
MNRAS 465, 2033–2052 (2017) doi:10.1093/mnras/stw2665
Advance Access publication 2016 October 17

CFHTLenS revisited: assessing concordance with Planck including
astrophysical systematics

Shahab Joudaki,1‹ Chris Blake,1 Catherine Heymans,2 Ami Choi,2

Joachim Harnois-Deraps,3 Hendrik Hildebrandt,4 Benjamin Joachimi,5

Andrew Johnson,1 Alexander Mead,3 David Parkinson,6 Massimo Viola7

and Ludovic van Waerbeke3

1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
2Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
3Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada
4Argelander Institute for Astronomy, University of Bonn, Auf dem Hugel 71, D-53121 Bonn, Germany
5Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
6School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
7Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden, the Netherlands

Accepted 2016 October 12. Received 2016 October 12; in original form 2016 January 21

ABSTRACT
We investigate the impact of astrophysical systematics on cosmic shear cosmological parame-
ter constraints from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) and
the concordance with cosmic microwave background measurements by Planck. We present
updated CFHTLenS cosmic shear tomography measurements extended to degree scales using
a covariance calibrated by a new suite of N-body simulations. We analyse these measurements
with a new model fitting pipeline, accounting for key systematic uncertainties arising from
intrinsic galaxy alignments, baryonic effects in the non-linear matter power spectrum, and pho-
tometric redshift uncertainties. We examine the impact of the systematic degrees of freedom
on the cosmological parameter constraints, both independently and jointly. When the system-
atic uncertainties are considered independently, the intrinsic alignment amplitude is the only
degree of freedom that is substantially preferred by the data. When the systematic uncertainties
are considered jointly, there is no consistently strong preference in favour of the more complex
models. We quantify the level of concordance between the CFHTLenS and Planck data sets by
employing two distinct data concordance tests, grounded in Bayesian evidence and informa-
tion theory. We find that the two data concordance tests largely agree with one another and that
the level of concordance between the CFHTLenS and Planck data sets is sensitive to the exact
details of the systematic uncertainties included in our analysis, ranging from decisive discor-
dance to substantial concordance as the treatment of the systematic uncertainties becomes
more conservative. The least conservative scenario is the one most favoured by the cosmic
shear data, but it is also the one that shows the greatest degree of discordance with Planck. The
data and analysis code are publicly available at https://github.com/sjoudaki/cfhtlens_revisited.
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1 IN T RO D U C T I O N

The standard �CDM model of cosmology has been successful
in describing the expansion history and growth of density per-
turbations throughout the Universe (e.g. Anderson et al. 2014;
Betoule et al. 2014; Ade et al. 2016XIII). At the same time, it

� E-mail: sjoudaki@swin.edu.au

is facing challenges through our incomplete understanding of its
main ingredients, namely the mechanism that is driving the cur-
rent accelerated expansion and the dark matter (DM) that consti-
tutes most of the matter in the Universe (e.g. Bertone, Hooper &
Silk 2005; Copeland, Sami & Tsujikawa 2006; Feng 2010; Clifton
et al. 2012). There are a range of late-time experimental techniques
used to improve our understanding of the underlying cosmology
of the Universe, such as supernova distances, baryon acous-
tic oscillations, galaxy cluster counting, and weak gravitational
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lensing, where lensing is considered to be one of the most promis-
ing as a result of its particular sensitivity to both structure forma-
tion and universal expansion (e.g. Albrecht et al. 2006; Joudaki &
Kaplinghat 2012).

While weak lensing holds significant promise as a cosmologi-
cal probe, the analyses of lensing data sets are still maturing. In
particular, the optimism with weak lensing is predicated on over-
coming the vast systematic uncertainties in both observations and
theory. On the observational front, there are photometric redshift
uncertainties (also denoted as ‘photo-z’; e.g. Huterer et al. 2006;
Ma, Hu & Huterer 2006; Bernstein & Huterer 2010; Bonnett
et al. 2016) and intrinsic alignments (IA) of galaxies (e.g. Hirata
& Seljak 2004; Bridle & King 2007; Joachimi et al. 2011, 2015;
Troxel & Ishak 2015), along with additive and multiplicative cor-
rections to the lensing observables, for instance due to point spread
function (PSF) anisotropies and shear miscalibration (e.g. Hirata &
Seljak 2003; Huterer et al. 2006; Heymans et al. 2012; Melchior &
Viola 2012; Bernstein et al. 2016).

On the theoretical front, there are higher order correction terms
in the lensing integral, for instance due to the Born approxima-
tion and lens–lens coupling, but these are negligible even for cos-
mic variance-limited surveys (e.g. Cooray & Hu 2002; Shapiro &
Cooray 2006; Bernardeau, Bonvin & Vernizzi 2010; Krause & Hi-
rata 2010). More crucially, lensing analyses need to account for re-
duced shear (e.g. Dodelson, Shapiro & White 2006; Shapiro 2009;
Krause & Hirata 2010) and uncertainties in the modelling of the
non-linear matter power spectrum. The former, if neglected, may
induce a bias in the cosmological parameter estimates that exceeds
the parameter uncertainties in future surveys such as Large Synoptic
Survey Telescope (Shapiro 2009). The latter is true even when as-
suming all of the matter is collisionless and a cosmological constant
drives late-time universal acceleration, both analytically and with
simulations (e.g. Bernardeau et al. 2002; Cooray & Sheth 2002;
Smith et al. 2003; Heitmann et al. 2014; McQuinn & White 2016;
Mead et al. 2015).

There are additional difficulties in modelling the matter power
spectrum due to baryonic physics coming from star formation, ra-
diative cooling, and feedback processes (e.g. White 2004; Zhan
& Knox 2004; Rudd, Zentner & Kravtsov 2008; van Daalen
et al. 2011). The modelling of the non-linear matter power spectrum
is also sensitive to extensions of the standard model, for example,
to include massive neutrinos (e.g. Saito, Takada & Taruya 2008;
Bird, Viel & Haehnelt 2012; Wagner, Verde & Jimenez 2012), dark
energy (e.g. McDonald, Trac & Contaldi 2006; Joudaki, Cooray &
Holz 2009; Alimi et al. 2010; Heitmann et al. 2014), and modified
gravity (e.g. Stabenau & Jain 2006; Zhao, Li & Koyama 2011; Baldi
et al. 2014; Hammami et al. 2015).

In this paper, we present a methodical study of three key ‘as-
trophysical’ systematic uncertainties affecting the lensing observ-
ables from the Canada–France–Hawaii Telescope Lensing Sur-
vey (CFHTLenS; Heymans et al. 2012; Hildebrandt et al. 2012;
Erben et al. 2013; Miller et al. 2013) in the form of intrinsic galaxy
alignments, baryonic effects in the non-linear matter power spec-
trum, and photometric redshift uncertainties. In addition to these
astrophysical uncertainties, there are errors on the shear measure-
ment itself which we calibrate through additive and multiplicative
shear calibration corrections to the data as a function of galaxy
size and signal to noise (Heymans et al. 2012; Miller et al. 2013).
In a 2D analysis, Kilbinger et al. (2013) showed that the mea-
sured uncertainties in these corrections had a negligible impact
on the cosmological constraints for CFHTLenS and so we do
not consider ‘shear measurement’ systematic uncertainties in our

analysis (still true with tomography given comparable constraints
on σ8�

0.5
m ).

We account for the three key systematic uncertainties more com-
prehensively than previously, for instance, by incorporating the
halo-model based HMCODE (Mead 2015; Mead et al. 2015) to accu-
rately include the baryonic signatures in the non-linear matter power
spectrum and by allowing for a possible luminosity and redshift
dependence of the IA (in addition to the amplitude dependence).
We also account for biases in the measured redshift distribution for
each tomographic bin, both by considering random shifts around the
fiducial distributions and by considering systematic shifts to the dis-
tributions following the analysis of source–lens cross-correlations
in Choi et al. (2016). We consider these systematic uncertainties
both independently and jointly and ask if the data favour any of the
additional degrees of freedom. For the purposes of model selection,
we use the deviance information criterion (DIC; Spiegelhalter, Best
& Carlin 2002) and complement with calculations of the Bayesian
evidence (e.g. Feroz & Hobson 2008; Trotta 2008). These statistical
tools are discussed in Section 2.1.7.

We also strive to improve our understanding of the ‘discordance’
in the cosmological constraints from the cosmic shear and cosmic
microwave background (CMB) data sets of CFHTLenS and Planck
(e.g. Ade et al. 2014XVI; MacCrann et al. 2015; Grandis et al. 2016;
Raveri 2016; Ade et al. 2016XIII). To achieve this, we take a me-
thodical approach. We begin with the minimal scenario where no
systematic uncertainties are included in the analysis of CFHTLenS
and examine the potential dependence of the results to the choice of
cosmological priors. We then consider a whole series of scenarios
where the key systematic uncertainties are included independently
and jointly, both with informative priors and with non-informative
priors. We employ data concordance tests based on the Bayesian
evidence and DIC and find that the level of discordance between
the CFHTLenS and Planck data sets is sensitive to the assumptions
made on the level of systematic uncertainties in the CFHTLenS
measurements, such that increasingly conservative scenarios show
an increasing degree of concordance between the data sets.

In addition to the comprehensive account of the systematic uncer-
tainties, we update the CFHTLenS measurements first presented in
the six-bin tomographic analysis of Heymans et al. (2013; hereafter
H13). As described in Section 2.2, we divide the source galax-
ies into seven tomographic bins with redshift ranges that allow
us to more optimally account for the overlap with spectroscopic
surveys in forthcoming analyses. We moreover extend the angu-
lar coverage of the measurements from [1, 50] arcmin in H13 to
[1, 120] arcmin in this work, owing to the increased box size of
the new N-body simulations used to determine the data covariance
matrix (Harnois-Déraps & van Waerbeke 2015; described in Sec-
tion 2.3). Thus, instead of the original five angular bins, we now
have seven angular bins in the aforementioned range.

In Section 2, we present the theoretical basis of our work, along
with our updated CFHTLenS measurements and covariance matrix
estimation from N-body simulations. In Section 3, we explore the
impact of the systematic uncertainties on the cosmological con-
straints, independently and jointly. We examine whether the new
degrees of freedom are favoured by the data and investigate the
level of concordance between the CFHTLenS and Planck data sets.
In Section 4, we conclude with a discussion of our results.

2 M E T H O D O L O G Y

We give an overview of the theory associated with weak gravita-
tional lensing and intrinsic galaxy alignments. We discuss our new
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fitting pipeline and the methods by which we account for photomet-
ric redshift uncertainties and baryonic uncertainties in the non-linear
matter power spectrum. We then proceed to describe our updated
CFHTLenS measurements and covariance matrix considering seven
tomographic bins. We do not include additional degrees of freedom
for the additive and multiplicative shear calibration corrections, but
incorporate these directly in our data.

2.1 Theory

2.1.1 Weak lensing observables

We follow the standard approach in computing the weak lensing
observables (e.g. Bartelmann & Schneider 2001), in the form of the
two-point shear correlation functions,

ξ
ij
± (θ )GG = 1

2π

∫
d� � C

ij
GG(�) J±(�θ ), (1)

defined at angle θ , where C
ij
GG(�) is the convergence power spectrum

for tomographic bin combination {i, j} at angular wavenumber � and
J± are the zeroth- (+) and fourth- (−) order Bessel functions of the
first kind. Given seven tomographic bins, i and j both run from 1 to 7,
such that there are 28 independent combinations. Using the Limber
approximation (Limber 1954, also see Loverde & Afshordi 2008),
the convergence power spectrum is then obtained as a weighted
integral over the matter power spectrum,

C
ij
GG(�) =

∫ χH

0
dχ

qi(χ )qj (χ )

[fK (χ )]2
Pδδ

(
� + 1/2

fK (χ )
, χ

)
, (2)

where χ is the comoving distance, χH is the comoving horizon
distance, fK(χ ) is the comoving angular diameter distance, Pδδ is
the matter power spectrum, and the geometric weight qi(χ ) in to-
mographic bin i is given by

qi(χ ) = 3H 2
0 �m

2c2

fK (χ )

a(χ )

∫ χH

χ

dχ ′ ni(χ
′)

fK (χ ′ − χ )

fK (χ ′)
. (3)

Here, a(χ ) is the scalefactor, c is the speed of light, H0 is the Hubble
constant, �m is the present matter density, and ni(χ ) encodes the
source galaxy distribution in a given tomographic bin, normalized
to integrate to unity.

