activity in each cell 

line respectively; MIN6 cells (1070.33 ± 33.56 versus (vs) 116 ± 8.66) p=0.0006, 

1.1B4 cells (2354.67 ± 40.7 vs 601.33 ± 62 p=0.0001). The error bars represent the 

standard deviation (SD) of the mean. WT, wild-type. 

 

After establishing a working apoptosis assay, caspase activity in the human EIF2S3 

KO 1.1B4 cell population (Clone 4) was compared with 1.1B4 cells transduced with 

the scrambled non-silencing (NS) shRNA control construct, and the non-transduced 

(NT) cells respectively.  
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5.2.6.1. Non-parametric tests 

 

Significant difference between Clone 4 cyto and Clone 4 basal (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

Clone 4 cyto 9 126 85.5 

Clone 4 basal 9 45 85.5 

Combined 18 171 171 

 

Significant difference between NS cyto and NS basal (p = 0.0379). 

 

Group (Cell population?) N Rank sum Expected 

NS cyto 9 109 85.5 

NS basal 9 62 85.5 

Combined 18 171 171 

 

 

Significant difference between NT cyto and NT basal (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

NT cyto 9 126 85.5 

NT basal 9 45 85.5 

Combined 18 171 171 

 

Significant difference between Clone 4 basal and NS basal (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

Clone 4 basal 9 126 85.5 

NS basal 9 45 85.5 

Combined 18 171 171 

 

Significant difference between Clone 4 basal and NT basal (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

Clone 4 basal 9 126 85.5 

NT basal 9 45 85.5 

Combined 18 171 171 
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Significant difference between Clone 4 cyto and NS cyto (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

Clone 4 cyto 9 126 85.5 

NS cyto 9 45 85.5 

Combined 18 171 171 

 

 

Significant difference between Clone 4 cyto and NT cyto (p = 0.0003). 

 

Group (Cell population?) N Rank sum Expected 

Clone 4 cyto 9 126 85.5 

NT cyto 9 45 85.5 

Combined 18 171 171 
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5.2.6.2. Two-way ANOVA test 

 

This test was applied to the data to analyse whether there was a significant effect of 

cytokine treatment on caspase activity (represented through luciferase values) 

between the different cell populations: Clone 4, NS and NT. The data calculations are 

presented in Appendix 5B. 

 

Table 1. Normalised to blank mean measurements by group 

 Treatment group  

Cell line cyto basal Total 

Clone 4 2288.33 1202.67 1745.50 

NS 467.78 257.44 362.61 

NT 757.89 225.33 491.61 

Total 1171.33 561.81 866.57 

 

 

Table 2. ANOVA; group1: cell line and group2: treatment 

Number of obs = 54 R-squared = 0.9483   

Root MSE = 177.663 Adjusted R-squared = 
0.9429 

  

      

Source Partial SS df MS F Prob>F 

      

Model 27786935 5 5557386.9 176.07 <0.001 

      

group1 21007560 2 10503780 332.77 <0.001 

group2 5015423.1 1 5015423.1 158.90 <0.001 

group1#group2 1763951.3 2 881975.63 27.94 <0.001 

      

Residual 1515084.7 48 31564.264   

Total 29302019 53 552868.29   

 

 

There was a significant interaction between the two variable groups; cell populations, 

and with or without cytokine treatment (F(2, 48) = 27.94, p < 0.001) (Table 3), 

suggesting that the cytokine treatment has a different effect on caspase activity within 

each cell population. 



216 
 

5.2.6.3. Parametric tests: Two-tailed unpaired T-test  

 

Figure 5.11: Apoptosis assay comparing caspase activity in EIF2S3 KO cells 

compared to controls, with and without cytokine treatment. Results from an 

apoptosis assay shown as the mean ± SD of 3 independent experiments with each 

assay performed in triplicate, on NT 1.1B4 cells, NS shRNA transduced 1.1B4 cells 

and EIF2S3 knock-down (Clone 4) 1.1B4 cells. The average mean values from each 

triplicate assay 1, 2, 3 are shown in Appendix 5A. Caspase activity is measured as 

luciferase values on a luminometer. Caspase activity is significantly higher after 

cytokine treatment compared to the basal caspase activity in the Clone 4 (2288 ± 

358.31 versus (vs) 1203 ± 63.52 p=0.0067) and NT (758 ± 84.06 vs 230 ± 59.76 

p=0.0009) cell populations respectively. Basal caspase activity is significantly higher 

in Clone 4 compared with NS (1203 ± 63.52 vs 258 ± 100.49 p=0.00016; displayed 

in orange) and NT (1203 ± 63.52 vs 230 ± 59.76 p=0.00004; displayed in blue) 

respectively. Clone 4 cells treated with cytokine mix have a significantly higher 

caspase activity compared with NS (2288 ± 358.31 vs 468 ± 261.10 p=0.002; 

displayed in green) and NT (2288 ± 358.31 vs 758 ± 84.06 p=0.002; displayed in red) 
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cytokine-treated cell populations respectively. The error bars represent the standard 

deviation (SD) of the mean. NS, scrambled non-silencing; NT, non-transduced. 

 

In line with the pilot assay, there was significantly higher caspase activity in both the 

Clone 4 and NT populations after the addition of cytokines, compared to basal. The 

NS population did not reach a statistically significant difference in caspase activity 

after the addition of cytokines. There was significantly higher caspase activity in Clone 

4 compared to the two control populations, NS and NT, both after the addition of 

cytokines and in basal activity respectively (Figure 5.11).  

 

5.2.7. The EIF2S3 (p.P432S) mutant 

A KO cell line with significant reduction in EIF2S3 expression following transduction 

with Clone 4, showing a higher caspase activity (Figure 5.11) and thus increased 

apoptosis compared with WT cells, had now been established. I wanted to look at the 

effect of the specific mutation, EIF2S3 (p.P432S), that was identified in the patients 

in Pedigree 8. Therefore the EIF2S3_WT and mutant EIF2S3 (p.P432S) inserts were 

cloned into an LV-IRES (LV-backboned) vector, from their original pCMV-SPORT6, 

in order to be packaged into viable LV particles and transduced into cells using the 

same method (Chapter 2.4.3 – 2.4.4). The cloning procedure is illustrated in Figure 

2.2. 

The cloning site within the LV-IRES vector, that the inserts would have to ligate into, 

was within two BamHI sites. Therefore by site-directed mutagenesis (Chapter 2.4.11) 

the BamHI site already within EIF2S3 cDNA had to be mutated so that the insert 

would not be cut in half during the BamHI digestion step. This BamHI site had one 

nucleotide substituted without changing the amino acid, thus keeping the WT protein 



218 
 

sequence intact and unaltered. The EIF2S3_WT insert was then amplified out of the 

pCMV-SPORT6 IMAGE clone vector by PCR, with the BamHI sequence on each end, 

using specific primers (Chapter 2.4.15) (Figure 5.12).  
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Amplification of EIF2S3 insert 

  

 

Figure 5.12: Amplification of the EIF2S3 cDNA insert. Image showing the EIF2S3 

WT PCR product that was amplified from the pCMV-SPORT6 plasmid using specific 

primers, run on a 1% agarose gel next to different 1kb ladders. The arrows indicate 

the length of the ladder bands either side of the insert DNA band. The length of the 

EIF2S3 insert corresponds to the correct length for EIF2S3 cDNA; 1.4kb. 1kb ladders; 

Hyperladder I (Bioline) and GeneRuler 1kb plus (Thermo Scientific) respectively. 
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The PCR EIF2S3 insert product was then purified through gel extraction (Chapter 

2.4.14) and cloned into a pGEM-T Easy vector by TA-cloning (Chapter 2.4.16 – 

2.4.17). The host LV-IRES vector was digested with BamHI enzyme and treated with 

alkaline phosphatase (Chapter 2.4.12 – 2.4.13), and the EIF2S3 purified insert was 

cut out of the pGEM-T Easy vector, also with BamHI (Chapter 2.4.19), before the two 

were ligated (Chapter 2.4.20). Site-directed mutagenesis was then performed to 

revert the single nucleotide back to its original BamHI site within the insert, to yield 

the exact original EIF2S3_WT cDNA sequence and thus the final EIF2S3_WT 

construct. Alongside this, multi-site-directed mutagenesis (Chapter 2.4.21) was 

performed on another aliquot of LV-IRES_EIF2S3_WT ligated vector, to insert the 

p.P432S missense variant into the EIF2S3_WT sequence. This method 

simultaneously reverted the single altered nucleotide back to the original BamHI site 

at the same time, thus yielding the final EIF2S3 (p.P432S) mutant construct.  

Unfortunately, despite many attempts, the plasmids would not package into enough 

viable LV particles to be used in transduction assays. This LV packaging method 

appeared to work better for the shRNA cassette-containing pGIPZ plasmids used in 

the knockout studies. Therefore the EIF2S3_WT and EIF2S3 (p.P432S) mutant 

constructs were transiently transfected into cells rather than transduced. 

However, despite several attempts to transfect both 1.1B4 and MIN6 cells using both 

Fugene-6 and lipofectamine transfecting agent methods respectively (Chapter 

2.4.22), there were not enough green fluorescing cells visualised following 

transfection to be able to proceed to functional assays, only ~5% green cells were 

present at 48 hours after transfection. Seventy-two hours after transfection, this 

percentage rose to ~15% and cell sorting was performed to sort the green-fluorescing 

cells from the non-fluorescing cells (Chapter 2.4.23). However not enough cells were 

able to be expanded within the timeframe following the cell sort, before the green cells 

became normal again and transient transfection had worn off. If RNA had been 
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extracted from these cells with such a low green fluorescing overall percentage and 

analysed by qPCR, there would not have been enough RNA derived from transfected 

cells that were exhibiting EIF2S3_WT and mutant expression respectively, as ~85% 

of them would be expressing endogenous EIF2S3 only. Therefore, if the constructs 

were not being expressed to a high enough degree, the subsequent assays, such as 

insulin secretion (only able to be performed in MIN6 cells) and apoptosis assays, 

would not reflect the true effect of the EIF2S3 (p.P432S) mutant. 

