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ABSTRACT

Context. The shapes of galaxies are typically quantified by ratios of their quadrupole moments. Knowledge of these ratios (i.e. their
measured standard deviation) is commonly used to assess the efficiency of weak gravitational lensing surveys. For faint galaxies,
observational noise can make the denominator close to zero, so the ratios become ill-defined.
Aims. Since the requirements cannot be formally tested for faint galaxies, we explore two complementary mitigation strategies. In
many weak lensing contexts, the most problematic sources can be removed by a cut in measured size. This first technique is applied
frequently. As our second strategy, we propose requirements directly on the quadrupole moments rather than their ratio.
Methods. As an example of the first strategy, we have investigated how a size cut affects the required precision of the charge transfer
inefficiency model for two shape measurement settings. For the second strategy, we analysed the joint likelihood distribution of the
image quadrupole moments measured from simulated galaxies, and propagate their (correlated) uncertainties into ellipticities.
Results. Using a size cut, we find slightly wider tolerance margins for the charge transfer inefficiency parameters compared to the
full size distribution. However, subtle biases in the data analysis chain may be introduced. These can be avoided using the second
strategy. To optimally exploit a Stage-IV dark energy survey, we find that the mean and standard deviation of a population of galaxies’
quadrupole moments must to be known to better than 1.4 × 10−3 arcsec2, or the Stokes parameters to 1.9 × 10−3 arcsec2.
Conclusions. Cuts in measured size remove sources that otherwise make ellipticity statistics of weak lensing galaxy samples diverge.
However, size cuts bias the source population non-trivially. Assessing weak lensing data quality directly on the quadrupole moments
instead mitigates the need for size cuts. Such testable requirements can form the basis for performance validation of future instruments.
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1. Introduction

Weak gravitational lensing is the deflection of light in the pres-
ence of a weak gravitational field along the line of sight be-
tween source and observer, because of the relativistic distortion
of space-time. Galaxy images become sheared and amplified by
a small amount given by second-order derivatives of the local
projected gravitational potential. Shear information is encoded
in the shape of a galaxy image, namely its ellipticity. While ex-
tremely noisy for the individual source, weak lensing becomes
powerful with statistics, when wide or deep imaging data are
available to measure the shapes of large numbers of galaxies
to a high degree of accuracy and infer their ellipticities. Cos-
mic shear, i.e. weak lensing by the large-scale structure, pro-
vides a reliable probe of cosmology via model constraints on
the two-point correlation function or power spectrum of the
ellipticity field. However, to be unbiased the ellipticity mea-
surements also need to be unbiased (e.g. Antonik et al. 2013;
Chang et al. 2013a; Huterer & White 2002; Kitching et al. 2009;
Cropper et al. 2013; Jarvis et al. 2016).

The requirements on the average bias in ellipticity and size
measurements, over the ensemble of galaxies used in a weak
lensing analysis, have been discussed by Paulin-Henriksson
et al. (2008), Amara & Réfrégier (2008), Kitching et al. (2009),

Massey et al. (2013). In these papers, the parent requirement on
the ellipticity measurements was broken-down into contributions
from various instrumental and telescope effects, and into require-
ments on the measurement of the size of galaxies and stars.

Ellipticity is usually defined as the ratio of linear combina-
tions of measured quadrupole moments of an image. Any ob-
servational measurements are noisy, and, through the central
limit theorem, these moments follow Gaussian error distribu-
tions. However, ratios of Gaussian distributed variables do not
have a simple distribution. The probability distribution of two
correlated random variables with non-zero means is defined in
Hinkley (1969), where it is also shown that the moments of this
distribution diverge so that mean and variance are not defined.

Given certain conditions on numerator and denominator, a
parameter transformation can be applied such that meaningful
first and second moments can be computed (Marsaglia 2006,
cf. Appendix B). However, these conditions are typically not
fulfilled when measuring ellipticities, as the distribution in the
denominator approaches or even crosses zero.

In this paper, we extend Israel et al. (2015, I15)’s analysis of
the precision with which charge transfer inefficiency (CTI) can
be corrected. The problem of divergent ratios makes it hard to
set requirements on how high that precision must be, and hard to
determine how high a precision was achieved. We consider two
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possible methods to circumvent the divergent ratios. The overall
performance of a CTI correction is not affected by recasting the
requirements; rather it clarifies the way in which performance is
measured, and the conditions that an experiment needs to meet.

Charge transfer inefficiency comprises the effects of tempo-
rary trapping and release of photoelectrons during CCD read-
out by defects in the detector material caused by radiation in
space. CTI manifests itself by charge trails in the direction of
the CCD readout, stemming from deferred electrons that after
a duration specific to the lattice defect have been released from
the charge traps created by irradiation. Image processing soft-
ware can correct for CTI trails by iterative modelling of the cap-
ture and release processes, reshuffling signal counts to the pixel
where they would have been registered in the absence of CTI
(Massey et al. 2010, 2014; I15).

A sensitivity study was performed by I15, analysing the com-
bined effects of readout noise and errors in the determination of
the trap parameters (e.g. their densities and release timescales)
on the accuracy with which measured galaxy parameters can be
recovered, compared to the case of no CTI. Based on the sci-
entific requirements of the Euclid1 (Laureijs et al. 2011) survey,
I15 derived tolerance margins for the uncertainties in the trap
parameters.

One main purpose of this article is to address a compli-
cation that I15 did not take into account. So-called size cuts,
that is a (lower) limit on the measured size of the objects
to be further considered as likely weakly lensed sources are
widely included in weak lensing analysis pipelines, in particu-
lar in moment based approaches, for example KSB (Kaiser et al.
1995; Erben et al. 2001), as implemented in, for example,
Hoekstra (2007), Okabe & Umetsu (2008), Israel et al. (2010),
Applegate et al. (2014), but also in model fitting algorithms (e.g.,
Zuntz et al. 2013; Jarvis et al. 2016).