2.1.2 Intrinsic galaxy alignments

We further extend our theory to account for intrinsic galaxy align-
ments (Hirata & Seljak 2004; Bridle & King 2007; Joachimi
et al. 2011), originating from correlations of intrinsic ellipticities of
galaxies with each other and with the shear of background sources.
These intrinsic–intrinsic (II) and shear-intrinsic (GI) terms enter the
observed correlation function, such that

ξ
ij
± (θ )obs = ξ

ij
± (θ )GG + ξ

ij
± (θ )II + ξ

ij
± (θ )GI. (4)

Here, the II and GI terms are defined as in equation (1), except C
ij
GG

is correspondingly replaced by C
ij
II and C

ij
GI. Following Bridle &

King (2007) in using the non-linear matter power spectrum within
the linear theory of Hirata & Seljak (2004), we express the II term:

C
ij
II (�) =

∫ χH

0
dχ

ni(χ )nj (χ )Fi(χ )Fj (χ )

[fK (χ )]2
Pδδ

(
� + 1/2

fK (χ )
, χ

)
,

(5)

and the GI term:

C
ij
GI(�) =

∫ χH

0
dχ

qi(χ )nj (χ )Fj (χ )

[fK (χ )]2
Pδδ

(
� + 1/2

fK (χ )
, χ

)

+
∫ χH

0
dχ

ni(χ )Fi(χ )qj (χ )

[fK (χ )]2
Pδδ

(
� + 1/2

fK (χ )
, χ

)
. (6)

We allow for an unknown amplitude A along with a possible redshift
(z) and luminosity (L) dependence via η and β, respectively, in
defining

Fi(χ ) = −AC1ρcr
�m

D(χ )

(
1 + z(χ )

1 + z0

)η (
Li

L0

)β

, (7)

in accordance with Joachimi et al. (2011), where ρcr is the crit-
ical density at present, D(χ ) is the linear growth factor nor-
malized to unity at present, the normalization constant C1 =
5 × 10−14 h−2M−1

� Mpc3, z0 = 0.3 is an arbitrary pivot redshift,
and L0 is the pivot luminosity corresponding to an absolute r-band
magnitude of −22. We determine the luminosities by averaging
the individual galaxy luminosities (calculated as 10−0.4M for each
galaxy, where M is the absolute magnitude), weighted by the lensfit
weights (defined in Section 2.2), giving us an effective Li/L0 =
(0.017, 0.069, 0.15, 0.22, 0.36, 0.49, 0.77) for our seven tomo-
graphic bins.

2.1.3 Photometric redshift uncertainties

We account for uncertainties in the photometric redshift estimation
by allowing the redshift distribution in each tomographic bin to shift
along the redshift axis by an amount �zi, such that

n
theory
i (z) = nobs

i (z − �zi), (8)

where nobs
i is the observed redshift distribution. This is consistent

with the approach used in Abbott et al. (2016). As a minor caveat,
as we do not integrate below the minimum redshift of zmin = 0.03
for the fiducial redshift distributions (the necessity of zmin > 0 is
because z = 0 would correspond to wavenumber k = ∞), we take a
consistent approach and continue to neglect the same lowest end of
the redshift distributions when shifted to higher redshifts. A physical
interpretation of this would be to consider these outliers as stars at
z = 0. Since we consider 7 tomographic bins, this introduces an
additional seven nuisance parameters that we marginalize over in
our analysis, with either uniform or Gaussian priors (e.g. via cross-
correlations with an overlapping spectroscopic sample), as further
discussed in Section 3.4.

2.1.4 Baryonic uncertainties in the non-linear matter power
spectrum: HMCODE

We account for baryonic uncertainties in the non-linear matter
power spectrum by incorporating HMCODE in Mead et al. (2015)1 as a
separate parallelized module in CosmoMC (Lewis & Bridle 20022).
By introducing physically motivated free parameters in the halo-
model formalism, and calibrating these to the Coyote N-body DM
simulations (Heitmann et al. 2014 and references therein), HMCODE

is able to describe the power spectrum to marginally improved ac-
curacy in comparison to the latest incarnation of HALOFIT (Takahashi
et al. 2012; Smith et al. 2003).

1 https://github.com/alexander-mead/hmcode
2 http://cosmologist.info/cosmomc/
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However, by further calibrating to the OverWhelmingly Large
(OWL) Simulations (Schaye et al. 2010; van Daalen et al. 2011), the
main benefit of HMCODE is its capacity to account for baryonic effects
in the matter power spectrum on non-linear scales, for example,
due to star formation, radiative cooling, and active galactic nucleus
(AGN) feedback. This is achieved by modifying parameters that
govern the internal structure of haloes. For example, AGN feedback
blows gas out of haloes, which makes them less concentrated. Mead
et al. (2015) found that acceptable fits could be made to the OWL
simulations using a halo model with less concentrated haloes in
the one-halo term. Conversely, the two-halo term is unchanged
because feedback only affects small scales. Thus, HMCODE modifies
the relationship between halo concentration c and halo mass M,
such that

c(M, z) = B
1 + zf

1 + z
, (9)

where zf is the halo formation redshift as a function of halo mass
and B is a free parameter that we can marginalize over in our anal-
ysis. HMCODE can also change the halo density profile via the halo
bloating parameter ηHMCODE to account for baryonic effects. How-
ever, in Mead et al. (2015) it was shown that substantial degeneracy
exists between ηHMCODE and B and that these two parameters can
be linearly related to provide a one-parameter baryonic feedback
model. We use this prescription and ηHMCODE therefore does not
contribute to an additional degree of freedom in our Markov Chain
Monte Carlo (MCMC) analysis.

For scales k < 10 h−1Mpc, HMCODE produces a non-linear matter
power spectrum that accounts for baryonic physics (REF, DBLIM,
and AGN cases of the OWL simulations, described in van Daalen
et al. 2011) accurately at the level of a few per cent. HMCODE’s ability
to accurately model the non-linear matter power spectrum including
baryons with a single parameter can be contrasted with the fitting
formula in Harnois-Déraps et al. (2015), which employs 15 free pa-
rameters to achieve the same outcome with similar precision (also
see Köhlinger et al. 2016, which use the same prescription as in
Harnois-Déraps et al. 2015 but only marginalize over a single pa-
rameter and MacCrann et al. 2015 for a similar single-parameter
marginalization approach based on the AGN case of the OWL sim-
ulations).

While HMCODE is calibrated to k < 10 h−1Mpc, it agrees with
the matter power spectrum from Takahashi et al. (2012) at the
10 per cent level for k < 100 h−1Mpc (DM-only case). Even if
we assume that HMCODE miscalibrates the matter power spectrum
(including baryons) for k > 10 h−1Mpc by a factor of 2 for every
decade in wavenumber beyond k = 10 h−1Mpc, it would bias the
lensing correlations functions by at most 1 per cent for ξ+ and at
the sub-per cent level for ξ− for the angular scales considered in
this work (less for ξ− than for ξ+ due to our angular cuts; checked
for the case without tomography). Given the statistical power of our
data (described in Section 2.2), the accuracy of HMCODE is therefore
sufficient for our purposes and it forms an important component of
our new pipeline.

2.1.5 New CosmoMC module for WL analyses
with systematic uncertainties

In order to account for the systematic uncertainties coming from
IA of galaxies, photometric redshift uncertainties, and baryonic ef-
fects in the non-linear matter power spectrum, we have developed
a new module in CosmoMC (in the language of FORTRAN 90). The
module is independent from previous lensing modules and accounts

for the systematic uncertainties following the prescriptions in Sec-
tions 2.1.2–2.1.4.

The new module allows the user to choose the integration method
for the {GG, II, GI} spectra with one of two distinct methods, either
with trapezoidal integration or with Romberg integration. We have
internally parallelized the code which, with a single eight-core Intel
Xeon E5-2660 processor at 2.2 GHz, can calculate the likelihood
for a single cosmology, considering six tomographic bins and in-
cluding IA (i.e. GG, II, and GI), in 0.078 s when using HALOFIT for
the non-linear matter power spectrum. Since our module is paral-
lelized the speed would continue to show some improvement with
further cores. This can be compared to the existing default lensing
module in CosmoMC which, with the same resources, calculates
the likelihood for a single cosmology, considering six tomographic
bins and without IA (i.e. only GG) in 0.33 s.3 We note that these
are the speeds of only the respective modules, i.e. the numbers do
not account for the time it takes the Boltzmann code CAMB (Lewis,
Challinor & Lasenby 20004) to compute the matter power spectrum
which is fed into both modules.

As we have incorporated HMCODE as a separate parallelized mod-
ule in CosmoMC, at each new cosmology, the lensing module inter-
nally provides HMCODE the linear matter power spectrum obtained
from a modified version of CAMB in a (k, z)-array and obtains from
it the non-linear matter power spectrum at the same (k, z) values
in return. Using the same processor, this transition between linear
to non-linear power spectrum takes 0.4 s for a (k, z)-array that is
sufficiently dense for our lensing calculation. While the computa-
tion of the non-linear matter power spectrum with HMCODE is slower
than the computation with HALOFIT, it allows us to account for the
baryonic effects on non-linear scales. However, when non-linear
baryonic effects are not considered, the agreement between HMCODE

and HALOFIT is sufficiently close that either one could be used.
In Fig. 1, we show the impact of the different systematic degrees

of freedom on {ξ+, ξ−} for the tomographic bin combinations {1,7}
and {7,7} . As expected, we find that the difference between the
HALOFIT and HMCODE prescriptions enters the observables on smaller
angular scales. Moreover, varying the HMCODE feedback amplitude
leaves an imprint on the observables that increases with smaller
angular scales. Analogously, the imprint of the different non-linear
prescriptions (both with and without baryons) is larger for ξ− than
for ξ+, due to the greater sensitivity of ξ− to non-linear scales in
the matter power spectrum for a given angular scale. Meanwhile,
the impact of IA and shifts in the photometric redshift distributions
seems to be strongest in the cross-bins and fairly independent of
angular scale. This illustrates the usefulness of these bins in con-
straining the IA model and deviations from the fiducial photometric
redshift distributions.

We have further extended our module to account for joint analyses
of overlapping observations of cosmic shear, galaxy–galaxy lensing,

3 In the development of this module, we verified our results by comparing
against a completely independent implementation available to the collabo-
ration (Joachimi) and to the default CosmoMC lensing module. The lensing
observables calculated with our new module agree well with those calculated
with the collaboration’s independent code. There were however discrepan-
cies in the convergence power spectrum with the default CosmoMC lensing
module (which seem to be caused by insufficiently accurate integration in
the default CosmoMC lensing module; here we only checked GG as the
default CosmoMC lensing module does not account for IA). We find the
discrepancies to be negligible at the level of the parameter constraints due
to the sufficiently weak statistical power of current data.
4 http://camb.info
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Figure 1. The ratio of shear correlation functions for tomographic bin combinations {1,7} and {7,7} , taken with respect to HMCODE with feedback amplitude
log B = 0.496, defined in equation (9), including no systematic uncertainties (denoted as ξ±[fid]). For consistency, we fix the underlying cosmology to that of
the best-fitting cosmology of this ‘fiducial’ case. We allow for the Takahashi et al. (2012) version of HALOFIT (solid black), HMCODE with log B = 0.3 (dashed
red), IA with {A, η, β} = {1, 0, 0} (dot–dashed green), IA with {A, η, β} = {1, 0, 1} (dotted blue), IA with {A, η, β} = {1, 1, 0} (dot–dashed cyan), and
photometric redshift uncertainties where all bins are positively perturbed by �z = 0.05 (solid pink). The log B value of 0.496 corresponds to the DM-only
case, while log B = 0.3 agrees with the AGN case of the OWL simulations. The parameters {A, η, β} refer to the IA amplitude, redshift dependence, and
luminosity dependence, respectively, of the IA model defined in equation (7), while the photo-z shifts are defined in equation (8). The IA model with {A, η, β}=
{1, 0, 1} lies along the unity line because the luminosity L/L0 < 1 in each tomographic bin, such that a positive value of β suppresses the IA signal (analogously,
a negative value of η for the redshift dependence would have a similar effect).

and large-scale structure measured through clustering multipoles,
including the full covariance, as part of our efforts to constrain mod-
ified gravity and neutrino physics. Along with the new CFHTLenS
measurements, we are releasing our code (both cosmic shear and HM-
CODE modules in CosmoMC) pertaining to the calculations presented
in this paper at https://github.com/sjoudaki/cfhtlens_revisited. We
will be releasing our full code as part of an upcoming paper (Joudaki
et al., in preparation).