 

5.3. Discussion 

5.3.1. Cell line choice and insulin secretion assay 

I wanted to functionally investigate the involvement of eIF2γ in an insulin secretory 

context by manufacturing an EIF2S3/eIF2γ knockout cell line (Chapter 2.4), to assess 

the role of eIF2γ protein in insulin secretion in the pancreas. Initially MIN6 cells were 

considered as a sensible choice of cell line as they have been extensively and 

routinely used in different laboratories, especially by Professor Peter Jones’ group in 

the Diabetes and Nutritional Sciences Division at Kings College London. Additionally, 

since the phenotype of the patients encompassed a pancreatic phenotype, the fact 

that these cells are pancreatic beta cells derived from transgenic mice (insulinomas) 

suggested that they were ideal in investigating the role of eIF2γ on pancreatic 

function, such as insulin secretion from these cells. However, unfortunately, all 

original stocks of MIN6 cells at Kings College were found to be highly infected with 

mycoplasma and were initially unable to be used in functional studies. Furthermore, 

MIN6 cells are not commercially available, thus making another cell line choice 

inevitable. At this stage, there were no other common pancreatic beta cell lines to 

choose from that had been as widely used as MIN6 cells in practice. Therefore, I 

thought it best to research possible human cell lines of a similar nature as opposed 
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to mouse or other species, as this would be more relevant and may reflect a more 

accurate representation of what may occur in a human pancreas if EIF2S3 was 

knocked out. Consequently human 1.1B4 pancreatic cells (PHE) were chosen; which 

are a hybrid cell line formed from the electrofusion of a primary culture of human 

pancreatic islets with PANC-1, in which the latter are human pancreatic ductal 

carcinoma cells. 1.1B4 cells have been reported to secrete insulin and have been 

extensively characterized through previous studies in Professor Peter Flatt’s 

laboratory in Northern Ireland (Vasu et al., 2013, McCluskey et al., 2011, Guo-Parke 

et al., 2012), specifically involving insulin secretion assays. This cell line is formally 

identified by PHE to have applications in the study of pancreatic cell biology, which 

may be stimulated to become pure insulin-secreting cells, supporting this cell line as 

a suitable choice for this study. An extra benefit of this cell line is that it is commercially 

available and had been analysed before dispatch for mycoplasma, as well as on 

arrival in our laboratory; with testing being negative on both occasions. Therefore, I 

decided to perform a stable knockdown of the EIF2S3 gene through the packaging of 

lentivirus and subsequent transduction (Chapter 2.4) in 1.1B4 cells. Interestingly, the 

patients in Pedigree 8 initially presented with hyperinsulinism which contributed to 

their hypoglycaemia, with later reduction in insulin secretion and glucose impairment 

in the three affected boys. It is therefore difficult to predict the effect of EIF2S3 knock-

down and also the EIF2S3 p.P432S variant on insulin secretion. However one 

hypothesis would be that as it is known that insulin promotes protein synthesis 

through the activation of eIF2B (Proud, 2006) (Figure 5.4), perhaps when eIF2γ is 

faulty as proposed in the patients carrying the EIF2S3 (p.P432S), there is an increase 

in the feedback loop mechanism that normally occurs within the cell, that promotes 

insulin secretion. Therefore the patients may be producing too much insulin, which is 

reflected in their hyperinsulinism phenotype, as not enough eIF2B is being promoted 

to stimulate formation of the ternary complex, due to the p.P432S variant in their 

eIF2γ. Therefore their pancreatic beta cells continue to stimulate more insulin release 
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to promote the protein synthesis pathway. Finding a human cell line that actually 

secreted insulin would have been ideal, however it has to be pointed out that even if 

this was possible, measuring endogenous insulin secretion in vitro may not have 

reflected physiological levels. Other factors may influence insulin secretion at different 

times, and as the dose of in vivo promoters and inhibitors of such pathways are 

unknown, in vitro analysis has its limitations as to whether it is reflecting what is 

actually occurring within the cell.       

 

5.3.2. EIF2S3 expression 

The human expression profile generated in this study is consistent with the tissues 

that are affected in the patients in Pedigree 8. Initial studies showed EIF2S3 

expression in the hypothalamo-pituitary axis, essentially in the developing 

hypothalamus and Rathke’s pouch at CS20, equivalent to 49 days into development. 

Transcripts were also noted in the AP and PP, however not throughout the whole of 

the pituitary tissue at CS23, equivalent to 56 days into development (Figure 4.16A-

B). These findings suggest that the phenotype in Pedigree 8 could stem from either 

the hypothalamus or the pituitary gland. Further studies investigated expression in 

the human pancreas due to the presence of a pancreatic phenotype in Pedigree 8. 

EIF2S3 expression was noted in specific cells in the pancreatic tissue of a 13-week 

old foetus (Figure 4.16E-F). Professor Tom Jacques, a pathologist at GOSH, was 

consulted with respect to the specific aspects of pancreas expression. He concluded 

that it appears to be in the exocrine component and in the Islets of Langerhans. It is 

likely that the expression is observed in those regions that contain beta cell 

progenitors. Expression was also observed in the nasal epithelium (Figure 4.16C) 

and areas of the eye (Figure 4.16D); however the patients had no overt eye 
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phenotype. Nevertheless, it will be important to monitor the affected males in the long-

term with respect to the development of an eye phenotype. 

 

5.3.3. EIF2S3/eIF2γ 

The EIF2S3 (p.P432S) variant segregates fully with the affected patients and the 

maternal ancestral line within the three generations of Pedigree 8, descending from 

the heterozygous asymptomatic grandmother (Figure 5.1). This variant is not located 

in any of the three known GTP-binding regions, but rather in the C-terminal domain 

of the eIF2γ (Figure 5.4), a region of unknown function. Based on the discovery of the 

EIF2S3 (p.P432S) variant in Pedigree 8 and the human expression profile of EIF2S3, 

an EIF2S3 KO human cell line was generated using a LV transduction approach, to 

investigate the role of EIF2S3/eIF2γ. Unfortunately, the EIF2S3 knock-down cell 

population was unable to be verified at the protein level, as a reliable antibody was 

unavailable, as indicated by the western blots performed in this study. Moreover, 

there are no previously published studies reporting the use of any human anti-EIF2S3 

antibody in the literature and therefore no reliable data demonstrating that an antibody 

specific to eIF2γ exists. Further work using the anti-EIF2S3 antibody, may perform 

immunostaining on human embryonic sections of the brain, to further clarify whether 

this particular antibody is functional in a different experimental assay to western blot 

analysis.  

Aside from the studies described earlier in yeast and zebrafish performed in previous 

studies (Borck et al., 2012, Moortgat et al., 2016), there has not been any other 

functional work performed that investigates the role of human EIF2S3/eIF2γ, and no 

further mutations have been identified in EIF2S3, making it difficult to plan functional 

assays in this highly unexplored area. Previous work has shown that murine Eif2s3y 

suppresses the pluripotency state of murine embryonic stem cells, and promotes their 
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proliferation (Li et al., 2016). In mice, Eif2s3y on the Y chromosome is homologous 

to Eif2s3x on the X chromosome. However, it should be made clear that there is no 

human EIF2S3Y gene, and thus no EIF2S3 homologue on the Y chromosome exists 

as it does in the mouse. Instead, EIF2S3 has a homologue on chromosome 12 

namely EIF2S3L which encodes the eukaryotic translation initiation factor 2 subunit 

3-like protein. During spermatogenesis when meiosis in males is occurring, genes on 

the X chromosome are silenced, a process termed meiotic sex chromosome 

inactivation (MSCI) (McKee and Handel, 1993). As several essential housekeeping 

genes are located in the X chromosome, mammals have evolved to give rise to 

duplicated retroposed copies of genes with important functions, and have integrated 

them into autosomal locations. These gene copies, termed retrogenes, are only 

expressed at the time that their X-encoded parental genes are inactivated and thus 

are only expressed in the germ line in the testes during meiosis (Shiao et al., 2007, 

Betran et al., 2002, Turner, 2015). The EIF2S3L gene on chromosome 12 is only 

expressed in the testes, and therefore strongly suggests that EIF2S3 is one of these 

essential genes on the X chromosome, as it has this retrogene copy in the autosome. 

This relates to the apoptosis data in this study, which showed higher cell death in the 

EIF2S3 KO cells compared to controls, thus suggesting that the presence of EIF2S3 

is critical for cell proliferation and maintenance.  

Yamauchi et al. have shown that spermatogenesis can occur in male mice with the Y 

chromosome contribution limited to only two genes: Sry, the testis determining factor, 

and Eif2s3y, the latter being the murine Y chromosome homologue of Eif2s3x 

(Yamauchi et al., 2014). Further studies by this group replaced Sry and Eif2s3y 

through transgenic activation of their homologues Sox9; which in mice is on 

chromosome 11 as opposed to the X chromosome in humans, and Eif2s3x on the X 

chromosome, and showed that spermatogenesis and reproduction still occurred in 

the mice. Thus the presence of just these two specific genes were able to substitute 
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the Y chromosome in mice (Yamauchi et al., 2016). This study demonstrates the 

critical role of Eif2s3x in reproduction, which complements the findings in this study 

of the high cell death observed in cells lacking EIF2S3. Due to eIF2γ being an initiation 

factor, it plays an essential key role in initiating protein synthesis within the cell 

(Yatime et al., 2007). Therefore in its absence, this fundamental pathway of protein 

synthesis may not be able to be achieved to a high enough standard to maintain cell 

survival. The highly significant difference in apoptosis observed between the EIF2S3 

KO population and control cells observed in my studies, supports this hypothesis. In 

line with these findings, the EIF2S3 (p.P432S) variant in our patients is therefore 

predicted to be a partial loss of function mutation, which is not deleterious enough for 

the patients to die but is pathogenic enough for them to manifest the disorder 

described. However further functional analysis is necessary to show the significance 

of the variant and the mechanism affected. The recent publication by Moortgat et al 

supports my observations by reporting pedigrees with certain similar phenotypic 

features, who are carrying what are described as pathogenic EIF2S3 mutations, in 

which two out of the three male patients died. My study has unique and novel aspects, 

firstly the human embryonic expression data presented here had not previously been 

analysed in depth in a hypothalamo-pituitary and pancreatic context in the literature. 

As discussed, Pedigree 8 still has a unique phenotype for a family harbouring an 

EIF2S3 variant, as the patients elicit a more severe hypopituitary phenotype, but a 

milder neurological phenotype compared to previous reports. Intellectual disability 

with the presence of microcephaly and epilepsy has been the main phenotypic focus 

in previous patients up until now. All previous reported patients had a thin corpus 

callosum on MRI; also observed in our patients. However three previously reported 

patients also had enlarged lateral ventricles (Borck et al., 2012); not present in 

Pedigree 8. In contrast, our patients have a small anterior pituitary on MRI as opposed 

to a normal structural pituitary and stalk in Moortgat et al’s study, and no mention of 

any structurally abnormal pituitary in Borck et al’s publication. Both previous reports 
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describe patients with GHD, however the authors did not provide any endocrine 

values; Borck et al simply stated that low growth hormone levels were observed in 

the two brothers, and treatment with GH resulted in some catch-up growth in one of 

them (Borck et al., 2012). The patients in Pedigree 8 have GHD and TSHD, 

suggesting that the EIF2S3 (p.P432S) variant may be affecting protein synthesis in 

both the somatotrophs and thyrotrophs, as opposed to previous EIF2S3 variants that 

suggest affects in only the somatotroph cells of the pituitary. The mechanism causing 

this is unknown although a proline to serine substitution is likely to affect protein 

folding, and thus be detrimental to the protein structure of eIF2γ. As we know it is 

expressed in the pituitary, it may be decreasing the occurrence of protein synthesis 

to a higher degree than previous mutations (thus causing the severe short stature), 

which extends across more cell types such as in the thyrotrophs. Patients in both 

pedigrees in Moortgat et al’s study had hypoglycaemia, however again there were no 

endocrine values presented. The microcephaly and ID observed in these patients 

may be primary, or secondary to brain damage caused by the hypoglycaemia. With 

this in mind, it cannot be ruled out that the microcepahly and ID in the patients 

described by Borck et al may in part have been a consequence of previous 

hypoglycaemia that went undetected. Although our patients in Pedigree 8 are similar 

to this report in having hypoglycaemia, they remain unique in having an unusual 

pancreatic phenotype that fluctuates between hyperinsulinaemic hypoglycaemia and 

hyperglycaemia, which has not been previously reported. Therefore this glucose 

dysregulation seen in our patients suggests a critical role for EIF2S3 in pancreatic 

function, as well as in hypothalamo-pituitary function. A comparison of the patient 

phenotypes described in the two previously published studies, and the patients in this 

study, are presented in Appendix 6. Finally, aside from the expression findings and 

clinical aspects, the EIF2S3 (p.P432S) remains completely novel, is in a highly 

conserved region of the gene, and has never appeared in a patient nor in a control 

individual before. The two previously reported EIF2S3 mutations, p.I259M and 
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p.I465Sfs*4 both lie within the C-terminal domain, and were concluded to be 

pathogenic following zebrafish morpholino studies (Moortgat et al., 2016). This 

suggests that our p.P432S variant, also lying within the C-terminus, may also be 

pathogenic, however causing a different phenotype. A clear defined role for the C-

terminal domain in eIF2γ remains to be established. As discussed, the variant is most 

likely to affect protein folding and therefore structure. Therefore the mechanism 

affected would potentially be protein-protein interaction, thus the binding ability of 

eIF2γ to other subunits and proteins would be altered, which in turn would influence 

protein synthesis.  

