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Today the way energy is produced and consumed is under debate as it is increasing

the atmospheric concentrations of greenhouse gases (GHG), which can cause dangerous

anthropogenic interference with the climate system. This means that a de-carbonisation

of the global energy system is required. Shipping represents the biggest global low cost

international freight transport service, and today it accounts for about 3% of the world’s

total GHG emissions. Such a percentage is projected to increase by 50% to 250% in

the period to 2050. The projected shipping emissions trajectory, therefore, does not

seem compatible with the de-carbonisation of the global energy system necessary to

meet the internationally agreed goal of reducing the emissions in all sectors and ensure

that the temperature rises in 2100 will not be greater than 2◦C degree. Since shipping

energy demand is mainly satisfied by fuel oil, recent new regulations on efficiency and air

pollution have been introduced (EEDI, SEEMP), and instruments that would cut GHG

emissions from shipping are under discussion. In the short term (5-10 years) the industry

is aiming to reduce its emissions through a combination of technological and operational

developments, however in the long term a switch to an alternative fuel may be required.

Among the options, hydrogen with fuel cell systems (FCs) is seen by many as one of

the long term solutions. Its attraction is not only for its zero operational emissions but

also for the higher efficiency that could be achieved on board. Hydrogen and FCs are

also seen as promising technologies that can support climate change and energy security

goals in several sectors of the energy system. The most attractive uses of hydrogen

within the context of a de-carbonization of the energy system are: for storing renewable

energy, for heating, and as fuel for the transport sector. Moreover it can increase the

operational flexibility as it can connect different energy sectors and energy transmission

and distribution networks. The energy and the shipping systems are interrelated, so if the

de-carbonisation of the global energy system could be achieved with the use of alternative

energy and fuels including hydrogen, the same could be experienced in shipping with

a widespread switch to the adoption of hydrogen as alternative fuel within the coming

decades.

The purpose of this thesis was to learn more about the potential for hydrogen as

a future fuel in shipping. The focus is on a computational modelling approach that is

considered to lead to new useful contributions. This study proposes a framework based

on a soft-linking technique to examine the potential of using hydrogen in shipping.

The framework connects together a global integrated assessment model (TIAM-UCL)

and a shipping model (GloTraM). GloTraM is a bottom-up shipping simulation model

that is used to evaluate pathways towards a low carbon shipping system; TIAM-UCL

is a bottom-up energy system model that is used to investigate possible pathways to

reduce the energy and carbon density of the global energy system. The first objective of

this study is the development of a new modelling approach that soft-links two existing



models in order to improve the modelling representation of hydrogen take up in shipping.

The hypothesis is that the model linkage is more representative for exploring specified

scenarios, forecasting investment decisions for hydrogen powered ships in conjunction

with the hydrogen infrastructure development than the two separate models. The second

objective is the analysis of the possible use of hydrogen under specific scenarios in order to

understand at a global level the implications of providing and using hydrogen in shipping.

The hypothesis is that the model linkage is able to explore the broader circumstance in

which it would be possible to see an uptake of hydrogen in shipping and what it might

mean for the contribution of shipping in avoiding 2◦C of warming.

Based on this objectives, this research aims to answer the following research ques-

tions: Can an integrated framework that combines two different models improves the

modelling representation of hydrogen uptake in shipping compared to the current repre-

sentations found in the literature? What type of results does the integrated framework

provide regarding the potential of hydrogen to compete with LNG and current marine

fuels to fuel international shipping? Under what circumstance would hydrogen be able

to compete with LNG and current marine fuels in shipping and what would be the main

economic and environmental implications?

The comparison between the results of the independent and the integrated framework

simulations of a specific set of scenarios has highlighted the capability of the framework of

modelling the investment decision for ships powered by hydrogen in conjunction with the

development of a hydrogen supply infrastructure with a more robust approach compared

with the energy and shipping models. Evidence of the modelling improvement was found

in: the ability of the model to simulate the equilibrium between marine fuel prices and

demands, the ability of the model to capture the dynamics between the carbon price and

the shipping fuel mix (how these outputs influence each other), the ability to generate

fuel price projections that overcome the limitation of the linear property of the energy

system model, the ability of capturing the dynamics between the transport demand

among regions and the fuel mix evolution of the global fleet.

