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ABSTRACT
We use weak-lensing shear measurements to determine the mean mass of optically se-
lected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded anal-
ysis, we split the sample of more than 8000 redMaPPer clusters into 15 subsets, span-
ning ranges in the richness parameter 5 ≤ λ ≤ 180 and redshift 0.2 ≤ z ≤ 0.8, and fit
the averaged mass density contrast profiles with a model that accounts for seven distinct
sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-
member contamination; miscentring; deviations from the NFW halo profile; halo triaxial-
ity and line-of-sight projections. We combine the inferred cluster masses to estimate the
joint scaling relation between mass, richness and redshift, M(λ, z) ∝ M0λ

F (1 + z)G. We
find M0 ≡ 〈M200m | λ = 30, z = 0.5〉 = [2.35 ± 0.22 (stat) ± 0.12 (sys)] × 1014 M�, with
F = 1.12 ± 0.20 (stat) ± 0.06 (sys) and G = 0.18 ± 0.75 (stat) ± 0.24 (sys). The ampli-
tude of the mass–richness relation is in excellent agreement with the weak-lensing calibration
of redMaPPer clusters in SDSS by Simet et al. and with the Saro et al. calibration based
on abundance matching of SPT-detected clusters. Our results extend the redshift range over
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which the mass–richness relation of redMaPPer clusters has been calibrated with weak lensing
from z ≤ 0.3 to z ≤ 0.8. Calibration uncertainties of shear measurements and photometric
redshift estimates dominate our systematic error budget and require substantial improvements
for forthcoming studies.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observa-
tions.

1 IN T RO D U C T I O N

The growth of massive structures and the cosmic expansion rate
depend directly on the energy constituents of the Universe and the
behaviour of gravity at a range of scales. In the currently favoured
cosmological model, the energy density at the present epoch is dom-
inated by dark matter and dark energy, with space–time evolving
according to the standard theory of gravity, general relativity. Within
this model, the number of haloes of a given mass and the history
of cosmic expansion depend sensitively on the relative amount and
detailed properties of both dark matter and dark energy. Alternative
theories of gravity may make different predictions for the number
density of haloes at a given cosmic epoch for the same expansion
history (see e.g. Schmidt et al. 2009). Thus, much can be learned
about cosmology, and potentially about gravity itself, by studying
the abundance of massive structures as a function of their mass and
redshift (Allen, Evrard & Mantz 2011; Weinberg et al. 2013).

Clusters of galaxies are thought to directly correspond to the
largest dark matter haloes, the number density of which is par-
ticularly sensitive to the dark energy. However, clusters are typi-
cally identified not by the total mass of their halo, but by a related
observable. Thus, cosmological inference from cluster abundance
requires a cluster catalogue with measurements of some observ-
able with a well-understood selection function, a theoretical pre-
diction for the abundance of haloes as a function of mass and red-
shift for different cosmologies, and, crucially, a mass–observable
relation (MOR) that connects the observable and true mass of
a halo.

The abundance of dark matter haloes is, in principle, predictable
for a given cosmological model purely from N-body simulations
(e.g. Tinker et al. 2008; Bocquet et al. 2016). However, most clus-
ter observables that are readily measured in large surveys are a
manifestation of complex astrophysical processes. Some common
observables are counts of galaxies above a threshold luminosity
(Koester et al. 2007; Rykoff et al. 2014), X-ray emission from hot
gas (Piffaretti et al. 2011; Mehrtens et al. 2012) and Compton scat-
tering of cosmic microwave background photons off electrons in
that same gas (Hasselfield et al. 2013; Bleem et al. 2015; Planck
Collaboration XXVII 2016). Predicting the corresponding MOR for
these observables from first principles, or from simulations, is not
straightforward. At this time, it is more practical to determine the
relationship empirically based on an observable proxy of the clus-
ter mass. These empirical measurements are similarly challenging;
uncertainties in the MOR have in fact become the main impedi-
ment to reliable inference of cosmological parameters from cluster
abundances (e.g. Rozo et al. 2010; Bocquet et al. 2015; Mantz et al.
2015; Planck Collaboration XXIV 2016).

Currently, the conceptually cleanest method for calibrating clus-
ter masses is gravitational lensing, the deflection of light from back-
ground objects due to all matter contained in a foreground cluster
(e.g. Johnston et al. 2007b; Gruen et al. 2014; von der Linden et al.

2014b; Hoekstra et al. 2015; Okabe & Smith 2016; van Uitert et al.
2016; Simet et al. 2017b). In this work, we will use lensing to mea-
sure the mass of clusters found in the Dark Energy Survey (DES;
Dark Energy Survey Collaboration 2005, 2016).

The Dark Energy Survey is a 5000 deg2 survey of the southern sky
using the 4-metre Blanco Telescope and the Dark Energy Camera
(Flaugher et al. 2015) at the Cerro Tololo Inter-American Observa-
tory. The primary goal of the survey is to constrain the distribution
of dark matter in the Universe, and the amount and properties of
dark energy, including its equation of state. Due to the large area,
depth and image quality of DES, the data will support optical identi-
fication of a large number (≈100 000) of galaxy clusters and groups
up to a redshift z ≈ 1. The potential for probing cosmology with
these optically selected clusters can be realized only if the MOR is
well understood.

In this paper, we present the first ensemble, or ‘stacked’, lensing
measurements of optically selected clusters from DES. We use the
redMaPPer cluster catalogue (Rykoff et al. 2016), generated from
the Science Verification (SV) data taken before the first official DES
observing season. For the lensing measurements, we use catalogues
of lensed galaxies constructed from the same data (Jarvis et al.
2016).

The goal of this work is twofold. First, we measure the statistical
relationship between the number of galaxies in a cluster and the
underlying halo mass – i.e. the MOR – and compare our findings
to the results in the literature. Secondly, we develop and test a new
analysis pipeline, which we will apply to the much larger DES data
sets currently being acquired and processed. We especially seek to
fully account for systematic effects, considering biases in shear and
photometric redshift measurements, cluster member contamination
in the lensed background source sample, miscentring and triaxiality
of clusters, projection of multiple clusters along the line of sight
and deviations of halo profiles from the analytical form.

The structure of this paper is as follows. In Section 2, we introduce
the data used in this work. In Section 3, we describe our method-
ology for obtaining ensemble cluster density profiles from stacked
weak-lensing shear measurements. A comprehensive set of tests
and corrections for systematic effects is presented in Section 4. The
model of the lensing data and the inferred stacked cluster masses
are given in Section 5. The main result, the mass–richness–redshift
relation of redMaPPer clusters in DES, is presented in Section 6.
We compare our results to other published works in the literature in
Section 7 and conclude in Section 8.

For the purpose of this analysis, we assume a flat � cold dark mat-
ter (�CDM) cosmology with �m = 0.3 and H0 = 70 km s−1 Mpc−1.
Distances and masses, unless otherwise noted, are defined as phys-
ical quantities with this choice of cosmology, rather than in co-
moving coordinates. We denote the mass inside spheres around
the cluster centre as M200m, corresponding to an overdensity
factor of 200 with respect to the mean matter density at the cluster
redshift.
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Figure 1. The distribution of redMaPPer clusters (Section 2.1) in the DES
SV footprint, overlaid on the density of galaxies used for the weak-lensing
analysis (Section 2.2). The size of the cluster markers is scaled by the
richness λ, i.e. the number of member galaxies. Clusters that are surrounded
by galaxies over the entire radial range of 30 Mpc are shown as filled circles
(other clusters are denoted by open circles). For the purpose of clarity,
clusters with λ < 10 are omitted.

2 TH E D E S SC I E N C E V E R I F I C AT I O N DATA

DES began taking official survey data in 2013 August (Diehl et al.
2014). Before this, a small SV survey was conducted from 2012
November to 2013 February. For this work, we restricted our mea-
surements to the largest contiguous portion of the SV area, dubbed
‘SPT-East’ and shown in Fig. 1, an area of approximately 139 deg2

in the eastern part of the region observed by the 2500-square-degree
South Pole Telescope Sunyaev–Zel’dovich Survey (Carlstrom et al.
2011). We briefly introduce the three main data products utilized
in this work and refer to the respective publications for details. We
want to emphasize that all catalogues used in this work have already
been made public1 to facilitate external review and further scientific
exploration.

2.1 Cluster catalogue

We rely on photometrically selected clusters identified in the DES
SV data set using the redMaPPer cluster finding algorithm (Rykoff
et al. 2014). The resulting cluster catalogue was presented in Rykoff
et al. (2016), and the distribution in the footprint is shown in Fig. 1.
We note that redMaPPer has had multiple public releases corre-
sponding to different versions of the algorithm. The catalogue we
employ corresponds to version 6.3.3 of the algorithm.

Briefly, redMaPPer identifies galaxy clusters as overdensities of
red-sequence galaxies. It iteratively trains a model of the red se-
quence as a function of redshift, and utilizes this model to assign
a cluster membership probability to every galaxy in the vicinity
of a cluster. The cluster richness λ is the sum of the membership
probabilities of the galaxies within a cluster radius Rλ. The radius
scales with richness as Rλ = 1.0(λ/100)0.2h−1 Mpc, a choice that
was found to minimize the scatter in the MOR (Rykoff et al. 2012).

1 http://des.ncsa.illinois.edu/releases/sva1

Figure 2. Redshift–richness distribution of redMaPPer clusters in the DES
SV catalogue, overlaid with density contours to highlight the densest regions.
At the top and on the right are histograms of the projected quantities, zλ and
λ, respectively, with smooth kernel density estimates (black lines).

Because of the interdependence of λ and Rλ, richness estimation in-
volves finding the self-consistent pair of these parameters (cf. Rozo
et al. 2009, their section 3.2).

Cluster central galaxies are chosen using a probabilistic approach
that weights not just galaxy luminosity, but also local galaxy density,
and demands consistency between the photometric redshift of the
central galaxy and the cluster redshift. The mean of the redMaPPer
centring probabilities is 0.81, i.e. we expect 81 per cent of the
clusters to be properly centred, which is in good agreement with
estimates from XMM–Newton, Chandra and SPT cluster detections
(Rykoff et al. 2016, their section 6.2.4).

High-redshift clusters can be identified only in the deepest sur-
vey regions, so the redshift range probed by the catalogue varies
from location to location. Specifically, at any given location, the
maximum redshift zmax is set by requiring that the survey depth at
that location be sufficient to ensure a 10σ detection of redMaPPer
member galaxies brighter than 0.2 L� for a cluster at redshift zmax.

The distribution of richness and redshift for the cluster sample
is shown in Fig. 2. Rykoff et al. (2016) show that the photomet-
ric redshift performance of redMaPPer on the DES SV region is
σzλ

/(1 + z) � 0.01, while the abundance and redshift evolution of
the sample suggest that a richness λ = 20 corresponds to a halo mass
M500c ≈ 1014 M� or M200m ≈ 1.8 × 1014 M�, with a variation of
mass with richness expected to be roughly linear.

2.2 Shear catalogue

We use the official DES shear catalogues presented in Jarvis et al.
(2016). Two separate catalogues were created, NGMIX (Sheldon
2014) and IM3SHAPE (Zuntz et al. 2013). These catalogues were
found to be consistent when selection effects were taken into ac-
count (Jarvis et al. 2016). Both catalogues are adequate for the
purposes of estimating shear correlation functions, including tan-
gential shear analyses such as the one pursued in this work. Here,
we adopt the NGMIX catalogue, which has a higher effective number
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density (5.7 arcmin−2) of sources because it combines the image
data from three bands (r, i, z) instead of relying on any single band.

The NGMIX catalogue was generated using an implementation of
the ‘lensfit’ algorithm (Miller et al. 2007), a galaxy model fitting
technique. An exponential model was fit to each galaxy image,
and the full likelihood surface of the model parameter space was
explored. The ellipticity statistic e was taken to be the mean 〈eμ〉
across this surface, where μ denotes the two ellipticity components.

During exploration of the likelihood surface, a centrally concen-
trated prior was applied to the ellipticity. This prior stabilizes and
limits the exploration of the likelihood. However, application of
an ellipticity prior results in a shear calibration error: a naive sum
over the ellipticities does not recover the true applied shear for low-
S/N measurements. Essentially, the sensitivity of the ellipticity as
a shear estimator is reduced due to suppressing high ellipticity re-
gions of the parameter space. A correction for this calibration bias
was calculated, called the ‘sensitivity’ s (Jarvis et al. 2016, their
equation 7.10), which yields a shear estimator of the following
form:

g̃μ =
∑

i ei,μ∑
i si,μ

, (1)

for all sources i that experienced the same constant shear. It is
important to note that for any single galaxy, s is a very noisy quantity.
The sensitivity correction is therefore applied only for an entire
source ensemble. Also, while s has two components, it does not
transform as a polarization. For tangential shear measurements,
we rotate the galaxy shapes into the tangential frame around each
cluster, but this cannot be done for the sensitivities. Instead, we
simply average the two sensitivity components into one,

si = 1

2
(si,1 + si,2). (2)

We have verified in simulations that using the mean sensitivity gives
equivalent results to using the individual components when recov-
ering a constant shear. This reflects the fact that the two sensitivity
components are equal in the mean, within our uncertainties.