Motivated mainly by the need to distinguish galaxies from
stars, size cuts removing the smallest sources effectively miti-
gate the vanishing denominators problem, as they bar the most
problematic objects from the analysis. This is the first of the two
solutions we consider here. In terms of cosmic shear, because
weak lensing statistics (see e.g. Bartelmann & Schneider 2001)
are not sensitive to the galaxy selection function this is a good
approach. A similar approach can be taken for stellar objects, as
it is not necessary for all stars to be used in PSF modelling; only
a sufficient number.

However, size cuts are not always viable. Problematic sce-
narios include the validation of telescope (or pipeline) perfor-
mance on a set of galaxies whose selection is predefined, or the
measurement of the distribution of the changes of sizes in objects
caused by CTI itself (cf. I15). In the absence of any radiation
damage to CCDs the size change caused by CTI is by definition
zero. To solve the problem in this case, we propose setting re-
quirements on (and analysing) the ensemble mean and error of
the quadrupole moments rather than their ratio.

This is a critical issue in the design of future weak lensing ex-
periments. The requirements for both the Euclid and Large Syn-
optic Survey Telescope (LSST, Chang et al. 2013b) weak lensing
surveys are currently set on the measurement of galaxy elliptic-
ities (and hence through ratios of quantities). In this paper, we
show why these are not verifiable, due to their divergent mo-
ments. Instead we avoid this issue by suggesting that “top-level”
requirements be recast on the quadrupole moments themselves.
These requirements can then be propagated or “flown down” in
a similar way to the process that has been followed for ellipticity

1 http://euclid-ec.org

and size variables (Cropper et al. 2013). In fact the propagation
and proportioning of these requirements into various compo-
nents should be more straightforward as the effect on quadrupole
moments is typically linear for both PSF and detector effects
(Melchior et al. 2011). This second approach is conceptually
similar to but distinct from the corrections for PSF ellipticity the
KSB and RRG (Rhodes et al. 2001) algorithms performs on the
moments.

We note that the ratio statistics problem has been known in
the weak lensing literature (e.g. Refregier et al. 2012) – although
it has been seldom addressed directly – and shape measurement
algorithms avoiding the evaluation of ratios of stochastic quanti-
ties exist, in particular model fitting methods (cf. Miller et al.
2007, 2013; Sheldon 2014; Jarvis et al. 2016). However, the
phrasing (or definition) of survey requirements must also be up-
dated to reflect this knowledge.

In Sect. 2 we formally state the problem and show why the
ellipticity denominator can be measured negative. In Sect. 3 we
describe the methodologies used to study both the size cut and
the recasting of requirements. Section 4 explores the impact of
size cuts using the example of CTI correction. We then present
the recasted requirements based on quadrupole moments. After
discussing the findings in the context of Euclid CTI correction
in Sect. 5, we conclude in Sect. 6.

2. Statement of the problem

2.1. Divergent terms in the requirement flowdown

The weak lensing requirement derivations for Euclid and LSST
start with the measured quadrupole moments of a galaxy or stel-
lar image I(x1, x2),

Qi j =

∫
dx1dx2(xi − x̄i)(x j − x̄ j)I(x1, x2)Wω(x1, x2)∫

dx1dx2I(x1, x2)Wω(x1, x2)
(1)

where i and j = {1, 2}, and (x1, x2) is a Cartesian coordinate sys-
tem. Wω(x1, x2) is a weight function that is typically assumed to a
be a multivariate Gaussian of scaleω. There are three quadrupole
moments Q = {Q11, Q22, Q12} that are therefore defined, and
these can be related to the ellipticity of the object in question by

e = χ= χ1 + iχ2 =
Q11 − Q22 + 2iQ12

Q11 + Q22
(2)

the third eccentricity. Its denominator,

A = Q11 + Q22 (3)

measures the size of an object (referred to as R2 in other works).
As Fig. 1 showing how negative values of A can be measured in
real data illustrates, the R2 nomenclature, which sounds positive
definite, appears to be more appropriate for the alternative esti-
mator A′ = (Q′211 + Q′222)/F2, with Q′i j the numerator of Eq. (1),
and F its denominator. However we note the oddity that A′ is
in units of angle to the fourth power. While A, in units of angle
squared, can be understood as the solid angle subtended by the
object, there is no similarly straightforward interpretation for A′.

Although other definitions, for example,
√

(Q11Q22 − Q2
12) yield

positive definite size estimators, we restrict our discussion to
Q11 + Q22, because of its relevance as the denominator of χ, as
we will demonstrate. In the presence of a point spread function
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(PSF) and detector effects the observed size and ellipticity trans-
form as (see Appendix A and Bartelmann & Schneider 2001)

eobs ≡ egal +
APSF

Agal + APSF
(ePSF − egal) + eNC (4)

and

Aobs ≡ Agal + APSF + ANC (5)

where “PSF” refers to any convolutive effect and “NC” refers
to any non-convolutive effect (for example due to CTI), “obs”
refers to the observed quantity and “gal” denotes the (true)
galaxy quantity that would be observed given no additional
effects. Equations (4) and (5) correct Eqs. (31) and (32) of
Massey et al. (2013, M13), and we detail the subsequent changes
to the requirement flowdown model in Appendix A.

Cosmic shear analyses typically involve calculating correla-
tions between galaxy shapes by taking the two-point correlation
function of Eq. (4), and in taking the ensemble average (mean)
of the derived expressions, requirements can be determined on
each the convolutive and non-convolutive elements of an ex-
periment design. This leads to expressions like 〈δA/A〉, where
δ refers to a measurement uncertainty, upon which there is a re-
quirement. This is particularly important for the non-convolutive
effects where there are requirements that depend on quantities
such as 〈δANC/Aobs〉 (M13; Cropper et al. 2013).