Moreover, a number of circumstances for the potential uptake of hydrogen over LNG

were found in this thesis; the key circumstances are: the introduction of an emissions cap

in shipping, a competitive hydrogen price and investment costs of hydrogen technologies

on board ships (fuel cells and hydrogen storage technologies), and finally the supply of

hydrogen mainly based on natural gas and biomass with CCS technology or electrolysis

in case of an absence of CCS. The main implication of a switch to hydrogen is that

shipping emissions would be reduced significantly over time.

This topic was identified as being of importance to assist ship owners and fuel

providers in understanding the potential of use of hydrogen in shipping, and to assist pol-

icy makers in the development of effective GHG policy for shipping and in understanding



the implications of using hydrogen in shipping within the context of a de-carbonised en-

ergy system. It is hoped that information from this study may be useful in creating

awareness of the potential that hydrogen might have in shipping and in creating incen-

tives for further research required for exploring this option from different perspective.

Moreover this study explores the application of a relative new modelling technique of

soft-linking two existing models. The experience engaged in developing such a link could

be useful to educators and modellers interested in the soft-linking modelling approach.
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Will hydrogen fuel international shipping? Shipping emissions could increase signif-

icantly in the future and a new regulatory context is likely to enter into force to reduce

shipping emissions. Future emissions abatement technologies might not ensure satis-

factory results, therefore alternative fuels for shipping have come into the spotlight in

the last few years. Although liquefied natural gas (LNG) is by far the most promoted

alternative fuel in shipping, hydrogen could play an important role in the future. The

use of hydrogen in combination with fuel cell systems on board ships could theoretically

lower to zero the carbon intensity of shipping fleets. In addition hydrogen could emerge

significantly in the road transport sector, and the introduction of hydrogen in shipping

would be an additional market that has not been studied extensively so far.

In such complex context it becomes very difficult to predict the possible use of hy-

drogen to fuel international shipping. Due to the complexity of the target system, many

factors need to be taken into account. Although the studies that have assessed the

potential use of hydrogen in shipping have provided already useful insights, their con-

clusions appear contrasting and weak. The debate, therefore, still seems to be open and

there appears to be a need for a more rigorous approach.

1.1 Hydrogen to fuel international shipping

There are a number of factors that could influence the future use of hydrogen in shipping.

As will be shown in chapter 5, one of the main advantages of using hydrogen in shipping

is that it could lower shipping emissions. As consequence, it becomes very important

the interest to achieve this goal and the possible regulatory framework. How plausible

will be the use of any alternative fuels in shipping is also a very important factor,

especially if there would be competing abatement technology options on the market

(ICS, 2009). Moreover, hydrogen as an energy carrier has been investigated extensively

in the past (Winter and Nitsch, 2012; Mazloomi and Gomes, 2012), and in a context

of sustainable development many authors envisage a transition to a hydrogen economy

(Ekins, 2010; Züttel et. al., 2010). Its potential role in the energy system is, therefore,

another important factor.

Based on these elements, the first step is to look into each of these areas in further

detail to understand the current state of the art and any gaps. Hence, the following sec-

tions are divided in: shipping emissions, regulatory context, future emissions abatement
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technologies in shipping, alternative fuels in shipping, and other uses of hydrogen.

1.1.1 Shipping emissions

Shipping is responsible for a wide range of global and local environmental concerns.

Currently, particular attention is on the ships’ emissions (Endresen et. al., 2008). Ships

commonly use oil-derived liquid fossil fuels that emit numerous pollutants such as car-

bon dioxide (CO2), sulphur dioxide (SO2), and nitrogen oxide (NOX). In 2014 the

International Maritime Organization (IMO) carried out a study to provide an inventory

and future scenarios for GHG and non-GHG emissions from ships. Such a study (Smith

et. al., 2015) updates a previous study undertaken in 2009 (Buhaug et. al., 2009). One

conclusion of the Smith et. al. (2015) study is that shipping CO2 emissions are projected

to increase by 50% to 250% in the period to 2050 from the base year 2010.

The contribution of shipping CO2 emissions to the world’s total could increase sig-

nificantly in the future, especially if a decarbonisation of the energy system is taken into

account. According to Smith et. al. (2015) in 2012 the world’s total CO2 emissions was

estimated to be 35.640 million tonnes, of which 938 were emitted from ships representing

about 2.6% of the total. The scenarios for the projected shipping emissions provided in

Smith et. al. (2015) do not see a downward trend. Shipping is forecast to constitute be-

tween 6% and 14% of total anthropogenic carbon dioxide emissions in 2050 according to

MEPC.1/Circ.6851 (2015), although it has forecast the introduction of energy efficiency

technologies and the use of alternative fuels. This trend does not seem compatible with

the low-carbon development of the global energy system.