Unfortunately this study did not have time to delve into other avenues of investigating 

what the overexpression of EIF2S3 WT and the p.P432S mutant would do to a human 

or mouse pancreatic cell. If sufficient transfection had been achieved in 1.1B4 or MIN6 

cells in this study, and both inserts were being expressed at sufficient levels (validated 

by qPCR), then cells would have been analysed for cell death using the caspase 

assay protocol, and analysed for insulin secretion using the ELISA method. Insulin 

secretion could only be measured using the MIN6 cell line, since the 1.1B4 cells did 

not secrete insulin, as discussed (Figure 5.9). Therefore functional assays still need 

to be performed to clarify whether the p.P432S variant is pathogenic and how it is 

contributing towards the phenotype in Pedigree 8. 

 



229 
 

5.4. Future work investigating the function of eIF2γ 

5.4.1. Transfection assays 

Given more time, there are other approaches that can be applied to attempt a higher 

transfection efficiency of the EIF2S3_WT and EIF2S3 (p.P432S) constructs. These 

include non-viral physical methods such as electroporation, microinjection, 

impalefection, hydrostatic pressure or lipofection. I would most likely begin with 

electroporation in the next instance on 1.1B4 or MIN6 cells as this is the next most 

common method used on hard-to-transfect cells. This technology creates small pores 

in cell membranes in which constructs can enter, by applying an electrical pulse. 

Nucleofector technology (Lonza) is a new improved version of electroporation in 

which high transfection efficiencies may be reached using lower substrate amounts, 

with only a moderate impact on cell viability. However, attempting transfection with 

the current Fugene or lipofectamine method on an alternative pancreatic beta cell 

line, to see if they are more efficient in incorporating the plasmid into their genome, is 

a potential option. 

The EIF2S3 insert was cloned into the LV-IRES plasmid specifically in order to be 

packaged into a viable lentivirus. The fact that this was not possible for various 

unknown reasons suggests that there may be a better plasmid into which the WT and 

mutant EIF2S3 can be cloned, that may be more suitable for the transfection method 

as opposed to being chosen for transduction. In addition, given the fact that LV-IRES 

EIF2S3 constructs did not elucidate successful LV packaging as anticipated, one 

cannot rule out the possibility that there may be other underlying faults with this 

plasmid that may affect other methods, thus making it a poor choice with which to 

continue to attempt transfection. Re-cloning the inserts into a different plasmid that 

expresses GFP, or cloning GFP into the original pCMV-SPORT6 plasmid that already 

contained the EIF2S3 cDNA, would yield alternative constructs to the LV-IRES vector 
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which can then be transfected into cells. Alternatively, co-transfecting GFP with the 

pCMV-SPORT6 containing the EIF2S3 cDNA is another route that can be taken.  

 

5.4.2. Luciferase assays 

As mentioned previously, ribosomes typically initiate translation at an AUG start 

codon. Mutations that weaken Met-tRNAi binding to eIF2 or stimulate eIF2 GTPase 

activity have been found to enhance initiation at a UUG codon and confer a 

suppressor of initiation (Sui−) phenotype (Hinnebusch, 2011). In the previous study 

describing the p.I222T mutation in a patient with ID, the authors conducted an 

experiment showing that cells that express WT eIF2γ show a greatly reduced 

expression of firefly luciferase reporter with a UUG start codon than Renilla-luciferase 

with an AUG codon, producing a low UUG/AUG initiation ratio (Borck et al., 2012), 

which is consistent with what happens in vivo usually with the AUG codon being 

selected. When the p.V281T/p.V281K yeast equivalent mutations were analysed by 

Borck et al in their study, there was an increased UUG/AUG initiation ratio by 2-3 fold. 

Overexpression of eIF2β in the presence of p.V281T/p.V281K mutations, 

partially/fully respectively, restored the WT ratio in cells expressing the eIF2γ mutants 

(Borck et al., 2012). Therefore this complex start codon selection assay may be 

exploited to investigate the p.P432S variant, which may possibly allow further 

investigation of the p.P432S variant and reveal whether a defect in AUG start codon 

selection is the mechanism that is affected. Interestingly, the investigators who 

performed these assays stated that they were unable to express recombinant forms 

of mammalian eIF2γ, and were only able to mutate the corresponding Val281 residue 

in yeast eIF2γ for functional analysis. The authors do not elaborate on the problems 

they faced with expressing mammalian eIF2γ, indicating that they may have had the 
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same challenges in which I have been confronted with, e.g. with limited transfection 

efficiency.  

Insulin rapidly activates protein synthesis by activating eIF2B GDP/GTP exchange, 

thus promoting formation of the ternary complex; eIF2γ-GTP- Met-tRNAi. Therefore if 

successful transfection of our EIF2S3_WT and EIF2S3 (p.P432S) constructs can be 

achieved via any of the methods or cell lines discussed (section 5.4.1) then insulin 

could be used as a stimulant in the luciferase assays analysing UUG/AUG start 

codons. When these cells are expressing eIF2γ WT and eIF2γ mutant protein, firefly 

luciferase with the UUG start codon and Renilla-luciferase with the AUG start codon 

can then be measured directly from lysates following the Dual-Luciferase reporter 

assay system protocol (Promega). Basal activity can be initially analysed with the 

naturally occurring insulin in the cells, which would stimulate eIF2 activity 

endogenously. Insulin-stimulated activity generated by applying insulin into adjacent 

wells in the assay plate could essentially be measured simultaneously. The 

comparison of start codon selection in this context can then be compared between 

WT and mutant populations to observe the UUG/AUG start codon selection ratio in 

both cell populations at basal level, as well as after the addition of insulin. The latter 

will analyse whether the addition of insulin increases start codon selection in the 

mutant cells in a similar fashion to WT cells.    
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5.4.3. Binding assays 

In addition, co-transfecting constructs containing the genes encoding the eIF2α and 

β subunits (EIF2S1 and EIF2S2), with the eIF2γ WT and p.P432S variant constructs 

respectively, using a pull-down co-immunoprecipitation method with a His-tag, could 

essentially look for specific binding qualities of the individual subunits; α, β, γ, and 

also compare differences between the eIF2γ WT with the p.P432S variant. Previous 

studies by Borck et al describe a similar method that looked at the yeast equivalent 

residue to the human eIF2γ (p.I222T) variant that they identified (Borck et al., 2012). 

Given that the p.P432S variant is not in a known GTP-binding domain of eIF2γ, unlike 

the p.I222T variant, some would say that p.P432S may possibly not affect binding at 

all. However given the rudimentary knowledge about the C-terminal domain, and that 

the variant is predicted to alter protein folding and structure, it is beneficial to study 

effects on protein-protein interaction for significant binding differences between the 

WT and p.P432S proteins, in combination with the published p.I222T mutation (Borck 

et al., 2012) which can be used as a control. Conducting this assay may further clarify 

the role of the C-terminus in human eIF2γ. 

There are other initiation factors involved in the promotion of protein synthesis in 

similar ways to eIF2, such as eIF3 which is comprised of 13 subunits and participates 

in the majority of steps leading to translation initiation (des Georges et al., 2015). One 

of these roles, as mentioned in section 5.1.2., is to bind to the 40S ribosomal subunit 

in order to keep the 40S and 60S subunits separate from each other, which allows 

the association of the ternary complex with the 40S ribosomal subunit (Hershey, 

2015). Previous studies that sought to identify which components directly contacted 

residues in the eIF3 core, uncovered a direct bridge link between the globular domain 

of eIF3d to the eIF2α (des Georges et al., 2015). This is just an example of how the 

initiation factors may work together to initiate protein synthesis. Therefore binding 

assays may uncover subtle differences between the eIF2γ WT and the p.P432S 
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variant in respect to its ability to bind to closely related protein partners as well as 

more distant and unknown proteins in other pathways. 

 

5.4.4. Mouse-models 

In vitro studies are useful for characterising a gene and a particular variant within it to 

investigate how it may be contributing to a particular disease, but only to a certain 

extent. Alternatively, in vivo investigation using animal models would provide better 

analysis of the actual biology of a given disease in ways that in vitro assays are unable 

to. Coincidentally, it has just come to light that Dr James Turner’s research group at 

the Francis Crick Institute has attempted to create a CRISPR-generated Eif2s3x (the 

EIF2S3 mouse homologue) knock-out (KO) mouse. The CRISPR-Cas9 technique is 

namely the clustered regularly interspaced short palindromic repeats (CRISPR)-

Cas9, which refers to the immune system in bacteria. This naturally occurring process 

in prokaryotes has been manipulated and developed into a gene editing technique 

that can target particular sequences of DNA to inactivate whole genes or to edit them 

(Wiedenheft et al., 2009, Doudna and Charpentier, 2014). It can alter as little as one 

base pair, enabling specific gene variants identified in patients to be inserted into 

organisms (Walsh and Hochedlinger, 2013). Following the inactivation of Eif2s3x in 

the mouse via CRISPR-Cas9, Dr Turner’s group were unable to create mutant XY 

embryonic stem (ES) cell clones in the Eif2s3x KO mice (unpublished data), 

suggesting that Eif2s3x is critical for ES maintenance. Then, after injecting mouse 

zygotes, despite consistently recovering male and female mutants at the blastocyst 

stage, no mutants were recovered at birth, including female heterozygous mutants. 

