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Abstract

Molecular mass distribution measurements by pulsed gradient spin echo nuclear magnetic resonance (PGSE NMR) spectroscopy
currently require prior knowledge of scaling parameters to convert from polymer self-diffusion coefficient to molecular mass.
Reversing the problem, we utilize the scaling relation as prior knowledge to uncover the scaling exponent from within the PGSE
data. Thus, the scaling exponent—a measure of polymer conformation and solvent quality—and the dispersity (Mw/Mn) are
obtainable from one simple PGSE experiment. The method utilizes constraints and parametric distribution models in a two-step
fitting routine involving first the mass-weighted signal and second the number-weighted signal. The method is developed using
lognormal and gamma distribution models and tested on experimental PGSE attenuation of the terminal methylene signal and on
the sum of all methylene signals of polyethylene glycol in D2O. Scaling exponent and dispersity estimates agree with known values
in the majority of instances, leading to the potential application of the method to polymers for which characterization is not possible
with alternative techniques.
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Synthetic polymers have distributions of molecular masses
determined by their synthesis [1]. Measuring the molecular
mass distribution rather than its average is important because
the dispersity can influence polymer properties [2]. Absolute as
opposed to relative measurements are needed when using poly-
mer physics to fully realize the potential applications of a poly-
mer [3]. Only a handful of techniques can measure the absolute
molecular mass distribution [3]. The gold standard is size ex-
clusion chromatography (SEC) using universal calibration [4],
which does not always work [5, 6]. New techniques must be
developed to aid in the advancement of polymer science.

Pulsed gradient spin echo nuclear magnetic resonance
(PGSE NMR)[7, 8] is a powerful technique for obtaining the
distribution of polymer self-diffusion coefficients D [9], from
which the distribution of molecular masses M can be obtained
by the scaling law [10]

D(M) = KM−ν ; M(D) = K1/νD−1/ν. (1)

Access to chemical shift information and ease of sample prepa-
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ration give PGSE NMR a competitive edge with respect to
SEC. Chemical shift information [7], e.g. in a diffusion ordered
spectroscopy (DOSY) plot [11], provides the ability to observe
chemical heterogeneity and impurity. Sample preparation gen-
erally does not require filtration because contaminates from
large particles such as dust do not impact the experiment. How-
ever, the scaling parameters of Eq. (1) specific to that polymer–
solvent system must be found by measuring ⟨D⟩ on fractionated
samples of the polymer with known M. Therefore, currently all
PGSE NMR–based methods which convert from D to M can-
not independently measure the absolute molecular mass distri-
bution [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

In this paper we show that ν in Eq. (1) can be directly es-
timated from a single PGSE experiment in which the extrem-
ity (end-group) polymer signal can be spectrally resolved by a
chemical shift from the polymer main-chain signal. The scal-
ing exponent, ν, is a measure of the polymer conformation as
well as solvent quality [3, 26], with bounds of ν = 1/3 for a
perfectly coiled, impenetrable, polymer ball and ν = 1 for a
perfectly straight polymer rod [17]. The value of ν = 3/5 for
a polymer in a good solvent was first predicted by P.J. Flory
by a free energy minimization of the excluded volume and en-
tropic contributions [1]. (For this, ν is also known as the Flory
exponent.)

The method uses a mathematical framework which we first
presented [27] and applied [28] in 2016. The method builds on
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the work of Viéville et al. [19] who showed that the distribution
of polymer self-diffusion coefficients is mass-weighted for the
main-chain signal and number-weighted for the end-group sig-
nal. The key to directly obtaining the scaling exponent is our
use of parametric distribution models to fit these two signals.
The molecular mass dispersity, defined as Mw/Mn—the ratio
between the mass-average and the number-average molecular
masses, (and the molecular mass distribution if given Mn) can
then be calculated from the parameter values estimated for the
chosen model. To build up directly from the work of Viéville et
al. [19], we prove this method on the same system: mixtures of
polyethylene glycol (PEG) molecular mass standards solvated
in D2O. In this way, Mn and Mw of each mixture are known. In
the following, we introduce PGSE NMR and reproduce equa-
tions [24] for the application of the lognormal [29, 30, 14] and
gamma [21, 31] distribution models. We then explain sample
preparation and outline the procedure for obtaining ν, Mw/Mn,
and the molecular mass distribution. The method is then ap-
plied to three PEG samples and the results are compared to the
known values.