The decarbonisation of the global energy system is recognised as an indispensable

strategy to reduce the global GHG emissions. According to the IPCC (2013b)’s Fifth

Assessment Report (AR5) findings this strategy will limit the global temperature to

rise above 2◦C from pre-industrial level which will avoid dangerous climate change. In

December 2015 an historic agreement was undertaken by 195 nations in Paris. Such an

agreement brings all nations into a common cause to keep the global temperature rise

this century well below 2◦C and to limit the temperature increase even further to 1.5◦C

above pre-industrial levels.

The possible increase of shipping emissions becomes a concern under the context

of global sustainable development, although shipping was not included in the Paris

agreement. This concern is well described in Bows-Larkin et. al. (2015); figure 1.1 shows
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Figure 1.1: Comparison of 16 GHG scenarios from the IMO and the RCP marker
scenarios for a range of climate outcomes. All scenarios are indexed to 2012 emissions.

Source: (Bows-Larkin et. al., 2015)

a chart from this study that compares the shipping emissions scenarios from Smith

et. al. (2015) with four representative concentration pathways (RCPs). As explained in

Bows-Larkin et. al. (2015), each pathway has been estimated so that it corresponds to

a different climate outcome; for example, RCP2.6 pathway has an estimated 0.9–2.3◦C

of warming by 2100, while on the other side RCP8.5 has an estimated 3.2–5.4◦C. The

main conclusion was that none of the anticipated shipping scenarios is close to the

pathway RCP2.6 which ensures a proportionate contribution for shipping to avoid 2◦C of

warming. Therefore the sustainability of the shipping system has become very important

in order to bridge this gap, which highlights the need to investigate new policy and

technology solutions, particularly in the mid-to-long term, after 2020.

1.1.2 Regulatory context

A particular focus on ships’ emissions is demonstrated by tighter regulations on efficiency

and air pollution provided by IMO in Annex VI of The International Convention on the

Prevention of Pollution by Ships (MARPOL). In 2010 the revised Annex VI introduced a

phasing in a progressive reduction in SOX emissions from ships and further reductions in
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NOX emissions from ships. Figure 1.2 shows the approved emission control area (ECA)

regions and the progressive reduction in SOX emissions. By 2015 all ships entering ECA

regions are allowed to use a fuel with a maximum sulphur content of 0.1% by weight

or these ships can use technologies that ensure such limitations on SOX emissions. A

study on the availability of low sulphur fuels for shipping has been commissioned by

IMO and it will be used as a base to decide when the further limit of maximum sulphur

content of 0.5% will be extended to all outside ECA regions. These regulations are very

important as they might incentivise the introduction of new, cleaner fuels in shipping,

although the focus is only on SOX emissions. New ECA regions could be introduced

in the future. China, for example, has just approved a regulation that limits fuels with

high sulphur content in its major ports.

Figure 1.2: Approved ECA regions and IMO agreement to reduce atmospheric pol-
lution from ships. Adapted from ICS (2009) and INTERTANKO (2012).

In 2013 amendments of the Annex VI were adopted by Parties to MARPOL Annex

VI represented in the Marine Environment Protection Committee (MEPC), which set
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mandatory measures to reduce emissions of GHG in international shipping. The new

chapter 4 of Annex VI made it mandatory for new ships to respect the limit imposed of

an Energy Efficiency Design Index (EEDI), and all ship were rewired to follow the Ship

Energy Efficiency Management Plan (SEEMP) (IMO, 2015). According to ICS (2009),

the EEDI should lead to about a 25%-30% reduction in emissions by 2030 compared

to business-as-usual’, and the SEEMP, instead, should ensure the monitoring and the

improvement of several factors that can contribute to CO2 emissions.

Other instruments that would cut GHG emissions from the international maritime

transport sector are being discussed. For example, a number of market-based mea-

sures (MBM) proposals are objectives of a feasibility study and impact assessment

(MEPC.1/Circ.61/INF2, 2010). In addition, in June 2013 the European Commission

set out a strategy for reducing domestic shipping GHG emissions. The strategy includes

the monitoring, reporting and verification (MRV) of CO2 emissions from large ships

using EU ports. Finally, the IMO has recently agreed in principle to the development

of a global data collection system to measure CO2 emissions from individual ships (ICS,

2009).

How the regulatory framework will evolve will be very important in view of creating

new incentives towards the decarbonisation of the shipping industry. The IMO appears

to lead on this topic, although regional regulations on efficiency and air pollution from

ships are also becoming tighter.

