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Abstract 

Replacing traditional technologies by renewables can lead to an increase of emissions 

during early diffusion stages if the emissions avoided during the use phase are exceeded 

by those associated with the deployment of new units. Based on historical developments 

and on counterfactual scenarios in which we assume that selected renewable 

technologies did not diffuse, we conclude that onshore and offshore wind energy have 

had a positive contribution to climate change mitigation since the beginning of their 

diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental 

standpoint until very recently, since the benefits expected at the individual plant level 

were offset until 2013 by the CO2 emissions related to the construction and deployment 

of the next generation of panels. Considering the varied energy mixes and penetration 

rates of renewable energies in different areas, several countries can experience similar 

time gaps between the installation of the first renewable power plants and the moment in 

which the emissions from their infrastructure are offset. 

 

The analysis demonstrates that the time-profile of renewable energy emissions can be 

relevant for target-setting and detailed policy design, particularly when renewable energy 

strategies are pursued in concert with carbon pricing through cap-and-trade systems. 
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1. Introduction 

In December 2015, 195 countries met in Paris and adopted the first-ever universal, 

legally binding global climate deal with the aim to keep the rise in global average 

temperature below 2°C compared to pre-industrial levels. This represents a turning point 

in international climate change policy. 

 

There are already many examples of potential national-scale pathways to decarbonise 

the economy that could inform the development of future emission reduction strategies, 

such as the Deep Decarbonization Pathways Project (2015). A transition towards a low 

carbon energy system would be a common element of many – if not all – of them. The 

strategic planning of such transitions requires clear targets at the country level, yet it is 

the path taken towards targets, rather than the targets themselves, that will define a 

country’s real contribution to meeting the Paris Agreement goals. After all, the mean 

peak temperature in 2100 will be a function of cumulative GHG emissions released over 

time (Friedlingstein et al., 2014) rather than emissions released in any single given 

target year.  

 

This dynamic aspect to the energy and climate challenge is often overlooked in 

environmental policy assessment. When assessed from a whole life-cycle perspective, 

even renewable energy technologies result in the release of greenhouse gas (GHG) 

emissions during their manufacture and deployment due to the use of carbon intensive 

energies for production and transportation. We consider this explicitly in our paper, 

referring to the net cumulative mitigation benefit of different technologies over their 

whole life-cycle as their ‘dynamic mitigation potential’. Due to the strong role likely to be 

played by renewable energy in future low carbon transitions (EC, 2013; IEA, 2014), a 

robust assessment of their dynamic mitigation potential is of relevance for planning and 

target-setting purposes.  

 



Against this background, the work presented in this paper aims to explore: 

i. To what extent have emissions savings from renewable energy generation been 

offset so far by indirect emissions associated with their deployment? 

ii. What does a dynamic mitigation potential perspective on renewable energy 

technologies mean for future European energy policy and national scale emission 

reduction plans as part of energy transitions towards sustainability? 

 

To this end, we provide insights on whether the emission mitigation potential of 

renewable energy has so far been neglected in European energy policy by carrying out an 

ex-post assessment of the CO2 footprint related to the deployment and use of (onshore 

and offshore) wind turbines and photovoltaic panels (PV) in the period 1990-2013. The 

environmental footprint of each of these technologies is compared to that of their 

alternatives, which are defined using different counterfactual scenarios where these 

innovations are assumed not to diffuse into the energy system. We discuss the relevance 

of a dynamic mitigation perspective in the context of two central pillars of European 

energy policy (the promotion of renewable energy under the Renewable Energy Directive, 

and the pricing of carbon through the EU Emissions Trading Scheme (ETS)), and discuss 

the broader relevance of a dynamic mitigation perspective for analysis of how renewable 

energy subsidies and cap-and-trade policies can interact.  

 

The paper is structured as follows. Section 2 contains background information. Section 3 

describes the methodology and data sources used, while section 4 presents the results 

and a brief discussion. Last, section 5 formulates conclusions and highlights the main 

policy implications of the results. 

 

2. Background 

2.1. The cannibalisation effect 

The life-cycle environmental benefits of renewable energy technologies at the micro-level 

have been largely documented and compared to those of other technologies (Hertwich et 



al., 2015; Masanet et al., 2013; Nugent and Sovacool, 2014). Nevertheless, these 

findings do not necessarily reflect the environmental performance of these technologies 

from a macro-level perspective, i.e. whether renewables as industries have generated 

net environmental savings and how large these savings have been. At this scale it can be 

challenging to identify the ex-post and ex-ante environmental consequences arising from 

the diffusion and uptake of technological innovations, because of a variety of indirect 

effects, including emissions hidden throughout the life-cycle, displaced in time or space, 

or induced via economic interactions such as rebound effects (McDowall et al., 2015). 

 

When assessing the macro-level performance of renewable energies, the temporal 

dimension is of importance, since the associated environmental pressures are unevenly 

distributed over time. CO2 emissions mainly take place during the construction phase of 

renewable energy technologies, which results in a delay of several years between the 

deployment of the technology and net environmental savings. During this period – 

commonly referred to as the ‘carbon payback time’ when addressing GHG emissions – 

the environmental pressure can be higher compared to a no-renewables alternative.  