In a PGSE NMR measurement of the self-diffusion coeffi-
cient D, the signal attenuation of a monodisperse species is
given by the Stejskal-Tanner equation,

I(b) = I0 exp (−bD) (2)

where I0 is the initial signal intensity, and the independent vari-
able b is incrementally increased by stepping up the gradient
pulse strength in successive scans [32, 33]. The signal atten-
uation of a polydisperse species will be multiexponential as a
result of the distribution of diffusion coefficients. Such a super-
position of exponential decays can be modeled by,

I(b) = I0

∫ ∞
0

w(D) exp (−bD)dD, (3)

where w(D) is the distribution model of choice. We refer
to w(D) as the mass-weighted distribution of diffusion coeffi-
cients, and we note that in general the measured distribution is
mass-weighted because it is proportional to the total number of
protons and therefore, for a polymer, the total number of repeat
units. However, the end-group signal can often be spectrally
resolved for low molecular mass polymers (roughly less than
10 kDa [19]). The distribution of diffusion coefficients of the
end-group is number-weighted (referred to as n(D)) because it
is proportional to the number of molecules [19]. If an appropri-
ate model for w(D) is chosen, then n(D) can be obtained by the
definition (see, e.g., [34])

n(D) =
w(D)/M(D)∫ ∞

0 w(D)/M(D)dD
. (4)

Using Eq. (1) as M(D) brings in ν as an additional parameter
of n(D). Note that the parameter K seen in Eq. (1) will always
cancel out as a constant in the numerator and denominator of
Eq. (4).

Many distribution models exist, and the estimation of the dis-
tribution is an inverse problem for which there is no unique so-

lution. We are physically motivated to use the lognormal distri-
bution [14, 29, 30],

w(D) =
1

DσD
√

2π
exp
− (log D − µD)2

2σ2
D

, (5)

for which

n(D) =
D1/ν−1

σD
√
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exp
(
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)

exp
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and

Mw/Mn = exp
σ2

D

ν2

 (7)

and the gamma distribution [21, 31],

w(D) =
βα

Γ (α)
Dα−1 exp (−βD), (8)

for which

n(D) =
βα+1/ν

Γ (α + 1/ν)
Dα+1/ν−1 exp (−βD), (9)

and

Mw/Mn =
Γ (α + 1/ν) Γ (α − 1/ν)

Γ (α)2 , (10)

because both distributions meet the criterion that the probabil-
ity of negative molecular masses must be zero. The complete
derivation of equations and case studies for use of the lognormal
and gamma distribution models for estimating molecular mass
distributions are presented in our previous publication [24]. We
reproduce a few more equations for these models, including the
molecular mass distribution functions, in the Supplementary In-
formation.

The method for estimating ν and Mw/Mn from the PGSE at-
tenuation of the main-chain and end-group signals follows a
two-step, least squares fitting routine. Benjamini and Basser
found that imposing parameter constraints in a two-step fit of
2-D relaxation and diffusion NMR measurement data restricts
the solution set of the second fit and leads to a significant re-
duction in the amount of data required for a stable fit [35]. By
fitting our data in two steps we take advantage of the large sig-
nal of the main-chain peak, from which precise parameter esti-
mates are obtained. A global (simultaneous) fit of both signal
attenuations is more ill-posed, and thus less accurate. First, the
sum of the main-chain and end-group signals is fit with the cho-
sen distribution model. Second, the end-group signal is fit with
the associated number-weighted distribution model. Parameter
estimates from the first fit are used as constraints such that the
only free parameter in the second fit is ν. Given that the model
choices are appropriate, we take into account the effect which
random noise in the data has on the accuracy of the first fit by
bounding the constrained parameters to within the value ±1/2
the standard deviation from the first fit. The Mw/Mn is defined
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by the estimated parameters. It is well known that the number-
average molecular mass can be estimated from end-group anal-
ysis of a 1-D NMR spectrum [3]. Together, Mn and Mw/Mn
define the parameters of the molecular mass distribution func-
tion.