Blinding

During the development of the analysis presented here, the NGMIX

shear catalogue was blinded by an unknown factor between 0.9
and 1.0 (Jarvis et al. 2016, their section 7.5). Only after the data
and modelling pipeline presented here had successfully passed all
internal tests were the unblinded shears processed.

However, after unblinding we uncovered an inconsistency in the
interpretation of radial bin limits between data and model. We note
that this discovery was made by directly assessing whether the
model properly approximates the data, and not by comparing our
mass–richness relation to literature results or expectations. We re-
peated the blinded analysis with the corrected pipeline, checked
the results for consistency again and only then continued with the
unblinded analysis.

2.3 Photometric redshift catalogue

Inference of physical quantities such as mass from a lensing signal
requires knowledge of the redshift distribution of the source galaxies
being lensed. DES has explored a broad range of photometric red-
shift estimators (Sánchez et al. 2014). Four of the best-performing
codes were selected for a detailed characterization of the impact
of photometric redshift uncertainties on weak-lensing studies such

as this one (Bonnett et al. 2016). These were ANNZ2 (Collister &
Lahav 2004; Sadeh, Abdalla & Lahav 2016), SKYNET (Graff et al.
2014), TPZ (Carrasco Kind & Brunner 2013) and BPZ (Benı́tez 2000;
Coe et al. 2006). The first three of these are machine-learning codes,
while BPZ is a template-based method. All four methods noted above
were used to produce a full probability distribution p(z) for every
source galaxy in the DES shear catalogues, finding comparable
performances.

We note that Bonnett et al. (2016) found it necessary to shift the
probability distribution recovered from BPZ upwards by 0.05 in order
to counteract intrinsic biases in BPZ that arise due to limitations in
the template set employed. Since our analysis relies on the same
photometric data and photometric redshift outputs as Bonnett et al.
(2016), we follow these authors in applying a systematics shift
of 0.05 to the photometric redshift distributions from BPZ for all
following analyses, and in using the SKYNET photo-zs for the fiducial
calculations in this work. We present a detailed characterization of
photometric redshift uncertainties in Section 4.3.

3 STACKED LENSI NG MEASUREMENTS

We briefly summarize the methodology for stacked cluster lensing
measurements, and refer the interested reader to Bartelmann &
Schneider (2001) and Sheldon et al. (2004) for details.

Equation (1) defines an estimator for the ‘reduced shear’

g ≡ γ

1 − κ
, (3)

a non-linear combination of the gravitational shear γ and conver-
gence κ . Weak lensing is characterized by g ≈ γ , which is an accu-
rate approximation for this study: we excise areas close to cluster
centres to avoid high shear and difficulties of photometry and shape
measurements in crowded regions (cf. Sections 4.2 and 5.7).

The weak shear by a foreground mass concentration induces
correlations in the shapes of background galaxies, such that, on
average, galaxies images are stretched tangentially with respect to
the centre of mass. The mean tangential shear γ ᵀ at a distance R
from a cluster is related to the surface mass density 	 of the cluster
via


	 ≡ 	(< R) − 	(R) = 	crit γ ᵀ(R), (4)

where 	(x, y) = ∫
zρ(x, y, z) is the line-of-sight projection of the

physical mass density ρ, 	(< R) is the mean surface density within
R and 	(R) is the azimuthally averaged surface density at radius R.
We will take the source ellipticity, rotated to the tangential frame,
as a noisy estimator

γ ᵀ ≈ eᵀ + noise, (5)

where the noise is due to both intrinsic ellipticities of the source
galaxies and measurement noise.

The strength of the lensing signal imprinted on background galax-
ies is modulated by the critical surface density

	crit(zs, zl) = c2

4πG

Ds

DlDls
, (6)

where Ds, Dl and Dls refer to the angular diameter distances to
the source, to the lens, and between lens and source, respectively.
Equation (6) provides a mechanism to weight each lens–source
pair to maximize the signal-to-noise ratio of 
	. For most lensing
analyses (including this one), the distances of the sources must
be estimated from photometric rather than spectroscopic redshifts,
which demands the introduction of an effective critical density for
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Figure 3. Mean 
̃	 for cluster subsets split in redshift zl (increasing from top to bottom) and λ (increasing from left to right) with errors from jackknife
resampling (see Section 3.1). Our best-fitting model (red curve) includes dilution from cluster member galaxies (Section 4.2) and miscentring (Section 5.4);
see Fig. 11 for details. Data points considered unreliable and therefore excluded from further analysis (below 200 kpc or above 1 deg) are indicated by open
symbols and dashed lines. The profiles and jackknife errors are calculated after the subtraction of the random-point shear signal (see Section 4.1.2).

each lens–source pair

〈	−1
crit〉j,i =

∫
dzs,i pphot(zs,i) 	−1

crit(zs,i , zl,j ) (7)

that averages over the redshift probability distribution pphot(zs, i)
of source i, evaluated for lens j.2 We can combine the previous
equations in this section to arrive at an estimator 
̃	j,i for each
lens–source pair (j, i). The optimal estimator for the stacked density
profile 
	 is then a weighted sum over these individual estimators,
so that


̃	 =

lens∑
j

src∑
i

wj,i e
ᵀ
j,i

/
〈	−1

crit〉j,i∑
j,i wj,i

, (8)

where the weights

wj,i = 〈	−1
crit〉2

j,i

/
σ 2

γ,i (9)

are chosen to minimize the variance of the resulting estimator
(Sheldon et al. 2004).3 The quantity σ 2

γ is the uncertainty on the
shear measurement, and combines the uncertainty in the shear due

2 In this work, we also estimate the cluster redshifts photometrically. How-
ever, the error on those estimates is of the order of 
z ≈ 0.01 (Rykoff et al.
2016), which is negligible compared to both the width of the lens redshift
bins we adopt and of the source redshift distributions. In what follows, we
will therefore treat the cluster redshifts as exact.
3 Our weight depends on the measured ellipticity noise, which correlates
with the galaxy ellipticity, and thus can induce a bias in the recovered

to intrinsic galaxy shapes σ SN with the uncertainty in the ellipticity
measurement,

σ 2
γ,i = σ 2

SN + 1

2

(
C11,i + C22,i

)
, (10)

where C11 + C22 is the trace of the ellipticity subset of the covari-
ance matrix produced by the NGMIX code. We take σ SN = 0.22.
Although the use of this simple σ 2

γ is not optimal (Bernstein &
Jarvis 2002), it only slightly increases the variance of 
	.

Our particular choice of ellipticity measurement requires division
by a mean sensitivity to produce unbiased results (see Section 2.2).
We therefore modify our 
	 estimator to use the mean weighted
sensitivity,


̃	 =

lens∑
j

src∑
i

wj,i e
ᵀ
j,i

/
〈	−1

crit〉j,i∑
j,i wj,i si

. (11)

Efficient codes to compute the estimator in equation (11) are pub-
licly available. For this work, we used XSHEAR4 and cross-checked
its results with an independent implementation.5 The resulting shear
profiles are shown in Fig. 3. Clusters were split into three subsets
zl = [0.2, 0.4), [0.4, 0.6), [0.6, 0.8) and five subsets λ = [5, 10),
[10, 14), [14, 20), [20, 35), [35, 180) with 13 logarithmically spaced

shear. However, in Jarvis et al. (2016) we found that weighting effects are
subdominant to other sources of bias for the NGMIX catalogue.
4 https://github.com/esheldon/xshear
5 https://github.com/pmelchior/shear-stacking
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radial bins between 0.05 and 30 Mpc. The redshift splitting allows
for constraints on a possible redshift evolution of the MOR, while
removing only a small number of clusters at zl > 0.8 whose lens-
ing weights are low because their redshift is larger than that of
most galaxies in the shear catalogue. The richness splitting was ad-
justed to provide roughly equal signal-to-noise ratio for each cluster
subset. The number of radial bins was set so that all of them are
populated, and the outer cut-off corresponds to the spatial size of
the jackknife regions in our covariance estimation scheme.

3.1 Data covariance matrices

The 
	(R) profiles that we measure from our data deviate from
the true mean 
	(R) profiles of clusters in a given richness–
redshift subset by a statistical uncertainty that we characterize
by a covariance matrix C
̃	 . Contributions to C
̃	 include shape
noise, uncorrelated large-scale structure along the line of sight (e.g.
Hoekstra 2001, 2003; Hoekstra et al. 2011; Umetsu et al. 2011) and
intrinsic variations of cluster profiles at fixed mass (e.g. Metzler,
White & Loken 2001; Becker & Kravtsov 2011; Gruen et al. 2011,
2015).

For a stacked cluster lensing analysis in a common footprint, a
single source galaxy may be within the maximum search radius of
multiple galaxy clusters. Thus, the cluster 
	 measurements are not
fully independent, and the covariance matrix will have significant
off-diagonal terms, particularly on large scales. This is exacerbated
by the spatial co-location of clusters and background galaxies (cf.
Fig. 1) due to a combination of variations in survey depth, which
affect the detectability of galaxies and redMaPPer clusters similarly,
and cluster and galaxy clustering.

For estimating C
̃	 , we therefore use a spatial jackknife scheme
designed to account for the covariance of the measurements, which
we expect to depend on scale. To this end, we split the source sample
into K = 40 simply connected regions Rk by running a k-means
algorithm on the sphere.6 For each such Rk and each richness–
redshift subset, we calculate equation (11) for all lenses j /∈ Rk and
denote it 
̃	(k). We then calculate the covariance matrix according
to Efron (1982),

C
̃	 = K − 1

K

K∑
k

(
̃	(k) − 
̃	(·))T · (
̃	(k) − 
̃	(·)), (12)

where 
̃	(·) = 1
K

∑
k 
̃	(k). We note that in the above expression,


̃	 concatenates all redshift and richness subsets into a single data
vector, enabling us to detect covariance across all redshift, richness
and radial bins.

The upper left panel of Fig. 4 shows the resulting correlation
matrix for one reference cluster subset. On smaller scales the diag-
onal is dominant, but – as expected – off-diagonal terms are present
for the largest scales. We also test for cross-correlations between
the profiles measured for clusters from different richness and red-
shift subsets, and find them to be small (cf. upper right and lower
left panel of Fig. 4). We therefore will make the assumption of no
cross-correlation between different cluster subsets in our likelihood
analysis presented in Section 5.6. Future analyses with larger DES
data sets will result in significantly reduced uncertainties of the co-
variance matrices, allowing us to properly include any correlation
that may have remained undetected here because of the modest size
of the SV data set.

6 https://github.com/esheldon/kmeans_radec/

Figure 4. Correlation matrix of 
̃	 of a single richness–redshift subset
with z ∈ [0.2, 0.4) and λ ∈ [20, 35) for 40 jackknife regions (upper left
panel). Off-diagonal blocks show the correlation matrix between the lensing
profile of the reference subset and the lensing profiles of the neighbouring
redshift subset (z ∈ [0.4, 0.6), lower left), and the neighbouring richness
subset (λ ∈ [35, 180), upper right).

In addition, we also performed covariance estimation with
smaller jackknife regions (K = 100) and cluster-by-cluster jackknif-
ing, yielding similar results on small scales. We note that jackknife
schemes are prone to underestimation of the covariance on scales
that exceed the size of the jackknife patches (e.g. Friedrich et al.
2016, for the case of shear autocorrelations). In the case of K = 40
and DES SV, this corresponds to angular scales of approximately
1◦. For this reason, we exclude 
	 measurements at R > 1◦ from
further analysis (cf. Fig. 3).

The covariance matrix estimated from the data is noisy, and its
inverse is therefore a biased estimate of the true inverse covariance
(e.g. Kaufman 1967; Hartlap, Simon & Schneider 2007). In addi-
tion, the use of noisy covariances leads to additional uncertainty
in estimated parameters (Dodelson & Schneider 2013). The size of
these effects depends on the details of the jackknife scheme, data
vectors and structure of the true covariance.

To calibrate the effect, we generate random realizations of 10
uncorrelated zero-mean Gaussian random variables in 40 jackknife
patches. This is close to the jackknife scheme and true covariance
of the data vectors used in Section 5.7 for the estimation of masses.
For each realization, we estimate the covariance matrix from
equation (12), and invert it to find the best-fitting mean and its
uncertainty. We compare the estimated uncertainty to the actual
scatter of the best fit over a large number of realizations.