 

At the micro-level, the carbon payback time of a single renewable power station depends 

on its environmental performance, as well as on the technology it displaces. At the macro 

level, the penetration rate of the innovation also influences payback times, as any 

emission reductions arising from replacing a more emission-intensive power plant by a 

renewable power station might be cancelled out when building and installing additional 

renewable plants. Thus, a rapidly expanding renewable energy sector may generate 

more emissions (associated with manufacturing) than it avoids (from offset fossil fuel 

generation) for several years during the diffusion of the technology (Kenny et al., 2010, 

p. 1970). Under such circumstances the benefits of existing units are offset by the 

emissions related to the deployment of the next wave of units. This phenomenon is 

commonly referred to as the ‘cannibalisation effect’ (Pearce, 2009; 2012).  

 



2.2. Relevance of dynamic mitigation for energy and climate policy  

When planning a country-wide energy transition, having an understanding of the 

dynamic emission profiles of electricity-generating technologies – in other words, when 

the emissions take place – could be useful. Most obviously, this enables policymakers to 

understand when net emission reductions across the whole economy can be expected, 

which helps understanding expected macro-level mitigation outcomes from technology 

policies in the short- and mid-term.  

 

The time-profile of renewable energy emissions can also be relevant for detailed policy 

design, particularly when renewable energy strategies are pursued in concert with carbon 

pricing, as in the case of Europe. In particular, it has sometimes been argued that 

subsidy support to renewables is inappropriate within an emissions trading scheme. The 

basic argument is that the abatement level is set by the cap, and that renewables 

subsides therefore do not result in additional carbon reductions, but rather distort 

abatement away from the optimum (for various views on this argument, see: Fankhauser 

et al. (2011); Lehmann and Gawel (2013); OECD (2003)). However, such arguments 

have typically been made on the basis of static emissions profiles of technologies, 

assuming that no emissions are associated with installation and deployment. A dynamic 

perspective changes the picture somewhat. We use PV as an illustrative example. 

Assuming that PV is produced domestically, policies to deploy PV will result in upward 

pressure on carbon prices in the near term (because of extra industrial activity 

associated with the manufacture of PV panels), and only result in downward pressure in 

later years (resulting from offset carbon-based power generation). If this effect is non-

negligible, it has implications for how carbon trading interacts with renewables, and in 

particular with the design of ‘when-flexibility’ design features, such as banking, 

borrowing and commitment periods (Fankhauser and Hepburn, 2010). 

 

2.3. Previous studies on dynamic mitigation potential 



Emmott et al. (2014) have identified previous studies that have dealt with the issue of 

the time-profiles of energy and emissions from renewable energy deployment (see Table 

1). These studies show diverging views on whether the diffusion rates of renewable 

energies should be limited, although most of them argue that the long-term benefits of a 

transition to a low carbon energy system justify having a brief period in which annual 

emissions increase (Emmott et al., 2014). 

 

Table 1: Overview of studies addressing the time-profiles of energy and emissions from renewable energy 

deployment 

Study Topic Technologies 

Bojić et al. (2011) Dynamic energy balance PV 

Dale and Benson (2013) Dynamic energy balance PV 

Gonçalves da Silva (2010a) Dynamic energy balance PV 

Gonçalves da Silva (2010b) Dynamic energy balance PV 

Görig and Breyer (2012) Dynamic energy balance PV 

Gutowski et al. (2010) Dynamic energy balance PV 

Kessides and Wade (2011) Dynamic energy balance 
Oil, natural gas, nuclear, hydro, 
wind, PV 

Lloyd and Forest (2010) Dynamic energy balance PV 

Mathur et al. (2004) Dynamic energy balance Coal, natural gas, hydro, wind, PV 

Pearce (2012) Dynamic energy balance Nuclear 

Arvesen and Hertwich (2011) Dynamic carbon mitigation potential Wind 

Bojić et al. (2011) Dynamic carbon mitigation potential PV 

Drury et al. (2009) Dynamic carbon mitigation potential PV 

Emmott et al. (2014) Dynamic carbon mitigation potential PV 

Kenny et al. (2010) Dynamic carbon mitigation potential 
Coal, natural gas, oil, biomass 
hydro, wind, PV, CSP, geothermal 

Reich et al. (2011) Dynamic carbon mitigation potential PV 

Wiebe (2016) Dynamic carbon mitigation potential Wind, PV 

Note: CSP: Concentrated Solar Power 

 

As for the methods used in the studies in Table 1, the majority of them approach the 

subject from a life-cycle assessment (LCA) perspective, i.e. they are based on data from 

process-based life-cycle inventory (LCI) databases. LCI databases provide a very detailed 

picture of the physical inputs in the most important life-cycle stages of specific 

technologies. Nonetheless, LCI databases suffer from the so-called ‘truncation error’ – 

i.e. incomplete system boundaries –, which has been identified as one of the main 



shortcomings of these tools (Lenzen, 2000; Nielsen and Weidema, 2001).1 Alternatively, 

environmentally extended input-output (EEIO) analysis is characterised by having 

complete system boundaries at the expense of losing sectoral detail. For these reasons, 

Arvesen and Hertwich (2011) adopted a hybrid approach to overcome the limitations of 

both methods. Here we also use our own hybrid method that offers benefits over EEIO 

analysis and LCA separately by combining the strengths of both. Compared to LCA, the 

use of hybrid methods ensures that system boundaries are complete. Further, in the case 

of our hybrid LCA/EEIO method (see Section3), we are able to generate the year-specific 

results required to represent the time profile of the emissions related to renewable 

energy deployment. This is an advantage compared to LCA, which usually omits the time 

dimension by providing a snapshot where all pressures and impacts are accumulated in 

single point in time (Reap et al., 2008). 