Therefore the male mutants die consistent with the XY ES cells, and it appears that 

the targeting strategy that they performed was so efficient that it was able to kill both 

alleles in the females, again causing lethality. This is supported by their analysis of 
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XX blastocysts from which they failed to recover any WT alleles. These data are 

consistent with the findings in my study as the EIF2S3 KO 1.1B4 cell line had a highly 

significant increased cell death compared to controls, mirroring Dr Turner’s findings 

in unsustained life in Eif2s3x KO mice. We plan on collaborating with Dr Turner on 

this project and investigating Eif2s3x KO mice in the context of the pituitary and 

pancreas respectively. In addition, there may also be the possibility of creating an 

Eif2s3x (p.P432S) mutant mouse model using the CRISPR-Cas9 method. This will 

enable the analysis of any in vivo consequences of the p.P432S variant, with 

particular focus on the tissues affected in the patient. Initially the growth of the Eif2s3x 

KO and the Eif2s3x (p.P432S) mutant mouse models can be analysed. This will be 

followed by dissection of the hypothalamus, pituitary and pancreas, which can be 

visualised structurally for comparison with a WT mouse. The number, distribution and 

localisation of molecular markers, such as Sox2, Sox3, Lhx3, Lhx4 and Prop1 for 

example, may be analysed in both the hypothalamus and the pituitary at different 

stages of development. This will be implemented by fluorescent antibody staining, to 

see if there is a reduction in Sox2 positive cells in the mutant compared to the WT 

mouse for example. With these available working murine antibodies, this technique 

could look at co-expression of the known molecular markers in specific cell types of 

the pituitary, such as the somatotroph cells to see if there is correlation with hormone 

deficiencies that are seen in the patient. The pancreas in these mutants can also be 

investigated in a similar way to observe the appearance, number, distribution and 

localisation of pancreatic islets and their beta cells. Furthermore, molecular markers 

specific to the developing pancreas can be analysed, such as Ins1, Pdx1, NeuroD1, 

Ngn3 and MafA for example. In addition, insulin secreted from the beta cells and 

glucagon secreted from the alpha cells can be measured to look at different aspects 

and cell types of the pancreas in vivo.  
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Chapter 6  

 

 

 

General Discussion 
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6.1. Summary of findings 

In this study I have demonstrated both a Sanger sequencing and an exome 

sequencing approach to uncover novel variants and candidate genes in patients with 

congenital hypopituitarism (CH) and related phenotypes. The former was achieved 

by screening Pedigree 1 for LHX4 and identifying the first novel homozygous 

mutation, LHX4 (p.T126M), in two siblings with a lethal form of hypopituitarism 

(Gregory et al., 2015b). The latter was achieved by submitting seven unrelated 

pedigrees to GOSgene for exome sequencing and identifying novel variants in the 

following novel genes: CTPS2 (p.F166L) in Pedigree 2, RNPC3 (p.L483F) and 

PRMT6 (p.P350R) in Pedigrees 3-6, FASN (p.A2132V) and APEX2 (p.M422V) in 

Pedigree 7, and eIF2γ (p.P432S) in Pedigree 8. An EIF2S3 KO human cell line was 

established in this study, using an shRNA LV technique, which showed a significantly 

higher level of caspase activity compared to controls. This increased apoptosis in the 

KO cells suggests that EIF2S3 is crucial in sustaining cell viability. Although detailed 

functional analysis of the p.P432S variant was not completed within the timeframe of 

this study, these data, together with the hypothalamo-pituitary and pancreatic 

expression profile established in this study, suggest that p.P432S may cause a partial 

loss of function leading to a moderately severe phenotype. Molecular modelling 

together with the functional study of genes and the effect of particular mutations is 

extremely important to enable conclusions to be drawn about how certain phenotypes 

arise. However despite functional analysis performed in certain studies, often it is not 

possible to characterise the mechanisms affected by particular mutations through in 

vitro studies. This was the case when analysing the LHX4 (p.T126M) homozygous 

variant in this study, in which transactivation of αGSU and PRL were not affected. As 

discussed, despite there being more target genes to analyse in this assay such as 

TSHβ, POU1F1 and FSHβ, it is not certain that these are genuine physiological 

targets of LHX4. Therefore, although I was not able to show how the p.T126M 
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mutation altered LHX4 function, the molecular modelling together with the strong 

genetic evidence, animal conservation, and previous studies performed in mice, 

strongly suggests pathogenicity of this homozygous variant. Therefore even though 

it is ideal to show functional significance of a variant, it is not always possible, and 

sometimes it is more valuable to accumulate all the facts, including segregation within 

the family, molecular modelling and previous studies, in order to hypothesise whether 

a particular mutation is pathogenic or not. The molecular basis of congenital 

hypopituitarism remains to be established in the majority of the families in our large 

cohort of >2000 CH patients. This indicates that there is a significant number of novel 

genes and regions of interest that are yet to be discovered, and both scientists and 

clinicians can collaborate and identify these novel mechanisms in order to understand 

more about the embryogenesis and development of the hypothalamo-pituitary axis. 

 

6.2. Future Work 

The expression profiles of CTPS2, RNPC3, PRMT6, FASN and APEX2 have been 

analysed and discussed in Chapter 4. The variants identified in these genes in 

Pedigrees 2-7 will be functionally analysed in future studies using appropriate assays. 

Clinical investigation is essential and needs to take place regularly for all patients 

described in this study, to further characterise their phenotypes, and to get a clear 

picture of how their disorders are manifesting and changing with age. We would like 

to make murine transgenic models for all of these genes, as well as models 

harbouring the actual variants, using the CRISPR-Cas9 method. These in vivo 

models can then be compared to the normal mice for phenotypic differences, ranging 

from their size and the presence of other physical manifestations, through to 

molecular markers and hormone levels. The expression of RNPC3 analysed in this 

study, together with the previous report by Argente et al describing RNPC3 mutations 
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associated with IGHD, led me to hypothesise that the RNPC3 (p.L483F) variant is 

responsible for the GHD observed in the patients in Pedigrees 3-6. However 

functional analysis is needed to confirm this and to characterise the actual mechanism 

that is affected in these patients by either or both of the variants in RNPC3 and 

PRMT6 respectively. Additionally, the ovarian phenotype remains unexplained, and 

may be due to either the RNPC3 or the PRMT6 variant. We have already begun to 

create mouse models for Rnpc3 and Prmt6 with our collaborators at The Francis Crick 

Institute, London. Dr Karine Rizzoti and colleagues will knock out the Rnpc3 and 

Prmt6 separately in the mouse, as well as simultaneously, to try to characterise the 

role of each gene in the developing mouse. If these mutants do not survive, then a 

conditional knock out of each gene in the pituitary gland of the mouse will be 

generated. In addition the Rnpc3 (p.L483F) and Prmt6 (p.P350R) variants will be 

introduced separately and in combination with each other to create a mouse model 

reflective of the patients’ genotype (Pedigrees 3-6). Currently this group are analysing 

expression of both Rnpc3 and Prmt6 in embryonic murine hypothalamo-pituitary axis 

tissue as well as the ovaries, which can then be compared with the human expression 

profile performed in this study. We have obtained fibroblast cells from one of the 

affected female patients in Turkey that harbour the homozygous variants in RNPC3 

and PRMT6, and their unaffected sister that has a normal genotype. The RNA in 

these cells will be extracted and sequenced in a technique referred to as RNA-seq, 

also known as whole transcriptome shotgun sequencing. Transcriptomics can look at 

all parts of the transcript including mRNAs, non-coding RNAs and small RNAs, to 

enable analysis of the transcriptional structure of genes and their splicing patterns. In 

the RNA-seq technique, a population of RNA is converted into a library of cDNA 

fragments and then sequenced in a high-throughput manner to obtain short 

sequences, with reads typically 30-40 bp long. These can then be aligned to a 

reference sequence, or assembled to form a genome-scale transcription map that 

consists of both the transcriptional structure and the level of expression for each gene 
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(Wang et al., 2009). This method was carried out in the previous study by Argente et 

al in a lab in Finland which quantified the splicing efficiency and intron retention of 

U12-type introns with respect to U2-type introns per gene, and normalized by gene 

expression. The authors established 21 genes with significantly decreased U12/U2 

ratios in patient cells compared to controls (Argente et al., 2014). Therefore we plan 

on sending the patient fibroblast cells to Finland for RNA-seq, as this lab have 

experience in analysing the data in this context using this complex technique. The 

U12/U2 ratio in their optimised assay can then be measured and the gene expression 

of known U12-spliced genes can be analysed. This scrutiny of the transcript 

containing the RNPC3 (p.L483F) and PRMT6 (p.P350R) variants can potentially 

uncover any defects in the mRNA processing of the minor spliceosome that are giving 

rise to the tissue-specific consequences seen in the patient. For example, in the 

somatotroph cells of the pituitary, that may be causing the IGHD seen in Pedigrees 

3-6. In addition to analysing gene expression of the known U12-spliced genes 

associated with IGHD, previously identified by the authors, they could also analyse 

gene expression of U12-spliced genes known to be associated with the ovary. This 

can look for splicing abnormalities that may be giving rise to the ovarian failure seen 

in the patient. Furthermore the authors may be able to look back at their RNA 

sequencing data from the patients with the bilallelic RNPC3 mutations (Argente et al., 

2014), to look at splicing in ovarian-specific genes. The authors would most likely not 

have analysed these specific genes previously, due to their patients not having been 

diagnosed with ovarian failure, and thus were not considered relevant to the study. 

The mouse models together with the RNA sequencing results will help pinpoint the 

mechanism affected in the patients in Pedigree 3-7. Human ovarian embryonic tissue 

at >10pcw stage will be obtained from HDBR to analyse RNPC3 and PRMT6 

expression in the ovary. This will establish whether expression is apparent in the 

developing fallopian tube or related structures of the female reproductive system, or 

alternatively in the paramesonephric duct, as discussed in Chapter 4. Furthermore, 
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RNPC3 expression analysis of the developing pituitary will be repeated, as the 

Rathke’s pouch tissue in this study was damaged and despite results hinting at 

positive RNPC3 staining in this area (Figure 4.9 A-C), in situ hybridisation needs to 

be repeated for this to be concluded. 

To investigate the role of CTPS2 further we would like to generate a conditional Ctps2 

mouse knock out in the hypothalamo-pituitary axis, which will help characterize the 

role of Ctps2 in the context of this region. Furthermore, a Ctps2(F166L) mouse model, 

reflecting the genotype of the patient would be beneficial, to recapitulate the effect of 

the variant in the mouse. Additionally, it may be possible to collaborate with Martin E 

et al to perform functional assays based on their analysis of the CTPS1 gene (Martin 

et al., 2014). CTP formation depends on enzymes CTPS1 and CTPS2, whose 

respective roles remain unknown (Kassel et al., 2010). However the activity of these 

CTP synthases is thought to be a potentially important step for DNA synthesis in 

lymphocytes (van den Berg et al., 1995). This previous report identified a loss of 

function homozygous mutation (rs145092287) in CTPS1 that caused a novel and life-

threatening immunodeficiency. This disease was characterized by an impaired 

capacity of activated T and B cells to proliferate in response to antigen receptor-

mediated activation (Martin et al., 2014), previously discussed in Chapter 4.2.3. The 

splice mutation identified in this patient was found to have decreased ERK1/2 

phosphorylation, and CD25 and CD69 upregulation in CTPS1-deficient T-cells 

compared to controls. Firstly, fibroblast cells from the patient harbouring the CTPS2 

(p.F166L) in Pedigree 2 can be obtained and CTPS2 expression can be compared 

with control cells. In addition, based on the functional assays described in this 

previous study, and with the help of the immunology lab here at the ICH, proximal T-

cell activation signals, and late responses, may be investigated in fibroblast cells 

obtained from the patient, and compared to controls. Furthermore, B cells could be 

activated in these cells, with anti-BCR and CpG, and IL-4 and CD40L for example, 
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and monitored for the upregulation of CTPS2, using similar optimised previously 

performed methods that monitored CTPS1 upregulation. These data may give critical 

insights into the impact of the mutation on protein function. However, these assays 

obviously have particular focus on immune cells, and as our patient in Pedigree 2 has 

not been diagnosed with an immunodeficiency, they may not reveal the mechanism 

affected by the CTPS2 (p.F166L). Although, the immune system of this patient may 

need to be further investigated. It cannot be completely ruled out that immune cells 

specifically in the pituitary and related tissues where CTPS2 expression was identified 

(Figure 4.3), may be affected and indirectly contribute to the phenotype. However, 

the complex phenotype of the patient in Pedigree 2 is likely due to an as yet 

undetermined mechanism, unrelated to immune cells, initiated by the p.F166L 

missense substitution in CTPS2. In this case, the mouse model may be able to shed 

light on the underlying mechanism, hence it may be wise to begin with this in vivo 

study in the first instance.  