The method was tested on three PEG mixtures with Mn =

822 g/mol and Mw/Mn = 1.81 for mixture 1, Mn = 667 g/mol
and Mw/Mn = 2.49 for mixture 2, and Mn = 441 g/mol and
Mw/Mn = 1.41 for mixture 3. To make each mixture, Polyethy-
lene glycol (PEG) molecular mass standards (Mw/Mn < 1.2)
(Polymer Standards Services Inc., Germany) were mixed to-
gether in defined ratios to create molecular mass distributions
which were roughly lognormal in shape (though not contin-
uous). (Refer to the Supplementary Information for standard
molecular masses and their fractional makeup of the mixtures.)
The designed mixtures were diluted to 0.1 % (w/w) PEG in D2O
(99.9 atom % deuterium, Sigma-Aldrich, USA) and transferred
to 5 mm NMR sample tubes.

To measure PEG self-diffusion, pulsed gradient stimulated
echo experiments [36] were performed on the mixtures at 20◦C
using a 600 MHz Avance III HD NMR spectrometer (Bruker
BioSpin, Germany) equipped with a Micro5 probe, 5 mm radio
frequency coil, and Diff30 (11.7 T/m maximum) gradient set.
Sinusoidal gradient pulse shapes were chosen, for which the b
in the Stejskal-Tanner equation (Eq. (3)) is

b = (γgδ)2 4
π2

(
∆ − δ

4

)
, (11)

with proton gyromagnetic ratio γ, time lapse ∆ between the
leading edges of the gradient pulses, gradient pulse duration δ,
and gradient strengths g. The experiments used ∆ = 50 ms, δ =
1.58 ms, repetition time = 10 s, 16 scans, and 32 gradient points
with g varied linearly to 4 T/m for mixture 1 and mixture 2 and
3.2 T/m for mixture 3. Each experiment took 1 1

2 hours.
The least-squares fitting routine was implemented in MAT-

LAB R2016a (Mathworks, Natick, USA) and incorporated a
Monte Carlo error analysis [37]. The 95% confidence inter-
vals were assessed from the distributions of parameter values
obtained from the Monte Carlo steps, in which the data was
refit after the addition of Gaussian noise with the same stan-
dard deviation as that of the initial fit. Monte Carlo estimates
of ν incorporated the errors of both fitting steps. The fitting
procedure used 100 random parameter initializations and 1000
Monte Carlo steps. The fitting routine and data sets from the
three mixtures are available in the Supplementary Information.

We first demonstrate how the method works on PEG mix-
ture 1 and second compare the results of ν and Mw/Mn to the
known values for all three mixtures. The PGSE experiment
measures the signal attenuation of the main-chain methylene
peak at 3.7 ppm and the two sets of triplets arising from the
two methylenes closest to the hydroxyl group on the PEG ex-
tremity. (The proton spectrum from the smallest gradient (or b)
value is shown in Fig. 1a.) We define the mass-weighted sig-
nal as the sum of all methylenes (not just the main-chain peak)
and the number-weighted signal as the triplet from the termi-
nal methylene. We take the integral values directly from Fig.
1a to obtain Mn = 900 g/mol, compared to the known value

of Mn = 820 g/mol. (We do this for simplicity and to point
out that all the necessary information is contained within this
one PGSE measurement. Weighting effects from spin-spin and
spin-lattice relaxation [29], diffusion, and even spectral over-
lap [38] can be taken into account with more rigorous meth-
ods. Using a spectrum from a 1-D free induction decay re-
sults in essentially the same Mn value.) Following the meth-
ods for use of the lognormal and gamma distribution models
outlined above, the experimental results, fits, estimated num-
ber and mass-weighted diffusion coefficient distributions, and
estimated molecular mass distributions are shown in Fig. 1b–d.
The known molecular mass distribution of the mixture is repre-
sented by a sum of lognormal distributions, defined by the mass
fractions and the reported values of Mn and Mw/Mn of the stan-
dards composing the mix. Though the multimodal shape cannot
be reproduced, the estimated molecular mass distributions ac-
curately depict the width of the known distribution.