 

3. Methodology and data sources 

3.1. Overview of methodology 

In this paper we carry out a scenario-based analysis of the environmental performance of 

individual technological innovations – namely PV panels, onshore and offshore wind 

turbines – and of their potential alternatives. To this end, we develop a historical 

scenario – also referred to as baseline scenario throughout the text – that captures 

technology-specific past developments in electricity production and the installation of 

new power plants. For each of the technologies above, we then define alternative 

counterfactual scenarios that suggest what could have happened if that technology had 

not diffused into the European energy system. By comparing the emissions in the 

historical and counterfactual scenarios, we assess the extent to which each of these 

innovations have so far contributed to reducing the CO2 footprint of the EU27. Here we 

define footprint as the cradle to gate emissions attributable to electricity production and 

to the deployment of the required infrastructure. 

 



Emission accounting in both cases uses data from annual high-resolution EEIO tables that 

depict the most important life-cycle stages of 18 technologies used to produce electricity 

(see Table 2, the full resolution of the EEIO table is given in the supplementary material). 

To generate these tables, we have reconciled technology-specific LCI data (ecoinvent 

Centre, 2010, 2013) and the 2000-2007 Eurostat EEIO tables for EU27 (Eurostat, 2011). 

Thus, we have selectively disaggregated the original Eurostat EEIO tables, which have a 

resolution of 59 product groups and represent electricity, gas, steam and hot water 

supply in a single category, into 125 product groups – also referred to as sectors or 

industries for readability purposes.  

 

The disaggregated tables capture key past developments in electricity production such as 

changes in the electricity mix and the diffusion patterns for each technology. Following 

the selective disaggregation of the 2000-2007 EEIO tables, we use input-output based 

hybrid analysis (IOHA) – as defined by Suh et al. (2004) – to estimate separately the 

CO2 footprint per unit output associated with the domestic energy produced with each 

technology (kt CO2 per TJ) and its infrastructure (kt CO2 per MW). Given that the tables 

only cover the period 2000-2007, we use this data as the basis for estimating the 

equivalent footprint intensities in the periods 1990-1999 and 2008-2013. To determine 

the environmental pressures with and without each of the technologies above, we 

multiply the CO2 footprint intensities by the corresponding data in the historical and 

counterfactual scenarios. 

 

Table 2: Technologies for electricity production and manufacturing of power plants/components represented in 

the disaggregated EEIO tables 

Code Description 

31_rest Rest - Electrical machinery and apparatus n.e.c. 

31.e1_f Wind power plant onshore - fixed parts 

31.e1_m Wind power plant onshore - moving parts 

31.e2_f Wind power plant offshore - fixed parts 

31.e2_m Wind power plant offshore - moving parts 

31.h Inverter 

32_rest Rest - Radio, television and communication equipment and apparatus 



32.h1 Multi-Si PV panel 

32.h2 Multi-Si PV cell 

32.h3 Multi-Si PV wafer 

40.11.a1 Electricity by coal with FGD - CHP 

40.11.a2 Electricity by coal with FGD – only electricity 

40.11.a3 Electricity by coal without FGD - CHP 

40.11.a4 Electricity by coal without FGD - only electricity 

40.11.b1 Electricity by gas - CCGT - CHP 

40.11.b2 Electricity by gas - CCGT - only electricity 

40.11.b3 Electricity by gas – conventional - CHP 

40.11.b4 Electricity by gas – conventional - only electricity 

40.11.c Electricity by nuclear 

40.11.d Electricity by hydro 

40.11.e1 Electricity by wind onshore 

40.11.e2 Electricity by wind offshore 

40.11.f1 Electricity by petroleum and other oil derivatives - CHP 

40.11.f2 Electricity by petroleum and other oil derivatives - only electricity 

40.11.g1 Electricity by biomass and waste - CHP 

40.11.g2 Electricity by biomass and waste - only electricity 

40.11.h Electricity by solar photovoltaic 

40.11.i Others (solar thermal / tide, wave and ocean / geothermal / n.e.c.) 

40.12 Transmission of electricity 

40.13 Distribution of electricity 

40.2 Manufactured gas and distribution services of gaseous fuels through mains 

40.3 Steam and hot water supply services 

45_rest Rest - Construction work 

45.a1 Hard coal power plant -  FGD - CHP 

45.a2 Hard coal power plant -  FGD - no CHP 

45.a3 Hard coal power plant -  no FGD - CHP 

45.a4 Hard coal power plant -  no FGD - no CHP 

45.b1 Combined cycle gas power plant - CHP 

45.b2 Combined cycle gas power plant - no CHP 

45.b3 Conventional gas power plant - CHP 

45.b4 Conventional gas power plant - no CHP 

45.c1 PWR nuclear power plant 

45.d Run-of-river hydropower plant 

45.f1 Oil power plant - CHP 

45.f2 Oil power plant - no CHP 

45.g1 Municipal waste incineration plant - CHP 

45.g2 Municipal waste incineration plant - no CHP 

45.h1 3kWp slanted-roof installation, multi-Si, panel, mounted, on roof 

45.h2 electric installation, photovoltaic plant, at plant 

45.h3 slanted-roof construction, mounted, on roof 



Note: FGD: Flue Gas Desulphurisation; CCGT: Combined Cycle Gas Turbine; CHP: Combined Heat & Power; 

Multi-Si: Multicrystalline Silicon, n.e.c.: Not Elsewhere Classified 

 

Each counterfactual scenario assumes that a specific innovation being assessed (in this 

case, various renewable energy technologies) did not diffuse into Europe’s energy 

system. Thus, the energy produced and the installed infrastructure of the innovation 

under assessment is replaced by that of other technologies (Table 3).  