Finally, based on the expression profiles of both FASN and APEX2 in Chapter 4 of 

this study, it is hypothesised that the unique phenotype observed in the patient from 

Pedigree 7 is most likely to be hypothalamic. This hypothesis is based on the high 

FASN transcript expression observed in the hypothalamus in several stages during 

embryogenesis. This is opposed to only partial expression noted in Rathke’s pouch 

at the early stage of CS16, in which transcripts are otherwise absent from the 

developing pituitary gland (Figures 4.11). APEX2 transcript expression was 

completely absent in the developing hypothalamus and pituitary at all stages 

analysed. Recent clinical investigation of the patient identified an increased 

concentration of triglycerides, which will now be routinely monitored. The patient is 

due to have metabolic tests performed as an inpatient to analyse his fat metabolism, 

as well as an oral glucose tolerance test and diagnostic fast, which may show an 

abnormal impact on insulin secretion. His elevated triglyceride concentration 
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suggests a potential association of the phenotype with defective fatty acid synthesis 

due to the FASN mutation. These data together with the fact that FASN (p.A2132V) 

is a de novo variant, indicate that it is most likely to be mutated FASN that is giving 

rise to the phenotype seen in the patient (Pedigree 7). In addition, loss of Fasn in 

murine models generated in previous studies have a more severe phenotype 

compared to the Apex2 mouse models (discussed in Chapter 4.4.3 and 4.4.5). The 

conditional Fasn murine knock out in NSPCs impairs adult neurogenesis (Knobloch 

et al., 2013). Murine null mutant Fasn-/- embryos die before implantation, with Fasn+/- 

heterozygotes dying at various stages of development in utero, suggesting that Fasn 

haploinsufficiency is incompatible with survival (Chirala et al., 2003). Apex2-null mice 

exhibit a growth retardation phenotype, with moderate dyshaematopoiesis, a severe 

defect in lymphopoiesis, and an accumulation of thymocytes and mitogen-stimulated 

splenocytes in G2/M phase. The authors concluded that APEX2 was implicated as 

an essential regulator of efficient cell cycle progression of proliferating lymphocytes 

(Ide et al., 2004). Therefore, firstly, we plan on collaborating with Dr Sally Camper in 

Michigan in making a hypothalamic conditional Fasn knock out mouse. In addition we 

hope to generate a Fasn (p.A2132V) mouse model specific to the variant identified in 

the patient. These mice can then be phenotypically analysed in different ways such 

as in size, presence of other phenotypic features, and hormone levels, and compared 

to controls. We have recently obtained skin fibroblasts from the patient, and in 

collaboration with Professor Peter Clayton at ICH and Professor Robert Semple at 

Addenbrooks, we plan to investigate the lipid pathway in more detail. We will also 

measure the FAS levels in these patient cells, which will indicate whether the 

increased triglycerides are directly associated with increased FAS, which would 

suggest that the mutation identified is a dominant activating mutation. It cannot be 

ruled out that the APEX2 (p.M422V) variant is contributing to the hypothalamo-

pituitary phenotype observed in the patient. Alternatively this variant may potentially 

be responsible for the phenotype seen in other tissues, such as the sensorineural 
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hearing loss, which is echoed by the APEX2 expression noted in the utricle of the 

developing ear (Figures 4.13 C-D) as discussed in Chapter 4.4.6. Further expression 

studies will entail obtaining human embryonic tissue from the spleen to analyse 

expression of APEX2, as well as FASN, due to the patient from Pedigree 7 having 

splenomegaly. This condition may stem from the APEX2 (p.M422V) variant, 

especially as Apex2-null mice display an accumulation of splenocytes (white blood 

cells situated in the spleen). Discussions about generating an Apex2 (p.M422V) 

mouse model will possibly take place at a later stage after the Fasn (p.A2132V) has 

been investigated.  

 

6.3. Genetic screening methods 

Obviously every study has its limitations, for example human error when screening 

for variants in known causative genes. As every nucleotide is analysed by eye 

following direct sequencing analysis, crucial variants may be overlooked occasionally, 

perhaps missing the pathogenic mutation that is causing the disease phenotype. 

Despite being the more expensive option, whole exome sequencing (WES) can 

overcome this hurdle to an extent by picking up all potential variants in the coding 

region of a patient in the analysis. However, some may argue that the Sanger 

sequencing approach may actually result in being more costly, depending on the 

number of genes needed to be screened and number of patients in whom screening 

was to be performed. Thus using a lot of manpower in the analysis of just a handful 

of genes. Multi-gene panel tests are a step up from individual gene screening that 

enable the sequencing of several known causative genes simultaneously, providing 

a method to identify mutations using both a rapid and cost effective strategy. 

However, panel testing still only looks at a limited number of known genes, when 

there may be a multitude that have previously been implicated in the literature to 
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cause that specific disorder, such as in HH for example. In such cases where the list 

of potential mutated known genes is so large, any, or more than one gene, could be 

mutated in any given patient thus making it difficult to choose which of the genes to 

put on the panel test. Therefore WES is most likely to be the most efficient option for 

patients such as these, as both known, implicated and novel candidate genes may 

be assessed instantaneously. A limitation of WES however can be the filtering 

process, in which human error may occasionally overlook a pathogenic mutation by 

analysing the data in the wrong context. For example, if the database parameters are 

set to search the exome for de novo variants, and the data are not additionally 

analysed separately using parameters set to look for variants of autosomal dominant 

inheritance, then a heterozygous mutation may be overlooked. Therefore in this study 

the genetic data for each family submitted to GOSgene for exome sequencing was 

analysed using all alternative parameters, so as to be sure not to miss any potentially 

pathogenic mutations (Appendix 2). A general overview of the filtering process for 

exome sequencing data used by GOSgene is shown in Appendix 2. Therefore I am 

confident that the variants identified and discussed in the pedigrees in this study are 

the most likely candidates generated through the filtering process, and that all other 

polymorphic and benign variants have been disregarded, thus leaving the only 

potential variants that are likely contributing to the phenotype e.g. RNPC3 (p.L483F) 

and PRMT6 (p.P350R) in Pedigrees 3-6. However, future work will need to investigate 

the role of these genes in the pituitary and related tissues, and the effects of the 

variants on their function, to help show significance of these variants before any 

conclusions about their contribution towards the phenotype is made. Furthermore, 

exome sequencing only considers variants in the coding region, and splicing variants 

up to two bases into the intron at either end of the exon. Therefore the presence of 

an additional intronic variant in any of the pedigrees described cannot be completely 

ruled out, despite it being an unlikely occurrence. Additionally epigenetics is another 

factor that may influence the severity of a phenotype, which again also cannot be 
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ruled out in an individual. Epigenetics refers to modifications in heritable genetic 

information other than changes in the DNA sequence, such as DNA methylation and 

histone modification that alter gene expression (Holliday, 1989). Whole genome 

sequencing (WGS) would be the most beneficial and efficient option for the 

identification of variants if there were unlimited resources. This method can 

interrogate all parts of the genome potentially revealing single-nucleotide variants 

(SNVs), indels, structural variants (SVs) and copy number variants (CNVs) in both 

the ~1% part of the protein coding sequences, and the remaining ~99% of the non-

coding sequence (Ng and Kirkness, 2010). The 100,000 genomes project launched 

by Genomics England in 2012, aims to sequence 100,000 whole genomes of patients 

and their families with rare diseases and cancer by 2017 

(www.genomicsengland.co.uk). The genomic sequence data can be matched with 

patient medical records, and interpreted in order to investigate the cause, diagnosis 

and treatment of disease. This large resource of genomic data will build a platform in 

characterising rare diseases and cancers, which will benefit future generations and 

many different areas of research. We have contributed to a percentage of this project 

by providing DNA from certain unique families with pituitary disorders, and hope that 

this will shed light on some of the extremely rare cases in our cohort. Despite these 

patients submitted for WGS, either via the 100,000 genomes project or elsewhere, 

this remains an option only for the analysis of a very small number of unique 

pedigrees, as it is impossible to perform for all of the pedigrees within our large cohort. 

Therefore WES remains the preferred choice as it costs significantly less than WGS 

due to it being confined to just the cDNA. Although WES constitutes such a low 

percentage of the entire genome due to this, it still contains the majority of pathogenic 

mutations identified to date (Rabbani et al., 2014).  
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6.4. Control databases 

Control databases that are referred to when verifying a novel genetic variant can often 

be a concern. These databases can sometimes be ambiguous and lack information 

regarding the control samples themselves. They often fail to provide information as 

to how the individuals that were screened were classified as controls, and the criteria 

that was used for this. Nevertheless, they often state the number of controls within 

each ethnicity, enabling more relevant comparisons between DNA samples of similar 

ancestry. However, there are limitations here too, as individual control sub-cohorts 

are often small in number, and often do not define the descent of their controls 

sufficiently; such as when termed as ‘European’, which may consist of a multitude of 

ethnic backgrounds. Genotypes of Turkish descent will differ drastically from those of 

Swedish descent for example, and websites often generalise these as the same 

group and fail to subcategorize it. Prior to the ExAC browser 

(www.exac.broadinstitute.org) becoming one of the main control reference 

databases, control cohorts were also very limited in their number of patients too, for 

example in the 1000genomes database (www.1000genomes.org). One thousand 

individuals is not a very large number when verifying whether a variant is potentially 

pathogenic or not purely based on its absence from a database containing this 

number of patients. Prior to referring to databases, studies used to simply screen 

~100 individual patients from the same ethnic origin as the patient that possessed the 

variant. Despite the direct ethnicity match, this is still a rather small number to be used 

as evidence to make rational conclusions regarding pathogenicity. It is interesting to 

consider how many times a novel variant in the literature has been concluded as 

potentially pathogenic and/or had unnecessary functional analysis performed on in 

the past, purely based on this referral to a small number of controls. The accumulation 

of samples in the ExAC browser has improved the variant verification process by 

increasing the number of control samples to ~100,000 alleles, in which all 
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polymorphisms present in samples are listed along with their frequency within this 

population. The additional information of whether a particular variant is present in 

heterozygous, homozygous or hemizygous form is also apparent. If one has identified 

a homozygous variant for example, the fact that it is only present in heterozygous 

form in a control patient indicates that it could be recessive and may be worth pursuing 

functionally. The importance of indicating the sex of the control individual by 

distinguishing whether a variant on an X-linked gene is heterozygous or hemizygous 

(on the male X chromosome) for example, and not just stating the presence of the 

variant ‘on one patient allele’, is obviously also vital in deciphering whether a variant 

is worth pursuing. For example, if the ExAC browser purely stated that the APEX2 

(p.M422V) variant was present and did not mention that it had been identified in 

heterozygous form, then I would not have been sure that it had not been found in 

hemizygous form in a male control individual, as it is in the patient in Pedigree 7. 