The estimated values of ν and Mw/Mn for this mixture (mix-
ture 1) as well as mixture 2 and mixture 3 are shown in Table 1.
The estimates can be compared to the known values of Mw/Mn
and ν. The known value of ν = 0.50±0.02 was obtained from a
fit of Eq. (1) to the mean diffusion coefficient values of the indi-
vidual molecular mass standards (see Supplementary Informa-
tion) and is comparable to previously published values for PEG
in D2O of ν = 0.521±0.011 at 25◦C [14] and ν = 0.539±0.003
at 30◦C [17].

Table 1: Results of ν and Mw/Mn, with 95 % confidence intervals, compared
to the known values for the three PEG mixtures
Mixture Known Lognormal Gamma

ν ν ν

1 0.50 ± 0.02 0.54 ± 0.05 0.50 ± 0.11
2 0.50 ± 0.02 0.49 ± 0.03 0.41 ± 0.07
3 0.50 ± 0.02 0.61 ± 0.04 0.58 ± 0.14

Mw/Mn Mw/Mn Mw/Mn

1 1.81 1.60 ± 0.13 1.71 ± 0.42
2 2.49 2.23 ± 0.23 3.03 ± 1.37
3 1.41 1.38 ± 0.05 1.41 ± 0.24

The estimates of ν from the lognormal and gamma listed
in Table 1 differ due to strong sensitivity of the method to
model choice. This is evident in Fig. 1c where two very similar
mass-weighted diffusion coefficient distributions arise from the
first fit, but the constraints lead to drastically different number-
weighted diffusion coefficient distributions from the second fit.
Certain models in certain instances, such as the gamma for mix-
ture 1 and the lognormal for mixture 2, resulted in accurate ν
estimates compared to the known value, which then led to bet-
ter estimates of Mw/Mn than those of the alternative models.
Both models accurately estimated Mw/Mn for mixture 3 even
though their estimates of ν were off, potentially because small
values of Mw/Mn are less sensitive to errors in ν, as seen by
Eqs. (7) and (10). For 8 out of the 12 estimated values of ν
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and Mw/Mn in Table 1, the known values are within the 95%
confidence intervals.

Estimates were quite successful considering that the method
only assumed that M and D scale by Eq. (1) and that the distri-
bution models were appropriate. A wide range of polymers fol-
low the scaling relation [17]. The universal calibration method
by which absolute molecular mass can be obtained with SEC
[4] relies on an analogous scaling relation known as the Mark-
Houwink-Sakurada equation. A major limitation then is the as-
sumption of a distribution shape. Knowledge of the polymer-
ization reaction kinetics can help inform on an accurate model
choice. For instance, the gamma—in a parameterization widely
known as the Schulz distribution [39, 40]—and lognormal dis-
tributions of molecular mass have been derived from certain
polymer reaction mechanisms [34]. Relative changes in ν for
a given model should not depend on model choice and so the
method may be useful for measuring the change in solvent qual-
ity as a function of system parameters such as solvent or tem-
perature. Another limitation is the capability to resolve an end-
group signal, which diminishes with increasing molecular mass
due to increasing peak broadness and decreasing signal.

The scaling exponent and absolute molecular mass are fun-
damental to realizing the full potential of a polymer. Demands
for new applications are driving the complexity of new poly-
mers for which traditional characterization methods do not al-
ways work. We show a method by which the scaling exponent
and absolute molecular mass distribution characteristics can be
obtained directly from a single PGSE measurement performed
on a polymer without fractionation.
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Figure 1: Results for PEG mixture 1 for the lognormal (red) and gamma (blue)
models showing (a) the methylene signal integral definitions on the spectrum
from the first PGSE gradient point, (b) the experimental signal attenuation for
the mass-weighted signal from the sum of all methylenes (circles) and number-
weighted, terminal methylene signal (squares), the mass-weighted and number-
weighted lognormal (red dot-dash) and gamma (blue solid) model fits, (c) the
estimated mass-weighted (solid) and number-weighted (dashed) distributions
of diffusion coefficients, and (d) the molecular mass distribution estimates com-
pared to the molecular mass distributions, individually (dotted black) and as a
sum (solid black), arising from the standards composing the mix.
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