 

Table 3: Descriptions of used scenarios 

Case 
study 

Scenario 
Descripti
on 

Wind 
onsho
re 

Baseline 
Historical 
developm
ent 

Counterfact

ual 

Onshore 

wind 
energy 
does not 
develop 
in the 
EU27. 
The 
shortfall 
in 
generatio
n is 
covered 
by all 
other 
technolog
ies 
(including 
offshore 
wind and 
PV) based 
on their 
relative 
weight 
each 
year. The 
stock 
model 
determin
es the 
additional 
capacity 
required 
to satisfy 
the 
shortfall 
(see 
section 
3.2). 

Wind 
offsho
re 

Baseline 
Historical 
developm
ent 

Counterfactual Offshore 
wind 



energy 
does not 
develop 
in the 
EU27. 
The 
shortfall 
in 
generatio
n is 
covered 
by all 
other 
technolog
ies 
(including 
onshore 
wind and 
PV) based 
on their 
relative 
weight 
each 
year. The 
stock 
model 
determin
es the 
additional 
capacity 
required 
to satisfy 
the 
shortfall 
(see 
section 
3.2). 

PV 

Baseline 
Historical 
developm
ent 

Counterfactual 

PV 
energy 
does not 
develop 
in the 
EU27. 
The 
shortfall 
in 
generatio
n is 
covered 
by all 
other 
technolog
ies 
(including 
onshore 
and 
offshore 
wind) 
based on 
their 
relative 
weight 
each 
year. The 
stock 
model 
determin
es the 
additional 



capacity 
required 
to satisfy 
the 
shortfall 
(see 
section 
3.2). 

 

For each innovation, the results of the baseline scenario are compared to those of the 

counterfactual scenario. If the cumulative CO2 footprint in the historical scenario (mH) is 

lower than that of the counterfactual scenario (mC) (i.e. mH < mC), then the innovation 

has brought net environmental benefits. Conversely, if the historical pressures are higher 

than those of the counterfactual scenario (i.e. mH > mC), then it can be concluded that 

the rapid diffusion rate of the innovation has negated so far the technology’s ability to 

mitigate climate change, thereby cannibalising its benefits.  

 

The next sections describe the methodology and the main data sources used in more 

detail. 

 

3.2. Developing baseline and counterfactual scenarios 

The data for the amount of electricity produced (TJ) and the existing capacity in the 

baseline scenario (by technology) has been retrieved mainly from Eurostat (2016a, b). 

Additional sources have been used to split wind energy into onshore and offshore, 

electricity produced by gas into CCGT and open cycle, and electricity by fossil fuels into 

CHP and electricity only (see the supplementary material). Electricity consumption (TJ) is 

calculated by multiplying production (TJ) by the electricity consumption-to-production 

ratio (mio. €) available in the IO tables. The split between industries and households 

uses data from the International Energy Agency (IEA, 2013a, b) to account for the 

different prices paid by each type of consumer.  

 

In order to quantify the CO2 footprint of the infrastructure, this exercise requires data on 

the capacity of plants installed during the 1990-2013 period rather than on the existing 

installed capacity each year, for the total emissions in a given timeframe are a function 



of annual additions to the stock. In other words, we require information on how many 

new PV panels, wind turbines, coal power plants, etc. are installed each year, instead of 

the cumulative capacity. To do so, we have built a simple technology-specific stock 

model. The opening stock (S1950) of technology i is based on own estimates of the 

existing capacity in 1950 (see the supplementary material for more details). With the aid 

of average lifetime factors for the different plants taken from Ecoinvent (ecoinvent 

Centre, 2010), the annual stock changes in terms of installed (SIN) and decommissioned 

(SOUT) capacity have been estimated. The mathematical formulation of the model reads 

as follows: 

 

𝑆𝑖,𝑡 = 𝑆𝑖,1950 + ∑ 𝑆𝑖,𝐼𝑁
𝑡
𝑡0=1950 − ∑ 𝑆𝑖,𝑂𝑈𝑇

𝑡
𝑡0=1950   (1) 

 

The counterfactual scenarios assume the same total electricity supply and demand as in 

the baseline scenario, but with a different generation mix, since either PV, onshore wind 

or offshore wind energy are removed and substituted with alternatives. For each 

innovation, a counterfactual scenario has been developed in which we assume that the 

shortfall in electricity generation comes from all other technologies based on their 

relative weight in the mix. We then calculate the capacity that would be required to 

generate the level of electricity supply found in the counterfactual. 

 

The annual stock in each counterfactual is estimated as follows:  

1) First, we calculate the maximum amount of electricity that could be produced with 

the existing stock using availability factors – i.e. maximum capacity factors – for 

traditional technologies (from Anandarajah et al. (2011)) and capacity factors for 

renewables (except hydro) (from the data in the baseline scenario). In doing so, 

we assume renewables to be exploited to their maximum capacity in the baseline.  