Lastly, we note that our module is currently independent from the
CosmoSIS platform (Zuntz et al. 2015), which combines a range of
disparate codes into a single framework for cosmological parameter
estimation. There are no technical obstacles to prevent our module
from being incorporated into CosmoSIS in the future.

2.1.6 Baseline configurations

In our analysis, we always include the ‘vanilla’ parameters, given
by {�ch2, �bh2, θMC, ns, ln (1010As)}, which represent the CDM
density, baryon density, approximation to the angular size of the
sound horizon (in CosmoMC), scalar spectral index, and amplitude
of the scalar spectrum, respectively. We note that ‘ln’ refers to
the natural logarithm, while we take ‘log ’ to refer to logarithms
with base 10. From these parameters, one can derive the Hubble
constant H0 (also expressed as h in its dimensionless form) and

standard deviation of the present linear matter density field on scales
of 8 h−1Mpc (denoted by σ 8). We impose uniform priors on these
cosmological parameters, as discussed in Section 3.

In this baseline �CDM model, we include three massless neutri-
nos, such that the effective number of neutrinos Neff = 3.046 (we
have checked that our results are not significantly affected by the
approximation of zero mass, as compared to the minimal mass of the
normal hierarchy of 0.06 eV). For the primordial fraction of bary-
onic mass in helium, Yp, we determine the quantity as a function of
{Neff, �bh2} in a manner consistent with big bang nucleosynthesis
(BBN; see equation 1 in Joudaki 2013). Moreover, we consistently
enforce the strong inflation prior on the curvature and running of
the spectral index, such that {�k ≡ 0, dns/d ln k ≡ 0}. Thus, with
flatness enforced, �m > 1 implies �� < 0. Lastly, with no run-
ning of the spectral index, we define the primordial scalar power
spectrum,

ln Ps(k) = ln As + (ns − 1) ln(k/kpivot), (10)

where both As and ns are defined at the pivot wavenumber kpivot.
In order to determine the convergence of our MCMC chains,

we use the Gelman & Rubin (1992) R statistic, where R is de-
fined as the variance of chain means divided by the mean of
chain variances. Our runs are stopped when the conservative limit
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(R − 1) < 2 × 10−2 is reached and we have checked that further
exploration of the tails does not change our results.

2.1.7 Model selection and data set concordance

We define the best-fitting effective χ2, via χ2
eff (θ̂ ) = −2 lnLmax,

where Lmax is the maximum likelihood of the data given the model,
θ , is the vector of varied parameters and hat denotes the maximum
likelihood point. When quoting χ2

eff without specifying θ , we implic-
itly assume θ = θ̂ . The reduced χ2 is then given by χ2

red = χ2
eff/ν,

where ν is the number of degrees of freedom. Given two separate
models, where �χ2

eff > 0, we interpret the model with the higher
value of χ2

eff to be associated with a lower probability of drawing
the data at the maximum likelihood point, by a factor given by
exp(−�χ2

eff/2). For reference, a difference of 10 in χ2
eff between

two models would correspond to a probability ratio of 1 in 148 and
therefore constitute strong preference for the more probable model.

When considering the relative performance of two distinct mod-
els, it is valuable to compute the DIC (Spiegelhalter et al. 2002,
also see Kunz, Trotta & Parkinson 2006; Liddle 2007; Trotta 2008;
Spiegelhalter et al. 2014), obtained from the Kullback–Leibler di-
vergence or relative information entropy (Kullback & Leibler 1951).
We do not use the Akaike Information Criterion (Akaike 1974),
which follows from an approximate minimization of the Kullback–
Leibler divergence and does not account for unconstrained direc-
tions in parameter space (e.g. Liddle 2007; Trotta 2008). We also do
not consider the Bayesian Information Criterion (Schwarz 1978), as
it is not grounded in information theory and instead follows from a
Gaussian approximation to the Bayesian evidence (e.g. Liddle 2007;
Trotta 2008). In practice, we compute

DIC ≡ χ2
eff (θ̂ ) + 2pD, (11)

where pD = χ2
eff (θ ) − χ2

eff (θ̂ ) is the ‘Bayesian complexity’ and
the bar denotes the mean taken over the posterior distribution
(Spiegelhalter et al. 2002). The Bayesian complexity is a measure
of the effective number of parameters and acts as a penalty against
more complex models. Instead of the maximum likelihood point,
the Bayesian complexity and DIC are also commonly evaluated at
the posterior mean or median of the cosmological parameters (e.g.
Spiegelhalter et al. 2002; Trotta 2008). The main limitation of the
DIC is the χ2

eff of the posterior mean can sometimes not be a good fit
to the data in multimodal distributions and the alternative (the best-
fitting χ2

eff ) is a somewhat arbitrary choice. Moreover, the DIC uses
the data effectively twice (in that the ‘penalty factor’ also depends
on the data) and its use of a point estimate can be stochastically
affected by the data. Finally, beyond brute force, no efficient and
accurate method has been developed for computing the errors of the
DIC estimates.

For two models with the same complexity, the difference in their
DIC values is the same as the difference in their respective χ2

eff

values. Analogous to the χ2
eff scenario, a difference of 10 in DIC

between two models constitutes strong preference in favour of the
model with the lower DIC estimate, while a difference of 5 in DIC
between the two models constitutes moderate preference in favour
of the model with the lower DIC estimate. When the difference in
DIC between two models is even smaller, the statistic only weakly
favours one model over the other. In comparing an extended model
with a reference model, we take negative values of �DIC to indicate
a preference in favour of the extended model as compared to the
reference model.

We complement our DIC analysis by using the nested sampling
algorithm CosmoChord (Handley, Hobson & Lasenby 2015a,b) to
compute the Bayesian evidence (with additional runs using Multi-
Nest to ensure consistency in the results; Feroz & Hobson 2008;
Feroz, Hobson & Bridges 2009; Feroz et al. 2013). The evidence is
given by the average of the likelihood under the prior for a given
model,

Z =
∫

dnθ L(θ )π(θ ), (12)

where n encapsulates the dimensionality of the parameter space
and π(θ ) is the prior given the vector of parameters θ (e.g. Feroz &
Hobson 2008; Trotta 2008). Equation (12) tells us that the evidence
is larger for a simpler theory with a compact parameter space, unless
it is significantly worse at explaining the data as compared to a more
complicated theory. For model selection purposes, we also compute
the Bayes factor (e.g. Feroz & Hobson 2008; Trotta 2008), given by
the evidence ratio for two specific models, denoted by Z0 and Z1:

B01 ≡ Z0/Z1. (13)

For a scenario in which the prior probabilities of the two models are
equal, the Bayes factor encapsulates the posterior odds, such that
the data favour model 0 as compared to model 1 when the Bayes
factor is greater than unity and vice versa. Alternatively, the Bayes
factor can be thought of as the change to the prior odds given the
data.

From the evidence calculations, we can further construct a mea-
sure of the concordance between two data sets D1 and D2, given
by

C(D1, D2) ≡ Z(D1 ∪ D2)

Z(D1)Z(D2)
, (14)

where Z(D1 ∪ D2) is the joint evidence of the two data sets
(Marshall, Rajguru & Slosar 2006; Raveri 2016). Thus, log C is
positive when there is concordance between the two data sets, such
that the joint evidence is larger than the product of the individual
evidences and similarly log C is negative when there is discordance
between the two data sets. We will use this concordance test to
better assess the potential degree of tension between the updated
CFHTLenS and Planck measurements. In this pursuit, we also in-
troduce an analogous but more easily calculable quantity from the
DIC estimates:

I(D1, D2) ≡ exp{−G(D1, D2)/2}, (15)

where

G(D1, D2) = DIC(D1 ∪ D2) − DIC(D1) − DIC(D2), (16)

and DIC(D1 ∪ D2) is the joint DIC of the two data sets. We expect
this quantity to diagnose separation or congruence between poste-
rior distributions, through measurement of the relative entropy of
one distribution with respect to the other. To describe it in terms of
a Gaussian example, if two data sets that agree are added together,
we would expect the joint likelihood to have a larger χ2

eff (θ̂ ) (since
there are more data points), roughly equivalent to the sum of the
individual χ2

eff , but the same Bayesian complexity for both, leading
to an overall negative value for G(D1, D2) (since the complexity
factor is applied twice) and so to a large I. However, if the two data
sets do not agree, there will be a much larger χ2

eff than the sum of the
individual χ2

eff and this will not be balanced enough by the change
in complexity, since the different parameters will not be measured
well. In this case, the overall value for G(D1,D2) will be positive,
leading to a small I.
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Thus, analogous to the evidence scenario, logI is constructed
such that there is concordance between the data sets when it is posi-
tive and discordance between the data sets when it is negative. For an
independently developed concordance test based on the Kullback–
Leibler divergence, see Seehars et al. (2016). We further assess the
degree of concordance or discordance by employing Jeffreys’ scale
(Jeffreys 1961, also see Kass & Raftery 1995), such that values for
log C and logI in excess of ±1/2 are ‘substantial’, values in excess
of ±1 are ‘strong’, and values in excess of ±2 are ‘decisive’ (where
this last case corresponds to a probability ratio in excess of 100).

2.2 Measurements

In this section, we introduce the CFHTLenS data set and new mea-
surements used in our cosmology analysis. The CFHTLenS5 is
a deep multicolour survey optimized for weak lensing analyses,
based on data from the Canada–France–Hawaii Telescope (CFHT)
Legacy Survey in five optical bands u∗g′r ′i ′z′, using the 1 deg2 cam-
era MegaCam. The Wide Survey data analysed in this study span
four fields W1, W2, W3, and W4, which together cover 154 deg2.

Galaxy ellipticity components (e1, e2) for each source, together
with an approximately optimal inverse-variance weight ws, are
determined by the Bayesian model-fitting software lensfit (Miller
et al. 2013). Photometric redshifts are derived from PSF-matched
photometry (Hildebrandt et al. 2012) using the Bayesian photomet-
ric redshift code BPZ (Benı́tez 2000), which also returns a full red-
shift probability distribution pBPZ(z), with peak zB for each source.
The survey pointings have been subjected to a stringent cosmology-
independent systematic-error analysis (Heymans et al. 2012), as a
result of which a subset of around 25 per cent of the pointings have
been flagged as possessing potentially significant systematic errors
and are excluded from our analysis. We applied additive shear cal-
ibration corrections to the measured ellipticities and multiplicative
shear calibration corrections to the cosmic shear measurements (fol-
lowing Heymans et al. 2012 and Miller et al. 2013). We only retain
unmasked sources for our analysis.

We perform cosmic shear tomography by dividing the sources
according to zB into Nt = 7 tomographic bins with ranges 0.15–
0.29, 0.29–0.43, 0.43–0.57, 0.57–0.70, 0.70–0.90, 0.90–1.10, 1.10–
1.30. This choice represents a slight alteration from the original
CFHTLenS tomographic analysis (Heymans et al. 2013), which di-
vided the range 0.2 < zB < 1.3 into six tomographic bins. This
modification was motivated by the overlapping spectroscopic data
sets now available due to the Baryon Oscillation Spectroscopic Sur-
vey (BOSS; Anderson et al. 2014), which are conveniently split into
redshift ranges 0.15–0.43 (LOWZ sample) and 0.43–0.70 (CMASS
sample). This spectroscopic redshift data may be used to include
galaxy–galaxy lensing and redshift-space distortion statistics in the
analysis (with appropriate covariance) and further calibrate the pho-
tometric redshifts through cross-correlation (e.g. Choi et al. 2016).
Fig. 2 displays the stacked BPZ redshift probability distributions,
weighted by the lensfit weights, for each tomographic source bin. A
spline function of these measurements is used as the model source
redshift distribution in our cosmology-fitting pipeline.

The effective source density for lensing analyses is defined by

neff = 1

Aeff

(∑
i ws

i

)2

∑
i(w

s
i )2

, (17)

5 http://www.cfhtlens.org

Figure 2. Stacked BPZ redshift probability distributions for CFHTLenS,
weighted by the lensfit weights, in the seven tomographic photo-z bins used
in our analysis.

where Aeff is the effective (unmasked) area. In the range 0.15 < zB <

1.3 used in our study, the values derived for the four survey regions
{W1, W2, W3, W4} are neff = {10.9, 9.9, 11.0, 10.4} arcmin−2

for unmasked areas {42.9, 12.1, 26.1, 13.3} deg2; for the whole
sample, we find neff = 10.7 arcmin−2 over Aeff = 94 deg2.