We find that the actual uncertainty of the best fit is ≈30 per cent
larger than the one estimated with the inverse jackknife covariance.
Approximately half of this excess uncertainty is corrected when
applying the de-biasing factor of equation 17 in Hartlap et al. (2007)
to the inverse covariance, the remaining half is consistent with the
expectations from Dodelson & Schneider (2013). We correct both
effects by rescaling the statistical uncertainty of mass estimates in
Section 5.7 by a factor of 1.3. Future work would benefit from the
use of less noisy (e.g. simulation-based) or analytical (Gruen et al.
2015) covariance matrices.
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4 SYSTEMATICS

4.1 Shear systematics

The NGMIX catalogue passed an extensive set of null tests on real
data and simulations (Jarvis et al. 2016), which we will briefly
summarize here. We adopt the bias parametrization

g̃ = (1 + m)g + αePSF + c. (13)

Note that m, α and c are in principle two-component variables,
but in our experience the values in both components are identical
within errors. We will therefore treat them as scalars. Point spread
function (PSF) size modelling errors resulted in a multiplicative bias
|mPSF| < 0.01, while inaccurate deconvolution led to PSF leakage
α < 0.01. Both of these effects are negligible compared to the
remaining systematics described in this section, and are therefore
ignored in our systematic error budget.

Lacking an absolute shear calibration source, we cannot test the
overall shear calibration using real data. We instead adopted a set
of simulations (Jarvis et al. 2016) based on the real galaxy images
from the COSMOS imaging data (Lilly et al. 2007). The selection
of these COSMOS galaxies does not perfectly match our selection
in DES data; the COSMOS field is quite small and thus subject to
cosmic variance. Thus, we cannot infer any detailed information
about the shear bias in DES data; the bias in real data may be more
or less than the bias we see in the simulations. Without additional
information, however, we choose to model our systematics based
on what we found in these simulations.

It is important to note that the IM3SHAPE catalogue was re-
calibrated directly from these simulations to minimize biases caused
by pixel noise, whereas NGMIX did not require that step. For NGMIX,
the multiplicative shear calibration error m was seen to be consistent
with zero for galaxies at redshift z ≈ 1, but as large as −0.04 for
sources at z ≈ 0.3. We believe that shear inference for the lower
redshift sources in the COSMOS galaxy sample is primarily af-
fected by ‘model bias’, introduced by fitting an exponential disc
model to a galaxy population that has a large number of bulge-like
galaxies. We note that the bulk of the cluster sample is at redshift
zλ > 0.5 (cf. Fig. 2), so that these sources, already a minority in
the shape catalogues, receive significant weight only for the lowest
redshift clusters. The simulation results therefore suggest that the
multiplicative shear bias is controlled to |m| ≤ 0.03.

However, a detailed comparison of the NGMIX and IM3SHAPE shape
catalogues performed by Jarvis et al. (2016) found the residual
systematic uncertainties to be larger: |m| ≤ 0.05. This finding may
reflect the differences between the simulations from which IM3SHAPE

was calibrated, and the DES SV data, for instance in the redshift-
dependent bulge fraction (Jarvis et al. 2016). Rather than adopting a
top-hat prior with |m| ≤ 0.05, we use a Gaussian prior with the same
variance. Doing so preserves the total error budget, while avoiding
an inappropriate sharp cut on |m|. The corresponding Gaussian prior
(to be used in the likelihood analysis of Section 5.6) is m = 0.00 ±
0.03, where the error is to be interpreted as standard deviation.

Additive errors were found to be below the cosmic-shear require-
ment of |c| < 0.002 for the SV survey area (Jarvis et al. 2016). Be-
low we perform additional null tests, particularly useful for stacked
cluster lensing analyses.

4.1.1 B modes and quadrant checks

We also perform an additional test for residuals by projecting the
galaxy ellipticities on to the direction 45◦ off the tangent. This so-

Figure 5. Corrections for additive shear systematics: the shear signal
around random points, drawn such as to mimic the distribution of redMaP-
Per clusters in the DES SV footprint (blue open circles, cf. Section 4.1.2);
the difference in the shear signal caused by rejecting the clusters that are
excluded after the quadrant check (red triangles, cf. Section 4.1.1); for com-
parison, the errors of the 
	 profile after random-point subtraction (black
circles).

called B mode should be zero in the mean if the signal we measure
is solely from gravitational lensing. Using the jackknife covariance,
we test for significant deviation of the χ2 of B-mode shears from
zero. The stacked B-mode signal of clusters with λ > 20 in all
redshift bins combined yields a reduced χ2/Ndof ≈ 16/10 for 10
radial bins, consistent with no systematic at the p > 0.1 level.

Additive errors of the c or α type are cancelled in γ ᵀ when
sources separated by 90◦ are averaged, which we implicitly exploit
whenever sources are evenly distributed around each lens. But sur-
vey boundaries, as well as holes due to masking of bright stars
and other features, result in a non-uniform distribution of source
galaxy positions. The DES SV footprint is rather small, so our large
maximum radius Rmax = 30 Mpc around each cluster lens often in-
tersects at least one such boundary. We identify clusters for which
that is the case with the so-called quadrant check (Sheldon et al.
2004, their section 3.2.4) and show them with open circles in Fig. 1.

We show the difference between the 
̃	 profiles before and
after the quadrant-based rejection in Fig. 5 (red markers). We can
see that the difference is largest at scales outside of 10 Mpc, but
not statistically significant. Requiring that clusters pass the quadrant
check substantially increases statistical uncertainties on large scales,
where many source–lens pairs get rejected. As it does not appear to
be beneficial in this work, we will therefore not demand that clusters
need to pass the check and will utilize the entire cluster sample for
further analysis.

4.1.2 Random-point test

Despite being not significant in the test of Section 4.1.1, additive
shear systematics may still be present on all scales, which can lead to
small spurious shear signals in our analysis. A simple correction can
be made by measuring the tangential shear around a set of random
points, which reproduce the redshift and richness distribution of
clusters in the DES SV footprint, and subtracting it from the actual
cluster signal.
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To this end, we use the weighted random-point sample as de-
scribed in Rykoff et al. (2016, their section 3.6), generated from
the survey mask and redMaPPer maximum redshift maps. Since the
effective survey geometry varies with cluster redshift and richness,
we split these random points in the same way as our cluster sample
and measure 
	 profiles around each subset.

Fig. 5 shows results from the random-point shear measurement
as blue markers. We find no significant random shears even on
the largest scales. To benefit from a correction of potential shear
systematics below the detection limit, we will use random-point
subtracted shear profiles for the rest of our analysis.

4.2 Correction for cluster members in the shear catalogue

Due to photometric uncertainties and ambiguity of the available
colour information, the estimated p(z) of the source galaxies is
quite broad, and a source at lower redshift than the cluster will get
some non-zero weight in the analysis. This is properly accounted
for when calculating 〈	−1

crit〉j,i of a source–lens pair in equation (7).
However, cluster members must be treated specially, as their red-
shift distribution is essentially a delta function centred on the cluster
redshift. This delta function is not properly accounted for in the p(z),
and thus not included in the integral to calculate 	−1

crit . Each member
gets a non-zero weight, but adds zero to the mean shear.7 Further-
more, cluster members are highly concentrated near the cluster
centre, so there is a strong radially dependent bias in the inferred

	.

As a first step for alleviating this effect, we exclude all galaxies
that are likely cluster members from the shape catalogue. We run the
redMaPPer algorithm for member identification (Rozo et al. 2015)
and reject all galaxies consistent with being a cluster member down
to the magnitude limit of the survey and out to 1.5Rλ.

While this significantly reduces the contamination from cluster
members, a fraction of them remains in the source catalogue. We
estimate their contribution to the signal, the so-called boost factors
(e.g. Sheldon et al. 2004, their section 4.1), for each cluster subset
as a function of R, and correct the negative impact in Section 5.5.
We use a method similar to the one described in Gruen et al. (2014,
their section 3.1.3),8 which method is based on the decomposition
of the redshift distribution of source galaxies into a field galaxy
component and a cluster member component.

Consider all lens–source pairs (j, i) in a cluster richness–redshift
subset and at some projected separation R. Each source–lens pair
yields an estimate of 
	j,i = e

ᵀ
j,i/〈	−1

crit〉j,i that enters the mean

measured 
̃	 with relative weight wj, i (cf. equations 9 and 11).
Assuming that we can split the source–lens pairs into pairs with field
galaxies b and pairs with cluster member galaxies m, we expand


̃	 =
∑

j,i∈b wj,i
	j,i + ∑
j,i∈m wj,i
	j,i∑

j,i∈b wj,i + ∑
j,i∈m wj,i

. (14)

7 This is only true in absence of intrinsic alignments. Observational results
on mild radial alignment of cluster members towards the halo centre vary
(Hao et al. 2011; Sifón et al. 2015). If such alignment is present, it would
lead to 〈
	j, i〉m < 0. We consider it a higher order term and will thus
neglect it in this work.
8 We found the standard method based on correlation functions (Sheldon
et al. 2004) unreliable due to the small footprint of the DES SV data set.

Taking the expectation value and using that 〈
	j, i〉 = 
	 for field
galaxies and 〈
	j, i〉 = 0 for cluster members,7 we find

〈
̃	〉 =
∑

j,i∈b wj,i∑
j,i∈b wj,i + ∑

j,i∈m wj,i


	 = (1 − fcl)
	 , (15)

where we defined the fractional weight of cluster member galaxies

fcl(R) =
∑

j,i∈m wj,i∑
j,i wj,i

= 1 −
∑

j,i∈b wj,i∑
j,i wj,i

(16)

and the radial dependence stems from the selection of pairs (j, i) for
both m and b. In principle, this allows us to correct the data for the
effect of member dilution via


̃	corr(R) = 
̃	(R)

1 − fcl(R)
. (17)

In practice, rather than correct the data for this effect, we choose to
dilute the predicted lensing signal to match the observational data
when modelling the recovered 
	 profiles.

The remaining task is to measure fcl from the weighted, estimated
redshift distribution of sources,

p(z) =
∑

j,i wj,ipi(z)∑
j,i wj,i

. (18)

The left-hand panel of Fig. 6 shows the p(z) of sources in a set of
annuli around the cluster centres. We observe a systematic increase
of low-redshift sources as one moves from large cluster-centric
distances to small radii, clearly illustrating the effects of cluster
membership contamination of the source galaxy catalogue.

We decompose the observed photometric redshift distribution
p(z) as a weighted sum of a field galaxy and a member galaxy
component,

p(z) =
∑

j,i∈b wj,ipi(z) + ∑
j,i∈m wj,ipi(z)∑

j,i wj,i

= (1 − fcl) pb(z) + fcl pm(z) , (19)

using the stacked, weighted redshift distributions pb(z) and pm(z) of
the respective samples.

We measure pb(z) from the redshift distribution of source galaxies
around random points. To ensure sampling from the same distribu-
tion of survey depth as around the actual lenses, we bin and weight
the random-source pairs in the same way as the lens–source pairs.
The weighted cluster member redshift distribution is not well con-
strained by the data in each individual bin. We can, however, find
robust constraints on its mean and variance with a joint fit of a
Gaussian with a common mean and width to all radial bins of a
cluster (sub)sample, and a free amplitude in each radial bin that
corresponds to fcl.

The right-hand panel of Fig. 6 shows the model for one example
radial bin at 〈R〉 = 0.5 Mpc. We can see that the model recovers
an excess contribution (red dashed curve) from objects that are not
present in the field galaxy population. We note that it is necessary to
leave the mean value of the Gaussian as a free parameter: due to the
skewness of the lensing weight applied to the stacked p(z), which are
zero at zs ≤ zl and positive at higher source redshift, and the redshift
prior for galaxies found in our survey, the mean of the recovered
Gaussian is not expected to coincide with the cluster redshift. We
have ensured that this method of decomposition yields consistent
results with (a) a decomposition with free mean and width of the
Gaussian in each radial bin (instead of fixed over all radial bins)
and (b) a non-parametric measurement of (1 − fcl) by the ratio of
integrals over p(z) and pb(z) over |z − zcl| > 0.3.
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Figure 6. Estimation of cluster member contamination of the source sample by p(z) decomposition. Left-hand panel: stacked, lensing-weighted p(z) of sources
around clusters in one redshift–richness bin from the innermost (red) to outermost (blue) distance bin. Right-hand panel: decomposition of observed p(z) in
one radial bin (black, solid line) into the sum (magenta, dotted line) of field distribution pb(z) as measured around random points (blue, long-dashed line) and
Gaussian pm(z) of cluster members (red, short-dashed line).