Because the quadrupole moments are sums over pixels, they
are expected (through the central limit theorem) to be Gaussian
distributed. Derived quantities that are linear combinations of the
quadrupole moments, such as numerator and denominator (the
size A) in Eq. (2), are also Gaussian distributed. However it is
by taking the ratio in Eq. (2) that χ follows a distribution whose
mean and variance formally and practically diverge. We note that
χ will diverge for a general distribution of the quadrupole mo-
ments, independent of the choice of Wω.

In the cosmic shear requirement flowdown (M13), it is the
denominator in terms such as 〈δANC/ANC〉 that causes the prob-
lem: if the distribution of the denominator crosses zero then the
distribution of the ratio diverges. Because the mean of the ratio
of two correlated variables is undefined it is therefore not for-
mally possible to verify if quantities such as 〈δANC/Aobs〉 are
being measured correctly – one can make the approximation
〈δANC〉/〈Aobs〉 but then it is not possible to verify that this is a
sufficient approximation.

2.2. Why objects with negative sizes A exist

Let us revisit the size measurement of simulated galaxies in I15,
and analyse the role and impact of very small objects. Galaxies
of negative measured size Aobs are problematic for two related
reasons: as we have just seen, they make terms with the size
in the denominator diverge (recall that Aobs itself is Gaussian
distributed). Moreover, because the distribution of Aobs extends
to negative values the Marsaglia (2006) mitigation technique (cf.
Appendix B) cannot be applied to measure ellipticity statistics.
From where do Aobs ≤ 0 sources arise?

In general, a measured Qi j can be negative if an image
is noisy. Consider the case that there is a local background
M(x1, x2), with mean 〈M〉 and noise about this mean, then we
measure in the presence of this background

Q̃11 =

∫
[I(x1, x2) + M(x1, x2)] Wω(x1, x2) x2 dx1dx2, (6)

Fig. 1. Histogram of the measured values of Aobs = Q11 + Q22 from
simulations of the CTI effect, as a function of the object signal-to-noise
ratio. The logarithmic grey scale and white contours (enclosing 68.3%,
95.45%, and 99.73% of samples, respectively) show the 107 exponential
disk galaxies analysed in I15. Input simulations containing Poisson dis-
tributed sky noise were subjected to CTI and Gaussian read-out noise.
Then, the CTI was removed using the correct trap model. Dashed and
dot-dashed contours (both smoothed) enclose the same density levels
measured from 105 simulations with ∼35% (∼85%) higher signal-to-
noise. In all three cases, the noise causes a non-negligible fraction of
the galaxies to be measured with Aobs < 0.

where I(x1, x2) is the galaxy intensity. To obtain the galaxy’s
shape moments we would have to subtract the mean local
moment

Q11 = Q̃11 −

∫
M(x1, x2) x2 dx1dx2, (7)

which can be zero or less then zero depending on how noisy
the image and background is. In Eq. (7), the weight function
Wω(x1, x2) drops out because 〈M〉 is constant over object scales.
In practice the mean background is usually subtracted leaving
“negative” pixels in the data in a process referred to as “back-
ground subtraction”. Therefore A = Q11 + Q22 can be negative
in practice.

Figure 1 shows an example from I15 of the distribu-
tion of measured sizes Aobs, as a function of SExtractor
(Bertin & Arnouts 1996) signal-to-noise (S/N) ratio. The
Rhodes et al. (2001, RRG) shape-measurement algorithm used
here subtracts a mean background before calculating image mo-
ments as just described. I15 applied the ArCTIC (Massey et al.
2010, 2014) algorithm for CTI correction in CTI-addition mode
to each of the 107 exponential disk galaxy images used in Fig. 1,
and then iteratively corrected the CTI trails using the same soft-
ware and trap model. For a detailed account of our input simula-
tion, we refer to I15.

Because ArCTIC restores the input simulation (sources
convolved with a Euclid visual instrument PSF plus Poisson dis-
tributed sky noise) perfectly except for read-out noise added dur-
ing the emulated CCD read-out, the distribution in Fig. 1 looks
very similar to that of the input simulations. That means we
would have recovered a similar distribution of size and signal to
noise even in the absence of CTI. But we include it here for re-
alism (including slightly correlated background noise due to the
CTI correction). We choose the CTI-corrected images because
the represent what can be measured from real observations.
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While the measured size Aobs and S/N are correlated, the neg-
ative size objects in Fig. 1 do not represent the very low S/N
end of the distribution in either a relative or an absolute sense.
Indeed, in the I15 analysis pipeline, all of them are bona fide
SExtractor detections, accounting for one in 128 (0.78%) of
these galaxies sampling the faintest population to be included
in the Euclid cosmic shear experiments. Increasing the S/N of
the input simulations by ∼15% (∼35%), reduces the fraction of
Aobs ≤ 0 galaxies to 0.50% (0.19%), but this is a slow drop-off
(cf. dashed and dot-dashed contours in Fig. 1). Even in a simu-
lation with mean S/N ≈ 20, we still observe negative sizes for
eight out of 105 samples, a tiny, but not negligible fraction in a
Euclid-like survey. The tail on the low-S/N side of the distribu-
tion is an artifact of the RRG algorithm’s choice of scale ω of
the weight function W in Eq. (1).

We note that the results shown in Fig. 1 have been calculated
with a specific choice of SExtractor centroids and a Gaussian
weight function (〈ω〉 = 0′′.34). We expect the results to depend
quantitatively, but not qualitatively on these choices. In particu-
lar, the small value of ω compared to usual choices in the weak
lensing literature already minimises the effect of noise on the
measured moments. However, with only a few signal pixels,
these sources are intrinsically vulnerable to noise.