Other control databases have not always had this information, which raises the 

question of how many novel homozygous variants have been excluded as being 

pathogenic, due to the database not stating whether it was heterozygous or not. Even 

though in my opinion the ExAC database is one of the best control databases 

commercially accessible, it still has an element of ambiguity that is similar to most 

other control databases. The large cohort of controls has been compiled from smaller 

cohorts of individuals that have been sequenced as part of various disease-specific 

and population genetic studies, where individuals affected by severe paediatric 

diseases have been excluded (www.exac.broadinstitute.org). Despite the removal of 

these patients with severe diseases, these cohorts are still derived from the general 

population that may suffer from a range of common polygenic diseases, and so 

cannot truly be termed as normal controls. This is a similar case to the National Heart 

Lung and Blood Institute (NHLBI) database, consisting of 6,500 subjects 

(www.nhlbi.nih.gov/), which GOSgene use as a control resource. The NHLBI collects 

the genotypes of patients with common diseases, therefore in my opinion it is not 
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completely impossible that one of the many variants that give rise to one of these 

common diseases may also be associated with a rarer disease when present in 

isolation. Even though the research area of the different groups that have contributed 

to the ExAC database are listed on their website, there is no detailed clinical 

information available for each sample. Therefore one cannot be sure that a certain 

‘control’ sample does not have a mild undetected or developing phenotype that is 

linked to the disease in the patient being studied. Thus, some may say that this would 

not be a true comparison to controls. Therefore discretion needs to be drawn upon 

here, for example if the variant in the patient appears once or twice in the ExAC 

database, it may still be worth pursuing with functional studies. Hence why GOSgene 

set parameters for variants to have an occurrence rate of <0.5% in control databases, 

when analysing exome sequencing data. 
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6.5. Variable penetrance 

Variable penetrance is when a heterozygous mutation is inherited from an 

asymptomatic parent but yet its presence in the progeny causes a disease phenotype. 

This has been reported to be the case in many publications and the concept has long 

been a subject of controversy, where many people firmly believe that such a variant 

cannot possibly be pathogenic simply due to its presence in the normal parent. This 

belief is that there must be another mutation so far undetected elsewhere in the 

genome that is working alongside such a variant to elicit the phenotype; termed 

digenic inheritance. However, this may not always be the case, and the argument 

against the sceptics is that in many publications the researchers have demonstrated 

that the mutation may lead to functional compromise, and has implications for 

pathogenicity that specifically fit with the patient phenotype. This suggests that 

perhaps a specific level of gene expression or dosage of the protein is needed for the 

phenotype to occur, and thus infers that each individual is different in this way, even 

when within the same family. Also, it cannot be ruled out that there may be another 

variant present in the parent, which influences gene dosage or has a positive effect 

that counteracts the pathogenic mutation, in which the child does not possess. From 

a wider perspective, variable penetrance casts an element of doubt on referring to 

control databases when validating a variant as potentially pathogenic or not. As 

mentioned, the presence of an identified patient variant in the same state (e.g. 

heterozygous) on a control database, often rules it out for further analysis. However, 

what if a heterozygous variant with variable penetrance is present in one of these 

control samples as it is in an asymptomatic parent? Therefore the same concept as 

previously mentioned applies; despite the presence of a variant amongst controls, it 

is the frequency of it that is crucial. This decision is the fine line between whether we 

may find the reason for a patient’s disorder, or whether it remains a mystery. 

 



250 
 

6.6. Human embryonic sections 

Human embryonic sections were analysed for expression in this study due to our 

unique access to the HDBR, rather than mouse embryonic sections. Even though the 

latter are more routinely used in other laboratories as they are more readily available, 

expression of a murine gene does not directly relate to human expression. Species 

may obviously differ from one another in terms of gene expression. Therefore I chose 

to analyse expression in normal human embryos in a hypothalamo-pituitary context, 

which had not been analysed by any other laboratory up until now. Essentially five 

different stages that span embryonic development were available: CS16, CS19, 

CS20 and CS23, equivalent to 39, 46, 49 and 56 days into development respectively 

(www.ehd.org/virtual-human-embryo/), and late 8pcw. Carefully processed 

hypothalamo-pituitary sections were obtained at these stages to observe specific 

expression, in addition to other sections of tissues affected in the respective patient 

who harboured the variant in the gene being analysed. As one can imagine, 

sectioning embryos is an intricate process, and maintaining the integrity of the tissues 

can be challenging (unpublished, HDBR), especially in smaller tissues such as the 

pituitary and the ovary. This delicate process with these precious embryos makes the 

success of both the sectioning and the expression assay vital, as human embryos are 

in short supply. There is little room for error in this field, and if the section is cut 

incorrectly or is damaged in the process, there is no rapid replacement at hand. 

Furthermore, human embryos more often than not peel off and do not stick down onto 

the slide as accurately as mouse embryos do (unpublished, HDBR), meaning that 

expression cannot always be visualised in some areas of the section with absolute 

precision. I found this a problem at times in this study as many of the sections 

obtained from HDBR had been damaged and were peeling off in this way, with some 

of the smaller structures of the brain not intact. For example, when looking at RNPC3, 
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although expression could be noted, areas of Rathke’s pouch tissue had been lost 

and I was not able to repeat the experiment using an alternative sample.  

 

6.7. Genetic counselling  

Genetic counselling was given to all the pedigrees discussed in this study after 

identification of the respective genetic variants. Genetic counselling refers to how 

families are advised about the consequences of an inherited disorder, and the 

probability of developing a disorder or passing it on to future generations. Often 

people ask how finding the potential genetic cause for a patient’s disease will actually 

help the patient. Some people would rather not know if they or their child harbour a 

mutation, and many choose not to find out which parent they inherited it from. 

Following genome or exome screening, one can choose not to be told whether they 

harbour variants known to contribute to common diseases. Therefore upon consent 

of the patient, researchers do not divulge such information to patients, and only inform 

them of a novel or known mutation that potentially contributes to their particular rare 

disease. If a novel potential variant is identified, then genetic counselling helps 

families understand what it may mean, for example how functional studies would most 

likely have to be carried out in order to further investigate whether it is pathogenic or 

actually benign. This is what would have had to have been explained to most of the 

families in this study. In a different context, genetic counselling can help give families 

advice as to what their options are with regard to family planning or options of in vitro 

fertilisation (IVF). It is now possible to screen and filter fertilised eggs before 

implantation that do not contain the pathogenic disease-causing mutation; a process 

known as pre-implantation genetic diagnosis (PGD), so that the child does not 

develop the disease that his or her sibling has (Vermeesch et al., 2016, Findlay, 

2000). This stops further inheritance of the pathogenic mutation and prevents future 
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generations manifesting the disease, thus improving their quality of life. This is a 

highly controversial topic which has split the opinion of many (Eskandarani, 2009); 

however, simply selecting an embryo that does not contain the mutation is not by any 

means changing any part of the genetic code. It is simply an alternative genotype of 

the parents that will give rise to a baby without that particular disease. Despite this, I 

believe that it should remain a restricted service that is only carried out for the 

prevention of severe diseases. It should not be extended to parents’ preference of 

gender or traits that they want their children to have, such as height or colouring, 

where certain variants may be included or excluded to result in these preferences. 

This information should remain anonymous and only the mutation in question should 

be excluded. Religious or ethical principles divide many where genetics is concerned 

(Fasouliotis and Schenker, 1998), with many believing that we should let nature take 

its course at all costs and not meddle with genetics as it is artificially influencing the 

gene pool. On rare occasions, genetic counselling may extend to discussing the 

possibility of gene therapy for the patient, which exists and differs in many countries 

for certain diseases (Kim et al., 2008). Options for this would currently only be if the 

family consented to being recruited to a clinical trial, if there is one that exists for their 

disease. It is a long way off from being routinely performed, and only certain clinical 

trials have been accepted both ethically and socially in specific disease areas in the 

UK. A recent example is the trial on maternal gene therapy of severe early-onset fetal 

growth restriction (Sheppard et al., 2016), which could potentially be the first trial of 

gene therapy during pregnancy. Phase 2b clinical trials have recently been 

undertaken for cystic fibrosis (CF). The respective patients have been recruited from 

18 sites in the UK, and were given either a nebulised gene–liposome complex; a non-

viral CFTR gene therapy delivered directly to the lungs, or a saline dose (placebo) 

every 28 days for 1 year. These trials noted a significant, albeit modest, treatment 

effect of the gene therapy in the CF patients, associated with a stabilisation of lung 

function versus the placebo, at 12 months follow up (Alton et al., 2015). Further 
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improvements in efficacy and consistency of response to this form of gene therapy is 

needed before it is considered for clinical care. Thus clinical trials have now 

progressed into the next phase in this study. Gene therapy in Duchenne muscular 

dystrophy, using adeno-associated viral delivery methods, is also being developed 

and has been accepted for clinical trials (Bowles et al., 2012). Another example is 

gene therapy for immunodeficiency disorders, such as X-linked severe combined 

immune deficiency (XSCID), whereby restoring gene expression in autologous 

hematopoietic stem cells has been shown to be an effective method of treatment. 

Thus resulting in the production of T-lymphocytes and subsequent immune 

reconstitution (Cavazzana-Calvo et al., 2000, Gaspar et al., 2004). However despite 

these revolutionary advancements serious complications have frequently occurred, 

such as 5 out of a total of 20 subjects developing leukaemia-like T lymphoproliferative 

disorder 2-5 years after XSCID gene therapy (Hacein-Bey-Abina et al., 2003a, 

Hacein-Bey-Abina et al., 2003b). Adverse effects of treatment such as these highlight 

the need for the development of new strategies to improve, not only the success rate, 

but most importantly the safety of gene therapy, such as accurate gene targeting 

(Kildebeck et al., 2012). Gene therapy is essentially the introduction of normal genes 

into patient cells in place of missing or defective ones, or the silencing of a particular 

gene using complex drugs, in order to correct genetic disorders. This treatment can 

potentially take place at any age, ranging from prenatally to being performed in an 

adult patient. Many research groups are fighting for the right to perform this procedure 

for a range of diseases to improve the quality of life for many families, however this 

also remains a highly controversial topic. The conventional rule is that only somatic 

cells should be genetically altered by gene therapy, and not germ cells that contain 

heritable information (Lanphier et al., 2015). However Ireland and Italy have recently 

permitted the genetic code of germ cells to be altered in an individual if and when 

gene therapy for a particular disease is possible. This means that there could 

potentially be no control over these modifications being incorporated into the gene 
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pool, and that they will become uncontrollable permanent fixtures in the DNA of future 

generations. Even though a long drawn out process of clinical trials always needs to 

be performed to allow any such treatment to be available to patients, there is always 

still a slim chance of adverse effects or consequences that will only come to light in 

the years to come. That is why in my opinion it is extremely important for genetic 

modifications to remain within the individual that has been treated. However, the fact 

that one country may have one law that confines gene therapy to somatic cells, and 

another may not, is a very worrying concept. It only takes one country to not abide by 

this rule for the future of the human race to potentially be affected by any unknown 

consequences of gene therapy. With regard to the patients investigated in this study, 

gene therapy would obviously not be an option at present, as extensive functional 

work would have to be undertaken on the variant in question. Only then could a strong 

grant proposal be written that, if accepted, would be followed by vigorous clinical trials 

before even having a chance of becoming an option for patients. However, it is not 

an impossible goal for the future with technology rapidly progressing year after year. 