There is an implicit assumption inherent to this method, namely
that the observed p(z) deviate from pb(z) only because of cluster-
member contamination. This assumption may be violated for at
least two reasons. First, lensing magnification changes the red-
shift distribution of field galaxies in a complex way that depends
on the details of galaxy types, redshifts and luminosity func-
tions characterizing the lensing source sample, and a part of this
could in principle mimic cluster-member contamination. Gruen
& Brimioulle (2017) investigated this effect and find the bias on
	−1

crit for a DES-like source population to be below the percent
level.

Secondly, photo-z estimates may be affected by measurement bi-
ases caused by the presence of clusters, in particular an increased
probability of blended sources in the cluster core. To investigate
this possibility, we compared the results of the p(z) decomposition
with an extension of the method employed by Melchior et al. (2015,
their section 3.4.1): we make use of the BALROG catalogue of fake
objects in the DES SV footprint (Suchyta et al. 2016) to compare
the lensing weights of actual DES galaxies around clusters with
those of fake galaxies. When BALROG galaxies are matched to have
the same properties as the galaxies in our lensed source sample,
we can infer the effects of increased blended or light contamina-
tion in the dense cluster environments. Due to the lack of a photo-z
catalogue for BALROG objects, we could only perform the matching
to DES galaxies in the shear catalogue via proxies, for which we
used the SExtractor parameters FLUX_RADIUS and MAG_AUTO
in the i band. Despite this limitation, we found good agreement of
the boost factors obtained from this method with the p(z) decom-
position presented above for the two high-redshift subsamples and
a 1σ discrepancy for the lowest cluster redshift subsample, when
restricted to R ≥ 200 kpc. We will revisit this issue in forthcoming
analyses with larger cluster samples, and for this work adopt the
boost factors from the p(z) decomposition but limit the acceptable
range of the shear profiles to R ≥ 200 kpc.

4.3 Photometric redshift systematics

Bonnett et al. (2016) assessed the impact of photometric redshift
systematics on weak-lensing analyses of DES SV data, e.g. by char-
acterizing how 〈	−1

crit〉 varies as a function of lens redshift between
the various photometric redshift algorithms.

Here, we update the results of Bonnett et al. (2016) to account for
the additional source weights that enter into our estimator. Specifi-
cally, consider the estimator for equation (8),


̃	 =
∑

j,i wj,i e
ᵀ
j,i S−1

j,i∑
j,i wj,i

, (20)

where we have defined Sj,i ≡ 	−1
crit,j i as the true expectation value

of 	−1
crit for the lens–source pair (j, i). The weights wj, i take the form

wj,i = S2
j,iσ

−2
j,i . The above estimator is appropriate when one has

spectroscopic redshifts for all lens–source pairs.
We wish to determine how the estimator changes when we use a

biased photometric redshift code for which S ′
j,i = 〈	−1

crit〉j,i �= Sj,i .
Defining εj, i via S ′

j,i ≡ Sj,i(1 + εj,i), we have


̃	′ =
∑

j,i σ−2
j,i Sj,i (1 + εj,i) e

ᵀ
j,i∑

j,i σ−2
j,i S2

j,i (1 + εj,i)2
. (21)

We take the expectation value of the above equation, using 〈eᵀ
j,i〉 =

Sj,i
	. Expanding to the first order in ε, we arrive at

〈
̃	′〉 = 
	 [1 − δ] , (22)

where we have defined

δ ≡
∑

j,i wj,iεj,i∑
j,i wj,i

. (23)

The quantity δ has an alternative interpretation, as the difference
of the true mean inverse critical surface density 〈	−1

crit〉 from its
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Figure 7. Lensing-weighted, stacked p(z) estimates for sources around clus-
ters at z ∈ [0.2, 0.4] (top panel, lens redshift range indicated by vertical
dotted lines), z ∈ [0.4, 0.6] (central panel) and z ∈ [0.6, 0.8] (bottom panel)
from four different photo-z codes. The p(z) were estimated from sampling
sources around redMaPPer random points in the λ > 35 and respective red-
shift subsets at a distance of ≈1 Mpc from the cluster, assigning the weight
of equation (9). The distribution for BPZ was shifted towards larger z by 0.05.

estimate 〈	−1
crit〉′ based on a photometric redshift code,

〈	−1
crit〉′ =

∑
j,i wj,i S ′

j,i∑
j,i wj,i

= 〈	−1
crit〉 [1 + δ] . (24)

In the absence of spectroscopic information, we adopt one of our
photometric redshift codes, SKYNET, as the fiducial algorithm, and
then estimate the relative offset δ at fixed lensing weights wj, i from
equation (24). For precisely known lens redshifts, one can write

〈	−1
crit〉′ = 1∑

j,i wj,i

∑
j,i

wj,i

∫
dz P (z) 	−1

crit(z, zlens)

=
∫

dz Peff (z) 	−1
crit(z, zlens), (25)

where we have defined the effective source redshift distribution

Peff (z) =
∑

j,i wj,i Pi(z)∑
j,i wj,i

. (26)

The previous two equations provide a numerically convenient way
to evaluate δ. Indeed, this is what was done in Bonnett et al. (2016),
albeit with unit weights for all sources and a spectroscopic reference
sample.

We compute the effective source redshift distributions, averag-
ing over the lens redshifts of each of our three lens subsets, using
the redMaPPer random points from the highest richness subset,
in the radial bin around R = 1 h−1 Mpc. The results are shown
in Fig. 7. Selecting a different richness subset or radial aperture
has no significant impact on these results. Table 1 lists the mean
values of 〈	−1

crit〉′ for each of our photo-z codes and lens redshift
bins, and the corresponding δ values. As already observed by
Bonnett et al. (2016), the three machine learning codes are in much
better agreement with each other than they are with BPZ, the only
template-based code we consider, even after applying the global

Table 1. Systematic difference δ of lensing weighted 〈	−1
crit〉 between dif-

ferent photo-z codes according to equations (24) and (25). In the absence of
spectroscopic redshifts for the source galaxies, we quote δ as the difference
with respect to our reference pipeline SKYNET. BPZ+0.05 refers to results ob-
tained after shifting all reported redshifts upwards by 0.05 (cf. Section 2.3).
The statistical errors on 〈	−1

crit〉 are of the order of 0.01 and thus negligible
compared to the systematic spread between methods.

Lens sample Code 〈	−1
crit〉′ (10−4M−1� pc2) δ (per cent)

z ∈ [0.2, 0.4] SKYNET 2.94 –
ANNZ2 2.96 0.7
TPZ 2.97 1.0
BPZ+0.05 2.80 − 4.8

z ∈ [0.4, 0.6] SKYNET 2.74 –
ANNZ2 2.68 2.2
TPZ 2.75 0.4
BPZ+0.05 2.57 − 6.2

z ∈ [0.6, 0.8] SKYNET 2.16 –
ANNZ2 1.98 − 8.3
TPZ 2.16 0.0
BPZ+0.05 1.97 − 8.8

upwards shift of 0.05 to account for limitations in the template set
(cf. Section 2.3).

For the likelihood analysis in Section 5.6, we seek to capture the
spread and biases between the photo-z codes in the form of a prior.
One way to set such a prior would be to consider the range of δ

values obtained from the different algorithms, and then setting a
flat top-hat prior over the range δ ∈ [δmin, δmax]. However, we wish
to allow for the possibility that δ is slightly beyond these limits by
using a prior that drops off smoothly. To do so, we instead use a
Gaussian prior that has the same mean and variance as the putative
top-hat prior. Our final Gaussian prior is therefore

δ = 1

2
(δmax + δmin) ± 0.577

2
(δmax − δmin)

=
⎧⎨⎩

−0.019 ± 0.017 for z ∈ [0.2, 0.4]
−0.020 ± 0.024 for z ∈ [0.4, 0.6]
−0.044 ± 0.025 for z ∈ [0.6, 0.8].

(27)

Finally, we acknowledge that lensing magnification induces
changes of the background source population that can cause ad-
ditional biases specific to cluster lensing in the photo-z estimation.
For a DES-like sample, resulting biases of 	−1

crit are of the order of
0.5 per cent and of opposite direction to the magnification-induced
biases for the boost factors (Gruen & Brimioulle 2017), so we ignore
both for the remainder of this work.

5 T H E S TAC K E D L E N S I N G S I G NA L

We seek to calibrate the mass–richness relation of redMaPPer clus-
ters. We will therefore estimate the mean cluster mass in each of our
richness and redshift subsets by modelling the stacked weak-lensing
signal of each cluster subset as if it is originated from a hypothetical
halo of mass M. Below, we detail our model for the lensing signal
as a function of the halo mass, and use numerical simulations to cal-
ibrate how the recovered mass is related to the mean cluster mass.
We then consider how our model needs to be extended to account
for the systematics discussed in the previous sections, as well as
the additional complication caused by our limited knowledge of the
true halo centre.
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5.1 Surface density model

Fig. 3 shows the resulting estimates of the excess projected surface
mass density 
	 defined in equation (4). The quantities 	(R) and
	(< R) are given by

	(< R) = 2

R2

∫ R

0
dR′ R′ 	(R′) (28)

and

	(R) =
∫ +∞

−∞
dχ ρ

(√
R2 + χ2

)
. (29)

If the shear signal is caused by haloes of mass M, the excess three-
dimensional matter density is given by

ρ(r) = ρm ξhm(r | M), (30)

where ρm = �m ρc(1 + z)3 is the mean matter density in physical
units at the redshift of the sample, ρc is the critical density and
ξ hm(r | M) is the halo–matter correlation function evaluated for a
halo of mass M.

We use the Zu et al. (2014) update to the Hayashi & White (2008)
model of the halo–matter correlation function. Specifically, we set

ξhm(r | M) = max {ξ1h(r | M), ξ2h(r | M)} , (31)

where we have constructed the total ξ hm from the so-called 1-halo
and 2-halo terms. We model the 1-halo term as a Navarro, Frenk &
White (1996, hereafter NFW) density profile ρNFW(r | M),

ξ1h(r | M) = ρNFW(r | M)

ρm
− 1, (32)

with a statistical concentration–mass relation, for which we employ
the Diemer & Kravtsov (2015) model. For the 2-halo term, we use
the non-linear matter correlation function ξ nl scaled by the halo bias
b(M) of Tinker et al. (2010) as

ξ2h(r | M) = b(M) ξnl(r) . (33)

The non-linear matter correlation function is related to the non-
linear power spectrum Pnl as

ξnl(r) = 1

2π

∫
dk k2Pnl(k) j0(kr) , (34)

where j0(kr) is the 0-th spherical Bessel function of the first kind.

5.2 Modelling systematics

Any differences between the true 
	 profiles of cluster haloes
of mean mass M and our analytical model for 
	(M) from
equation (31) can bias the recovered weak-lensing masses. For
instance, while we choose the customary NFW profile to model
the 1-halo term, several alternatives describe the cluster mass pro-
files similarly well (cf. Umetsu et al. 2014, for a recent compar-
ison). Even within the NFW halo family, we are forced to adopt
a concentration–mass relation.9 While the consequences of these
choices on mass estimates are expected to be small (cf. Hoekstra
et al. 2012, their section 4.3), we none the less need to quantify
them.

To do so, we measure the weak-lensing masses of dark mat-
ter haloes in numerical simulations using the same formalism

9 This is a consequence of our rejection of shape measurements from
R < 200 kpc, which could otherwise allow for data-driven constraints on
the concentration parameter.

Figure 8. Simulated 
	 profile with error bars from jackknifing compared
to the a priori analytical model profile from equation (31), evaluated at the
average mass of all haloes in the associated subset. The two panels show
the lowest redshift and lowest mass (left) as well as the highest redshift and
highest mass subset (right), covering the mass and redshift range of galaxy
clusters in the redMaPPer catalogue. Lower panels show the difference in
percent between the analytic model and the simulated signal.

we employ with the DES data. The haloes are drawn from a N-
body simulation of a flat �CDM cosmology run with the GADGET

code (Springel 2005). The simulation uses 2.74 billion particles
in a box that is 1050 Mpc h−1 on a side. The matter density is
�m = 0.318, implying that a 1013 h−1 M� halo is resolved with
≈103 particles. The remaining cosmological parameters are H0 =
67.04 km s−1 Mpc−1, �b = 0.049, τ = 0.08, ns = 0.962 and
σ 8 = 0.835. The force softening is 20 h−1 kpc. We discard all infor-
mation below five softening lengths, and verified that the choice of
extrapolation scheme for describing the correlation function below
this scale does not impact our results. Haloes are identified using
the ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013), using a
spherical overdensity mass definition of 200 times the background
density.

The numerical simulation is used to construct the synthetic weak-
lensing signal of dark matter haloes drawn from four different red-
shift snapshots at z = 0, 0.25, 0.5 and 1. We split the haloes in narrow
mass subsets, and compute the halo–mass correlation function with
the Landy & Szalay (1993) estimator from the code TREECORR.10 We
numerically integrate the measured correlation functions to obtain
the corresponding 
	 profiles as described in Section 5.1. The
covariance matrix of our data points is estimated by splitting the
simulation box into 64 jackknife regions.