We also note that while Fig. 1 uses the SExtractor S/N
instead of a measurement based on the same moments used to
compute A, this will not affect our conclusions: any two viable
S/N estimators can be transformed into each other via a bijective
mapping, such that, locally for the range of Fig. 1, the abscissa
can be rescaled linearly into the reader’s preferred S/N estimate.

Finally, one might argue that many shape measurement algo-
rithms employ inverse variance weights to the galaxies in their
shear catalogues. Because of the large uncertainties in the re-
sulting shear estimates, A < 0 objects will preferentially get as-
signed smaller weights than the average galaxy. However, unless
the A < 0 galaxies are given zero weight, this will not miti-
gate the problem. Our simulations take into account the ensem-
ble scatter of the estimated A = Q11 + Q22.

3. Methodology

Here, we present the two mitigation strategies we discuss.
Sect. 3.1 describes the effect of size cuts on CTI correction
as an example of the first strategy. Section 3.2 details how re-
quirements can be recast in terms of the normally distributed
quadrupole moments.

3.1. Removing negative size sources from CTI simulations

Although the Aobs ≤ 0 sources are legitimate objects for shape
measurement, removing them from the catalogue by means of
a size cut can solve some of the mathematical problems arising
from the vanishing denominator in Eq. (2). In fact, most existing
shear measurement algorithms impose a size cut at or above the
size scale measured from observed PSF tracing stars, for practi-
cal purposes. However, the I15 sensitivity analysis did not con-
sider such size cuts when translating the requirements on observ-
ables like eobs into requirements on the accuracy and precision
to which the parameters of ArCTIC, the CTI model, need to be
determined by calibration. Instead, I15 maximised their sample
statistics by taking into account the full distribution in Aobs.

We repeat the analysis of I15 with an increasingly selective
size cut on Aobs (that is on the size of objects after CTI has been
first applied and then corrected), mimicking realistic conditions.

Because the Gaussian read-out noise that is added just after CTI
has been applied, and is uncorrelated to the Poisson distributed
sky noise in the input simulation, and

Aobs = Agal + APSF + Asky_noise + ANC + Aread_noise, (8)

the sources Aobs ≤ 0 only rarely coincide with the sources
Agal + APSF + Asky_noise ≤ 0 in the input simulations. Indeed, our
simulations allow us to trace that in the I15 setup and sample
ANC + Aread_noise are well fit by a Gaussian distribution of mean
0′′.013 and standard deviation of 0′′.112 (the I15 simulations used
here and in Sect. 4.1 have a pixel scale of 0′′.1/pixel).

3.2. How to link requirements to moments

As we will see in Sect. 4.1, making size cuts in weak lensing
analyses can make requirements assessment more robust. How-
ever there are also negative impacts, most notably (1) the re-
duction in the number of galaxies; and (2) the introduction of
a non-trivial relationship between the size cut, CTI correction,
signal-to-noise, and the shape measurement method employed
(Sect. 4.1.2). Thus we explore an alternative mitigation strategy.

In this approach we propose that instead of setting require-
ments on the ellipticity and size, requirements need to be set
in the quadrupole moment space. We still propose that elliptici-
ties are used for shear inference (using the quadrupole moments
themselves is explored in Viola et al. 2014), and that only the
requirements are set in the moment space.

The requirements we will set are on the accuracy with which
the true distribution of moments needs to be known (that would
have been observed in the absence of any systematic biases, in
other words, the prior distribution of the quadrupole moments).
We therefore start by measuring this distribution, about which
perturbations can be made. To get a realistic fiducial baseline
we measure this from data using the GalSim (Mandelbaum et al.
2012; Rowe et al. 2015) deconvolved sample of galaxies (we use
all galaxies in this sample; for a full description of the magni-
tude range and other properties we refer to the GalSim papers),
where we use a weight function for the moments that is an mul-
tivariate Gaussian with a FWHM of 20 pixels (the pixel scale is
0.2 arcsec); we find that the results are independent of the exact
choice of this width since we take perturbations about the fidu-
cial distribution. Throughout units of the quadrupole moments
are in arcseconds squared unless otherwise stated.

Viola et al. (2014) show how a given measured set of
quadrupole moment values Q and their measurement errors
σQ relate to a probability distribution for ellipticity pχ. This
is known as the “Marsaglia-Tin” distribution (Marsaglia 1965,
2006; Tin 1965) and is the multivariate correlated case of the
ratio distribution. The mean and maximum likelihood of the el-
lipticity probability distributions are biased, in a way that is de-
pendent on the measured error on the quadrupole moments (or
signal-to-noise of the observed galaxy image).

We define a measured quadrupole distribution pi(Q) for
a galaxy i. In a Bayesian setting the distribution of the true
quadrupole moments can be considered as a prior Π(Q) from
which the galaxy is drawn. That means the probability of mea-
suring a value Q given some data D can be written like pi(Q|D) ∝
p(D|Q)Π(Q). The distribution pi(Q) can then be mapped into el-
lipticity via the Marsaglia-Tin distribution, arriving at the biases
in the mean of the elliptcity components.
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Fig. 2. Example of Monte-Carlo sampling of Π(Q), with no perturbations (the fiducial case) propagated into pε . The left-hand panel shows the
inferred prior in ε1 (x-axis) and ε2 (y-axis) calculated by taking the product of the individual ellipticity distributions. The middle panel shows the
biases in ε1 and the right-hand panel shows the distribution of biases in ε1 and ε2. Biases are in units of arcsec2.

Doing so, it is advantageous to use here the third flatterning,
an alternative ellipticity estimator

ε1 + iε2 =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
11

, (9)

that relates to χ as χ = 2ε/(1 + |ε|2). We choose to transform to
ε here instead of χ, because the range of ε is the unit disk, while
χ has an infinite range (cf. Fig. 1 of Viola et al. 2014). Thus, a
ε allows us to sample extremely elliptical objects in an unbiased
way, leading to well-defined moments for pε . Moreover, we ex-
plicitly take into account the correlation between the moments,
in particular also between numerator and denominator of χ.