For each unique pair of tomographic bins, we measured the cos-
mic shear statistics (ξ+, ξ−) in each of the four regions using the
ATHENA software (Kilbinger, Bonnett & Coupon 2014). We use Nθ =
7 equally spaced logarithmic bins in the range 1 < θ < 120 arcmin.
Concretely, for each of the seven tomographic bins, our measure-
ments are evaluated at [1.41, 2.79, 5.53, 11.0, 21.7, 43.0, 85.2]
arcmin. This represents a significant increase in the maximum fit-
ted scale of ≈53 arcmin used by H13 (where the earlier reported
range of 1.5–35 arcmin corresponded to the central bin values),
which is enabled by the increased box size of the N-body simula-
tions now used to determine the data covariance, described below.
We also determined jackknife errors in our measurements, splitting
the data sample into jackknife regions defined by each individual
MegaCam field. We combined the measurements in the different
CFHTLenS regions, weighting by the Npairs value for each bin re-
turned by ATHENA. Fig. 3 displays the resulting combined (ξ+, ξ−)
measurements in panels of pairs of tomographic bins.

We arranged the (ξ+, ξ−) measurements into a data vector fol-
lowing the convention of H13, such that for each unique pair of
tomographic bins, the ξ+ values are listed with increasing θ , fol-
lowed by the ξ− values. The pairs of tomographic bins ij are then
ordered as (11, 12, . . . , 17, 22, 23, . . . , 77). The length of the full
data vector is p = Nθ Nt(Nt + 1) = 392 elements, although this is
further pruned before cosmological fitting. Concretely, we cut our
data vector from p = 392 elements to p = 280 elements by removing
angular bins 1–3 for ξ− and the seventh angular bin for ξ+. This is
motivated by low signal to noise of the removed elements (bins 1–3
for ξ−), along with roughly 10 per cent covariance underestimation
for ξ+ in the seventh bin due to the finite box size for the simulations
(Harnois-Déraps & van Waerbeke 2015).

Lastly, when comparing cosmological constraints from our up-
dated CFHTLenS cosmic shear tomography measurements with
CMB measurements from the Planck satelite (Ade et al. 2016XIII;
Aghanim et al. 2016a), we include both CMB temperature and po-
larization information for Planck on large angular scales, limited
to multipoles � ≤ 29 (i.e. low-� TEB likelihood) and restrict our-
selves to CMB temperature information on smaller angular scales
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Figure 3. Measurements of the cosmic shear statistics ξ+ (upper triangle) and ξ− (lower triangle) against angular scale in arcminutes for all unique pairs
of the seven tomographic source bins, defined in Section 2.2. The error bars are determined using the mock catalogues described in Section 2.3. The grey
regions correspond to angular scales that were removed from the cosmology analysis, due to low signal-to-noise or covariance underestimation (discussed in
Section 2.2). Open circles denote negative points. Fiducial theory lines have been included in red (solid) for comparison.

(via the PLIK TT likelihood). Thus, we conservatively do not include
polarization data for the smaller angular scales and we also do not
include Planck CMB lensing measurements.

2.3 Covariance

We determined the covariance of our (ξ+, ξ−) measurements using
a set of mock catalogues created from a large suite of N-body simu-
lations which include a self-consistent computation of gravitational
lensing. Our covariance methodology follows the approach of H13,
with some enhancements described below.

Our starting point is the Scinet LIght Cone Simulations series
(Harnois-Déraps & van Waerbeke 2015), which consists of 500
N-body DM simulations created with the CUBEP3M code (Harnois-
Déraps et al. 2013) using a WMAP9+BAO+SN cosmological pa-
rameter set: matter density �m = 0.2905, baryon density �b =
0.0473, Hubble parameter h = 0.6898, spectral index ns = 0.969,
and normalization σ 8 = 0.826. Although the simulations are eval-
uated at a fixed cosmology, we assume that the cosmology depen-
dence of the resulting covariance matrix has negligible impact on our
cosmological parameter constraints following the explicit demon-
stration of this for a CFHTLenS-like survey in Kilbinger et al.

(2013) (also see Eifler, Schneider & Hartlap 2009). The box size
of the simulations is L = 505 h−1 Mpc. This is significantly larger
than the simulation set used for modelling the earlier CFHTLenS
measurements [L = (147, 231) h−1 Mpc], significantly reducing the
suppression of the large-scale signal and variance caused by the
finite box size. The simulations follow the non-linear evolution of
15363 particles inside a 30723 grid cube.

For each simulation, the density field is output at 18 redshift
snapshots in the range 0 < z < 3. The gravitational lensing shear
and convergence are computed at these multiple lens planes using
the Born approximation in the flat-sky approximation and a survey
cone spanning 60 deg2 is constructed by pasting together these
snapshots. A DM halo finder is also applied to the particle data at
each snapshot, such that self-consistent halo catalogues for each
cone are also produced.

Removing some rare cases of failed simulation outputs (e.g. due
to cooling failure or internode message passing failure from traffic
jam in the network), we use 497 independent simulations in our
analysis. We convert these simulation density and shear fields into
mock catalogues for our cosmic shear covariance using the fol-
lowing process. We note that although sources in the data set have
optimal lensfit weights used in cosmic shear analysis, we produce
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mocks in which all sources have uniform weight ws = 1, by building
the mocks using the weighted source densities, weighted redshift
distributions and weighted ellipticity variance measured from the
data.

(i) In order to gain a sufficient number of realizations that our
inverse covariance will not be unduly biased by noise in the sample
covariance estimator (Hartlap, Simon & Schneider 2007), we split
each 60 deg2 simulation box into 2 × 2 sub-divisions, producing
1988 ‘pseudo-independent’ sub-realizations (following H13, who
used 3 × 3 sub-divisions of a 12.84 deg2 box; each of our sub-
samples is therefore an order of magnitude larger).

(ii) We assigned a source redshift distribution to each survey cone
with a weighted effective surface density of 10.7 arcmin−2 using
the weighted CFHTLenS source redshift probability distribution (as
described above), Monte Carlo sampling sources from the density
field with bias bsource = 1. We ensured that sources are produced
with a continuous distribution in redshift by linearly interpolating
the shear across the finite redshift width of each snapshot.

(iii) We assigned the two-component gravitational shears
(γ 1, γ 2) to each source by linearly interpolating the shear fields
between the values at adjacent snapshot redshifts at the source po-
sitions.

(iv) A photometric redshift zB was assigned for each mock source
using a scattering probability function p(zB|zsim) as a function of its
simulation redshift zsim. This scattering function was constructed
from the CFHTLenS data set using a Monte Carlo technique sam-
pling from the full BPZ probability distribution of each source,
pBPZ(z), together with its measured zB value. Specifically, we sam-
pled a redshift zsamp from each pBPZ(z) distribution and then binned
the values of (zB, zsamp), weighting each galaxy by the lensfit weight
and determining the distribution over zB for each zsamp bin, normal-
izing such that

∫
p(zB) dzB = 1.

(v) We applied shape noise to the source catalogues by deter-
mining the complex noisy shear e = (γ + n)/(1 + n γ ∗) (Seitz &
Schneider 1997), where the components of observed shear (e1, e2)
are found as e = e1 + i e2, the true shear γ = γ 1 + i γ 2, and the
noise n = n1 + i n2. The noise components (n1, n2) are drawn from
Gaussian distributions with standard deviation σ e, which we cali-
brated as a function of zB using the weighted ellipticity variance of
the real data:

σ 2
e =

∑
i

(ws
i )

2 e2
i

/ ∑
i

(ws
i )

2. (18)

We find that σ e as a function of zB ranges between 0.26 and 0.29
with a mean of 0.28.

(vi) We applied small-scale masks to each sub-realization using
the ‘mosaic masks’ provided by the CFHTLenS team. Given that
these masks extend beyond the 15 deg2 area of each sub-realization
and that we require each sub-realization to possess identical mask-
ing to avoid introducing spurious noise, we consistently applied
the same 15 deg2 cut-out from the mask to every sub-realization.
However, given that the fraction of unmasked area varies between
the survey regions (owing, for example, to the varying stellar den-
sity with Galactic latitude), we repeated this process using mosaic
masks for each of the four survey regions {W1, W2, W3, W4} and
derived the final covariance as the area-weighted average of the four
determinations.

We hence produced nμ = 1988 pseudo-independent mock
CFHTLenS shear catalogues, matching the effective source density,
underlying spectroscopic redshift distribution, photo-z scatters, zB-
dependent shape noise, and small-scale masking to the real data set.

Figure 4. Ratio of the cosmic shear error determined by jackknife sampling
using ATHENA to that determined from the suite of mock catalogues, averaged
across all tomographic bins as a function of angular scale for ξ+ (black solid
circles) and ξ− (red open circles).

Figure 5. The correlation coefficient of the covariance matrix of the full
data vector, plotted using a grey scale where white represents r = 0 and
black represents r = 1.

We divided each mock catalogue by photometric redshift zB into
seven tomographic redshift bins and used ATHENA to measure the
cosmic shear statistics (ξ+, ξ−) for the same angular bins as defined
in Section 2.2, which we arranged in a data vector D (writing the
measurement of bin i in mock k as Dki). We then derived the data
covariance through ‘area-scaling’ as

Cov(i, j ) = Amock

Aeff (nμ − 1)

nμ∑
k=1

(
Dki − Di

) (
Dkj − Dj

)
, (19)

where Di = ∑nμ

k=1 Dki , Aeff is the unmasked area of the data deter-
mined above,and Amock is the unmasked area of the sub-realizations.
For mocks that include separations up to a few degrees the error
induced by area-scaling, as evaluated using equation 36 in Friedrich
et al. (2016), is small compared to other factors.
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Table 1. Exploring the impact of cosmological priors (applicable to Section 3.1.1 and Fig. 6). The four cases include the same uniform priors on {�ch2, �bh2,
θMC} and differ in the priors on {As, ns, h, kpivot}. Concretely, cases I and II have wider priors on {As, ns, h} than cases III and IV. The choice of pivot scale
further distinguishes case I from case II and case III from case IV (Planck- and WMAP-motivated, respectively). The cosmological parameters in this table are
defined as ‘vanilla’ parameters and θ s denotes the angular size of the sound horizon at the redshift of last scattering.

Parameter Symbol Prior case I Prior case II Prior case III Prior case IV

Cold dark matter density �ch2 0.001 → 0.99 0.001 → 0.99 0.001 → 0.99 0.001 → 0.99
Baryon density �bh2 0.005 → 0.1 0.005 → 0.1 0.005 → 0.1 0.005 → 0.1
100× approximation to θ s 100θMC 0.5 → 10 0.5 → 10 0.5 → 10 0.5 → 10
Amplitude of scalar spectrum ln (1010As) 1.7 → 5.0 1.7 → 5.0 2.3 → 5.0 2.3 → 5.0
Scalar spectral index ns 0.5 → 1.5 0.5 → 1.5 0.7 → 1.3 0.7 → 1.3
Dimensionless Hubble constant h 0.2 → 1.4 0.2 → 1.4 0.4 → 1.3 0.4 → 1.3
Pivot scale (Mpc−1) kpivot 0.05 0.002 0.05 0.002

The jackknife error estimates are computed by dividing the sur-
vey into sub-regions defined by the individual 1 deg2 MegaCam
pointings (also see Friedrich et al. 2016). The ratio of the error in
each bin determined from the suite of mock catalogues, to the er-
ror determined from jackknife re-sampling, is displayed in Fig. 4,
for the full data vector of 392 values ordered as described above.
The ratio is close to unity for small angular scales where jackknife
errors are reliable, but the jackknife error exceeds the dispersion of
the simulations by a factor of more than 1.5 on the largest scales.
Fig. 5 displays the full covariance matrix in the form of a correlation
coefficient,

r(i, j ) = Cov(i, j )/
√

Cov(i, i) Cov(j, j ). (20)

As in H13, we further obtain an unbiased estimate of the inverse
covariance matrix by implementing the multiplicative correction
advocated by Kaufman (1967) and Hartlap et al. (2007), such that

Cov−1
unbiased = nμ − p − 2

nμ − 1
Cov−1, (21)

where nμ is the number of pseudo-independent realizations and p
is the number of data points. For 280 elements in our data vector
and 1988 pseudo-independent realizations, we obtain a correction
of 0.86, while for a reduced data vector of 56 elements (considered
in the ‘max’ case defined in Section 3.5), we obtain a correction of
0.97. For both of these cases, our p/nμ ratios are sufficiently low
to avoid overestimating our Bayesian confidence regions by more
than ≈5 per cent (Hartlap et al. 2007). While Sellentin & Heavens
(2016) extend the analysis of Hartlap et al. (2007) by relaxing
the assumption of a Gaussian likelihood, this is mostly visible in
the tail of the distribution and does not significantly affect our
analysis.