1.1.3 Future emissions abatement technologies in shipping

The global shipping industry aims to reduce by 20% CO2 emissions by the end of

2020 and to comply with all MARPOL Annex VI regulations through a combination of

technological and operational developments (ICS, 2009). Such a combination includes

for example improvements to hull, engine and propeller design, but also better speed

management. This is considered a valuable option in the short term, however, what

would be the strategy for a more significant emissions reduction long term will depend

on the technological developments (ICS, 2009). These technological developments in

shipping are currently under discussion. A completed examination of the transformative

impact of 18 technologies in ship design and marine engineering, and on the use of ocean

space in 2030 has been provided in a report made available by Lloyd’s Register Argyros
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et. al. (2014). An additional review of alternative sources of energy in shipping can be

found in Fernández Soto et. al. (2010).

Among the technological solutions for the reduction of shipping emissions, there

are exhaust gas cleaning systems (EGCS), also called scrubbers, renewable energy based

technology such as wind and solar power systems on board ships, and fuel cells as a main

propulsion system. Ships with scrubbers on board will still be using traditional marine

fossil fuel as this scrubber technology can ensure only a lower amount of SOX emissions.

As consequence scrubbers are not seen as a long-term solution for a significant CO2

emissions reduction. Wind power is not a new solution for shipping as it has been used

for centuries. Wind technologies for today’s ships are being investigated by a number of

studies such as Rojon (2013). Solar power, instead, seems to be less attractive on board

ships as it would be difficult to provide sufficient power. Fuel cells as a main propulsion

system could be a possibility for new ships as they can be used in combination with

a reformer with a number of hydrocarbons such as LNG and methanol (Erkko, 2011).

However, their environmental benefits could be higher when they are used in combination

with hydrogen (Argyros et. al., 2014). The development of such technology is still at an

early stage for maritime applications, but there already exist prototypes of auxiliary

power unit (APUs) operating on board ships (McConnell, 2010).

The investigation on further technological developments is an important factor that

will influence the way future ships are developed. The uptake of hydrogen as fuel for

shipping will also depend on such developments.

1.1.4 Alternative fuels in shipping

Alternative fuels could be a different option for significant shipping emissions reduc-

tions in the long-term. The most pronounced alternative fuels for shipping are: LNG,

methanol, biofuels (including bio-methanol) and hydrogen (including bio-hydrogen),

LPG (Liquid Propane Gas), DME (Dimethyl Ether) and ammonia, although only the

first four appear to be the most promising in accordance with Ruud Verbeek (2011)

and Argyros et. al. (2014). An additional motivation in exploring alternative fuels in

shipping is that compliance with the global introduction of the maximum sulphur con-

tent in marine fuels by 2020 might increase the prices of low sulphur fuels which, as a

consequence, could create an extra economical inventive to switch to competitive cleaner

fuels.
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LNG is by far the most promoted alternative fuel in shipping as shown in the many

projects and programmes that are trying to demonstrate its advantages. It has been

claimed that LNG is a fossil fuel option that has a low sulphur content and produces

lower CO2 emissions than the current marine fuels (Verbeek et. al., 2011; GL, 2011;

Lloyds Register, 2012). Methanol is also commonly seen as a future fuel in shipping, and

advanced biofuels (bio-methanol included) are often mentioned as a viable alternative.

Hydrogen with fuel cells, however, is seen as the most long-term solution; its attraction is

not only for its zero operational emissions but also for the higher thermal efficiency that

could be achieved on ship (Ruud Verbeek, 2011; Argyros et. al., 2014). LPG, DME and

ammonia are potential marine fuel candidates, although there is limited information

available on their viability on board ships. A number of studies such as Bengtsson

(2011) and Brynolf et. al. (2014), have applied a life cycle assessment (LCA) to assess

the environmental impact of alternative marine fuel. However, it seems that there is not

a strong consensus on which of these alternative fuels would provide a viable solution,

although LNG has found concord among many (Ruud Verbeek, 2011; DNV, 2010; GL,

2012; Wartsila, 2012; DNV GL, 2014)

Generally, the use of any alternative fuels in shipping shares common concerns. First,

their storage on board ships causes technical challenges including safety and space re-

quirements. Second, the initial costs required for the supply chain infrastructure are

generally higher than for petroleum-based fuels due to the lack of initial economies of

scale. Finally, a number of other concerns must be addressed, for example the eco-

nomical longevity, future price and availability, the upstream emissions and net effect

reduction of CO2 equivalent associated with each of the alternative fuels. Many of these

concerns are not completely understood and are not strictly linked with the shipping

industry. For example, future prices and the upstream emissions are associated with

the multiple choices of production pathways that can arise from joining the different

elements of the energy system; the future amount of alternative fuels required to satisfy

the shipping demand would compete with the amount of such fuels required to satisfy

the demands from other sectors.