A comparison of the simulated 
	 profiles, along with the a
priori analytical model of the 
	 profile, is shown in Fig. 8.
We see very small differences on small scales, which increases
to ≈10 per cent on scales of the 1-halo to 2-halo transition. We
tested five different mass bins at four different redshifts, and did not
find a systematically low amplitude of the model on those scales.
Moreover, we note that the Tinker et al. (2010) bias function is itself
only accurate at the ±6 per cent level, entirely consistent with the
differences seen in Fig. 8. More detailed modelling (e.g. Diemer &
Kravtsov 2014) can reduce these deviations at the expense of ad-
ditional free parameters. Here, we opt to empirically calibrate any
biases in the recovered weak-lensing masses due to these modest,
highly localized model deviations.

10 https://github.com/rmjarvis/TreeCorr
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Figure 9. The mass calibration C = Mtrue/Mobs caused by adopting the
analytic form of equation (31) for the 
	 profile, as a function of the
observed halo mass Mobs for each simulated redshift bin. The solid line is
the best-fitting bias model from equation (35).

When doing so, we restrict ourselves to the same radial scales em-
ployed in the weak-lensing analysis, and utilize the covariance ma-
trices recovered from the data. Specifically, each halo stack is fit us-
ing the covariance matrix of the redMaPPer subset from Section 3.1
closest in mass and redshift to the simulated cluster stack. This
ensures that the simulated data is weighted in the same way as
the observed data, so that any biases are appropriately calibrated.
Denoting Mtrue as the mean mass of the simulated cluster subset
and Mobs as the result of the corresponding lensing analysis, we
find small percent level biases caused by the adopted analytical
form of the 
	 profile (Fig. 9). We characterize the mass bias
C = Mtrue/Mobs as a function of the recovered weak-lensing mass
Mobs and z with a power law:

C(Mobs, z) = C0

(
1 + z

1 + z0

)α (
Mobs

1013.8 M�

)β

(35)

with z0 = 0.5 as pivot redshift. The overall mass bias was found to
be consistent with unity, with C0 = 1.00 ± 0.02, and mildly redshift
and mass dependent, α = −0.071 ± 0.080 and β = 0.026 ± 0.029.
The redshift dependence reflects that the fit is done for each of the
four snapshots. Given this mass calibration, the final estimator for
the mean weak-lensing mass of a cluster stack at redshift z is

M ′
obs = C(Mobs, z) Mobs. (36)

We calculated any residual systematic mass errors, and found them
to be consistent with zero for all redshift and mass subsets.

5.3 Triaxiality and projection effects

When finding galaxy clusters in photometric data, systems that are
aligned along the line of sight are typically selected with higher
probability than those otherwise oriented. This break in isotropy
must be accounted for when inferring the mean mass density profile
in a ‘stacked’ analysis such as we perform here. Likewise, cluster
selection can be affected by the presence of other objects along the
line of sight, which increase both the observed cluster richness and
the recovered weak-lensing mass. These effects have been discussed
in a variety of works (White, Cohn & Smit 2010; Angulo et al. 2012;
Noh & Cohn 2012; Dietrich et al. 2014), and they have competing
impacts on the cluster mass–richness relation.

Projection effects tend to boost the cluster richness more than
the recovered weak-lensing mass. This is easily understood: since

the weak-lensing profile 
	 is a differential measurement, any
centring offset between the projected halo and the main halo has
a more severe impact on the weak-lensing signal 
	 than on the
cluster richness. The net effect of projections is actually to somewhat
reduce the mean inferred mass at given measured richness.

Following Simet et al. (2017a), we let 〈M〉0 be the mass of a
galaxy cluster not affected by projection effects, and let p be the
fraction of clusters that are affected by projections. We model a
projected cluster as a sum of a primary halo that must have at least
a mass 0.5〈M〉0, and an excess mass ε〈M〉0 where ε ∈ [0.0, 0.5]. We
adopt a Gaussian prior for ε of ε = 0.25 ± 0.15, so that both ε = 0
and ε = 0.5 are within 2σ of the central value. Simet et al. (2017a)
estimated the projection rate to be p = 10 per cent ± 4 per cent.

We can then write the average mass of the cluster stack as

〈M〉 = (1 − p)〈M〉0 + p(0.5 + ε)〈M〉0 (37)

The mass in the absence of projection effects is simply 〈M〉0, so to
recover 〈M〉0 from 〈M〉 we need to multiply the recovered weak-
lensing masses by

〈M〉0

〈M〉 = 1

1 + p(ε − 0.5)
= 1.02 ± 0.02. (38)

The numerical value above is estimated from 104 Monte Carlo
realizations of p and ε within the respective priors.

Unlike projection effects, the preferential alignment of haloes
along the line of sight tends to boost the recovered weak-lensing
mass at fixed measured richness relative to the true halo mass.
Using numerical simulations, Dietrich et al. (2014) estimated this
effect leads to an overestimate of cluster masses by 4.5 per cent ±
1.5 per cent. This estimate can be understood as correlated scatter
between optical richness and weak-lensing masses, which leads
weak-lensing masses to overestimate cluster masses by an amount
exp(−β r σln M|λ σln M|MWL ), where β ≈ 3 is the slope of the halo
mass function, and r is the correlation coefficient between rich-
ness and weak-lensing mass. Adopting r ∈ [0, 0.5] (Noh &
Cohn 2012), σ ln M|λ = 0.25 ± 0.05 (Rozo & Rykoff 2014) and
σln M|MWL = 0.25 ± 0.05 we arrive at a correction factor 0.96 ±
0.02, in excellent agreement with the Dietrich et al. (2014) result.

Put together, these two effects modify the recovered weak-lensing
masses by a multiplicative factor 0.98 ± 0.03.11 This correction fac-
tor can be readily absorbed into the calibration correction parameter
C0 = 1.00 ± 0.02 described in the previous section, resulting in
C0 = 0.98 ± 0.04.

5.4 Centring correction

In our calibration strategy, we have thus far assumed that we can
measure the stacked shear profile of clusters relative to the ‘centre’
of the halo as defined in an N-body simulation. In the simulations
we used to calibrate our weak-lensing masses (Section 5.2), haloes
were found using the ROCKSTAR algorithm (Behroozi et al. 2013),
which identifies the halo centre as the mean position of a judiciously
chosen subset of particles near the halo’s density peak. This is the
point relative to which our halo–matter correlation function is meant
to be defined.

The density peak, corresponding to a ‘centre’ as defined above,
is expected to host a massive galaxy, which, in many cases, can

11 The balance between these two effects mildly depends on richness and
redshift, while we will assume it to be constant in what follows. We will
evaluate the cumulative effect of all the calibration terms in Section 5.7.
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be correctly identified from photometric data. However, sometimes
one may not be able to unambiguously determine which of the
various cluster galaxies correspond to the density peak.

Consequently, we adopt a model in which part of the cluster
sample is correctly centred and the remaining fraction fmis is off-
centred with some radial distribution p(Rmis). Both fmis and the
width of p(Rmis) we take as free parameters in each redshift and
richness subset. Correspondingly, we model the recovered weak-
lensing signal as a weighted sum of two independent contributions:
a contribution 
	 from properly centred clusters, and a contribution

	mis from miscentered galaxy clusters,


	model = (1 − fmis)
	 + fmis
	mis. (39)

When a cluster is miscentered by some radial offset Rmis, the corre-
sponding azimuthally averaged surface mass density is (e.g. Yang
et al. 2006; Johnston et al. 2007b)

	mis(R | Rmis) =
∫ 2π

0

dθ

2π
	

(√
R2 + R2

mis + 2RRmis cos θ

)
.

(40)

Letting p(Rmis) be the distribution of radial offsets for miscentered
clusters, the corresponding 	mis profile is obtained by averaging
over the ensemble,

	mis(R) =
∫

dRmis p(Rmis) 	mis(R | Rmis). (41)

Rykoff et al. (2016) modelled the distribution p(Rmis) for the DES
SV redMaPPer clusters with a Rayleigh distribution. The ansatz
assumes that radial vector displacements are drawn from a 2D
Gaussian with constant variance σ R, which gives the character-
istic magnitude of the resulting radial offsets. They further assumed
that σ R is a fraction of the cluster radius Rλ,

σR = cmis Rλ. (42)

By comparing the assigned redMaPPer cluster centres to the cluster
centres estimated using high-resolution X-ray data and SZ data from
the South Pole Telescope, accounting also for the uncertainty of the
X-ray and SZ centres, Rykoff et al. (2016) were able to place the
empirical constraint

ln cmis = −1.13 ± 0.22 (43)

and found the fraction of miscentered clusters to be

fmis = 0.22 ± 0.11. (44)

We will adopt these values as priors in our analysis, though how
best to do so is unclear. One could, for instance, let the parameters
fmis and cmis vary between richness bins. Alternatively, one could
allow for redshift dependence of these parameters, but no richness
dependence, or vice versa, or both. We choose to allow the mis-
centring parameters fmis and cmis to vary independently between
subsets. Should the weak-lensing data strongly favour models with
varying fmis and cmis, our chosen parametrization should allow such
trends to emerge from the data. We further note that the priors, while
determined for massive SPT clusters, conform well with analytic
expectations for lower mass clusters. We will test in Section 5.7
whether our assumption of constant priors is justified.

5.5 Boost factor model

In Section 4.2, we noted that membership dilution biases the recov-
ered weak-lensing profile by a factor 1 − fcl. In the literature, the
factor (1 − fcl)−1 is often referred to as a boost factor or correction

factor, sometimes denoted C(R), and is used to boost the recovered
profile by the appropriate amount. While we choose to leave the data
untouched – and therefore dilute the theoretical profile rather than
boost the data – we parametrize the boost factor B ≡ (1 − fcl)−1

when constructing a model for the cluster-member contamination:

B(λ, z, R) = 1 + B0

(
λ

λ0

)Cλ
(

1 + z

1 + z0

)Dz
(

R

R0

)ER

(45)

where B0, Cλ, Dz and ER are parameters in the fit. We choose rich-
ness, redshift and radial pivots as λ0 = 30, z0 = 0.5 and R0 = 500 kpc,
respectively.

We also need to address that the procedure to infer the boost
factors described in Section 4.2 yielded point estimates without
uncertainties. We account for that by modelling the associated un-
certainty on the boost factor with the assumed form

σB(R) = σ1 Mpc

(
1 Mpc

R

)
, (46)

where σ 1 Mpc is an unknown parameter that represents the er-
ror at a pivot distance of 1 Mpc. The 1/R dependence is ex-
pected for logarithmically spaced radial bins and Poissonian er-
rors: σb ∝ 1/

√
N (R) ∝ 1/R. The corresponding log-likelihood of

the measured fcl, k in cluster subset k given the parameters in
equation (45) is then given by

lnL(fcl,k | B0, Cλ, Dz, ER) = −
∑

R

(
(1 − fcl,k(R))−1 − B(R)

)2

2σ 2
B(R)

+ 1

2
log σ 2

B(R). (47)

We will constrain these parameters simultaneously from all richness
and redshift subsets. Because the boost factors also affect the 
	

model, we will fit it in conjunction with the lensing data to account
for any possible degeneracies between their respective parameters.

5.6 The complete likelihood

As we found in Section 3.1 and Fig. 4, the shear profile mea-
surements of individual richness–redshift subsets are nearly inde-
pendent from each other. For any subset k we can thus write the
log-likelihood for a measured 
̃	 given the halo mass M (and the
other nuisance parameters listed in Table 2) as

lnL(
	k | Mk, . . .) ∝ −1

2
DT

k C−1
k Dk,

where Dk,l ≡ 
̃	k(Rl) − Am,k 
	model(Rl | Mk, fmis,k, cmis,k)

B(Rl | B0, Cλ,Dz,ER ; k)
(48)

and 
̃	(Rl) is the measurement in the l-th radial bin from equa-
tion (11), and C is the corresponding covariance matrix from
Section 3.1. The factor Am = 1 + m − δ combines the effects
of shear (m, Section 4.1) and photo-z (δ, Section 4.3) systematic
uncertainties. Since both m and δ are assigned Gaussian priors, the
width of the prior on Am is obtained by adding the widths of the
priors on m and δ in quadrature. We arrive at

Am =
⎧⎨⎩

1.019 ± 0.034 for z ∈ [0.2, 0.4]
1.020 ± 0.038 for z ∈ [0.4, 0.6]
1.044 ± 0.039 for z ∈ [0.6, 0.8].