3 R ESULTS

We now explore the cosmological constraints using the updated
CFHTLenS cosmic shear tomography measurements analysed with
the new cosmology fitting pipeline (described in Section 2.1.5). In
accordance with Kilbinger et al. (2013) and H13, we mainly illus-
trate the cosmological constraints in the σ 8–�m plane. We begin
with a discussion of the constraints when no systematic uncer-
tainties are included and then methodically include IA, baryonic
uncertainties in the non-linear matter power spectrum and photo-
metric redshift uncertainties, independently and jointly. We present
the main results of these cases associated with the goodness of fit,
DIC, Bayesian evidence, and data set concordance tests in Tables 3
and 5.

3.1 Including no systematic uncertainties

3.1.1 Impact of cosmological priors

As a first step, we explore the sensitivity of our weak lensing con-
straints to the choice of cosmological priors. To this end, we consid-
ered four separate cases, listed in Table 1. All of the cases assume
the same broad priors for {�ch2, �bh2, θMC} and they differ in the
priors for {As, ns, h, kpivot}. Cases I and II have wider priors on {As,
ns, h} than cases III and IV. We moreover allow for either a WMAP-
motivated pivot scale kpivot = 0.002 Mpc−1 or a Planck-motivated
pivot scale kpivot = 0.05 Mpc−1, as a different kpivot translates to
different values for As and ns and effectively changes the priors on
these parameters. This choice of pivot scale distinguishes case I
from case II and case III from case IV.

For the four cases considered, in the left-hand panel of Fig. 6, we
find significant differences in the marginalized posterior contours
along the σ 8–�m plane. However, the four cases show remarkable
agreement along the axis perpendicular to the degeneracy direc-
tion, such that the 2σ tension with Planck (reported earlier; e.g.
MacCrann et al. 2015) effectively remains at the same level of
significance regardless of the choice of priors. This is further man-
ifested in the right-hand panel of Fig. 6, where we illustrate the
constraints on σ8�

0.5
m . The marginalized posterior contours in the

σ 8–�m plane shrink when using tighter priors and also show a sen-
sitivity to the choice of pivot scale. This implies that current lensing
data from CFHTLenS is not sufficiently powerful to constrain the
full vanilla parameter space when considering non-informative pri-
ors. The only two parameters that are constrained on both ends by
the data are {�ch2, θMC}, while the other parameters are uncon-
strained in either one or both directions. Moreover, the four cases
differ from each other by at most �χ2

eff = 2.3, such that there is
no strong statistical preference between the respective best-fitting
points.

3.1.2 Choice of cosmological priors

While the contours in Fig. 6 could continue to expand by choos-
ing ever more conservative priors, the cosmological priors for the
four cases are all objectively conservative and we do not expect
the true values of the parameters to lie outside any of the ranges
specified in Table 1. In order to better understand if there exists a
real tension between CFHTLenS and Planck, we hereafter adopt
our fiducial case, consisting of case III with external priors on the
Hubble constant and baryon density from Cepheid data and BBN.
Concretely, we uniformly impose the prior 0.61 < h < 0.81, con-
sistent with Efstathiou (2014) at 99.7 per cent confidence level
(CL), and we uniformly impose the extremely conservative prior

MNRAS 465, 2033–2052 (2017)



CFHTLenS revisited 2043

Figure 6. Marginalized posterior contours in the σ 8–�m plane (inner 68 per cent CL, outer 95 per cent CL) from the updated CFHTLenS cosmic shear
tomography measurements with different choices of cosmological priors (purple, grey, green, blue, for cases I–IV), defined in Table 1. The Planck contour is
included for comparison in red (where our Planck data set is defined in Section 2.2). Right: same as the left-hand panel, except now showing contours in �m

against σ8�
0.5
m , orthogonal to the σ 8–�m degeneracy direction.

Figure 7. Marginalized posterior contour in the σ 8–�m plane (inner
68 per cent CL, outer 95 per cent CL) from the updated CFHTLenS cosmic
shear tomography measurements (CFHTLenS-J16; in purple), with fidu-
cial cosmological priors listed in Table 2. For comparison, including the
corresponding contour using the H13 measurements with our fiducial cos-
mological priors (CFHTLenS-H13; in blue) and the CMB measurements
from Planck (in grey).

0.013 < �bh2 < 0.033 (allowing for potential systematics and ex-
otic physics), consistent with Burles, Nollett & Turner (2001), Olive
& Particle Data Group (2014), and Cyburt et al. (2016). As these
external priors are completely consistent with Planck, any further
tension with Planck would therefore derive from CFHTLenS.

Given these choices for the priors, we show the resulting contours
in the σ 8–�m plane in Fig. 7. In addition to using the measurements
and covariance described in this paper (denoted ‘CFHTLenS-J16’
with a data vector consisting of 280 elements given seven tomo-
graphic bins), we also show the resulting contour using the origi-
nal CFHTLenS measurements and covariance from H13 (denoted
‘CFHTLenS-H13’ with a data vector consisting of 210 elements
given six tomographic bins). We find that the two analyses agree
well and that there seems to be a marginal increase in the ten-

sion with Planck for the new measurements. As for the statistical
goodness of the lensing fits, we find χ2

red = 1.51 for the new mea-
surements, as compared to χ2

red = 1.19 for the old measurements.
The reduction in the ‘goodness of fit’ between the two analyses

derives from two changes in the analysis. The first change is the
use of a new suite of N-body simulations to determine the covari-
ance matrix. In H13, the field of view of the 184 simulations used
was only 12.84 deg2. In order to gain enough mock realizations to
accurately invert the covariance matrix, they split the simulations
into 3 × 3 sub-realizations such that each sub-realization was close
in size to the ≈53 arcmin maximum scale measured for the lensing
statistics. Pairs on those scales were therefore ‘missing’ due to edge
effects and as a result, the error on large scales was overestimated.
In our analysis, the field of view of the 497 simulations used is
60 deg2 and we can therefore measure the large-scale simulated
covariance accurately. As the CFHTLenS data are a poorer fit to the
model on large scales, the reduction in errors on large scales results
in an increased χ2

red.
While our new covariance analysis is certainly an improvement

on H13, it also does not include supersample variance terms (Takada
& Hu 2013). These supersampling variance errors contribute to all
angular scales and are missing from our calculation as very large-
scale modes in the density field are not simulated in the finite box
of the N-body simulations. However, from the good agreement be-
tween the jackknife and simulated errors in Fig. 4, we can conclude
that these supersample terms are not significant on small scales
where the majority of the cosmological information is accessed. On
large scales, including supersample terms is likely to improve the
goodness of fit of the data, an analysis that we will pursue in future
work.

The second change in our analysis is the use of angular scales
larger than the 50 arcmin limit of H13, introduced owing to the lim-
itation of their simulations. Asgari et al. (2017) have recently pre-
sented an optimal E/B mode decomposition analysis of CFHTLenS
using the COSEBIs statistic (Schneider, Eifler & Krause 2010;
Asgari, Schneider & Simon 2012). This analysis reveals signifi-
cant B modes on large angular scales (θ > 40 arcmin) that do not
derive from gravitational lensing, which exhibits a pure E-mode sig-
nal. These B modes are further enhanced when the data are analysed
in tomographic bins.
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Table 2. Priors on the systematic degrees of freedom when considered
independently (applicable to Sections 3.1.2–3.4 and Figs 7–11). We also list
the fiducial cosmological priors (applicable everywhere from Section 3.1.2).
The ‘→’ sign indicates uniform priors and the ‘±’ sign indicates Gaussian
priors. When the IA parameters and photo-z bins are fixed, they are set to
zero. Since we do not have external information on the sixth and seventh
photo-z bins, when considering an informative photo-z scenario, we keep
non-informative priors on these bins. Please note that we have imposed
informative priors on the baryon density and Hubble constant, as described
in Section 3.1.2. The cosmological parameters in this table are defined as
‘vanilla’ parameters and θ s denotes the angular size of the sound horizon at
the redshift of last scattering.

Parameter Symbol Prior

Cold dark matter density �ch2 0.001 → 0.99
Baryon density �bh2 0.013 → 0.033
100 × approximation to θ s 100θMC 0.5 → 10
Amplitude of scalar spectrum ln (1010As) 2.3 → 5.0
Scalar spectral index ns 0.7 → 1.3
Dimensionless Hubble constant h 0.61 → 0.81
Pivot scale (Mpc−1) kpivot 0.05

IA amplitude A −50 → 50
– informative case −6 → 6

IA redshift dependence η −50 → 50
– informative case 0

IA luminosity dependence β −50 → 50
– informative case 1.13 ± 0.25

HMCODE feedback amplitude log B 0 → 2
– informative case 0.3 → 0.6
– when fixed 0.496

Photo-z bin 1 �z1 −0.1 → 0.1
– informative case −0.045 ± 0.013

Photo-z bin 2 �z2 −0.1 → 0.1
– informative case −0.014 ± 0.010

Photo-z bin 3 �z3 −0.1 → 0.1
– informative case 0.008 ± 0.008

Photo-z bin 4 �z4 −0.1 → 0.1
– informative case 0.042 ± 0.017

Photo-z bin 5 �z5 −0.1 → 0.1
– informative case 0.042 ± 0.034

Photo-z bin 6 �z6 −0.1 → 0.1
Photo-z bin 7 �z7 −0.1 → 0.1

Asgari et al. (2017) also present a compressed-COSEBIs analysis
of CFHTLenS (formalism introduced in Asgari & Schneider 2015),
where the COSEBIs are optimally combined to extract cosmological
information. In this compressed analysis, the recovered B modes
are consistent with zero (except for the blue galaxy case in the
40–100 arcmin range with six tomographic bins). If we assume
that the systematics that introduce B modes into the data contribute
equally to the E and B modes, we can conclude that these systematics
will impact on the goodness of fit of the E mode, particularly on large
scales where the B modes are found to be at their strongest. However,
as the compressed cosmological parameter analysis results in a zero
B mode, in particular when the full galaxy sample is considered,
these B modes are not degenerate with cosmological parameters
and are therefore fairly benign in the cosmological analysis that
follows, particularly when we allow for uncertainty in the three
astrophysical sources of systematics that we focus on in this paper.
We will investigate the origin of these B modes further in future
work.

Table 3. Exploring changes in χ2
eff and DIC for different choices of system-

atic uncertainties, given fiducial cosmological priors. The reference vanilla
model without systematic uncertainties gives χ2

eff = 414.6 and DIC = 421.7
when using HALOFIT and χ2

eff = 416.4 and DIC = 423.3 when using HMCODE

(with fixed log B = 0.496). Since the size of the data vector for the ‘max’
case is significantly smaller than the size of the fiducial data vector (where
the max case keeps only ‘large’ angular scales and is defined in Section 3.5),
we calculate the difference in χ2

eff and DIC with respect to the measurements
used for the ‘max’ case but without systematic uncertainties. For this re-
duced data vector, χ2

eff = 86.8 and DIC = 92.0, considering HMCODE with
log B = 0.496.

Model �χ2
eff �DIC

vanilla + A −5.8 −4.6
– informative case −5.7 −4.9

vanilla + {A, η, β} −21 12
– informative case −0.72 2.4

vanilla + B −1.9 −0.64
– informative case −0.22 1.4

vanilla + 7 photo-z −6.0 0.97
– informative case 1.5 11

vanilla + min case −10 1.6
vanilla + mid-case −1.1 12
vanilla + max case −25 19

We now proceed to exploring the impact of three distinct sys-
tematic uncertainties on our results: intrinsic galaxy alignments,
baryonic uncertainties in the non-linear matter power spectrum,
and photometric redshift uncertainties.

3.2 Including intrinsic galaxy alignments

We begin by including the three systematic uncertainties indepen-
dently, before accounting for them jointly. The first of these sys-
tematic uncertainties comes from the IA of galaxies. We consider
two separate scenarios, one in which we only allow for a vari-
ation of the amplitude A (defined in equation 7) and a second
scenario in which we also allow for a possible redshift and lu-
minosity dependence of the IA signal via the two parameters η and
β, respectively. For each of the two scenarios, we consider both
informative and non-informative priors. We specify these priors in
Table 2.

More specifically, when varying the vanilla parameters along
with A, we let the amplitude vary uniformly in the range {−50, 50}
for the non-informative case and uniformly in the range {−6, 6}
for the informative case. When varying the vanilla parameters with
{A, η, β}, we let each of the IA parameters vary uniformly in the
range {−50, 50} for the non-informative case. For the informative
case, we let A vary uniformly in the range {−6, 6} , we fix η = 0,
and we impose β = 1.13 ± 0.25 as a Gaussian prior (motivated by
Joachimi et al. 2011).