The more we as scientists and clinicians can do to identify and characterize mutations 

in our area of research, the more options will then arise for patients. I believe that the 

more knowledge we have about a specific field, the more options we have to fight to 

change it for the better. 



255 
 

Appendices 

Appendix 1 

 

Construct 
transfected into 

HEK293T cells 

Average 
luciferase/total 
protein 1st assay 

Average 
luciferase/total 

protein 2nd assay 

Average 
luciferase/total 
protein 3rd assay 

AVERAGE 
LUCIFERASE/TOTAL 

PROTEIN 
 

STD DEV OF 
AVERAGE MEAN 

EV 103.38 67.28 99.58 90.08 19.83 

wtLHX4 3651.98 4685.17 6434.75 4923.97 1406.67 

T126M 4391.96 5075.28 7072.48 5513.24 1392.89 

 

 

 

 

 

 

 

Construct 
transfected into 

HEK293T cells 

Average 
luciferase 1st 

assay 

Average 
luciferase 2nd 

assay 

Average 
luciferase 3rd 

assay 

AVERAGE 
MEAN 

STD DEV 
OF 

AVERAGE 
MEAN 

T-TEST 
p value 

Significance 

EV 1 1 1 1 0 
  

wtlhx4 4.48 3.15 5.70 4.44 1.28 0.012675 * 

wtLHX4 10.58 7.42 12.87 10.29 2.74 
  

wtlhx4 + pou1f1 28.18 20.83 41.04 30.01 10.23 
  

pou1f1 3.79 3.42 3.84 3.68 0.23 
  

POU1F1 4.52 3.85 5.81 4.73 0.99 
  

t126m 4.48 2.76 4.52 3.92 1.01 0.006792 ** 

T126M 10.65 6.17 11.93 9.58 3.02 
  

t126m + pou1f1 36.02 22.66 42.10 33.60 9.95 
  

A 

B 
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Appendix 1: Transactivation assays investigating the LHX4 (p.T126M) variant. (A-C) Each table represents results from three 

separate luciferase assays performed in triplicate. (A) Transfection of HEK293T cells with LHX4 WT and the LHX4 (p.T126M) mutant 

construct, to investigate the effect of LHX4 on the αGSU promoter. Luciferase values were normalised to total protein. This relates to 

Figure 3.7 A in this study. (B-C) Transfection of constructs into HEK293T cells to investigate the effect of WT and mutant LHX4 on the 

prolactin promoter. Luciferase values were normalised to Renilla luciferase values. These tables relate to Figure 3.7 B and C respectively. 

EV, empty vector; WT, wild-type; STD DEV; standard deviation.    

Construct 
transfected into 

HEK293T cells 

Average 
luciferase 1st 

assay 

Average 
luciferase 2nd 

assay 

Average 
luciferase 3rd 

assay 

AVERAGE 
MEAN 

STD DEV 
OF 

AVERAGE 
MEAN 

T-Test 
p value 

Significance 

EV 1 1 1 1 0 
  

wtlhx4 3.18 3.62 5.85 4.22 1.43 0.000351 *** 

wtLHX4 8.22 7.72 15.73 10.56 4.49 

  

pou1f1 3.45 3.25 3.29 3.33 0.10 

  

POU1F1 4.57 4.15 4.65 4.46 0.27 

  

wtlhx4 +pou1f1 26.83 29.72 34.23 30.26 3.73 

  

r84c 1.76 1.98 2.62 2.12 0.45 0.001696 ** 

R84C 3.01 3.35 5.66 4.01 1.44 

  

wtlhx4 + r84c 5.89 6.20 10.51 7.53 2.59 

  

r84c + pou1f1 14.27 16.17 20.95 17.13 3.44 0.010974 * 

C 
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Appendix 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exome sequencing raw data 

Confidence filter 
• Call quality: ≥20.0 
• Read depth: ≥10.0 

Parameters set 
Heterozygous or 

Compound heterozygous 

Parameters set 
De novo 

Parameters set 
Homozygous recessive  

(usually for consanguineous 
pedigrees) or hemizygous, X-

linked 

Common variants filter 
Variants with allele frequency ≥ 0.5% that were observed in 

the 1000 genomes project, ExAC  
and NHLBI ESP will be excluded 

Predicted deleterious filter 
Filter using all/one of the following variants:  
* Pathogenic or possibly pathogenic                                  * Established gain of function in the literature 
* Inferred activating mutations by Ingenuity                    * Predicted to be gain of function by BSIFT 
* Frameshift, in-frame INDEL, or stop codon change      * Missense disrupt splice-site 
* Promoter loss 

Biological context filter 
Keep variants known or predicted to affect the disease in 

question e.g. Hypopituitarism 

Parameters set 
Variants not present  

in either parent  

Parameters set 
Variants only present in 

heterozygous form and in 
both parents 

Parameters set 
• Variants present in 

heterozygous form in 
parent. 

• If compound heterozygous 
parents each carry one 

heterozygous variant that are both 
present in the proband 
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Appendix 2: Flowchart showing the exome sequencing data filtering process. 

This criteria was used to identify novel variants and regions of interest in Pedigrees 

2-7. The parameter settings may be altered accordingly to analyse the data in 

different contexts e.g. to search for de novo or compound heterozygous variants 

respectively. All possible parameter settings were used to analyse all exome data. 

ExAC, Exome Aggregation Consortium; NHLBI ESP, National Heart Lung and Blood 

Institute Exome Sequencing Project; BSIFT, Bi-directional Sorting Intolerant from 

Tolerant.  
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Appendix 3 

A. De novo filter for Pedigree 2 

 

B. Homozygous recessive filter for Pedigrees 3-6 

Position Reference 
Allele 

Sample 
Allele 

Variation 
Type 

Gene 
Region 

Gene 
Name 

Transcript Protein 
Variant 

Patient 
genotype 

Parent 
genotypes 

Comment ExAC 
database 

Chr11_13
0332577 

A C SNV Exonic ADAMTS
15 

NM_139055 p.T482P Het Not 
present 

BAM – poor 
call 

Het: 91/ 241,052; 
40/ 106,064 in 
European  
Hom: 0 

Chr12_13
2628391 

G C SNV Exonic DDX51 NM_175066 p.P123R Het Not 
present 

BAM - poor 
call 

Present in old 
version of ExAC, 
but was filtered 
out as this site 
has poor 
coverage  

ChrX_167
11551 

G T SNV Exonic CTPS2 NM_001144
002 

p.F166L Het  Not 
present 

BAM OK and 
confirmed by 
Sanger 
sequencing  

Not present in 
ExAC 

Position Reference 
Allele 

Sample 
Allele 

Variation 
Type 

Gene 
Region 

Gene 
Name 

Transcript Protein 
Variant 

Patient/s 
genotype 

Parent 
genotypes 

Comment ExAC 
database 

Chr1_1040
93650 

A T SNV Exonic RNPC3 NM_017619 p.L483F Hom Het in 
both 

BAM OK 
and 
confirmed 
by Sanger 
sequencing  

Not present 
in ExAC 

Chr1_1076
00386 

C G SNV Exonic PRMT6 NM_018137 p.P350R Hom Het in 
both 

BAM OK 
and 
confirmed 
by Sanger 
sequencing  

Not present 
in ExAC 
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C(i). De novo filter for Pedigree 7 

 

C(ii). X-linked filter for Pedigree 7 

 

Position Reference 
Allele 

Sample 
Allele 

Variation 
Type 

Gene 
Region 

Gene 
Name 

Transcript Protein 
Variant 

Patient/s 
genotype 

Parent 
genotypes 

Comment ExAC 
database 

Chr2_1481
312 

A G SNV Exonic  TPO NM_000547 p.N425S Het Het in 
father 

BAM OK Not present 
in ExAC 

Chr3_1.96
E+08 

GGCGCG - Del Exonic  FBXO45 NM_0011055
73  
   

p.G25_A2
6del 

Het Het in 
both 

Failed QC -  
within unstable 
repeats 

Not present 
in ExAC 

Chr5_5525
6258 

- TCACT
CCAG 

Dup Exonic  IL6ST NM_002184 p.D312_S
314dup 

Het Not 
present 

Failed QC -  
within unstable 
repeats 

Not present 
in ExAC 

Chr17_775
1862 

CAC - Del Exonic  KDM6B NM_0010804
24 

p.T762del Het Not 
present 

Failed QC -  
within unstable 
repeats 

Not present 
in ExAC 

Chr17_800
39488 

G A SNV Exonic  FASN NM_004104 p.A2132V Het Not 
present 

BAM OK and 
confirmed by 
Sanger 
sequencing 

Not present 
in ExAC 

Position Reference 
Allele 

Sample 
Allele 

Variation 
Type 

Gene 
Region 

Gene 
Name 

Transcript Protein 
Variant 

Patient/s 
genotype 

Parent 
genotypes 

Comment ExAC 
database 

ChrX_5503
3575 

A G SNV Exonic APEX2 NM_014481 p.M422V Hemi Het in 
mother 

BAM OK and 
confirmed by 
Sanger 
sequencing  

Het: 1/86,652; 
8405 in African 
Hemi: 0 

ChrX_1.34
E+08 

G A SNV Exonic ZNF449 NM_152695 p.R324Q Hemi Het in 
mother 

BAM OK and 
confirmed by 
Sanger 
sequencing  

Het:20/87355 
Hemi: 5/87355 
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Appendix 3: Exome sequencing filtering results from Pedigrees 2-7. These tables present the variants generated from the exome 

sequencing filtering process performed by GOSgene. The exome data was filtered using all possible options of parameter settings that 

are illustrated in Appendix 2. Parameter settings that did not generate any potential variants are not shown. The tables displayed in this 

figure present all potential variants that were filtered using appropriate parameters for that given pedigree/s. The text highlighted in red 

represents variants that were ruled out as candidates. A: The de novo filter for Pedigree 2 revealed the variants listed in this table. The 

variants in ADAMTS15 and DDX51 were excluded due to the BAM file having a poor call; indicating that the exome regions containing 

these variants were not clearly covered by the software due to homologous regions elsewhere in the genome. In addition the ADAMTS15 

variant was present multiple times in heterozygous form in the ExAC database. This left the CTPS2 (p.F166L) variant as the remaining 

candidate generated from the exome sequencing data analysis. B: The homozygous recessive filter for the consanguineous Pedigrees 

3-6 revealed only two variants; RNPC3 (p.L483F) and PRMT6 (p.P350R), present in the six affected patients in homozygous form, and 

the one unaffected father in heterozygous form, that had exome sequencing performed, suggesting a founder effect from this 

geographically isolated population. C(i): The de novo filter for Pedigree 7 revealed the variants listed in this table. The variant in the TPO 

gene was excluded due to it being present in heterozygous form in the unaffected father. The variants in FBXO45, IL6ST and KDM6B 

failed the QC due to them being located within unstable repeats that have not been mapped accurately and are poorly represented by 

the software. In addition, the variant in FBXO45 was present in both unaffected parents in heterozygous form. This left the FASN 