(49)

Note that the factor Am alters the prediction 
	model from
equation (39), as opposed to correcting the data. Our approach has
the benefit of preserving the covariance matrix: an alteration of the
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Table 2. Parameters entering L(
	) (equation 48) and L(fcl)
(equation 47). Flat priors are specified with limits in square brackets, Gaus-
sian priors with means ± standard deviations. The posteriors are given as
the mean and symmetrized 68 per cent confidence intervals. For the top half,
the posteriors depend on the cluster subset, so we list the uncertainties as
average confidence intervals followed by the scatter between subsets.

Parameter Description Prior Posterior

log10M Halo mass [12.0, 16.0] Table 3
ln cmis Miscentring offset −1.13 ± 0.22 −1.06 ± 0.22 ± 0.05
fmis Miscentered fraction 0.22 ± 0.11 0.24 ± 0.10 ± 0.05
Am Shape and photo-z equation (49) 1.026 ± 0.037 ± 0.013

bias

log10B0 Boost magnitude [−4.0, 0.0] −1.399 ± 0.040
Cλ Richness scaling [0.25, 1.5] 0.920 ± 0.106
Dz Redshift scaling [−10, 10] −4.00 ± 0.79
ER Radial scaling [−1.5, 1.0] −0.98 ± 0.09

data vector would necessarily force us to also adjust the effective
covariance matrix.

The total log-likelihood for our analysis is the sum of the boost
factor [equation (47)] and weak-lensing log-likelihoods:

lnL =
∑

k=(λ,z)

lnLk with

lnLk ≡ lnL(
	k | Mk,Am,k, fmis,k, cmis,k, B0, Cλ, Dz, ER; k)

+ lnL(fcl,k | B0, Cλ, Dz, ER; k). (50)

It is thus apparent that we seek to constrain independent subset
masses Mk and global boost factor parameters, the latter constrained
by their effect on the 
	 profile as well as independent measure-
ments of fcl.

5.7 Stacked cluster masses

The likelihood is sampled using the package EMCEE12 (Foreman-
Mackey et al. 2013) that allows a parallelized exploration of the
parameter space. We use 20 walkers with 10 000 steps each, and
discard the first 3000 steps as burn-in. We test whether the chains
have converged first with an independent run of only 5000 steps
per walker, which produces nearly identical results. The chains of
single walkers become uncorrelated (with a correlation coefficient
|r| < 0.1) after about 23 steps, which is much shorter than the length
of each chain. The resulting number of independent draws for all
walkers is ≈6000. We therefore believe that the likelihood has been
exhaustively explored and that our inference results are robust.

The complete list of model parameters as well as their corre-
sponding priors and posteriors are summarized in Table 2.

After determining the best-fitting masses M for each cluster sub-
set, we apply the calibration correction described in Section 5.2
to the recorded chains. Specifically, for each point in the chain,
we randomly sample the mass calibration factor C(M, z) from its
posteriors, and replace the mass parameter value with M ′

obs from
equation (36). Such a postponed correction is valid because C is
independent from other parameters in the chain, and results in an
updated chain that incorporates the mass calibration and its corre-
sponding uncertainties.

We run four variants of the final likelihood evaluation to quantify
statistical and systematic uncertainties in our analysis.

12 http://dan.iel.fm/emcee

Figure 10. Parameters of 
	model for the z ∈ [0.2; 0.4), λ ∈ [20, 35) subset.
Contours denote the 68 per cent and 95 per cent confidence areas; dashed
lines in the 1D histograms refer to 68 per cent confidence intervals.

(i) Full: all systematic parameters (modelling bias parameters,
triaxiality and projection, shape and photo-z systematics, boost fac-
tors and miscentring) are allowed to vary within their respective
priors. This constitutes our fiducial analysis.

(ii) FixedAm: all systematic parameters are allowed to vary
within their priors, except we set Am = 1 to determine the influence
of only the combined shape and photo-z uncertainties.

(iii) Fixed: all systematic parameter priors are set to δ-functions
at their central values to estimate the statistical uncertainties.

(iv) NonLinear: identical to Full but with a modified data
vector 
	 → (1 − κ)
	, where the convergence κ was measured
from the simulated mass profiles with the same subsets in mass and
redshift as in Section 5.2, to approximate the non-linearity bias on
the weak-shear estimator in equation (3).

The results of the Full likelihood evaluation for the parameters of

	model under the priors from Table 2 are shown in Fig. 10 for the
example richness–redshift subset of z ∈ [0.2, 0.4) and λ ∈ [20, 35).
The corresponding lensing data and best-fitting lensing profile are
shown in Fig. 11, where we also single out the impact of miscen-
tring and boost factors. The best-fitting models for all redMaPPer
cluster subsets are overplotted on top of our weak-lensing data
in Fig. 3.

As we can see from the posteriors in Table 2, the boost factors
amount to a correction B0 ≈ −4 per cent at the pivot values of
λ0 = 30, z0 = 0.5, R0 = 500 kpc and are consistent with linear
scaling in λ and 1/R radial scaling, both expected from the number
density of cluster member galaxies in the inner part of an NFW
halo.

Posteriors on the miscentring parameters are only weakly con-
strained by our data. We find a weak correlation of M with fmis

(and none with cmis) in most cluster subsets, but there is no appar-
ent trend of either miscentring parameter with richness or redshift.
While tighter constraints could in principle be found by combin-
ing the lensing measurement with angular clustering of the putative
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Figure 11. Fit with all components of 
	model and B to the cluster subset
with z ∈ [0.2; 0.4) and λ ∈ [20, 35). The analytical model for the perfectly
centred lensing signal 
	 from equation (31) is shown as dash–dotted black
curve. The solid blue curve includes the effects of miscentring. The solid
red curve additionally includes the effects of cluster member contamination
from equation (45) and corresponds to the model that is fit to the data,
shown as best-fitting curves in Fig. 3. We exclude data at R < 200 kpc
(open markers) to avoid problems due to crowded field photometry and
large boost-factor corrections in the cluster core. The dashed blue curve
corresponds to the miscentered profile 
	mis.

centres and member galaxies (van Uitert et al. 2016), we find that,
at least for now, the uncertainties in mass due to miscentring are
subdominant to statistical and other systematic uncertainties (cf.
Table 5). We postpone further investigation of cluster miscentring
to forthcoming works with larger DES data volumes.

To quantify statistical and systematic uncertainties of the fiducial
analysis, we then perform the Fixed likelihood evaluation. We
determine the systematic contribution to the fiducial uncertainty as
the difference of uncertainties in quadrature between the Full and
the Fixed run. In Table 3 we list central values and uncertainties
for all subsets, and split the latter into statistical and systematic
contributions.

Finally, to estimate the impact of the weak-shear assumption
g ≈ γ in equation (3), we perform the NonLinear run, where we
applied the first-order correction 
	 → (1 − κ)
	. We find a mild
overestimation of the masses from the Full run by ≈2 per cent for
the highest richness subsets; all other subsets are affected at the
subpercent level. Given the uncertainties in the current analysis, we
will ignore this bias and its potential impact on the richness–mass
relation. For future analyses, we will adopt correction schemes to
suppress the non-linearity bias of the shear estimator (e.g. Seitz &
Schneider 1997; Johnston et al. 2007a).

6 THE MASS–RI CHNESS–REDSHI FT
R E L AT I O N

We characterize the mass–richness relation of the DES SV redMaP-
Per galaxy clusters as

M(λ, z) ≡ 〈M | λ, z〉 = M0

(
λ

λ0

)Fλ
(

1 + z

1 + z0

)Gz

, (51)

where M0, Fλ and Gz are parameters of the model with pivot values
λ0 = 30 and z0 = 0.5. We note the important distinction between
M, the mass of a halo, itself a random variable, and M, the expec-
tation value of that random variable. For each cluster subset k, the
expectation value is given by

Mk =
∑

j∈k WjM(λj , zj )∑
j∈k Wj

. (52)

The weights wj of individual clusters j in subset k differ from unity
for two reasons: (1) the lensing weight of each lens–source pair
depends on the cluster’s redshift, and (2) lower redshift clusters
have more sources in any given radial bin because a fixed physical
radial bin of a low-redshift cluster subtends a larger angle in the sky
than the same bin does for a higher redshift cluster. We estimate the
weight Wj as the sum of weights wj, i of all lens–source pairs around
cluster j [given in equation (9)] over the radial range 0.3–3 Mpc.
The choice of radial range has a subpercent impact on our results.

There is one subtle effect that remains unaccounted for in the
above formula: in practice, we do not stack cluster masses. Rather,
we stack the density profiles 
	. Using our analytic model for 
	,
we can readily estimate the logarithmic dependence on mass of the
density profile 
	 at any given radius R

�(R) = d ln 
	(R | M)

d ln M
. (53)

This logarithmic slope varies from ≈0.5 in the innermost regions
of the density profile we utilize to ≈1.0 on the outskirts, with a
typical value of ≈0.75 over a broad range of scales. For specificity,
from here on we compute � within the radius R200m, for which
we find � = 0.74 ± 0.01 within the range of masses and redshifts
probed in this work. Given that we stack 
	 ∝ M� , and that we
then recovered the mean 
	 profile and turn it into a mass, i.e. M
∝ 
	1/� , we arrive at the appropriately weighted mean mass for
each subset

Mk =
(∑

j∈k WjM(λj , zj )�∑
j∈k Wj

)1/�

. (54)

For � = 1 this reduces to equation (52). We compare the predictions
of this model to the mass Mk of subset k measured from lensing
after marginalizing over all other parameters (cf. Table 3). Since we
find the posterior probability density of Mk to be best described as
lognormal (as expected from Stanek et al. 2010), we can express

Table 3. The calibrated marginalized posterior masses for each richness–redshift subset. Masses are given as log10[M200m] in units
of M�, uncertainties denote symmetrized 68 per cent confidence intervals marginalized over all other parameters. We first list the
contributions from the statistical, then systematic uncertainties. In case direct matching to NFW halo results is desired, these can be
obtained by reverting the calibration of equation (35).

λ z ∈ [0.2, 0.4) z ∈ [0.4, 0.6) z ∈ [0.6, 0.8)

[5, 10) 13.300 ± 0.095 ± 0.025 13.457 ± 0.056 ± 0.025 13.442 ± 0.141 ± 0.027
[10, 14) 13.758 ± 0.115 ± 0.011 13.520 ± 0.158 ± 0.015 13.637 ± 0.152 ± 0.033
[14, 20) 14.034 ± 0.087 ± 0.029 13.962 ± 0.088 ± 0.024 14.096 ± 0.149 ± 0.019
[20, 35) 14.324 ± 0.065 ± 0.018 14.297 ± 0.080 ± 0.018 14.114 ± 0.122 ± 0.024
[35, 180) 14.592 ± 0.070 ± 0.017 14.619 ± 0.080 ± 0.020 14.664 ± 0.089 ± 0.021
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the log-likelihood of the mass–richness relation parameters as

lnL(Mobs | M0, Fλ, Gz) ∝ −1

2
(
 log M)T C−1

M (
 log M), (55)

where CM is the covariance matrix of the logarithm of the inferred
masses Mk, which we shall derive below, and


 log Mk = log Mk − logMk. (56)

The covariance matrix CM , however, does not have a trivial form.
While we have found the statistical errors of lensing masses from
the different richness and redshift subsets to be nearly uncorrelated
(as discussed in Section 3.1), the systematic uncertainties are nec-
essarily correlated. The primary source of calibration uncertainty
was found to be model bias due to using a simple exponential disc
to model all source galaxies. While the bulge fraction is certainly
a function of redshift, the lensing kernel is broad enough that we
expect the overall calibration error to be similar for all bins in
lens redshift and richness. Likewise, photo-z systematics impact
the mass measurements of all clusters. We therefore consider the
recovered mass Mk and its predictionMk , and write uncertainties in
log Mk as a sum of an uncorrelated component μk and a correlated
component νk:

log Mk = logMk + μk + νk. (57)

The diagonal elements of the covariance matrix are given by

CM,kk = 〈μ2
k〉 + 〈ν2

k 〉, (58)

which is equal to the posterior uncertainties of the Full run in
Table 3. We then evaluate the FixedAm run, which sets the poten-
tially correlated parameter Am, k = 1 ∀k and thereby enforces νk = 0,
so that the recovered errors correspond to the uncorrelated statistical
noise component 〈μ2

k〉 only. Subtracting the two errors, we arrive at
the correlated noise 〈ν2

k 〉.
Having solved for the correlated noise 〈ν2

k 〉 for each subset k, we
compute the full covariance matrix CM,ij by assuming the photo-z
and shear systematic uncertainties are fully correlated between dif-
ferent cluster subsets. This assumption is conservative as the un-
certainties are not reducible by ‘averaging out’ the impact of these
systematics across different subsets. We thus set

CM,ij = δij 〈μ2
i 〉 + 〈νiνj 〉 = δij 〈μ2

i 〉 + [〈ν2
i 〉〈ν2

j 〉
]1/2

(59)

as the covariance matrix we employ in equation (55).
Note that with this scheme, we explicitly enforce correlated un-

certainties of shear and photo-z systematics only, whereas other
systematics are considered independent across subsets. Indepen-
dent systematics will tend to ‘average out’ across bins, reducing
their impact on the uncertainty in the amplitude of the scaling rela-
tion, while increasing their impact on the slope of the scaling rela-
tion. In our case, assuming non-photo-z and non-shear systematics
are independent across bins reduces their effect on the amplitude
of the mass–richness relation from 2 per cent on each independent
subset to ≈1 per cent (see Table 5 for our systematics error budget).