While our non-informative priors are reasonably wide, our infor-
mative priors are driven by the fact that our sample is dominated
by blue galaxies, which are known to be less sensitive to IA ef-
fects. We have therefore taken the tightest available luminosity
and redshift dependent constraints determined from red galaxies
as the ‘worst-case scenario’ for the luminosity and redshift depen-
dence of the dominant blue galaxies in the sample (from Joachimi
et al. 2011, consistent with Singh, Mandelbaum & More 2015),
while also encompassing the luminosity and redshift dependence
in the red sample. For the informative case, we set η = 0 given the
lack of evidence for redshift evolution in Joachimi et al. (2011) and
Singh et al. (2015). We further allow for negative values of the IA
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Figure 8. Left: marginalized posterior contours in the σ 8–�m plane (inner 68 per cent CL, outer 95 per cent CL) from the updated CFHTLenS cosmic shear
tomography measurements, considering fiducial cosmological priors, where the IA amplitude A is allowed to vary with both informative and non-informative
priors on the amplitude (in green and purple, respectively). We moreover include the fiducial (no-systematics) cosmic shear and Planck CMB contours for
comparison (in blue and grey, respectively). The fiducial cosmological and IA priors are listed in Table 2. Right: marginalized posterior contours where all
three IA parameters {A, η, β}, encapsulating the amplitude, redshift dependence, and luminosity dependence of the IA, respectively, are allowed to vary jointly
(with both informative and non-informative priors on the three parameters, in green and purple, respectively). Fiducial cosmic shear and Planck CMB contours
included for comparison (in blue and grey, respectively).

amplitude as the best-fitting model for a mixed population could
result in such values, as discussed in H13.

In Fig. 8, we show the marginalized posterior contours in the
σ 8–�m plane for different IA models. When varying the vanilla
parameters with the IA amplitude (i.e. without luminosity or redshift
dependence), the contours slightly degrade due to the extra degree of
freedom despite the additional cosmological information contained
in the II and GI terms (described in Section 2.1.2). The contours
moreover shift towards larger values of σ 8 and smaller values of the
matter density (evident from equation 7), increasing the tension with
Planck. The degradation and shift in the contours are in agreement
with H13, who pointed out that σ 8 is driven towards larger values
by negative best-fitting estimates of the IA amplitude.

The observed behaviour applies to both the non-informative and
informative cases, as the non-informative constraint on the IA am-
plitude is A = −3.6 ± 1.6 (corresponding to the mean of the pos-
terior distribution along with the symmetric 68 per cent confidence
interval about the mean), which implies that the informative case
will give similar constraints. As seen in Table 3, the informative and
non-informative cases only differ from each other by �χ2

eff = 0.1.
They further differ from the A = 0 scenario by �χ2

eff = −5.8 for
the non-informative case and �χ2

eff = −5.7 for the informative
case. The penalty due to the increased Bayesian complexity gives
�DIC = −4.6 for the non-informative case and �DIC = −4.9 for
the informative case.

Thus, there seems to be substantial preference in favour of a non-
zero and negative IA amplitude (as also found in Fig. 9). While
the IA amplitude for a single sample must be positive, for a mixed
sample, the best-fitting model can be negative, as described in H13.
Thus, this could be a sign that the model is a good fit to red galaxies,
while the majority of our sample is blue. Alternatively, the negative
IA amplitude could imply that the IA model we use is too simplistic
or the result of unaccounted systematics. For instance, photometric
redshift errors could also mimic IA-like behaviour, so this could be
a sign that the low-redshift source distributions are inaccurate.

In Fig. 8, we further show the cosmological constraints as we
let all three IA parameters vary simultaneously. We note that this

Figure 9. Marginalized posterior contours in the plane given by σ8�
0.5
m

and IA amplitude A (inner 68 per cent CL, outer 95 per cent CL) from the
updated CFHTLenS cosmic shear tomography measurements, considering
both informative and non-informative priors on the IA parameters {A, η,
β}, encapsulating the amplitude, redshift dependence, and luminosity de-
pendence of the IA, respectively. The fiducial cosmological and IA priors
are listed in Table 2.

three-parameter model has not been fit to large-scale cosmic shear
data before; for example, H13 only considered varying the IA am-
plitude and Abbott et al. (2016) considered a two-parameter model
with a varying amplitude and redshift dependence. When imposing
informative priors on {A, η, β}, the additional degree of freedom
from the luminosity dependence causes the contour in the σ 8–�m

plane to effectively transform back to the original contour given by
the A = 0 scenario. This is because our prior on β decreases the
strength of the IA II and GI terms in the lensing calculation, even
though A is unbounded within the region given by the prior. Hence,
the cosmological constraints with a large value of β mimic the
constraints for the scenario with no IA. There is therefore less ten-
sion with Planck for this model than the one-parameter IA model
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Figure 10. Left: marginalized posterior contours in the σ 8–�m plane (inner 68 per cent CL, outer 95 per cent CL) from the updated CFHTLenS cosmic shear
tomography measurements when using either HMCODE or HALOFIT for the non-linear matter power spectrum (in blue and green, respectively), where the HMCODE

feedback amplitude log B is fixed to its fiducial DM-only value of 0.496. The Planck contour is included for comparison (in grey) and the cosmological priors are
listed in Table 2. Right: marginalized posterior contours where the HMCODE feedback amplitude is allowed to vary (with both informative and non-informative
priors on the amplitude, listed in Table 2, in red and green, respectively). The fiducial cosmic shear contour (where log B = 0.496) and the Planck CMB contour
are included for comparison (in brown and grey, respectively).

that we first considered. Here, we find �χ2
eff = −0.72, while �DIC

= 2.4 shows a weak preference against the extended IA model.
When considering non-informative priors on {A, η, β}, we find

an enlarged contour towards smaller values of the matter density
(where the enlarged region is consistent with extremely negative
values of the IA amplitude as seen in Fig. 9). While the IA am-
plitude is completely unconstrained, we find one-sided bounds on
−50 < η < 8.0 and 0.54 < β < 50 at 95 per cent CL (where
β > 0 even at 99.7 per cent CL). In other words, η and β are
taking on values that exclude potentially enormous IA signals and
are, in fact, consistent with a negligible signal. The range for η

is moreover consistent with no redshift evolution, while the range
for β shows a weak preference for a luminosity dependence of the
IA. Interestingly, we find �χ2

eff = −21 for this three-parameter IA
model, while the increased Bayesian complexity of the model is
severely penalized in �DIC = 12. This demonstrates the extreme
usefulness of the information criterion, as it determines the three-
parameter IA model to be less preferred than the reference model
without IA.

3.3 Including baryonic uncertainties in the non-linear matter
power spectrum

We now proceed to another important systematic coming from bary-
onic uncertainties in the non-linear matter power spectrum. We
account for the baryonic effects by varying the HMCODE feedback
amplitude B, described in Section 2.1.4. For the scenario with only
DM, we fix log B = 0.496 as advocated in Mead et al. (2015).

In Fig. 10, we first show the marginalized posterior contours
in the σ 8–�m plane corresponding to the use of either HALOFIT or
HMCODE for the non-linear extension to the matter power spectrum,
considering no baryonic effects on non-linear scales (such that log B
is fixed to its fiducial value of 0.496 for HMCODE). As one would ex-
pect from Mead et al. (2015), which is in excellent agreement with
Takahashi et al. (2012) for cosmologies where no baryonic effects
are included, the contours agree remarkably well for this DM-only
scenario. This implies the two matter power spectrum prescriptions
can be used interchangeably when baryonic effects are not included

Figure 11. Marginalized posterior contours in the σ 8–�m plane (inner
68 per cent CL, outer 95 per cent CL) from the updated CFHTLenS cosmic
shear tomography measurements for different treatments of the photometric
redshift uncertainties. The contour where the fiducial redshift distribution
is used is given in brown, the contour where the redshift distribution is per-
turbed according to the results from source–lens cross-correlations in Choi
et al. (2016) is given in green, and the contour where the redshift distribu-
tion is perturbed with uniform priors of |�zi| = 0.1 in each tomographic
bin is given in blue. The Planck contour is included for comparison in grey,
while the fiducial cosmological and photometric redshift priors are listed in
Table 2.

on non-linear scales. Since HALOFIT is faster than HMCODE (as dis-
cussed in Section 2.1.5), this has allowed us to comfortably use
HALOFIT for our runs where HMCODE is not directly needed (i.e. when
non-linear baryonic effects are not included). As for the relative
fits for the DM-only scenario, using either HMCODE or HALOFIT, we
find a difference of �χ2

eff = 1.8 and �DIC = 1.5 between the mod-
els, such that they are close to equally preferred (with the weak
preference in favour of HALOFIT).

In Fig. 10, we further show the constraints when allowing the
amplitude B in HMCODE to vary freely, considering both informa-
tive and non-informative priors (listed in Table 2). We take the
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Table 4. Exploring changes in systematic priors for three joint scenarios (applicable to Section 3.5 and Fig. 12). The ‘min’ case corresponds to the most
optimistic scenario for the priors and the ‘max’ case corresponds to the most conservative scenario, while the ‘mid-’ case lies between these two scenarios. In
our language, keeping ‘all’ angular scales implies the data vector consists of 280 elements, while keeping ‘large’ angular scales implies the data vector consists
of 56 elements, as discussed in Section 3.5. The ‘→’ sign indicates uniform priors and the ‘±’ sign indicates Gaussian priors. Moreover, the priors on the
underlying cosmology are the same as in Table 2.

Parameter Symbol Min-case Mid-case Max case

IA amplitude A −6 → 6 −6 → 6 −50 → 50
IA luminosity dependence β 0 1.13 ± 0.25 −50 → 50
IA redshift dependence η 0 0 −50 → 50
HMCODE feedback amplitude log B 0.3 → 0.6 0.3 → 0.6 0 → 2
Photo-z bin 1 �z1 −0.045 ± 0.013 −0.045 ± 0.050 −0.1 → 0.1
Photo-z bin 2 �z2 −0.014 ± 0.010 −0.014 ± 0.050 −0.1 → 0.1
Photo-z bin 3 �z3 0.008 ± 0.008 0.008 ± 0.050 −0.1 → 0.1
Photo-z bin 4 �z4 0.042 ± 0.017 0.042 ± 0.050 −0.1 → 0.1
Photo-z bin 5 �z5 0.042 ± 0.034 0.042 ± 0.050 −0.1 → 0.1
Photo-z bin 6 �z6 −0.1 → 0.1 −0.1 → 0.1 −0.1 → 0.1
Photo-z bin 7 �z7 −0.1 → 0.1 −0.1 → 0.1 −0.1 → 0.1
Angular scales θ All All Large

informative prior to uniformly cover the range 0.3 < log B < 0.6,
which effectively corresponds to the range given by the best-fitting
values of the {DMONLY, REF, DBLIM, AGN} cases in the OWL
simulations (Schaye et al. 2010; van Daalen et al. 2011), as demon-
strated by Mead et al. (2015). This informative case gives a contour
that marginally prefers larger values of σ 8, while �χ2

eff = −0.22
and �DIC = 1.4 (as compared to the case where log B is fixed to
0.496), suggesting that there is no strong preference for or against
the additional degree of freedom. In other words, the constraining
power of the weak lensing data set from CFHTLenS seems to be in-
adequate to distinguish the DM-only model for the non-linear matter
power spectrum from one of the models of the OWL simulations.

For the non-informative case, the HMCODE feedback amplitude is
constrained by the data such that 0.37 < log B < 1.1 at 95 per cent
CL. The resulting contour is both expanded and shifted to smaller
values of σ 8 (in the plane with �m). This downward shift in σ 8 is
caused by unnaturally large values of B that are allowed by the data,
despite the baryonic OWL simulation models preferring values of
B below the fiducial value (as B and σ 8 are anticorrelated). Thus,
as compared to the fiducial model, allowing for an extra degree of
freedom in the non-linear matter power spectrum does not seem
to alleviate the tension between CFHTLenS and Planck. Moreover,
�χ2

eff = −1.9 and �DIC = −0.64, which again implies the data
does not strongly prefer B to stray away from its fiducial DM-only
value.

3.4 Including photometric redshift uncertainties

We now turn to the third key systematic: photometric redshift un-
certainties. We consider seven tomographic bins in our analysis and
therefore introduce seven new parameters to allow the source dis-
tribution of each tomographic bin to shift along the redshift axis,
preserving the shape of each distribution.