We will place requirements on how well the mean and er-
ror of the moment distribution needs to be known in order to
ensure small biases on ellipticity. The procedure we take is as
follows. We perform Monte-Carlo sampling from the Π(Q) dis-
tribution, for each sampled value we assign a measurement error
equal to the value given above to define a pi(Q) (σ(Q11) = 0.020,
σ(Q22) = 0.019, σ(Q12) = 0.012, all in arcsec2). We then trans-
form this to pε,i and compute the bias in the mean of this distri-
bution away from the values computed by using the mean values
µ(Qi j) in Eq. (9); the bias is the difference between the two. This
results in a distribution of biases in ε1 and ε2 from which a mean
bias 〈 bias εi〉, and error on the bias σ(εi), can be computed. We
perform this for the fiducial distribution and then repeat the pro-
cess for distributions Π(Q) for which the mean and error have
been perturbed. We can then compute the relative change in
the biases caused by the perturbations be({QF}) − be({QF + δQ})
(where be are biases in ellipticity that are a function of a fiducial
set of moments {QF} and perturbations about these {QF + δQ}),
and therefore relate the knowledge of this distribution to biases
in ellipticity. We assume that given a well-defined measurement
of the moments the fiducial bias can be corrected for using the
analytic results from the Marsaglia-Tin distribution.

We note that the process allows one to place requirements
on the quadrupole moments, that ensure unbiased ellipticity
measurements, with avoiding the need to estimate any ratios
of variables. The ellipticities thus derived are therefore usable
in an unbiased way for cosmological parameter inference fol-
lowing the formalisms followed in Amara & Réfrégier (2008),
Kitching et al. (2009) and M13.

In Fig. 2 we show an example of the process. We present
1000 Monte-Carlo realisations of the fiducial Π(Q) distribution
propagated into pε . We show the product of the ellipticity dis-
tributions

∏
pε,i, which returns the inferred prior (the intrinsic

ellipticity) distribution (as shown in Miller et al. 2007) and the

Fig. 3. Relative tolerances for changes in ArCTIC trap model parame-
ters based on the Euclid requirement for ∆e1 in galaxies, as a function
of the minimum observed size Aobs,min included in the analysis. Larger
tolerances mean less strict calibration requirements. We show results
for the well fill power β, and the densities ρ1,2,3 and release time-scales
τ1,2,3 of all trap species considered by I15 (cf. their Table 3).

distribution of biases in ε1 and ε2 as a result of taking realisa-
tions from the Π(Q) distribution.

4. Results

4.1. Results for the size cut method

4.1.1. Size cuts and CTI correction sensitivity

Re-creating the results of I15 with different size cuts Aobs,min in
place, we find the effect of a size cut on the CTI correction sensi-
tivity, that is the required precision to which the ArCTIC param-
eters need to calibrated, to be reassuringly small. To first order,
and especially so for size cuts Aobs,min affecting only the extreme
tail of the distribution, CTI correction works independent of a
size cut. After all, we deal with a pixel-level correction before
the extraction of a catalogue.

Figure 3 presents the tolerances (bias margins) for the pa-
rameters I15 found to yield the tightest margins given the Euclid
requirement on CTI-induced ellipticity bias ∆e1 = 〈e1,corrected〉−

〈e1,input〉, as a function of a size cut Aobs > Aobs,min. We only
consider CTI along the x1 axis. We probe the densities ρ and re-
lease time-scales τ of the trap species. The same relative biases
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Fig. 4. CTI-induced relative size bias ∆A/A (upper panels) and ellipticity bias ∆e1 (lower panels) caused by a single trap species of time scale τ (in
units of pixels clocked charge has travelled) and unit density. Measurements before (left panels) and after (right panels) CTI correction are shown
for the I15 faint galaxy sample for four shape measurement choices: the I15 default (iterative centroiding and adaptive weight function width ω
and 〈ω〉 = 0′′.34; grey solid lines; also cf. Fig. 2 of I15); the most shape-measurement independent (MSMI) choice of SExtractor centroids and
fixed ω = 0′′.34 (black solid lines); MSMI with a size cut Aobs > 0′′.05 (dashed lines) and MSMI with a size cut Aobs > 0′′.18 (dot-dashed lines,
off scale for ∆A/A). Uncertainties are smaller than the line widths. The results in this figure correspond to a trap density of 24% of the Euclid
end-of-life estimate.

in ρi and τi are tested simultaneously for all three trap species
in the I15 baseline model. We also probe the well fill power β
describing the volume growth of a charge cloud inside a pixel as
a function of number of electrons. We derive tolerances on the
deviation of the parameters from the fiducial values by fitting to
the measured ∆e1(∆β) and the other parameters in the same way
as I15. Thus, without a size cut (leftmost points in Fig. 3), we
reproduce the tolerances given in Table 3 of I15.

We observe a significant change in tolerances only for size
cuts removing at least several per cent of the catalogue sources.
Moreover, the size cuts act in a way that render ∆e1 more robust
to biases in the trap parameters. This is what we expect when
removing objects with a denominator in Eq. (2) close to zero,
while slightly increasing the average S/N. A size cut at the scale
of the PSF size would have the welcome side-effect of widening
the margins in the crucial ArCTIC parameters by ∼70%.

4.1.2. Disentangling CTI correction and shape measurement

Any size cut, however, affects what I15 termed the CTI cor-
rection zeropoint, that is the residual bias due to overcorrected
read-out noise that is present even if the ArCTIC parameters
are perfectly known and correct. (Consistent with I15, we tac-
itly assumed this effect to be absent in the analysis leading to
Fig. 3. Indeed, the zeropoint can be calibrated out of real data
at the catalogue stage.) This is obvious for the zeropoint in
∆A = 〈Acorrected〉−〈Ainput〉 ≡ 〈Aobs〉− 〈Ainput〉. Removing objects
below a threshold in Aobs increases 〈Aobs〉, but leaves 〈Ainput〉 un-
changed, as we saw in Sect. 4.1.1.