The supply chain of existing marine fuels involves an international network of organ-

isational and trade relationships. A technological transition such as alternative fuels in

shipping would involve changes not only in the technology itself but also in practices,

and regulations in such networks (Geels, 2002). In shipping, a transition from sailing
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ships to steamships in the nineteenth century is a classic example of a technological

transition which is described empirically in Geels (2002). In general it is concluded that

a massive technological transition is the outcome of a series of adaptations and changes

over time that involve a broader scope. The evaluation of alternative fuels in shipping,

therefore, is not a simple technological comparative analysis, but involve the transition

of a whole system.

If the technical and operational measures will not be enough for a drastic emissions

reduction, then alternative fuels with the use of a more efficient propulsion system could

be the most plausible response for a more significant long-term emission reduction in

shipping. If alternative fuels will take up in shipping it would be through a series of

adaptations and changes. The use of any of these fuels shares common concerns and not

all are exclusively linked with the shipping industry, therefore the deployment of any

alternative fuel in shipping will also be associated with their role in the future energy

system.

1.1.5 Other uses of hydrogen

Since hydrogen was first separated and identified in the second half of the 18th century,

its role as an energy carrier has been under extensive investigation. Many authors

envisage a transition to a hydrogen economy as the a solution for a zero-carbon energy

system. According with them, due to hydrogen physical and thermodynamic properties,

hydrogen-based technologies could find many applications within a decarbonised global

energy system, and it is expected that hydrogen would have a key role in the near future

(Winter and Nitsch, 2012; Andrews and Shabani, 2012; Barreto et. al., 2003; Ekins,

2010). Today the main use of hydrogen is in refineries as an upgrader to lower the

sulphur content of oil-derived fuels or as a commodity in the industrial process (Züttel

et. al., 2010). However, the most attractive uses of hydrogen would be: for storing

renewable energy, for heating, and as fuel for the transport sector (SBA, 2014).

The need to balance the energy network from the increasing intermittency of renew-

able energies raise questions about the development of energy storage systems. Accord-

ing to the study SBA (2014), hydrogen-based storage technologies may be the best way

in providing back-up power when renewables are not producing energy and in avoiding

wastage during peaks in renewable electricity supply. In a recent study Ehteshami and

Chan (2014) claimed that hydrogen is the most promising option for storing renewable
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energy; by comparing different options based on a set of criteria, it was claimed that

the most promising option resulted to be storing renewable energy sources in the form

of hydrogen through the electrolysis process. Also JRC (2007) declared that in order to

ensure high penetrations of renewable electricity in the short to medium term, hydrogen

can be used as a storage media to cope with stochastic power generation. However con-

cern, were expressed about the hydrogen re-electrification, which may not be the most

energy efficient and cost-competitive storage technology.

Another attractive use of hydrogen is its use as an alternative to natural gas for

space heating, water heating and for gas cooking. In a recent study Dodds and Hawkes

(2014) declared that hydrogen can be burned directly in boilers or used in fuel cells

and has higher efficiencies and no fundamental difference compared to the natural gas

equivalents. According to this study hydrogen could be injected into the gas system

but this could accommodate only a small percentage of hydrogen by volume, while a

widespread use of hydrogen gas would mean a new dedicated transmission network would

have to be constructed.

Perhaps the most investigated use of hydrogen within the context of a decarbonisa-

tion of the energy system is its use as fuel for the transport sector. During the recent

decades much attention has been devoted to road transportation, and also more recently

numerous papers have focused on hydrogen as a fuel, including Mansilla et. al. (2012),

Rosenberg et. al. (2010), Konda et. al. (2011), Veldhuis et. al. (2007) and Boudries (2014).

In addition, private industry and public programmes have announced the development

of hydrogen mobility. One example is the HyTEC project which aims to create three

new European hydrogen passenger vehicle deployment centres in London, Copenhagen

and Oslo (HYTEC, 2015). Another example is the H2Mobility project which is a col-

laboration between car manufacturers, utility companies and government departments

to evaluate the potential role for hydrogen in road transport.