As shown in Table 2, we consider two distinct cases for our priors,
one where −0.1 < �zi < 0.1 for each tomographic bin (varied
uniformly) and one where Gaussian priors are obtained from Choi
et al. 2016 (with minor variations; hereafter also denoted C15) for
the first five tomographic bins, while the last two bins are varied
uniformly between −0.1 and 0.1. The informative priors are derived
by fitting angular cross-correlation function measurements between
sources in each tomographic bin and an overlapping spectroscopic
sample from BOSS, as detailed in Choi et al. (2016). The priors

are only available for the first five tomographic bins, given the
redshift coverage of BOSS and the numbers differ slightly from
those presented in Choi et al. (2016) because of more conservative
error estimation and a different normalization scheme.6 The two
sets of numbers agree well within the 1σ error bars and the choice
of normalization has a negligible impact on our analysis.

In Fig. 11, we show the marginalized posterior contours in the
σ 8–�m plane for the different treatments of the redshift distribution.
For both informative and non-informative prior cases, we find only
small changes in the contours along the σ 8–�m plane as compared
to the fiducial scenario where the redshift distribution is fixed, in
agreement with a similar analysis in Abbott et al. (2016). Here, the
informative contour is marginally expanded, but not in the region
that would increase the agreement with Planck, while the non-
informative contour is marginally expanded and shifted towards the
Planck contour.

While the tomographic shifts are given by C15 for the infor-
mative case (aside from the last two bins, which are found to be
entirely unconstrained within the prior), at 95 per cent CL, we find
−0.06 < �z1 < 0.1, −0.03 < �z2 < 0.1, −0.1 < �z3 < 0.1,
−0.05 < �z4 < 0.1, −0.1 < �z5 < 0.1, −0.1 < �z6 < 0.06, −0.1
< �z7 < 0.1 for the case with uniform priors (|�zi| = 0.1). These
bounds demonstrate that the constraints are weak and the uncer-
tainties would increase with wider priors. For the C15 case, we find
�χ2

eff = 1.5 and �DIC = 11, such that the more complex model
seems to be strongly disfavoured by the data as compared to the
fiducial model. This finding is in agreement with the conclusions of
Choi et al. (2016), who showed that the best-fitting model for the
one-parameter shift of the n(z) used in our ‘min’ case (and advo-
cated in Abbott et al. 2016) is actually insufficient to encompass the
errors in the CFHTLenS redshift distributions. Significantly better
fits to the spectroscopic–photometric cross-correlation clustering
measurements can be obtained when the width of the redshift distri-
bution is allowed to vary along with the peak. We will explore this

6 See section 2.5 of Choi et al. (2016) for details of the redshift probabil-
ity distribution shifting procedure. Whenever negative shifts were applied,
the BPZ probability distributions were renormalized by the integrated prob-
ability including negative redshifts. The renormalization performed in the
process of obtaining our priors neglects the probability distribution shifted
to negative redshifts.
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Figure 12. Left: marginalized posterior contours in the σ 8–�m plane (inner 68 per cent CL, outer 95 per cent CL) from the updated CFHTLenS cosmic shear
tomography measurements for the joint analysis of the systematic uncertainties, where the priors on the cosmological and systematic degrees of freedom are
listed in Tables 2 and 4, respectively. We include the ‘min’ case in purple, ‘mid-’ case in blue, ‘max’ case in grey, and fiducial case in green. The fiducial case
keeps the HMCODE feedback amplitude log B fixed at the DM-only value of 0.496 and does not include any systematic uncertainties. We further include the
Planck CMB contour for comparison in red. Right: same as the left-hand panel, except now showing contours in �m against σ8�

0.5
m , orthogonal to the σ 8–�m

degeneracy direction.

further freedom in the photometric redshift distribution uncertainty
in future work.

For the case with uniform priors on all tomographic bins, �χ2
eff =

−6.0 and �DIC = 0.97. Thus, the goodness of fit improves when
allowing for uniform deviations around the fiducial distribution, as
opposed to the shifts advocated by C15, but keeping the new degrees
of freedom is not preferred by the data.

3.5 Joint account of systematic uncertainties

Within the �CDM cosmology, we now consider the joint analysis
of systematic uncertainties coming from IA of galaxies, non-linear
baryonic physics in the matter power spectrum, and photometric
redshift errors. To this end, we set up three distinct cases for the
priors on the new degrees of freedom, a minimum (‘min’) case
with informative priors, a maximum (‘max’) case with conservative
priors, and a middle (‘mid-’) case with a combination of informative
and conservative priors. We list the priors for these three cases in
Table 4. Meanwhile, for the underlying cosmology, we continue to
impose the fiducial priors given in Table 2.

For the ‘min’ case, we assume an informative uniform prior on
the IA amplitude of −6 < A < 6 and exclude a luminosity or
redshift dependence of the IA signal. We assume an informative
uniform prior on the HMCODE amplitude 0.3 < log B < 0.6, while
the fiducial tomographic redshift distributions are perturbed by the
shifts given in Choi et al. 2016 (aside from the last two bins, as
discussed in Section 3.4). For the ‘mid-’ case, we keep the same
settings as for the ‘min’ case, except we now allow for a luminosity
dependence via β = 1.13 ± 0.25 and we increase the error bars on
the C15 redshift shifts to |�zi| = 0.05. Lastly, for the ‘max’ case,
we impose wide priors on all systematic degrees of freedom, such
that −50 < {A, η, β} < 50, 0 < log B < 2, and −0.1 < �zi < 0.1.

As described in Section 2.2, our measurements are evaluated
at seven angular bins (for each of the seven tomographic bins).
However, for the ‘max’ case, we consider removing the dependence
on non-linear scales in the matter power spectrum altogether. To
this end, we follow Ade et al. (2016XIV) and cut our data vector
by removing ξ− entirely and keeping ξ+ for θ > 17 arcmin. In

practice, this implies we only keep our measurements of ξ+ at 21.7
and 43.0 arcmin (since we already remove the ξ+ measurements
at 85.2 arcmin in the fiducial data vector), such that the downsized
data vector consists of 56 elements (from the fiducial vector of 280
elements, itself originally downsized from 392 elements).

In Fig. 12, we show the marginalized posterior contours for the
three systematic cases along the σ 8–�m plane. For the ‘min’ case,
which includes informative priors on the systematic uncertainties,
the main change to the contour comes from the freedom in the IA
amplitude. This is because the impact of the baryonic and photo-
metric redshift uncertainties is marginal when imposing informative
priors (as seen in Sections 3.3 and 3.4). As expected from the left-
hand panel of Fig. 8, where only the IA amplitude is varied freely
(in addition to the vanilla cosmological parameters), the expanded
‘min’ contour primarily shifts towards smaller values of the mat-
ter density and away from the Planck contour, as compared to the
fiducial case with no systematic uncertainties included. Thus, for
the min case, σ8�

0.5
m = 0.372+0.023

−0.022 (68 per cent CL), as compared
to σ8�

0.5
m = 0.401+0.016

−0.017 (68 per cent CL) for the fiducial case.
Proceeding from the ‘min’ case to the ‘mid-’ case, the expanded

contour is shifted back to values of {σ 8, �m} that overlap with
those of the fiducial scenario due to the additional degree of freedom
from the luminosity dependence. More specifically, the parameter
β is sufficiently large to decrease the IA signal, consistent with
the behaviour seen for the informative case in the right-hand panel
of Fig. 8. The contour for the ‘mid-’ case is moreover expanded
in the σ 8 direction due to the photometric redshift uncertainties,
consistent with the behaviour seen in Fig. 11. The combination
of these two effects brings the ‘mid’ contour in greater agreement
with Planck (as compared to the fiducial case), as also quantified by
σ8�

0.5
m = 0.404+0.021

−0.021 (68 per cent CL).
In the ‘max’ case, a combination of conservative priors and down-

sized data vector increases the size of the contour to such an ex-
tent that it encloses all of the aforementioned contours, including
the Planck contour. It is clear that in this pessimistic scenario, the
CFHTLenS data set is only able to place weak constraints in the
σ 8–�m plane, with σ8�

0.5
m = 0.395+0.074

−0.064 (68 per cent CL), although
it does retain the anticorrelated shape between σ 8 and the matter
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Table 5. Exploring changes in logC, logI, and lnB01 for different choices
of systematic uncertainties given fiducial cosmological priors. For logC and
logI, positive values indicate concordance between CFHTLenS and Planck,
while negative values indicate discordance between the data sets. For lnB01,
which only considers CFHTLenS data, positive values indicate the fiducial
model is preferred, while negative values indicate that the extended model
is preferred. We note that ‘ln’ refers to the natural logarithm, while ‘log ’
refers to the common logarithm (base 10). The Planck CMB evidence is
given by lnZ = −5680.5, while the vanilla CFHTLenS evidence is given
by lnZ = −214.9 when using HMCODE with feedback amplitude log B =
0.496. The vanilla CFHTLenS evidence for the downsized data vector of the
‘max’ case is lnZ = −47.9 (considering log B = 0.496). From these num-
bers and those in the table, the individual evidences can be reconstructed.
Moreover, Planck’s DIC = 11297.1, which can be used to reconstruct the
joint DIC estimates from the logI estimates in this table and the DIC esti-
mates from Table 3. The errors in our calculations of logC and 2 lnB01 are
approximately 0.2 and 0.3, respectively. For the joint systematics calcula-
tions, we consistently use HMCODE for the non-linear matter power spectrum.

Model logC logI 2 lnB01

vanilla (HMCODE, B fixed) −0.47 −0.98 0
vanilla (HALOFIT) −0.96 −1.6 −1.9
vanilla + min case −1.8 −2.6 −6.6
vanilla + mid-case 0.51 −0.28 1.3
vanilla + max case 0.90 0.62 −0.52

density. Thus, from the marginalized posterior contours, it seems
the introduction of key systematic uncertainties from IA, baryons,
and photometric redshifts is able to alleviate the tension with Planck
for the more conservative ‘mid-’ and ‘max’ cases (as compared to
the fiducial case). However, as pointed out in e.g. Raveri (2016),
there is a risk of biasing one’s conclusions when assessing data
set concordance from marginalized posterior contours. We there-
fore proceed to evaluate the three cases of the joint analysis more
quantitatively.

In the joint analysis, we find �χ2
eff = −10, �DIC = 1.6, and

2 lnB01 = −6.6 for the ‘min’ case (with respect to the fiducial case
and where B01 refers to the Bayes factor defined in Section 2.1.7).
This illustrates the usefulness of model selection based on multi-
ple statistics, as the DIC and evidence estimates point in somewhat
different directions. This may be a reflection of the parameter pri-
ors, analogous to the ‘Jeffreys–Lindley paradox’ (Lindley 1957;
Jeffreys 1961; also see Cousins 2014) We follow the prescription in
Kunz et al. (2006) and conclude that despite the increased complex-
ity, the improvement in the evidence is sufficiently large to warrant
the ‘min’ case as favoured by the data.

For the ‘mid-’ case, �χ2
eff = −1.1, �DIC = 12, and 2 lnB01 =

1.3, which implies a preference against the more complex model
at a greater significance when employing the DIC as compared to
the evidence. For the ‘max’ case, we find �χ2

eff = −25, �DIC =
19, and 2 lnB01 = −0.52, such that this model is roughly equally
favoured to the ‘vanilla’ model when employing the evidence, but
highly disfavoured when accounting for its increased complexity.
We note that the changes in χ2

eff , evidence, and DIC for the ‘max’
case are when compared to a fiducial case using the downsized data
vector keeping ‘large’ angular scales but without systematics. For
this fiducial case, χ2

red = 1.74, up from χ2
red = 1.51 when including

‘all’ scales, suggesting that the high χ2
red is exacerbated on large

scales (in agreement with the discussion in Section 3.1.2).
Turning to the question of data set concordance between

CFHTLenS and Planck, we computed both the log C and logI
statistics (defined in equations 14 and 15, respectively), with results
shown in Table 5. These two data set concordance tests are, re-

spectively, based on the Bayesian evidence and information theory,
detailed in Section 2.1.7. For the scenario without systematic uncer-
tainties included, we find log C = −0.47 and logI = −0.98 when
employing HMCODE for the non-linear matter power spectrum (with
DM-only feedback amplitude of log B = 0.496), showing substan-
tial degree of discordance between CFHTLenS and Planck for the
two statistics. When instead employing HALOFIT for the non-linear
matter power spectrum, log C = −0.96 and logI = −1.6, pointing
towards strong discordance between the data sets. The increase in
the discordance between the data sets when employing HALOFIT (as
compared to HMCODE) is in agreement with the increased separa-
tion in the marginalized posterior contours in the σ 8–�m plane in
Fig. 7. As shown in Table 5, the Bayes factor for the vanilla �CDM
model with HMCODE relative to HALOFIT is 2 lnB01 = −1.9, such that
the evidence is marginally improved when employing HALOFIT as
compared to HMCODE (with log B = 0.496).