While we observe the expected monotonic increase in the
∆A zeropoint, the zeropoint CTI bias in e1 (with A in the

denominator) shows a more complicated, non-monotonic be-
haviour as a function of Aobs,min.

Moreover, analysing simulations with a variable amount of
read-out noise, we also find a non-monotonic dependency of
the ∆e1 zeropoint, instead of the increasing (in absolute terms)
CTI correction residuals illustrated in Fig. 3 of I15. Because
adding more noise between applying CTI and correcting can-
not lead to a better reconstruction of the true, underlying pre-
CTI image, these findings are best explained by an artifact of the
(simple) shear measurement pipeline we are using. SExtractor
catalogues are fed into the RRG algorithm which iteratively de-
termines a centroid and, in the I15 setup, calculates the size
(standard deviation) of the Gaussian weight function in Eq. (1)
as ω = 2

√
Ω/π, with Ω the SExtractor area.

These steps are susceptible to the same noise fluctuations
of the local background that can make A negative. Because our
goal is to allocate uncertainty margins to each element of the
Euclid cosmic shear experiment, and validate algorithms against
these requirements, we seek to disentangle effects of shape
measurement and CTI correction. We thus propose a “most
shape measurement independent” (MSMI) measurement of the
CTI-induced biases in galaxy morphometry, and compare to I15
to gauge the magnitude of pipeline effects on CTI correction.

Our MSMI setting directly uses SExtractor centroids for
the galaxies, switching off the iterative refinement. We fix the
weight function size to a fixed, small value of ω = 0′′.34, to
minimise the effect of outlying sky pixels. Our value matches
the sample average of ω I15 recorded for the same galaxies.

Figure 4 shows the CTI-induced ∆A/A (upper panels) and
∆e1 (lower panels) arising from a single trap species of time scale
τ before (left panels) and after (right panels) CTI correction.
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Table 1. Parametric description of CTI-induced bias charge traps of different species cause in the measured sizes d and ellipticities e1 of faint
galaxies (black lines in Fig. 4).

C Da Dp Dw Ga Gp Gw

MSMI-measured galaxies: degraded images
∆d/dtrue 0.04350 ± 0.00034 −0.0235 ± 0.0005 1.92 ± 0.02 0.39 ± 0.08 0.1236 ± 0.0038 0.713 ± 0.011 0.449 ± 0.017
∆e1 0.05356 ± 0.00022 −0.0360 ± 0.0004 1.99 ± 0.02 0.38 ± 0.04 0.1058 ± 0.0019 0.666 ± 0.004 0.434 ± 0.008
MSMI-measured galaxies: CTI-corrected images
∆d/dtrue −0.00249 ± 0.00030 0.0005 ± 0.0005 1.83 ± 1.27 0.82 ± 3.91 0.0013 ± 0.0009 0.675 ± 0.246 0.432 ± 0.372
∆e1 −0.00107 ± 0.00012 0.0002 ± 0.0001 1.40 ± 0.50 0.10 ± 0.00 0.0015 ± 0.0003 0.792 ± 0.145 0.517 ± 0.141

Notes. The measurements assume a density of one trap per pixel, and the astrophysical measurement is fitted as a function of the charge trap’s
characteristic release time τ as C + Da atan((log τ − Dp)/Dw) + Ga exp (−(log τ −Gp)2/2G2

w). The parameters in this table correspond to a trap
density of 24% of the Euclid end-of-life estimate.

Qualitatively, the MSMI (black lines) and I15 (grey lines; see
also their Fig. 2) are in broad agreement, with the traps caus-
ing the strongest biases slightly shifting towards longer release
times τ. Possibly this is due to more objects being slightly off-
centred in the more simplistic MSMI setup, and thus more sen-
sitive to their electrons being dragged out of the aperture.

After CTI correction, the MSMI measurements return a sig-
nificantly smaller residual ∆A/A than the I15 settings over the
whole eight decades in release time τ we tested. Curiously, the
I15 pipeline performs better in residual ∆e1 for a random τ, but
our reducing the influence of the shape-measurement pipeline
nulls away the zeropoint bias of the most effective charge traps
at the peak of the curve.

We also introduce size cuts in the MSMI measurements
(dashed and dot-dashed lines in Fig. 4). These size cuts lower
the bias ∆e1 for all traps, likely by removing the some of the
most biases sources. However, by the mechanism described in
Sect. 4.1.1, size cuts introduce an additional bias in ∆A/A that
the CTI correction cannot account for (but which could be re-
moved by calibration).

A complete understanding of the interaction between the
ArCTIC CTI correction, shape measurement algorithms and
source selection by size cuts exceeds the scope of this paper. We
conclude that they should be disentangled as far as possible and
provide empirical fits to the results of Fig. 4, updating Table 1 of
I15 as a baseline for further research. As I15 demonstrated, the
combined effect of several trap species are linear combinations
of the biases caused by their component trap species.

4.2. Results for requirements recast on quadrupole moments

Figure 5 shows the measured distribution of moments Π(Q) mea-
sured in GalSim galaxies. We find that indeed the quadrupole
moments are consistent with a Gaussian distribution with a
mean for each component of µ(Q11) = 0.042, µ(Q22) = 0.039,
µ(Q12) = 7 × 10−4 and an error on each component of σ(Q11) =
0.020, σ(Q22) = 0.019, σ(Q12) = 0.012; reported in units of
arcseconds squared throughout.