2) Second, we check whether the increase in electricity generation attributed to the 

different technologies – as a result of a given innovation not diffusing – can be 

produced with the capacity in the baseline. This is only possible when power 



plants are not exploited to their maximum capacity, e.g. when overcapacity of 

fossil fuel-based power plants exists.  

3) Third, we determine if the generation stock needs to change in the counterfactual 

or not. If the additional electricity can be produced with the existing capacity for 

technology i, we keep the current stock. Conversely, if additional capacity is 

required to meet the increased electricity demand of technology i, we add this to 

the stock in the baseline taking into account the different capacity factors. Based 

on the resulting capacity, we calculate the amount of new power plants installed 

each year with the stock model described above.  

 

3.3. Selective disaggregation of the monetary input-output tables and the 

CO2 emission accounts 

In order to investigate to which extent the CO2 emissions savings from renewable energy 

technologies have been offset by the emissions associated with their deployment, we use 

a variant of EEIO analysis, namely IOHA. As explained by Suh and colleagues (Suh and 

Huppes, 2005; Suh et al., 2004), this method consists of a selective disaggregation of 

one or more industries / product groups in an EEIO table and the consequent application 

of EEIO analysis.  

 

All in all, we have disaggregated Eurostat’s 2000-2007 symmetric IO tables from 59 to 

125 product groups (see supplementary material), where all the flows are represented in 

monetary terms, except the rows that represent electricity use, which is given in TJ. The 

disaggregation process combines physical input coefficients of the representative 

technology taken from the Ecoinvent LCI database (ecoinvent Centre, 2010, 2013), 

prices (Gaulier and Zignago, 2010) and monetary input coefficients the EXIOBASE v2 

database (Wood et al., 2015) with their corresponding outputs, which are either 

calculated in the previous step or obtained from alternative sources such as Eurostat’s 

Structural Business Statistics (Eurostat, 2014b, c, d). It should be noted that the input 

coefficients from Ecoinvent are corrected to represent the average European generation 



efficiencies every year based on data of the International Energy Agency (IEA, 2013a, b) 

and that the inputs of the CHP plants are allocated to electricity and heat generation 

using the so-called ‘efficiency method’ (WRI and WBCSD, 2006). The industry-specific 

CO2 emission data from Eurostat (2014a) has also been disaggregated based on the 

emission intensities obtained from Ecoinvent and EXIOBASE. More details about the 

disaggregation of the IO tables and the environmental extension are given in the 

supplementary material. 

 

3.4. Input-output based hybrid analysis 

Once the disaggregated EEIO tables are available, we apply a slightly modified version of 

EEIO analysis. The formulation reads as follows: 

 

𝑚 = 𝐵 (𝐼 − 𝐴)−1 (𝑥𝐸 +  𝑦𝐼) (2) 

 

where: 

 

m denotes the CO2 footprint of the domestic electricity production (xE) plus that of the 

investments on energy infrastructure (yI), B represents the CO2-emission intensities of 

each product, and (I-A)-1 is the Leontief inverse of the disaggregated A matrix. Given the 

scope of this exercise, it is important to note that the subject of the analysis is the total 

domestic production of electricity. This equals the intermediate demand of electricity 

produced in the EU27 (zE) minus the ‘auto-consumption’ by the electricity sector when 

producing electricity (zOWN_E)2 plus the final demand of electricity produced in EU27 (yE). 

The ‘auto-consumption’ by the electricity sector refers to the amount of electricity that is 

required in the value chain prior to the electricity production process (e.g. in the 

extraction or processing of raw materials that are then burnt in power plants). In the 

mathematical formulation zOWN_E is excluded from the reference product xE in order to 

avoid double counting. The emissions associated with the ‘auto-consumption’ are 

captured when multiplying xE by the Leontief inverse, which shows both the direct and 



indirect inputs required to produce one unit of each product represented in the IO table 

(including electricity required to produce electricity).  

 

𝑥𝐸 = 𝑧𝐸  −  𝑧𝑂𝑊𝑁𝐸
+ 𝑦𝐸    (3) 

 

In practice, this means that instead of allocating the intermediate use of electricity to the 

product that will be purchased by final consumers (e.g. food, services, etc.), we account 

for its upstream emissions – i.e. the value chain prior to electricity generation – and 

ignore its downstream emissions – i.e. taking place after the transmission and 

distribution of electricity. This has the effect of isolating the direct and indirect 

environmental pressure of electricity from that of other products. In other words, we 

account for the all the cradle-to-gate emissions of domestic electricity generation 

independently from the sectors that consumes it. The logic applied to the formulation 

above is more commonly used in LCA exercises, where the reference product is not 

necessarily used by final consumers.  

 

The emissions of the counterfactual scenario are calculated in the same way, but using 

the corresponding electricity production vector. Thus, the same emission intensities are 

assumed in those scenarios for each technology. 

 

4. Results and discussion 

4.1. Diffusion of innovations in the baseline scenario 

This article addresses the environmental performance of onshore and offshore wind 

turbines and solar PV panels in the period 1990-2013 in the EU27. In order to 

contextualise the results provided in the next sections, Figure 1 shows the diffusion of 

these innovations in this period both in absolute and relative terms. 