Many of these studies have concluded that in the near term, hydrogen fuel cell

electric vehicles (HFCEVs) suffer from higher purchase prices compared to competitors

such as plug-in electric vehicles. Moreover, there are numerous challenges associated

with the full-scale infrastructure for low-carbon production, transportation and storage

of hydrogen. The cost of a refuelling infrastructure was found to be one of the biggest

barriers (CCC, 2013). In the longer term, however, HFCEVs have the potential to

reduce emissions and be competitive against or complementary to other alternatives
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(CCC, 2013). The volume required for on board hydrogen storage tanks has an effect

on the cost of owning HFCEV, however according with Anandarajah et. al. (2013),if the

developments overcome challenges around hydrogen storage technologies then hydrogen

vehicles could be useful for the long-term decarbonisation of the road transport sector,

in particular for buses and HGVs, where battery electric vehicles may be unsuitable.

The study Anandarajah et. al. (2013) analysed the role of hydrogen and electricity

to decarbonise the transport sector using a global energy system model, and found that

hydrogen and electricity are complementary transport fuels in the short and medium

term. In all scenarios the model deploys hydrogen vehicles from 2030 and fuel cell

technology becomes cost-effective first in the relatively high-mileage modes of buses and

LGVs. This study showed also that the timing of the deployment of hydrogen vehicles

is strongly dependent not only on vehicle cost, but also on biomass resource and CCS

technology availability, and on global marginal abatement cost. Another study, SBA

(2014) claimed that although HFCEVs need to resolve challenges such as refuelling

time, mileage range, cost and hydrogen distributions they seem to be the preferable

solution for hydrogen mobility compared to hydrogen used in an internal combustion

engine (H2ICE) as the latter has a lower efficiency and is more sensitive to the hydrogen

cost.

Whether hydrogen will be used for heating or as fuel for the transport sector, a

key concern mentioned in many studies is regarding how hydrogen would be produced.

JRC (2007) claimed that hydrogen production with natural gas is the cheapest option;

electrolysis has by far the highest potential, while the potential for biomass is more

limited. The study declared that hydrogen produced from renewable electricity requires

less land than using biomass to satisfy the same demand for transport. Coal to hydrogen

pathways with CCS could play an important role, however such a switch in the use of

coal is an alternative that is not currently backed up by the power sector industry. In

conclusion, it is recognised that there are different methods of producing hydrogen and

each of these methods have different implications for costs and emissions savings.

Based on the discussion above, it can be concluded that there is diversity in the pos-

sible uses of hydrogen. In the medium and long term, however, its use as a fuel in the

road transport sector is the main possible role of hydrogen within a decarbonised global

energy system. A number of technical issues are recognised in all studies, however one of

the main challenges seems to be economic and evidence of emissions savings. Policy and
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other mechanisms that encourage incentives for low carbon solutions would be impor-

tant for hydrogen, and it is envisaged that niche market for hydrogen could soon emerge

(for example, applications in remote areas and islands) (SBA, 2014). Further areas of

research that would help investors, policymakers and decision makers in better under-

standing the role of hydrogen in the future energy system are identified in many studies;

for example SBA (2014) emphasised the need to develop multidimensional optimisation

tools. Such tools should take into account the numerous inputs and outputs that exist,

the roll up of revenue streams to demonstrate the profitability of the hydrogen, and the

comparison of hydrogen solution with the alternatives in the context of local application

specific conditions (SBA, 2014).

1.2 The approach of this study

There are few studies regarding hydrogen in international shipping and they can be di-

vided into three categories: studies specifically focused on hydrogen as a fuel in shipping,

studies with a focus on fuel cells in marine applications that have considered hydrogen

in combination with fuel cells, and finally, studies with a focus on alternative fuels in

shipping with hydrogen among the options. All of these studies have used different ap-

proaches which have led to different conclusions. Some studies declared that hydrogen

is not suitable for ships for practical, economic and energy efficiency reasons (Ruud Ver-

beek, 2011), while others see hydrogen as the most distant future alternative marine

fuels depending on the associated costs, on the evidence that it helps to reduce GHG

emissions, and on future emissions policy (Taljegard et. al., 2014; Argyros et. al., 2014;

DNV GL, 2014). More details on those studies will be provided in section 2.2.

The studies that have used a computational modelling approach appear to be more

suitable when a large number of factors need to be considered. Using an energy sys-

tem model, the study Taljegard et. al. (2014) assessed the most cost-effective fuel choice

taking into account the dynamics that would occur in the global energy system ( e.g.