We also measured these values from COSMOS data
(Leauthaud et al. 2007) and found values (in arcsec2) of
σ(Q11) = 0.09, µ(Q11) ∼ 0.02, σ(Q12) = 0.040, µ(Q12) ∼ 0
before PSF correction. We repeat the analysis in Sect. 4.2 with
these values, and recover the same requirements on ellipticity to
four decimal places, or ∼5% of the requirement.

The error on Q12 is expected to be approximately σ(Q12) ≈
0.5(σ2(Q11)+σ2(Q22))1/2. Through expected symmetries we as-
sume in our analysis that µ(Q12) = 0, µ(Q11) = µ(Q22) and
σ(Q11) = σ(Q22). The moments are correlated as shown in
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000.020.04
Q22

0.060.080.10.12
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-0.03

-0.02

0.04

-0.01

0
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0.03
Q

12

Data
Realisation

Fig. 5. Distribution of the measured quadrupole moments measured in
GalSim galaxies. We show only 100 points here, in blue. The black
points show a set of 1000 values sampled from a multivariate Gaussian
derived from the measured values. All axes are in units of arcsec2.

Viola et al. (2014), and using these correlation coefficients we
can then make random realisations of this distribution that we
also show in Fig. 5.

About the fiducial quadrupole moment distribution Π(Q) we
make a 1000 perturbations where we vary the mean and the er-
rors, each a uniform random number between r = [−0.01, 0.01],
for example for the mean µ(Q11) → µ(Q11) + r, and similarly
for the other variables each with an independent value. In this
way we are searching the six-dimensional “requirement space”
(the means and standard deviations of each moment direction) in
a random way – a more sophisticated implementation could use
Markov-chain optimisation for example. For each realisation of
Π(Q) we sample 104 points from this distribution and then fol-
low the procedure outlined in Sect. 3.2.

In Fig. 6 we show the dependency of the mean and error of
the ellipticity biases, as a function of perturbations in the mean
and error on the quadrupole moment distribution. The mean and
error of the bias for each ellipticity component depends on the all
the six varied parameters, however there is a primary direction in
this parameter space along which the strongest dependency oc-
curs, for example the mean bias in ε1 is most sensitive to changes
in the mean of the Q11 as is expected, so we only show these
strongest dependencies. We now derive our main requirements
taking only into account these dominant dependencies.
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Table 2. The derived requirements on the quadrupole moments.

δ(Q11) 0.0017
δ(Q22) 0.0017
δ(Q12) 0.0014
σ(Q11) 0.0016
σ(Q22) 0.0016
σ(Q12) 0.0017

Notes. Values need to be less than these quantities, in units of arcsec2.

We find that there is an approximately linear dependency be-
tween the mean bias and the mean of the quadrupole moments,
and between the error on the bias and the error of the quadrupole
moment distribution. By taking the requirement in biases on el-
lipticity (e.g. from Kitching et al. 2009) of 2 × 10−3 arcsec2 we
can therefore set a requirement on the moments of quadrupole
moment distribution – where the bias in ellipticity exceeds the
absolute value of this. We show the knowledge of mean and er-
ror of each quadrupole moment show in Table 2. As a rule of
thumb we find that the error on the standard deviation of each
component needs to be smaller than 1.4 × 10−3 arcsec2. Alterna-
tively the requirement on Stokes parameters Q11 + Q22 and 2Q12
is 1.9 × 10−3 arcsec2.

5. Implications for Euclid CTI correction
The wider uncertainty margins on CTI trap parameters found in
Sect. 4 – up to 70% – underline the positive role that size cuts
to the galaxy catalogue can have in shear experiments. However,

we have to caution that this new result does not mean efforts on
CTI calibration have become less crucial for the Euclid mission,
for three reasons.

First, there will be a size cut in Euclid shear catalogue any-
way, very likely at some value slightly larger than the PSF size.
What has improved is our modelling of an experiment’s sensitiv-
ity to CTI, addressing an aspect that was missing in I15.

Second, the 70% improvement specifically applies to our
baseline trap model, the mix of trap species defined in I15, which
is informed by laboratory experiments on Euclid VIS CCDs, but
should be seen as a realistic example, not a prediction of the ac-
tual Euclid CTI.

Third, we observe the CTI correction, the (simple) shape
measurement pipeline we used, and the size cut on the source
catalogue to interact non-trivially. We simplified the shape mea-
surement algorithm further and find the residual size and ellip-
ticity biases after CTI correction to decrease for many relevant
charge trap species. Our results provide a new baseline for fur-
ther research.

While size cuts further prevent biases that would arise if a
galaxy of measured size smaller than the PSF was corrected
for PSF effects, no PSF correction has been performed in ei-
ther I15 or this work. This approach is justified because Euclid
requirements on shape measurement are kept deliberately dis-
tinct from those on PSF knowledge and correction. Setting
separate requirements on the shear numerator and denomina-
tor is also consistent with the separation of numerator and
denominator (for PSF and weight function correction) in the
RRG method.
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When deriving these individual measurements of the surface
brightness moments, we do not investigate the requirements on
the covariances of the moments, taking instead the theoretical
covariance estimated from Viola et al. (2014). In future work,
however, these could also be investigated, and are likely to de-
pend on the weight function used in the analysis (which could be
even optimised for this purpose).

Moreover, we need to caution that while the most important
quantities for which a weak lensing survey needs to set require-
ments can be expressed via surface brightness moments, there
will be some degree of information loss inherent to the com-
pression of the lensing map (from a two-dimensional input to
a two-dimensional output) using only low-order surface bright-
ness moments. This limitation is common to ellipticity-based
and moment-based requirements.