As before, we use EMCEE to sample the likelihood of the mass–
richness relation parameters as constrained from the DES SV data.
Our fit is restricted to subsets with λ ≥ 20 to ensure that galaxy
clusters can be unambiguously identified with prominent dark mat-
ter haloes.13 The best-fitting parameters are summarized in Table 4,
and the corresponding confidence contours are shown in Fig. 12.

13 The richness threshold λ ≥ 20 has been adopted in all redMaPPer works
since its original publication as a sufficiently conservative cut to ensure

Table 4. Parameters of the M–λ–z relation from equation (51) with their
flat priors and resulting posteriors. The mass is defined as M200m in units
of M�. Uncertainties denote symmetrized 68 per cent confidence intervals
and are split into statistical (first) and systematic (second).

Parameter Description Prior Posterior

log10M0 Mass pivot [12.0, 16.0] 14.371 ± 0.040 ± 0.022
Fλ Richness scaling [−10, 10] 1.12 ± 0.20 ± 0.06
Gz Redshift scaling [−20, 20] 0.18 ± 0.75 ± 0.24

Figure 12. Parameters of the M–λ–z relation. Contours denote the
68 per cent and 95 per cent confidence areas from the Full run; dashed
lines in the 1D histograms refer to the 68 per cent confidence intervals.

We repeat the analysis using the statistical errors from the Fixed
run. That is, we constrain the mass–richness using statistical errors
only. The central values of the resulting parameters are nearly iden-
tical to the parameters we inferred when marginalizing over all
systematic uncertainties. The difference in quadrature between the
two uncertainties is reported as the systematic uncertainty in the
recovered mass–richness–redshift relation in Table 4.

We also carry out the analysis with an extreme value � = 1 in
equation (54) to address the concern that our treatment does not fully
capture the variation in � across all the scales being utilized. We find
that it changes the recovered amplitude of the mass–richness relation
by 
log M0 = 0.003, which is clearly subdominant compared to the
other uncertainties in the analysis.

Our results imply that the mean mass of galaxy clusters of rich-
ness λ = 30 at redshift z = 0.5 is logM = 14.371 ± 0.040 (stat) ±
0.022 (sys), with a richness scaling that is slightly steeper than linear
and no strong redshift evolution. This corresponds to a 10.5 per cent
calibration (9.2 per cent statistical, 5.1 per cent systematic) of the
amplitude of the mass–richness relation.

The current statistical uncertainties reflect the small area of the
DES SV data set; we expect a similar analysis of the full survey will
yield ≈1 per cent uncertainty after five years of operations. These

clean cluster samples. As reference, the typical richness uncertainty due to
random projections for a cluster with λ = 5 is ±1.5, therefore for a λ = 20
system to not be associated with at least one halo of richness λ = 5 would
constitute a 10σ fluctuation.
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Figure 13. Best fitting model for M(λ, z). Only subsets with richnesses
λ ≥ 20 (filled markers) are fit. Points are placed at the mean richness of their
subset.

results highlight the need for substantial improvement in systematic
error control within a short time frame.

Like Simet et al. (2017a), we expect the dominant systematic un-
certainty in our analysis to stem from shear and photo-z systematics.
We confirm this by repeating the analysis with the FixedAm run,
which accounts for all systematics except multiplicative shear bias
and photo-z systematics. As expected, the recovered posterior dis-
tributions are significantly narrower than the posteriors that include
shear and photo-z systematics. We find that those two systematics
alone contribute 78 per cent of the systematics-sourced variance.
The remaining 22 per cent of the systematics variance is almost
entirely due to projections, triaxiality and modelling systematics.

Fig. 13 compares the best-fitting mass–richness relation to the
stacked cluster masses Mj. Our model presents an excellent fit for
the considered range of λ ≥ 20, and extrapolates well down to the
λ ≥ 14 cluster sample. Clusters with even lower richnesses fall
significantly below our prediction, likely reflecting contamination
from line-of-sight overdensities. Our results are consistent with the
expectation that a richness threshold λ ≥ 20 is a conservative choice
for cluster scaling relation studies.

7 C O M PA R I S O N TO R E S U LT S
I N T H E LI T E R ATU R E

We now compare our calibration of the mass–richness relation to
results in the literature, based on SPT Sunyaev-Zel’dovich Effect
(SZE) measurements of DES redMaPPer clusters (Section 7.1) and
weak lensing by SDSS redMaPPer clusters (Section 7.2). We also
compare our systematic uncertainties to previous cluster lensing
studies (Section 7.3).

7.1 Comparison to Saro et al. (2015)

Saro et al. (2015, hereafter S15) provided the first, indirect calibra-
tion of the richness–mass relation of DES redMaPPer clusters by
cross-matching the SV cluster catalogue to the SPT cluster cata-
logue of Bleem et al. (2015). To do so, S15 first assumed a cosmol-
ogy identical to our fiducial cosmology (flat �CDM with �m = 0.3,
h = 0.7, with σ 8 = 0.8), then determined the best-fitting relation
between the SZE signal-to-noise ratio ξ and the cluster mass by
abundance matching, i.e. by comparing the predicted number of
clusters above the observable threshold to a prediction based on the
mass function and observable–mass relation. This allowed them to

Figure 14. 68 per cent confidence intervals for the mean cluster mass M200m

as function of cluster richness λ at z = 0.6 as constrained by the analyses of
Saro et al. (2015, blue), Simet et al. (2017a, grey) and this work (red). The
Simet et al. (2017a) relation has been transported from its pivot redshift of
0.2 to 0.6 using our best-fitting redshift-evolution model.

transfer the ξ–M relation from the SPT clusters to the λ–M relation
of DES redMaPPer clusters; thanks to the well-understood SPT
cluster selection function.

To compare our results to S15, we directly sample the scaling
relation parameters from the S15 chains. We then need to account
for a key difference between our work and that of S15, namely that
we constrain the mass–richness relation, while the latter constrains
the richness–mass relation. One can use the approach of Evrard
et al. (2014) to transform between the two. We refer the reader to
that work for details, and simply note that the conversion requires
a correction for the scatter in mass at fixed value of the observable.
The correction itself depends on the first and second logarithmic
derivatives of the halo mass function, which we compute using the
Tinker et al. (2008) halo mass function evaluated at z = 0.6, the
pivot redshift in the S15 relation.

Fig. 14 compares the recovered scaling relation from S15 to
our results, after also converting the S15 masses from M500c in
units of h−1 M� to M200m in units of M�, using the method de-
scribed by Hu & Kravtsov (2003) and the Bhattacharya et al. (2013)
concentration–mass relation. Essentially identical results are ob-
tained using the Diemer & Kravtsov (2015) relation. Although vi-
sually the slope of the mass–richness relation from S15 is shal-
lower than ours, the difference is not significant: the two are con-
sistent at the 1.3σ level. The amplitude of the scaling relations is
in nearly perfect agreement: the S15 mean mass at their pivot rich-
ness of λ = 54 is log 〈M | λ = 54〉 = 14.67 ± 0.11, compared to
log 〈M | λ = 54〉 = 14.66 ± 0.06 in our analysis.

7.2 Comparison to SDSS

Several studies have calibrated the mass–richness relation for SDSS
redMaPPer clusters (Baxter et al. 2016; Farahi et al. 2016; Li et al.
2016; Miyatake et al. 2016; Simet et al. 2017a, S16 hereafter). All
of them have been found to be consistent with each other. While
the Li et al. (2016) calibration is the most precise (i.e. it has the
smallest reported errors), it does not include a detailed analysis of
the sources of systematic uncertainty. The measurements by Farahi
et al. (2016) and Baxter et al. (2016) are useful systematics cross-
checks, but are currently less precise than those from S16. Given
the statistical consistency between the various methods, and the
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fact that S16 is the most precise after accounting for systematic
uncertainties, we focus on the comparison with S16.

S16 find that the mean mass of SDSS redMaPPer clusters of
richness λ = 40 is log〈M | λ = 40〉 = 14.344 ± 0.021 (stat) ±
0.023 (sys) at a reported pivot of z = 0.2. In that work, masses
were measured as M200m in units of h−1 M�. At that richness
and redshift, our results, converted to their units, correspond to
log 〈M | λ = 40〉 = 14.339 ± 0.070, fully consistent with – but not
as precise as – their result. The slopes of the mass–richness relations
are also in good agreement, with a difference of 0.9σ .

We note that DES redMaPPer clusters in the SV data are some-
what more abundant than SDSS redMaPPer clusters at the same
richness, although the difference does not appear to be statistically
significant (Rykoff et al. 2016, their fig. 6). Nevertheless, a differ-
ence in abundance could in principle signify a systematic difference
in the richness estimator λ between DES and SDSS, resulting in the
same galaxy clusters being assigned different richnesses when ob-
served in DES than when observed in SDSS. Conversely, clusters
of the same observed richness λ, either from DES or from SDSS,
would, on average, have somewhat different masses. The difference
in cluster abundance between the two surveys could thus imply that
DES SV clusters are about 7 per cent less massive than equally
rich SDSS clusters.14 Correcting for this effect, our prediction for
the SDSS mass calibration would be log 〈M | λ = 40〉 = 14.373 ±
0.053, still in excellent agreement with the SDSS result. We em-
phasize that this effect does not affect the uncertainty in the mass
calibration of the DES SV galaxy clusters; it is relevant only for
the comparison of our mass calibration to that of S16. Whether the
difference in number density is indeed due to a lower mass thresh-
old in DES or merely a statistical fluctuation can be directly tested
with future DES redMaPPer catalogues with larger area and partial
SDSS overlap.

7.3 Comparison of systematic uncertainties to other
weak-lensing cluster mass calibrations

Over the last two years, several collaborations have published re-
sults of extensive observational campaigns designed to calibrate
cluster mass–observable relations. These include the Weighing the
Giants (WtG; von der Linden et al. 2014a), the Canadian Cluster
Comparison Project (CCCP; Hoekstra et al. 2015) and the Local
Cluster Substructure Survey (LoCuSS; Okabe & Smith 2016). We
also include the weak-lensing mass measurements from the Clus-
ter Lensing and Supernova Survey with Hubble (CLASH; Postman
et al. 2012; Umetsu et al. 2016) in this discussion, although the
calibration of mass–observable relations is not their explicit goal.
A direct comparison of our results with these works is not possible
because we do not estimate individual cluster masses, and because
of a lack of overlap between the clusters samples. Nevertheless, a
discussion on the respective treatment of systematic uncertainties is
warranted. For completeness, we also discuss the systematic error
budget of S16.

We focus here on the two main sources of systematic uncertainty,
multiplicative shear bias (m, cf. equation 13) and photo-z calibra-

14 The ratio between the comoving space density of galaxy clusters in DES
versus SDSS for clusters with richness λ ≥ 20 over the redshift range z ∈
[0.2, 0.3], where both DES and SDSS are complete, is 0.83 (Rykoff et al.
2016). If we assume that this ratio corresponds to different effective mass
thresholds in the two surveys, we can use abundance matching to estimate
the corresponding systematic mass difference between the two surveys.

tion (δ, cf. equation 23). For the former, each of the collaborations
relied on simulations to calibrate their shear biases and to esti-
mate the corresponding uncertainties. WtG employed calibrations
from STEP2 (Massey et al. 2007) and state shear bias uncertainties
of 3 per cent (Applegate et al. 2014). CLASH used STEP2 supple-
mented by similar, custom simulations from Oguri et al. (2012), and
find 5 per cent uncertainty in m (Umetsu et al. 2016). CCCP used
GALSIM (Rowe et al. 2015) to simulate analytic galaxy profiles, and
quote 2 per cent shear calibration uncertainty. LoCuSS utilized two
different sets of image simulations, one using the software package
SKYMAKER (Bertin 2009) and another using the software package
SHERA (Mandelbaum et al. 2012), and state 3 per cent uncertainty in
m. S16 quote 3.5 per cent top-hat systematic uncertainty, roughly
equivalent to 2.0 per cent Gaussian uncertainty, based on SHERA

simulations.
The shear systematics error budget is comparable across all

works. We caution, however, that our shear systematic is larger than
what we would have estimated from the GREAT-DES simulations
(Jarvis et al. 2016, their section 6.1) alone. Our systematic error
estimate comes from the comparison of two independent source
catalogues, IM3SHAPE and NGMIX, each of which we expected to have
a multiplicative shear bias |m| ≤ 0.03. Nevertheless, a detailed com-
parison of the two revealed a systematic uncertainty |m| ≤ 0.05. We
believe this increased systematic uncertainty reflects differences
between our simulated images and our data.