Including systematic uncertainties, we find log C = −1.8 and
logI = −2.6 for the ‘min’ case, which demonstrates strong degree
of discordance between the data sets for the log C statistic and deci-
sive degree of discordance for the logI statistic. This increase in the
discordance between the data sets is consistent with the increased
separation between the Planck and CFHTLenS marginalized poste-
rior contours in the σ 8–�m plane in Fig. 12. For the ‘mid-’ case, we
find log C = 0.51 and logI = −0.28, such that logI is consistent
with weak discordance, while log C lies on the border between weak
concordance and substantial concordance. This again seems to be
consistent with the partial overlap in the CFHTLenS and Planck
marginalized posterior contours in Fig. 12. For the ‘max’ case, we
find log C = 0.90 and logI = 0.62, such that logI is consistent
with substantial concordance between the data sets, while log C lies
on the border between substantial concordance and strong concor-
dance. Thus, even though the marginalized posterior contour for
this case completely envelopes the Planck contour in Fig. 12, the
degree of concordance between the data sets is not as impressive as
naively expected prior to the execution of the log C and logI tests.

We can conclude that the question of data set concordance be-
tween CFHTLenS and Planck is sensitive to the exact details of
the systematic uncertainties coming from intrinsic alignments, pho-
tometric redshift uncertainties, and baryonic uncertainties in the
non-linear matter power spectrum. For our ‘min’ scenario there
seems to strong-to-decisive discordance between the data sets, for
the ‘mid-’ scenario there seems to be weak discordance to sub-
stantial concordance, and for the ‘max’ scenario there seems to
be substantial concordance. These results are largely in agreement
with the a priori expectation from the marginalized posterior con-
tours in the σ 8–�m plane. For the three joint systematics cases,
the ‘min’ case is the one most favoured by the cosmic shear data,
but it is also the one that shows the greatest degree of discordance
with Planck. The general agreement between the results from the
log C and logI tests indicates that one may be able to compute the
degree of concordance between data sets more easily from existing
MCMC chains for parameter estimation, instead of embarking on
new evidence calculations.

While it is more than plausible that CFHTLenS contains un-
accounted systematics beyond those considered here (see Asgari
et al. 2017), we note that Planck itself may suffer from internal dis-
cordance in its measurements, as pointed out in Addison et al. (2016,
but disputed in Aghanim et al. 2016b). Moreover, the discordance
between CFHTLenS and Planck CMB temperature bears resem-
blances to that between the Planck CMB temperature and Planck
Sunyaev–Zel’dovich cluster counts (Ade et al. 2014XX, 2016c),
where the latter is also a probe of the low-redshift universe
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(as compared to the CMB temperature) and exhibits a similar tension
with the Planck CMB temperature in the σ 8–�m plane. Although
the tension between the Planck observables can be reduced by al-
lowing for a larger uncertainty in the mass bias estimates, the cluster
count systematics seem to mainly cause shifts along the degener-
acy direction and the fiducial cluster count constraint on σ8�

0.3
m is

consistent with CFHTLenS.

4 C O N C L U S I O N S

We have revisited the analysis of the CFHTLenS data set with
new cosmic shear measurements and covariance from extensive
N-body simulations, along with a new CosmoMC fitting pipeline
that accounts for key systematic uncertainties from intrinsic galaxy
alignments, baryonic uncertainties in the non-linear matter power
spectrum, and photometric redshift errors. Our data vector com-
prises seven tomographic bins covering redshifts up to z = 3.5 and
seven angular bins extending to 120 arcmin. The covariance is con-
structed from a large suite of 497 N-body simulations, which were
2 × 2 sub-divided to gain a sufficient number of realizations, pre-
venting our inverse covariance to be unduly biased by noise in the
sample covariance estimator.

We used the new measurements and covariance to explore the
consistency of CMB data from Planck with cosmic shear data from
CFHTLenS, given increasing degrees of freedom from the system-
atic uncertainties. To this end, our CosmoMC pipeline calculates
the cosmic shear likelihood and allows for 3 degrees of freedom for
the IA, in the form of an amplitude along with a redshift and lumi-
nosity dependence. The pipeline further allows for one degree of
freedom for the baryonic effects on non-linear scales in the matter
power spectrum in HMCODE, which we have incorporated as a distinct
CosmoMC module that internally communicates with our likeli-
hood module. Lastly, the pipeline allows for 7 degrees of freedom
for the photometric redshift uncertainties, which are manifested by
shifts in each of the tomographic source distributions along the red-
shift axis, with either uniform or Gaussian priors. Thus, the pipeline
allows for a total of 11 nuisance parameters, in addition to the cos-
mological parameters.

We first applied the pipeline to the measurements considering
four different sets of cosmological priors, finding that the data are
not sufficiently powerful to constrain the marginalized posterior
contours in the σ 8–�m plane without prior-dependence of the re-
sults. However, the four cases show remarkable agreement along
the axis perpendicular to the degeneracy direction, such that the
2σ tension with Planck effectively remains at the same level of
significance regardless of the choice of priors. We proceeded with
the lensing analysis by imposing external priors from local Hubble
constant and BBN measurements. As these external priors are com-
pletely in agreement with Planck, any further discrepancy between
Planck and CFHTLenS with external priors must be coming from
CFHTLenS. The new marginalized posterior contours continue to
show discrepancy with Planck at the 2σ level.

We then examined if the introduction of systematic degrees of
freedom could alleviate the tension between the data sets, and
whether any of the extensions are statistically preferred. To this
end, we employed the DIC, which accounts for the Bayesian com-
plexity of models. We find that a negative IA amplitude, such that
A = −3.6 ± 1.6, is preferred by the data at the level of �DIC �
−5 as compared to the fiducial model with no systematics included.
However, this model seems to be at even greater tension with Planck,
at the 3σ level. We find that an extension of the IA model to allow
for redshift and luminosity dependence brings the relative tension

between CFHTLenS and Planck back to its fiducial 2σ level, but this
is because the redshift and luminosity dependence terms allow for
values that diminish the IA signal. The three-parameter IA model
is marginally disfavoured by the data at the level of �DIC = 2.4
with informative priors on the IA parameters and more strongly
disfavoured at �DIC = 12 with non-informative priors on the
parameters.

Next, we did not find a preference for non-linear baryonic physics
in the CFHTLenS data, as the extension to allow for a varying am-
plitude in HMCODE is only favoured at �DIC = −0.64 when consid-
ering non-informative priors and disfavoured at �DIC = 1.4 when
considering informative priors. Allowing for the HMCODE feedback
amplitude to account for non-linear baryonic physics has a marginal
impact on the tension between CFHTLenS and Planck. We more-
over allowed for photometric redshift uncertainties by imposing
uniform priors of |�zi| = 0.1 for each tomographic bin. Allowing
for deviations around the fiducial redshift distributions produces an
improvement in the goodness of fit, at the level of �χ2

eff = −6.0, but
we find that introducing the new degrees of freedom is not preferred
by the data at �DIC = 0.97. We considered a case where the red-
shift perturbations are obtained from the cross-correlation analysis
of Choi et al. (2016), but found that these redshifts are even more
disfavoured, at the level of �DIC = 11. As for the tension between
CFHTLenS and Planck, the photometric redshift uncertainties only
have a marginal impact.

Thus, when introducing the systematic uncertainties indepen-
dently, only the IA amplitude is substantially preferred by the
CFHTLenS data. However, the negative amplitude may be con-
sidered unphysical, likely caused by overly simplistic IA modelling
and/or unaccounted systematics and it only increases the tension
between the Planck and CFHTLenS data sets. Aside from the ques-
tion of whether the systematic degrees of freedom are preferred by
the data, we also find no strong relief in the tension between the two
data sets when independently allowing for baryonic physics on non-
linear scales, photometric redshift uncertainties, and non-minimal
extensions to the IA model.

We moreover considered three distinct cases for the joint account
of the systematic uncertainties (detailed in Table 4). The first of
these cases is the ‘min’ case where we impose an informative prior
on the IA amplitude (excluding a possible luminosity or redshift
dependence), an informative prior on the HMCODE feedback ampli-
tude, and informative priors on the source redshift distributions
given by Choi et al. (2016). The second case is the ‘mid-’ case,
where we impose informative priors on the IA amplitude, redshift,
and luminosity dependence. For this case, we continue to impose
an informative prior on the HMCODE feedback amplitude. We also
continue to use the Choi et al. (2016) shifts in the fiducial redshift
distributions, but with error bars given by |�zi| = 0.05. Lastly,
the third case is the ‘max’ case, where we impose non-informative
priors on all three IA parameters, a non-informative prior on the
HMCODE feedback amplitude and uniform priors on the redshift dis-
tributions given by |�zi| = 0.1. For the ‘max’ case, we also only
keep ‘large’ scales, by which we remove all ξ− measurements and
only keep ξ+ measurements for θ > 17 arcmin.

For the ‘min’ case, the main imprint comes from varying the IA
amplitude, which increases the tension with Planck, analogously to
when the parameter is considered independently. The goodness of
fit significantly improves with �χ2

eff = −10 and the Bayes factor
favours the ‘min’ case by 2 lnB01 = −6.6 (as compared to the fidu-
cial cosmological model with no systematic uncertainties). Despite
the increased complexity, manifested in �DIC = 1.6, the evidence
is sufficiently improved to warrant the ‘min’ case as more favoured
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as compared to the vanilla �CDM model. For the ‘mid-’ case,
the marginalized posterior contour shows strong overlap with that
of the fiducial case, as the luminosity dependence diminishes the
IA signal, while the baryonic and photometric redshift errors each
contribute to a marginal increase in the area of the posterior con-
tour, bringing CFHTLenS into greater concordance with Planck.
We find a marginal improvement in the goodness of fit, given by
�χ2

eff = −1.1. However, the Bayes factor disfavours the ‘mid-’ case
by 2 lnB01 = 1.3 and the information criterion disfavours it more
strongly by �DIC = 12.

The largest impact on the cosmological constraints comes from
the ‘max’ case, where the cutting of angular scales and non-
informative priors on the 11 systematic parameters results in cos-
mological constraints so weak that the marginalized posterior con-
tour for CFHTLenS completely envelopes the Planck contour. For
this case, we find a significant improvement in the best fit, at
�χ2

eff = −25, while the Bayes factor shows a marginal improve-
ment of 2 lnB01 = −0.52 (as compared to a fiducial cosmological
model using the downsized data vector). However, the increased
complexity of the model renders it highly disfavoured at �DIC =
19, which highlights the usefulness of considering multiple statisti-
cal tools for purposes of model selection.

In more carefully assessing the degree of concordance or dis-
cordance between CFHTLenS and Planck, we further employed
‘data concordance tests’ as quantified by log C and logI (defined in
Section 2.1.7), grounded in the Bayesian evidence and DIC, respec-
tively. With these statistical tools, we find strong-to-decisive discor-
dance between the two data sets for the ‘min’ case, as evidenced by
log C = −1.8 and logI = −2.6, respectively. We further find weak
discordance to substantial concordance for the ‘mid-’ case, as evi-
denced by logI = −0.28 and log C = 0.51, while there is substan-
tial concordance for the ‘max’ case, as evidenced by log C = 0.90
and logI = 0.62. The outcome of these concordance tests gen-
erally agree with the a priori expectation from the marginalized
posterior contours, although the degree of concordance is weaker
for the ‘max’ case than naively expected. For the three joint sys-
tematics cases, it is interesting to note that the case most discordant
with Planck is also the one most favoured by the data. We can also
conclude that the results from the log C and logI data concordance
tests generally agree with one another, indicating that either one
may be used to assess the degree of concordance between data sets
in future analyses.

Our new measurements and fitting pipeline are publicly avail-
able at the address https://github.com/sjoudaki/cfhtlens_revisited.
We have extended the pipeline to account for joint analyses of cos-
mic shear tomography, galaxy-galaxy lensing, and redshift space
distortion measurements, including the full covariance for overlap-
ping surveys. We plan to release this extended pipeline as part of an
upcoming paper to constrain modified gravity and neutrino physics
(Joudaki et al., in preparation).
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