(p.A2132V) variant as the remaining candidate generated from the de novo filter. C(ii): The X-linked filter for Pedigree 7 also revealed 

two variants. The variant in ZNF449 was excluded due to its multiple presence on the ExAC database, leaving the APEX2 (p.M422V) 

variant as the remaining candidate generated from the X-linked filter, as it only appeared once in the ExAC database in heterozygous 
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and not in hemizygous form. Therefore both FASN (p.A2132V) and APEX2 (p.M422V) variants are potential disease-causing candidates 

in Pedigree 7. There is no data shown from Pedigree 8 as only the X-chromosome was sequenced, revealing only one candidate gene; 

EIF2S3 (p.P432S). SNV, single nucleotide variant; BAM, binary alignment map; del, deletion; dup, duplication; QC, quality control.     
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Appendix 4 

Pedigree Consanguineous Ethnicity Variant 

identified 

Protein 

prediction  

model 

Mode of 

inheritance 

Age of 

patient at 

presentation 

Main 

diagnosis 

Endocrine 

deficits 

Accompanying 

phenotypes 

2 No Afro-

Caribbean 

CTPS2  

ChrX: 

16711551 

c.498C>A, 

p.F166L 

Polyphen2: 

Probably 

damaging 

 

SIFT: Tolerated 

De novo 

Heterozygous 

23 years Congenital 

pan-

hypopituitarism 

GH, TSH, 

ACTH, LH 

and FSH 

Left microtia; an 

absent pinna  

Severe conductive 

hearing loss 

Ciliary dyskinesia 

Complete situs 

inversus with 

dextrocardia 

Hypoplasia of the 

mandible 

Severe eczema 

Learning difficulties 

Left facial nerve 

palsy with left sided 

hemiparesis 

3-6 Yes Turkish RNPC3   

Chr1: 

104093650 

c.1449A>T, 

p.L483F 

 

RNPC3 

Polyphen2: 

Probably 

damaging 

SIFT: Damaging 

 

Autosomal 

recessive 

(Both 

homozygous) 

- -GHD in all 

patients 

GH - 
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PRMT6   

Chr1: 

107600386 

c.1049C>G, 

p.P350R 

PRMT6 

Polyphen2: 

Benign 

SIFT: Tolerated 

 

-Primary 

ovarian failure 

in the females  

7 No African 

(mother) 

White 

European 

(father) 

FASN  

Chr17:  

80039488 

c.6395C>T, 

p.A2132V 

 

 

 

APEX2 

ChrX: 

55033575  

c.1264A>G, 

p.M422V 

FASN 

Polyphen2: 

Probably 

damaging 

SIFT: Damaging 

 

 

 

APEX2 

Polyphen2: 

Benign 

SIFT: Tolerated 

De novo 

(Heterozygous) 

Autosomal 

recessive 

 

(Hemizygous) 

Inherited from 

asymptomatic 

heterozygous 

mother. 

19 years Congenital 

panhypopituitar

ism 

GH, TSH, 

ACTH, LH 

and FSH 

Short stature 

Dysmorphic 

features 

Developmental 

delay 

Sensorineural 

deafness 

Hypoparathyroidism 

Retinal dystrophy 

Reynaud’s 

syndrome 

Splenomegaly  

Aortic regurgitation 

Appendix 4: Genotypes and phenotypes of patients in Pedigrees 2-7. The table summarises the parental ethnic origins, and the 

protein prediction model results from databases Polyphen and SIFT, for each variant in patients from Pedigrees 2-7 discussed in Chapter 

4 in this study. 
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Appendix 5 

A 

 

 

 

Cell population Average 
mean 

luciferase 
1st assay 

Average 
mean 

luciferase 
1st assay 

Average 
mean 

luciferase 
1st assay 

Average 
mean 

luciferase 
of 

triplicates 

Standard 
Deviation 

2-tailed 
unpaired  

T-Test  
Basal activity 

v  
cyto addition 

 

2-tailed 
unpaired  

T-Test  
NS basal  

v 
 KO basal 

2-tailed 
unpaired  

T-Test  
NT basal 

 v  
KO basal 

2-tailed 
unpaired  

T-Test  
NS cyto 

 v  
KO cyto 

2-tailed 
unpaired  

T-Test  
NT cyto 

v  
KO cyto 

           

Clone 4 Cyto 2019 2695 2151 2288 358.31 0.0067 1.612E-04 4.232E-05 0.0021 0.0020 
     

 
     

Clone 4 Basal 1156 1275 1177 1203 63.52 
     

     
 

     

Non silencing 
Cyto 

767 352 285 468 261.10 0.2628 
    

     
 

     

Non silencing 
Basal 

373 211 189 258 100.49 
     

     
 

     

Non-transduced 
Cyto 

833 773 667 758 84.06 0.0009 
    

     
 

     

Non-transduced 
Basal 

265 161 264 230 59.76 
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B 

                                                                                                     

          (NT#cyto) vs (NS#basal)      500.4444    83.7513     5.98   0.0000     251.8794    749.0095

           (NT#cyto) vs (NS#cyto)      290.1111    83.7513     3.46   0.0136     41.54606    538.6762

         (NT#basal) vs (NS#basal)     -32.11111    83.7513    -0.38   0.9989    -280.6762    216.4539

          (NS#basal) vs (NS#cyto)     -210.3333    83.7513    -2.51   0.1411    -458.8984    38.23172

          (NT#basal) vs (NS#cyto)     -242.4444    83.7513    -2.89   0.0597    -491.0095    6.120611

     (NT#cyto) vs (Clone 4#basal)     -444.7778    83.7513    -5.31   0.0000    -693.3428   -196.2127

          (NT#basal) vs (NT#cyto)     -532.5556    83.7513    -6.36   0.0000    -781.1206   -283.9905

     (NS#cyto) vs (Clone 4#basal)     -734.8889    83.7513    -8.77   0.0000    -983.4539   -486.3238

    (NS#basal) vs (Clone 4#basal)     -945.2222    83.7513   -11.29   0.0000    -1193.787   -696.6572

    (NT#basal) vs (Clone 4#basal)     -977.3333    83.7513   -11.67   0.0000    -1225.898   -728.7683

(Clone 4#basal) vs (Clone 4#cyto)     -1085.667    83.7513   -12.96   0.0000    -1334.232   -837.1016

      (NT#cyto) vs (Clone 4#cyto)     -1530.444    83.7513   -18.27   0.0000    -1779.009   -1281.879

      (NS#cyto) vs (Clone 4#cyto)     -1820.556    83.7513   -21.74   0.0000    -2069.121   -1571.991

     (NS#basal) vs (Clone 4#cyto)     -2030.889    83.7513   -24.25   0.0000    -2279.454   -1782.324

     (NT#basal) vs (Clone 4#cyto)         -2063    83.7513   -24.63   0.0000    -2311.565   -1814.435

                     group1#group2  

                                    

                    basal vs cyto     -609.5185   48.35384   -12.61   0.0000    -706.7404   -512.2966

                            group2  

                                    

                         NT vs NS           129   59.22111     2.18   0.0853    -14.22554    272.2255

                    NT vs Clone 4     -1253.889   59.22111   -21.17   0.0000    -1397.114   -1110.663

                    NS vs Clone 4     -1382.889   59.22111   -23.35   0.0000    -1526.114   -1239.663

                            group1  

                                                                                                    

                                       Contrast   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                  Tukey                Tukey

                                                                                                    

                            

group1#group2             15

       group2              1

       group1              3

                            

                 Comparisons

                   Number of

                            

      the 5% level.

      label are not significantly different at

Note: Margins sharing a letter in the group

                                                

 Clone 4#cyto      2288.333   59.22111

Clone 4#basal      1202.667   59.22111

      NT#cyto      757.8889   59.22111

      NS#cyto      467.7778   59.22111         A

     NS#basal      257.4444   59.22111         A

     NT#basal      225.3333   59.22111         A

 group1#group2  

                

         cyto      1171.333   34.19133

        basal      561.8148   34.19133

        group2  

                

      Clone 4        1745.5   41.87565

           NT      491.6111   41.87565         A

           NS      362.6111   41.87565         A

        group1  

                                                

                     Margin   Std. Err.   Groups

                                           Tukey

                                                

                            

group1#group2             15

       group2              1

       group1              3

                            

                 Comparisons

                   Number of

                            

Margins      : asbalanced

Pairwise comparisons of marginal linear predictions
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Appendix 5: Raw mean average data and statistical tests of apoptosis assays. (A): Apoptosis assays measuring cell death in 

EIF2S3 KO cells compared to controls. The table shows the average normalised luciferase values from the three apoptosis assays 

performed in triplicate wells. Caspase 3/7 activity is measured with and without (basal) the addition of cytokine treatment. This table 

relates to the average mean graph in Figure 5.11 in Chapter 5. Cyto; cytokine, Clone 4; EIF2S3 Knock out 1.1B4 cell line. (B): Pairwise 

comparisons of data from apoptosis assays based on a fitted two-way ANOVA model with Tukey adjustment for multiple 

testing. Comparisons of Clone 4 with both the NT and NS control populations were significantly different both at basal and with cytokine 

treatment. There was no significant difference between NS basal and NS after cytokine treatment, which is consistent with the two-tailed 

unpaired T-test analysis. There was no significant difference between both controls at basal level as shown in the table. 
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Appendix 6 

Borck et al. 2012 Mol Cell Moortgat et al. 2016 AJMG This study – Pedigree 8 

EIF2S3, p.I222T 
in the highly conserved GTP-binding (G) 
domain 

EIF2S3, p.I259M and p.I465Sfs*4 
in two unrelated pedigrees  
in the C-terminal domain 

EIF2S3, p.P432S 
in the C-terminal domain 

Three males: 2 brothers and maternal uncle 
• Intellectual disability (moderate to 

severe) 
• Microcephaly 
• Short stature with GHD in two 

patients 
• Facial dysmorphic features 
• Epilepsy 
• Thin corpus callosum on MRI 
• Enlarged lateral ventricles on MRI 

Three males: 2 brothers, 1 unrelated male 
• Severe intellectual disability 
• Microcephaly 
• GHD  
• Hypoglycaemia 
• Epilepsy 
• Thin corpus callosum on MRI 
• Normal pituitary and stalk on MRI 
• Global white matter loss on MRI 

Three males: 2 brothers and maternal male 
cousin 

• Central hypothyroidism 
• GHD  
• Unique pancreatic phenotype: 

fluctuation between 
hyperinsulinaemic hypoglycaemia 
and hyperglycaemia 

• Small anterior pituitary on MRI 
• Thin corpus callosum on MRI 

Unique additional features: 
• Cleft lip/palate  
• Behavioural problems 
• Postpubertal microgenitalism 
• Obesity 

Unique additional features: 
• Spastic quadriplegia 
• Convergent strabismus 
• Delayed puberty 
• Genital abnormalities 
• Micrognathia (undersized jaw) 
• Hypotonia 
• Global reduction of white matter on MRI 

Unique additional features: 
• Developmental delay 
• Behavioural problems 
• Micropenis 
• Undescended testes 
• Severe eczema 
• Convergent squint 
• Generalised white matter loss on MRI 
• Ventricular asymmetry on MRI 

Appendix 6: Clinical phenotypes of male patients with EIF2S3 mutations from three separate studies. Clinical phenotypes are 

from previous reports by Borck et al and Moortgat et al respectively, and from this current study. Not all unique additional features listed 

under each study were present in every patient described; each male within the study had various combinations of these features. 
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