 

Onshore wind began its diffusion in the early 1990s and since then its relevance has 

increased considerably. By 2013 onshore wind turbines amounted to 111 GW, which 



represented more than 11% of the total installed capacity in the EU27. Germany and 

Spain accounted for more than 40% of the total of the existing capacity in 2013 (EWEA, 

2015b).  

 

Figure 1: Diffusion of the innovations in absolute and relative terms 

 

Offshore wind turbines, on the other hand, are in the very beginning of their diffusion 

curve. Until 2013, they only covered 1% of the existing capacity. In contrast to onshore 

wind power, the United Kingdom (56%) and Denmark (16%) were the frontrunners in 

2013 (EWEA, 2015a). 

 

As for solar PV panels, around 80 GW were installed in the EU27 in the period 1990-

2013. In 2013, Germany and Italy accounted for 46% and 23% of these 80 GW 

respectively (Eurostat, 2016a). Annual growth rates in installed capacity oscillated 

between 51-98% in the EU27 between 2005 and 2011, yet they slowed down afterwards. 

 

4.2. Onshore wind 

Figure 2a shows the yearly evolution of the CO2 footprint attributable to onshore wind 

electricity and its infrastructure based on historical data. Since the turbines do not result 

in direct CO2 emissions during the electricity generation process, the footprint of the use 

phase is almost negligible compared to that of the construction phase. In 2013 the CO2 



emissions amounted to 6,987 kt (or 0.6% of the total emissions of the sector3 that year 

– i.e. including all other technologies). Figure 2b shows the emissions from the 

counterfactual scenario in which onshore wind is assumed not to diffuse. In this case, the 

environmental pressure associated with replacing onshore wind energy infrastructure is 

lower compared to the baseline, but the annual emissions from producing electricity with 

alternative sources are much higher due to the partial substitution of wind energy by 

fossil fuel-based electricity.  

 

Figure 2: Annual CO2 emissions of onshore wind turbines in the baseline scenario (a), and of its alternatives in 

the counterfactual (b) 



 

 

Figure 3 depicts the cumulative emissions of the baseline and counterfactual in the 

period under assessment. Compared to the alternative scenario, onshore wind had a net 

contribution to emissions reduction already in 1990. Since the beginning of the time 

series there is a clear decoupling of the pressures exerted and those that would have 

taken place had onshore wind energy not diffused. Hence, the effects of ‘energy 

cannibalisation’ are not visible in this period.  

 



Ex-ante projections suggest that onshore wind capacity will increase from 111 GW in 

2013 to 146-189 GW in 2020 (EWEA, 2014). During this period onshore wind is expected 

to deliver additional environmental benefits. 

 

Figure 3: Cumulative CO2 emissions of onshore wind turbines in the baseline scenario, and of its alternatives in 

the counterfactual 

 

 

4.3. Offshore wind 

The emissions resulting from the construction of offshore wind farms have mainly taken 

place between the years 2000 and 2013 (Figure 4a). As in the case of onshore wind, the 

vast majority of upstream emissions are linked to the supply chain of the different parts 

comprising the offshore wind turbine and the platform, although their magnitude is 

relatively low due to its limited penetration in the energy market. In 2013, the related 

emissions were 2,184 kt CO2 or 0.2% of the total sectoral emissions that year. The 

counterfactual scenario starts showing consistently lower emissions after 2004 (Figure 

4b). After 2004, the emissions from electricity production in fossil fuel power plants 

outweigh considerably those of the infrastructure in the baseline scenario.   

 



Figure 4: Yearly CO2 emissions of offshore wind turbines in the baseline scenario (a), and of its alternatives in 

the counterfactual (b)  

 

 

When looking at cumulative emissions (Figure 5), one can see that the CO2 emissions 

related to the deployment of offshore wind turbines were not fully compensated until 

2004 in the counterfactual scenario. Until then the environmental benefits of the first 

units installed were offset by the deployment of new turbines. The fast diffusion in the 

period 2007-2013 (yearly increase of 30-42%) has not reversed the trend since 2004 



and thus offshore wind energy is still yielding net environmental benefits. This is mainly 

due to the amount of fossil fuel-based electricity it has replaced.  

 

Against this background, ex-ante scenarios from the European Wind Energy Association 

(EWEA, 2014) project that the future capacity of offshore wind will range between 20-28 

GW by 2020, compared against an installed capacity of 7 GW in 2013. The same 

projections estimate that the amount of electricity produced by offshore wind turbines 

will increase from 16 TWh in 2013 to 72-102 TWh in 2020. Thus, given that the rise in 

electricity production is expected to be higher than the expansion of existing capacity, it 

seems likely that the emission profiles shown below will continue to decouple until 2020, 

thereby increasing the net environmental benefits attributable to offshore wind turbines.    

 

Figure 5: Cumulative CO2 emissions of offshore wind turbines in the baseline scenario, and of its alternatives in 

the counterfactual 

 

 

4.4. PV panels 

For the assessment involving PV panels, the annual emissions found in the counterfactual 

scenario were generally higher than those of the baseline until 2002 (with a few 

exceptions). This suggests that PV panels were yielding small environmental benefits in 



the form of CO2 emission reductions on an annual basis. Nonetheless, the diffusion of PV 

panels has rocketed in absolute terms in the last decade, and so has the related 

environmental footprint (Figure 6a). As a result of this rapid deployment, the trends were 

reversed and the annual emissions in the counterfactual were considerably lower than 

those of the baseline between 2007 and 2011 (Figure 6b). From 2012 on, the trends 

were reversed again. 

