Supplementary Information

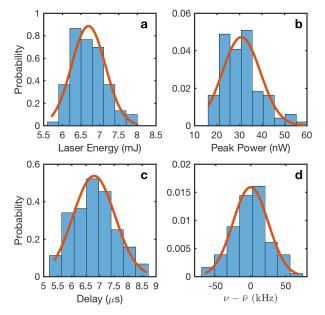
Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

Enrico Salvadori^{1,2,3,*}, Jonathan D. Breeze⁴, Ke-Jie Tan⁴, Juna Sathian⁴, Benjamin Richards⁴, Mei Wai Fung², Gary Wolfowicz¹, Mark Oxborrow⁴, Neil McN. Alford⁴ and Christopher W. M. Kay^{1,2,*}

¹ London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK

² Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK

³ School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK


⁴ Department of Materials, Imperial College London, London

Supplementary Video 1. Real time single-shot MASER emission

Top panel: One hundred consecutive MASER emission time traces recorded at 3.3 mJ/pulse average laser energy and 2 Hz repetition rate, direct detection without signal averaging. The inset shows an enlargement of the signal and fitting to a sine function.

Middle panel: Frequency-power analysis of each MASER emission time trace (Matlab[™] spectrogram function).

Bottom panel: Power output of each MASER emission time trace taken at the maximum of the frequency-power spectrum.

Supplementary Figure 1. Statistical analysis

Histograms of the distributions of (a) laser energy, (b) peak power, (c) delay and (d) frequency of MASER emission at 6.7 mJ/pulse pump energy. The red lines represent Gaussian fits. One-sample Kolmogorov-Smirnov tests confirm that none of the distributions deviate significantly from normality.