LNG total supply limit) and at some level of detail the type of ship and its technical

characteristics (fuel tank system on board). Using a shipping model instead, the study

Argyros et. al. (2014) assessed the most profitable fuel choice in shipping taking into ac-

count at a great level of detail the technical and operational characteristics of a fleet (by

ship type and size categories), the sectoral regulatory framework and the fuel price and
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transport demand projections. Although the use of computational modelling approach

have provided important and useful insights regarding the potential of hydrogen in ship-

ping, their conclusions appear often contrasting. For example, Taljegard et. al. (2014)

claimed that hydrogen would be used in coast-going shipping after 2060, while Argyros

et. al. (2014) claimed that an aggressive carbon policy combined with a moderate hy-

drogen price may lead to a considerable uptake of hydrogen from 2030 in international

shipping. More details on those types of studies will be provided in section 2.3.

The way hydrogen has been studied does not appear to satisfy a complete and com-

prehensive understanding of all factors involved for the exploration of the possible use

of hydrogen to fuel international shipping. There is, therefore, the potential for differ-

ent research techniques that include the ‘whole system’ understanding (both the energy

and the shipping systems), with appropriate technological and economic details. Conse-

quently, the following sections are a summary of the state of the art of the two relevant

areas: computational modelling in general, the limits of existing models. Finally, the

objectives of this study will be identified.

1.2.1 The computational modelling approach

Some authors define computer simulations, others define the computational models used

to compute a simulation. A definition of computer simulation is given in Winsberg

(2013): it is a program that is run on a computer and that uses step by step methods

to explore the approximate behaviour of a mathematical model of a real-world system

(existing or hypothetical). A broader definition is also given: a computer simulation

is a comprehensive method for studying a system, so it refers to the entire process of

choosing a model, implementing, calculating the output, and visualising and analysing

the resultant data in order to make inferences about the target system. The latter

definition is closer to the definition in Weisberg (2012), which defined the indirect study

of real-world systems via the construction and analysis of the model as a case of scientific

problem solving. According to the author modelling is not always aimed at purely

veridical representation of the target system, rather it aims to identify the features of the

system that are most salient to the investigation. In particular, when a computational

model is used to explain a phenomenon, generally transition rules or algorithms are

used. In this case neither the sequence of the model’s states nor the final equilibrium
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state of the model carries the explanatory force but it is the algorithm itself that it is

needed to explain a phenomenon.

According to Winsberg (2013), it is possible to divide computer simulations into two

main categories: equation-based simulations and agent-based simulations. Simulations

that belong to the former are based on global equations that are associated with the

theories about how a system works. Simulations that belong to the latter category are

based on local rules of evolutions associated with the behaviour of single elements of a

system. On the other hand, Weisberg (2012) offered a distinction between mathematical

models and computational models stating that the main difference between them is

that the computational models are procedural in the sense that they represent causal

properties of their targets by relating these causes to procedures. They can be conditional

or probabilistic, all of which are difficult to represent using non procedural structure

unlike in mathematical models. In this study, the computational modelling approach

refers to the use of a computational model as defined in Weisberg (2012), such a model

is used to compute equation-based simulations as defined in Winsberg (2013).

Regardless of how it is defined, a computational modelling approach is often used for

forecasting, in other words it is a simulation of how it is expected that a system in the real

world would behave under a particular set of circumstances. For example, in our case

the purpose of a computational modelling approach could be stated as the simulation

of how the shipping system would behave if hydrogen and fuel cell technologies were

available at a certain cost and with some specific technical characteristics. Another

example could be the simulation of how the global energy system would behave if it

is constrained to meet a certain emission target using a set of technologies (including

hydrogen based technologies) to satisfy a number of energy demands.

It is important to note that there are mechanisms that can affect the outcome in real

life that is difficult to capture in a model (e.g behaviour aspects or convenience aspects),

which requires further analysis.

Many authors seem to agree that all models are made of a structure and an interpre-

tation, so as an interpreted structure Weisberg (2012), Godfrey-Smith (2006), Pincock

(2012). A classic example is the Schelling model, which is an agent-based model used

to represent movements in the city; in this model the structure is a set of states and

transitions rules in a computational space and the interpretation is that there is a simi-

larity between transitions rules instantiated by the agents in the model and the thought
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process of actual residents in a city.

In conclusion, appropriately developed computational models can be used to explore

a wide range of research questions. The model structure and the interpretation are

the key components that are required to be identified in order to rigorously study the

intended target system.