 

Figure 6: Yearly CO2 emissions of solar PV panels in the baseline scenario (a), and of its alternatives in the 

counterfactual (b) 

 



 

The cumulative emission data shown in Figure 7 suggests that it was not until very 

recently that energy production from PV panels offset the environmental pressures 

related to their physical construction. This points towards the cannibalisation of the 

expected environmental benefits from the PV panels installed during most of the period 

studied as a result of the fast deployment rate in the last years of the 2000s. The trend is 

only clearly reversed in 2013. Our results point in the same direction as those of Dale 

and Benson (2013) who found that in 2010 the world PV industry was still a net 

electricity consumer, but predicted that this trend would soon be reversed. 

 

Regarding future developments, according to data from the European Photovoltaic 

Industry Association (EPIA, 2014), the yearly installation of new PV panels peaked in 

2011, but new installations will continue to be significant until 2018. Its share in the 

European electricity mix is also expected to increase considerably by 2020 (EC, 2013). 

These trends suggest that the decoupling of emission profiles will likely continue in the 

coming years. 

 

Figure 7: Cumulative CO2 emissions of solar PV panels in the baseline scenario, and of its alternatives in the 

counterfactual 

 



 

4.5. Discussion 

The ex-post assessment of the selected renewable energy technologies describes a 

different case for each innovation. The contribution of onshore wind energy to CO2 

emission reduction is visible since almost the beginning of its diffusion process. Since the 

early 1990s our assessment shows that there has been clear decoupling between the 

pressures found in the baseline and counterfactual scenario. This indicates the extent to 

which CO2 emissions have been reduced due to this innovation. 

  

In contrast to onshore wind, offshore wind turbines only reached a net positive 

environmental balance around the year 2004. In previous years, the pressures related to 

the production and installation of new units outweighed the expected micro-level benefits 

of the individual units deployed. Since 2004, the decoupling between the emission 

profiles of the baseline and counterfactual scenario has increased significantly, giving 

some indication of the mitigation potential of this technology.  

 

The assessment of PV panels, on the other hand, suggests that between 1990-2012 no 

net environmental benefits could be claimed by this technology. The environmental 

benefits from the first units deployed have actually been negated by the environmental 

pressures exerted during the installation of additional panels. It is only in since 2013 that 

PV panels have started contributing to the net decrease in environmental burden as a 

result of substituting for fossil-based electricity generation. 

 

According to existing ex-ante scenarios, the capacity of onshore wind, offshore wind and 

PV energy will increase considerably until 2020. Our assessment suggests that the three 

technologies will continue having a net contribution to CO2 emissions reduction in the 

coming years.    

 



The results presented in this paper should be interpreted carefully, paying due attention 

to the inherent limitations of IOHA – particularly when using a single-region model that 

assumes the domestic technological level for imported goods – as well as to the 

assumptions made in the methodology. The assumptions made to produce the 

counterfactual scenarios are of particular importance here, since this determines whether 

the cannibalisation effect takes place or not. In this context, the counterfactual scenarios 

should not be interpreted as alternatives for the past, but as a set of assumptions to get 

a background for the present situation. When developing them, we have adopted what 

we considered to be the most neutral assumption, i.e. that the shortfall of electricity in 

absence of a given technology is generated with the average mix. Further, changes in 

the electricity mix in the counterfactual scenario would result in different electricity 

prices. Consequently, this would activate a range of price-based feedback mechanisms 

that could either increase or decrease consumption and production, and ultimately also 

affect emissions. Such effects are not considered here. 

 

It also bears noting that carbon payback times of renewable technologies largely depend 

on site-specific factors that influence their performance. For this reason, assumption on 

where renewable power plants are installed influence the size of the cannibalisation 

effect. In this paper, we cover a single region that comprises 27 countries, which differ 

substantially from one another in factors such as solar irradiance (Šúri et al., 2007) or 

wind patterns (EEA, 2009). When generating the counterfactual scenarios, we have 

assumed that electricity is produced in average EU27 conditions. This could overestimate 

the emissions in the counterfactual compared to a counterfactual in which we instead 

assume higher capacity factors for renewables, e.g. as a result of installing the additional 

onshore wind turbines in agricultural and industrial areas in north-western Europe or 

offshore wind stations in low depth areas in the North Sea, the Baltic Seas and the 

Atlantic Ocean when PV does not diffuse. This could also be the case if we assume that in 

absence of wind energy, the additional PV power plants required are installed in 

Mediterranean countries, which receive much more solar irradiance than northern 



countries. Lower emissions in the counterfactual would delay the time at which the 

assessed renewables start bringing net environmental benefits. Nonetheless, irrespective 

of the concrete carbon payback time of each of the technologies assessed, our results 

show that the cannibalisation effect has taken place in EU27 as a whole.    