There is a larger discrepancy between our work and how others
have estimated photometric redshift systematics, which we find to
be the second most important source of systematic uncertainty in
our analysis. We emphasize that throughout this section we use the
term ‘photo-z systematics’ to denote uncertainties in 〈	−1

crit〉 caused
exclusively by biased performance of the photometric redshift es-
timator, e.g. due to insufficient template sets or priors and cosmic
variance limiting the precision of the calibration. This systematic is
distinct from cluster-member dilution, and any associated amelio-
ration techniques such as the colour cuts employed in many studies
(including WtG, LoCuSS and CLASH). We make this distinction
because we find membership dilution to be a subdominant effect.

As with estimation of shear calibration systematics, our pho-
tometric redshift systematic error is estimated by comparing sev-
eral independently produced photo-z catalogues. The correspond-
ing systematic uncertainty in the weak-lensing signal ranges from
1.7 per cent for low-redshift clusters to 2.5 per cent for high-redshift
clusters (cf. equation 27). This matches well the systematic uncer-
tainty estimated directly from weighted spectroscopic validation
data sets (Bonnett et al. 2016).

WtG, CCCP, LoCuSS and CLASH approach the problem of es-
timating photo-zs of the selected sources differently. WtG (Kelly
et al. 2014) and CLASH use the template-fitting code BPZ (one of the
codes we also employ) for determining photometric redshifts from
five-band photometric data. Analyses with fewer imaging bands
infer indirect photo-z estimates by matching the respective source
samples according to magnitude (CCCP), or colour and magnitude
(WtG, for their clusters with fewer than five photometric bands),
or N-nearest neighbours in colour–magnitude space (LoCuSS) to a
high-quality reference sample with excellent photo-z accuracy. All
of these studies use the deep multiband photometry in the COSMOS
field, and derive the reference photo-z estimates with the template
codes LEPHARE (WtG and CLASH, with the public catalogue of
Ilbert et al. 2009, LoCuSS with Ilbert et al. 2013) or EAZY (Bram-
mer, van Dokkum & Coppi 2008, for CCCP).

The quoted systematic uncertainties in the lensing amplitudes
from possible biases in the inferred redshift distribution vary from
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work to work, but range from 1 per cent or less (WtG with five-band
photometry, LoCuSS, CLASH) to as high as 4 per cent (WtG with
two bands) and 8 per cent for high-redshift CCCP clusters. The latter
two reflect cosmic variance for single colour and/or magnitude se-
lected source galaxies. Our four-band photo-z error of ≈3 per cent in
the mass is somewhat intermediate between the two extremes above.
It is an accurate reflection of the uncertainty spanned by different
photo-z codes with the four-band photometry, and in that sense it
represents a minimum systematics floor due to algorithmic choices.
It is, however, conceivable that our own photo-z error is somewhat
underestimated if the variation across different photo-z codes is less
than the impact of sample variance on the machine-learning photo-z
codes. In Bonnett et al. (2016), we found the spread in photo-z codes
to be comparable to observed uncertainties relative to p(z) estimates
of independent spectroscopic testing samples, we therefore believe
our procedure to be fair. Nevertheless, future studies of this source
of systematic uncertainty are highly desirable.

In this context, we consider the work by Nakajima et al. (2012)
as an instructive baseline. Because the SDSS shape catalogue is
restricted to sufficiently bright galaxies, one can construct spectro-
scopic galaxy samples that are exactly representative of the weak-
lensing source samples. In this ideal scenario, the accuracy with
which photo-z biases can be controlled is limited only by the size of
these spectroscopic calibration sample, corresponding to a 3 per cent
precision for SDSS clusters. In contrast to the SDSS analysis, suf-
ficiently large, representative spectroscopic samples are currently
unavailable at the depth of DES, and this lack is even more relevant
at the depths of typical WtG, CCCP, LoCuSS and CLASH images.
While some alleviation of this systematic naturally occurs with in-
creasing separation of lenses and sources, it is difficult to imagine a
superior scenario for photo-z bias calibration than that of Nakajima
et al. (2012). This suggests that controlling photo-z systematics at
the 2 per cent level or better with DES or other upcoming large-scale
surveys will be difficult unless new methods for handling spectro-
scopic incompleteness are developed, and/or we are able to employ
alternate redshift estimation techniques, e.g. the cross-correlation
method of Newman (2008).

A reasonable test for the field of cluster lensing, as a whole, is the
comparison of cluster masses across different works. From table 6
in Okabe & Smith (2016), we see that, depending on the precise
mass definition, LoCuSS differs from CCCP by 5 per cent, and from
WtG by 12 per cent. CCCP reports that their masses are in excel-
lent agreement with WtG with a mean offset of ≈2 per cent, though
they caution that CCCP differs from the WtG effort in how they
convert shear profiles to masses. In particular, when CCCP follows
the WtG prescription for estimating cluster masses, their recovered
masses are lower than WtG by 8 per cent. The Umetsu et al. (2016)
CLASH analysis is consistent with WtG and LoCuSS, yet finds
marginally higher masses than CCCP by 16 per cent ± 10 per cent.
These comparisons suggest that at present discrepancies between
different groups remain at the ≈10 per cent level. Assuming equal
parts statistical and systematic errors and ignoring possible overlaps
of the cluster samples, systematic error budgets of ≈7 per cent ap-
pear adequate for the current state of the field, and are in reasonable
agreement with corresponding estimates quoted in these works.

8 SU M M A RY A N D C O N C L U S I O N S

We measured the stacked weak-lensing signal of redMaPPer clusters
in the DES SV data. The clusters were split into 15 non-overlapping
richness and redshift subsets with λ ≥ 5 and 0.2 ≤ z ≤ 0.8, and the

mean mass of each cluster stack was estimated from a model that
accounts for the following:

(i) shear measurement systematics (Section 4.1),
(ii) dilution of the source sample by cluster members

(Section 4.2),
(iii) source photometric redshift uncertainties (Section 4.3),
(iv) analytical modelling systematics (Section 5.2),
(v) triaxiality and projection effects (Section 5.3),
(vi) cluster miscentring (Section 5.4).

The set of masses were in turn used to determine the cluster mass–
richness relation, as parametrized according to equation (51). The
entire analysis was performed with a blinded shear catalogue, with a
blinding factor between 0.9 and 1, which corresponds to 13 per cent
uniform uncertainty on the amplitude of the mass–richness rela-
tion, comparable to a Gaussian uncertainty of about 8 per cent. By
comparison, the total (statistical plus systematic) uncertainty in the
amplitude of the mass–richness relation is 10.5 per cent, which im-
plies that the blinding factor was marginally sufficient to avoid
confirmation bias.

The mean cluster mass for clusters at our pivot richness of λ = 30
and pivot redshift of z = 0.5 is

M0 = [2.35 ± 0.22 ± 0.12] × 1014 M�. (60)

The best-fitting slope Fλ for the mass–richness relation is

Fλ = 1.12 ± 0.20 ± 0.06, (61)

while the best-fitting redshift-evolution parameter Gz is

Gz = 0.18 ± 0.75 ± 0.24. (62)

The results are summarized in Tables 3 and 4.
We compared our inferred mass–richness relation for redMaPPer

clusters to that of S15. The two works are in nearly perfect agree-
ment with regards to the amplitude of the mass–richness relation.
Our recovered slope is steeper, but the constraints from the two
works are statistically consistent at 1.2σ . Since the S15 work used
the abundance of SPT galaxy clusters and an �m = 0.3 and σ 8 = 0.8
flat �CDM cosmology, the excellent agreement between our work
and that of S15 suggests that this cosmology is likely to provide a
good fit to the abundance of redMaPPer clusters. An analysis of the
abundance of redMaPPer clusters is in preparation.

We also compared our results to the weak-lensing mass calibra-
tion of SDSS redMaPPer clusters presented in S16. Our results are
in excellent agreement with those of S16, both in amplitude and
slope. The excellent agreement between the two works is encour-
aging given the difference in imaging and methods between the two
works. We caution, however, that the uncertainty in the amplitude
of the mass–richness relation of redMaPPer clusters at the S16 pivot
redshift is ≈16 per cent, so the current agreement is not sufficient
to test the consistency of the two works within the reported system-
atics uncertainties (roughly 5 per cent each at their respective pivot
redshifts).

While our cluster mass calibration is currently statistics-limited,
the situation will quickly change with the advent of more DES data.
As Table 5 clearly shows, the systematic error budget is strongly
dominated by calibration uncertainties of the multiplicative shear
bias and the photo-z performance. The latter becomes increasingly
important at higher redshifts.

In this work, we have assumed that photo-z and shear measure-
ment systematics are perfectly correlated across all richness and
redshift subsets. While it is clear that these systematics must be
correlated at some level, it is not obvious to what degree. Our
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Table 5. Systematic error budget on the amplitude of the mass–richness
relation as measured with the DES SV data. The first two sources are taken
as perfectly correlated between source subsets, while the next three are
assumed to be independent (in brackets we list their impact if considered
perfectly correlated as well). In case systematic errors are determined for the
amplitude of the lensing signal 
	, we use the approximation M ∝ 
	4/3

(see discussion of equation 53).

Source of systematic Amplitude uncertainty

Shear measurement 4 per cent
Photometric redshifts 3 per cent
Modelling systematics 1 per cent (2 per cent)
Cluster triaxiality 1 per cent (2 per cent)
Line-of-sight projections 1 per cent (2 per cent)
Membership dilution + miscentring ≤1 per cent

Total 5.1 per cent (6.1 per cent)

conservative assumption (in terms of the amplitude of the mass–
richness relation) of perfect correlation means that there is no ‘av-
eraging’ of these systematics across subsets. All other systematics
were assumed to be uncorrelated. If we enforced perfect correla-
tion on these systematics as well, our error budget would increase
from 5.1 per cent to 6.1 per cent. In either case, the cumulative
systematic uncertainty is comparable to reported values from other
weak-lensing analyses (i.e. WtG, CCCP, LoCuSS, CLASH and
S16).

An insight from our analysis is that systematic differences from
independently produced shape and photometric redshift catalogues
can reveal systematics that would otherwise go unnoticed. For the
multiplicative shear calibration, the differences between the shear
catalogues may partly be due to differences between DES data and
the GREAT-DES simulations used to calibrate one of the pipelines.
The discrepant behaviour of the photo-z estimators is less well
understood, but likely due to a strong reliance on a comparison to
the COSMOS field, whose small size and redshift distribution is not
a representative of the DES survey.

With the rapid increase in observed DES area, future mass-
calibration analyses using the same shear and photo-z methods
would be systematics-limited. Efforts aimed at improving control
over shear measurement and photometric redshift uncertainties are
thus paramount. In the short term, shear measurement systematics
can be reduced through improvements in the imaging simulations
used to calibrate shear biases. More substantial gains will rely on
shear estimation algorithms that are less sensitive to measurement
noise and assumptions of PSF and galaxy properties (e.g. Bernstein
& Armstrong 2014), or by determining the calibrations directly
from observational data, without reference to external simulations.

For the long-standing issue of photo-z calibration, a concerted
spectroscopic effort is now urgently needed to accurately charac-
terize the mapping between galaxy colours and n(z) (following e.g.
Masters et al. 2015), as well as a thorough understanding of the lim-
itations of current photo-z estimation schemes. Alternatively, cross-
correlation photo-z methods as proposed by Newman (2008) may
provide another calibration tool, but it remains to be seen whether
they can achieve the ≈1 per cent level accuracy required to render
this source of error subdominant. We thus anticipate that the mass
calibration of galaxy clusters identified in DES Year-1 data will
be limited by photo-z uncertainties. Assuming we can reduce our
shear measurement uncertainties to the 1 per cent level (1.3 per cent
on the mass), the next DES results should allow us to constrain
the amplitude of the mass–richness relation to ≈5 per cent. Any
improvements in photometric redshift uncertainties will further re-

duce this error, directly benefitting forthcoming cluster cosmology
studies.
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of Edinburgh, the Eidgenössische Technische Hochschule (ETH)
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20921-400, Brazil
30Department of Astronomy, University of Illinois, 1002 W. Green Street,
Urbana, IL 61801, USA
31National Center for Supercomputing Applications, 1205 West Clark St.,
Urbana, IL 61801, USA
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Spain
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