6. Conclusions
Weak lensing is a potentially powerful probe of cosmology, but
the experiments and algorithms to measure this phenomenon
need to be carefully designed. To this end a series of re-
quirements on instrumental and detector systematic effects has
been previously derived based on the propagation of measured
changes in ellipticity and size into changes on cosmological pa-
rameter inference. However in doing this, the relationship be-
tween ellipticity and size leads to requirements being placed on
the mean of two measured random variables. Such moments are
not defined in general and therefore cannot be measured, so that
such requirements cannot be tested.

Especially problematic are those sources whose measured
size is close to zero or negative, because estimation techniques
like the Marsaglia (2006) re-parametrisation cannot be applied.
However galaxies of negative measured size represent legitimate
samples from the size distribution of faint, small objects in the
presence of noise that still occur with non-negligible frequently
at S/N & 15.

Removing the smallest galaxies from source catalogues by
means of a size cut is a viable strategy in many, but not all
weak lensing contexts. Sampling from a clipped source distribu-
tion may introduce unwanted biases in the complex data analysis
chains. We extend the I15 sensitivity study of the charge trans-
fer inefficiency (CTI) correction to include a size cut. We find
the tolerance margins in CTI correction parameters to show a
moderate dependence on removing the smallest sources. In fact,
uncertainty margins are found to be wider by up to ∼70% in the
tested set-up.

As a more robust long-term solution, we present a formalism
that allows requirements on ellipticity to be set in the space of
quadrupole moments, that are linear functions of the data, where
no ratios need to be computed, using the probability distribu-
tion for ellipticity derived in Viola et al. (2014). We find that the
mean and the error of the distribution of quadrupole moments
over the ensemble of galaxies used in a Stage-IV weak lensing
experiment needs known to better than 1.4×10−3 arcsec2 in each
component for the ellipticity measurements to be unbiased at the
level of 2 × 10−3 arcsec2.

This requirement can now serve as a basis from which a
breakdown and proportion into individual requirement on PSF
and detector effects can be made as is done in Cropper et al.
(2013). This should be straightforward given the formulae pro-
vided in Melchior et al. (2010) for example. We do not per-
form this breakdown here as the proportioning is flexible and
should be done with instrument-specific knowledge: for example
one may have a very stable PSF and wish to proportion more

flexibility to instrument effects or vice versa. In this study we
propagate only requirements to ellipticity, and marginalise over
size; however if one wishes to use weak lensing magnification as
an additional cosmological probe then this could be used to set
joint ellipticity and size requirements. The setting of these re-
quirements can now serve as a firm statistical basis from which
weak lensing experimental design can proceed.

Finally, we point out that because recasting the requirements
does not affect the galaxy selection as the size cuts do, there
is no need to update the CTI trap model sensitivity results of
I15 for this case. Rather, these two elements work together: we
have updated the CTI results to a more realistic model, while
identifying a more appropriate way to define the requirements
setting the context for the CTI correction in Euclid.
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Appendix A: Update of M13 CTI requirements
derivation

Since M13, we have found it more physical to consider non-
convolutive effects like CTI as linearly affecting an object size

Aobs = Agal + ANC + APSF (A.1)

and ellipticity

eobs = egal + eNC +
APSF

Agal + APSF
ePSF. (A.2)

We now derive equivalent versions of Eqs. (34) to (37) in M13,
the Taylor expansion detailing the sensitivity of observables to
biases in ellipticity e1 and size A. We ignore noise terms in the
following and note that Eqs. (A.1) and (A.2) only hold true to
linear order in moments. Not including PSF, we have

eobs =
Q11 − Q22 + (δQ11 − δQ22)
Q11 + Q22 + (δQ11 + δQ22)

(A.3)

where δQ are the change in moments caused by CTI. This is
approximately eobs = egal + eNC if δQ � Q to linear order. We
note this is a further reason for using Q requirements directly.
This means that:

egal =
(eobs − eNC)(Aobs − ANC) − ePSFAPSF

(Aobs − ANC)

= (eobs − eNC) −
ePSFAPSF

(Aobs − ANC)
, (A.4)

and consequently

∂egal

∂ANC
= −

ePSFAPSF

(Aobs − ANC)2 , (A.5)

and

∂egal

∂eNC
= −1 (A.6)

so that the δRNC term in the M13 Taylor expansion (their
Eq. (36)) should be replaced by

APSF ePSF

(Agal + APSF)2 δANC, (A.7)

and the δeNC term (Eq. (37) in M13) is simply

−δeNC (A.8)

this leads to a term like〈(
APSF

(Agal + APSF)2

)2〉
, (A.9)

in the ellipticity two-point correlation function or power spec-
trum, which needs to be evaluated in order to check the require-
ment level contribution. Problems will occur in taking the ratio
in the regime that Agal + APSF = Aobs − ANC → 0.

These terms make intuitive sense in that if the PSF elliptic-
ity is zero, then any ellipticity-independent size change will not
cause a bias in ellipticity. Whereas a change in ellipticity caused
by CTI, that adds linearly, should cause a linear bias.

Appendix B: The Marsaglia mitigation technique

Marsaglia (2006) demonstrate that the ratio z/w of two normally
distributed random variables z and w with respective means µz,
µw, variances σz, σw and correlation ρ follows the same distri-
bution as a+x

b+y
where x and y are uncorrelated standard normal

random variables. The constants a and b are given by

b =
µw
σw

, a = ±
µz/σz − ρµw/σw√

1 − ρ2
> 0. (B.1)

Although no formal proof is given, Marsaglia (2006) show that,
for practical purposes, the mean and variance of the ratio exist
and are approximated by

µ =
a

1.01b − 0.2713
, σ =

a2 + 1
b2 + 0.108b − 3.795 − µ2 , (B.2)

as long as the conditions b > 4 and a < 2.5 are satisfied. In
other words, negative samples must only occur very rarely (as
4σ events or scarcer) for the Marsaglia mitigation technique to
be applicable. Figure 1 shows that this condition is not met for
typical faint weak lensing test galaxies.
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