 

The results also provide useful insights for users of energy system optimisation models 

that commonly only attribute the emissions from the use phase to energy supply 

technologies, i.e. they do not model the emissions from energy infrastructure explicitly, 

but as part of a generic industrial activity. In this vein, McDowall et al. (2014) found that 

modelling the indirect CO2 emissions related to infrastructure deployment as a function of 

electricity production changes the optimal energy mix in the European TIMES model 

(Solano Rodriguez and Pye, 2015). In a related exercise, Daly et al. (2015) concluded 

that when allocating the upstream emissions of infrastructure to electricity-generating 

technologies, the cost optimal pathway to reduce domestic pressures leads to substantial 

carbon leakage. 

 

5. Conclusions and policy implications 

Meeting the expectations created after the signing of the Paris Agreement requires 

countries to plan a major transition towards a low carbon energy system, with significant 

roles for renewable energy. Although these technologies are near-zero emitters during 

the use phase, through the lens of a planner they should be seen as an environmental 

investment rather than as an immediate solution. Their deployment is more accurately 

represented as an upfront investment that locks in CO2 emissions in the short-run to 

potentially yield a future environmental benefit. As our analysis shows, above a certain 

diffusion rate, renewable energy deployment can cannibalise the environmental benefits 

of previous units during early diffusion stages. In this period, renewables do not 

contribute to net climate change mitigation. Until 2012, this was the case of PV panels in 

the EU27. Offshore wind turbines experienced a similar situation until 2004.  

 



When interpreting our results, one should note that individual countries will probably 

show very different pictures to the EU-wide pattern that we have described. This is as a 

result of different penetration rates at the national level and other site-specific factors 

that influence the environmental performance of renewable energies (e.g. solar 

irradiance, wind energy potential, etc.). In some European countries some of these 

technologies are certainly leading to net emission reductions, while in others they are not 

yet at this stage. Likewise, countries with limited low-carbon energy capacity could 

expect to experience the cannibalisation effect in periods with fast deployment of 

renewable technologies.  

 

Here we argue that improved dynamic assessment of the short- and long-term mitigation 

potential of low carbon technologies can help better plan the energy transition and assist 

in the process of setting intermediate emission reduction targets to monitor progress 

towards the end goal. We note two specific policy implications: 

1. Acknowledgement of dynamic emissions profiles suggests that cumulative carbon 

budgets are more appropriate than single-year emissions targets, as the latter 

can be met by strategies with different long-term emissions implications.  

2. When cap-and-trade systems are combined with renewable energy subsidies, as 

in the EU, the ‘when-flexibility’ measures (Fankhauser and Hepburn, 2010) in the 

design of the trading system should consider dynamic, rather than static, 

emissions implications of renewables. If built domestically, rapid deployment of 

renewables may exert upward pressure on carbon prices, by stimulating industrial 

activity associated with the manufacture and installation phase; and yet the same 

renewable support policy can undermine longer-term carbon prices. The analysis 

in this paper suggests that arguments about renewable energy subsidies 

undermining the economic efficiency of cap-and-trade systems may need to be 

revisited in a dynamic framework: the analysis showed that during the first EU 

ETS trading period, emissions associated with PV manufacture and deployment 

outweighed those saved via PV-based generation. Optimal cap setting, 



commitment periods and banking and borrowing may be influenced by such 

effects, though detailed analysis of this is beyond the scope of this paper.  

 

In this vein, although micro-level static LCAs have proven useful to guide certain energy 

policies, our results support the need to complement these assessments with more 

dynamic tools that can better represent emission trajectories and their implications. 

Many policy decisions are taken in a much more complex system than the one depicted 

by some analytical tools. While we acknowledge the need to simplify complex systems to 

find a balance between the resources invested and the robustness of the results yielded, 

we should better define the needs arising from policy for an efficient policy-science 

interface.  

 

In the case studied, this could be done, for instance, by adding dynamism to LCAs, using 

alternative tools such as EEIO analysis, hybridising these two methods or adding the 

indirect environmental effects of electricity supply technologies to energy system models. 

Such practices would better represent the temporal dimension of climate change 

mitigation potential of technological innovations and thus provide the necessary 

information for improving energy and eco-innovation policies, as well as for 

understanding their cross-sectoral implications. Likewise, these tools can also prove 

useful for more realistic target setting by pointing out when the investment made in the 

form of early life-cycle GHG emissions associated with low-carbon technologies will be 

paid off, and when these technologies will start to deliver net environmental benefits. 
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1 Although IOHA ensures complete system boundaries at economy level, the attribution of the 

pressures to a product differs from that of LCA. For instance, LCA attributes pressures from the 

construction of the infrastructure and upstream pressures from waste management practices to the 

product under assessment based on the cradle to grave approach, while IOHA allocates the 

pressures from infrastructure to capital formation, while waste management is commonly 

represented as a separate industry. Thus, when carrying IOHA at meso level as in this case, it is a 

modellers choice which pressures to attribute to the research subject. 
2 Here we use the term ‘auto-consumption’ to refer to the electricity consumption induced by 

electricity production itself, i.e. the amount of electricity that is required in the value chain prior to 

the electricity production process (e.g. in the extraction or processing of raw materials that are 

then burnt in power plants). Although this indicates an ‘own use’, this item should not be confused 

by ‘Energy Industry Own Use’ as defined by the International Energy Agency, which represents 

direct energy inputs (irrespective of the product) required in the transformation industries for 

heating, pumping, traction, and lighting purposes. 
3 We use the term sector to refer to domestic production of electricity and the required 

infrastructure. 

                                           