1.2.2 The limits of existing models

Modelling frameworks have recently been used to evaluate pathways towards a low car-

bon shipping system taking into account a number of different factors where different

solutions are technically and economically evaluated, such as hydrogen with fuel cells

(e.g. Argyros et. al. (2014); DNV (2012)). Similarly, models are also used to investigate

possible pathways to reduce the energy and carbon density of the global energy system.

Generally, they are used to analyse the cost efficiency of energy technologies such as hy-

drogen related technologies and conditions that may impact on such technologies under

specific CO2 constraints (e.g. Taljegard et. al. (2014); Anandarajah et. al. (2013)).

The former type of models simulate the evolution of the shipping system. The inter-

pretation is that the technology on board ships would be selected in the real world based

on the profit maximisation of the shipowner and shipping regulatory compliance. The

latter type of models simulate the evolutions of the global energy system, maximising the

social welfare (consumer surplus plus producer surplus) under specific CO2 constraints.

The interpretation is that energy technologies would be selected in the real world based

on the theory that the most cost-effective technology would be used.

If a “shipping model” is used to investigate hydrogen as an alternative marine fuel,

it is possible to analyse the interactions that occur within the shipping system. For

example, hydrogen powered ships are technically and economically evaluated taking

into account several factors such as the weight, volume and cost of hydrogen fuel storage

on board, and the profitability for different ship type and ship size in comparison with

other options. However, the limit in this type of model is that a number of exogenous

assumptions are used to include the signals from the global energy and economic system

such as the fuel prices. Often the results are very sensitive to these types of assumptions

and the dynamics of hydrogen supply and demand in shipping are external to the model.
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If an energy system model is used to investigate hydrogen as an alternative marine

fuel, it is possible to capture to a certain level of detail the competition for primary

energy resources to produce hydrogen, the spatial factors, and the effects of global

economic and climate policy drivers. However, the shipping system is generally poorly

represented, and the model is not able to capture the interaction between the technical

and operational specifications of hydrogen powered ships.

Both types of models appear to fail to take into account the combined effect of the

supply and demand balance of hydrogen as an alternative marine fuel. This suggests

that a more rigorous approach is needed with a more complex representation of hydrogen

uptake in shipping. More details on the modelling representation of hydrogen uptake in

shipping for two existing models will be provided in chapter 3.

1.2.3 The objectives of the study

There are contrasting agreements on the possibility to use hydrogen to fuel international

shipping. The use of a modelling approach has helped to better understand such topic.

Two existing types of models have been used, however there is a methodological dis-

agreement in how to model the uptake of hydrogen in shipping; the first type of model is

driven by the least cost to reach a global CO2 reduction target, the other type of model

is driven by the profitability for the ship owner of using hydrogen powered ships. The

literature generated from the use of such models is considered inadequate because the

dynamics of the supply-demand balance of hydrogen as an alternative marine fuel has

been ignored or there is little information available on the balance in both modelling

methods. By soft-linking these types of models the strengths of both can be used to

overcome the lack of a robust method to investigate the potential of hydrogen to fuel

international shipping.

The research questions of this thesis are:

1. Can an integrated framework that combines two different models improves the

modelling representation of hydrogen uptake in shipping compared to the current

representations found in the literature?

2. What type of results does the integrated framework provide regarding the potential

of hydrogen to compete with LNG and current marine fuels to fuel international

shipping? Under what circumstance would hydrogen be able to compete with LNG
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and current marine fuels in shipping and what would be the main economic and

environmental implications

This thesis has two main objectives: the first objective is the development of a new

modelling approach that soft-links two existing types of model in order to improve the

modelling representation of hydrogen uptake in shipping. More details on existing litera-

ture on how to soft-link two models will be provided in chapter 4. The hypothesis is that

the model linkage is able to explore specified scenarios, forecasting investment decisions

for hydrogen powered ships, in conjunction with hydrogen infrastructure development.

The second objective is the analysis of the possible use of hydrogen under specific

scenarios in order to understand at a global level the implications of providing and

using hydrogen in shipping. The hypothesis is that the model linkage is able to explore

the broader circumstances in which it would be possible to see an uptake of hydrogen

in shipping and what this means for the contribution of shipping in avoiding 2◦C of

increased temperature compared to the industrial level.

The purpose of this thesis is to learn more on hydrogen as a future fuel in shipping

taking into account the big picture. This thesis is identified as being of importance to

assist ship owners and fuel providers in understanding the potential of hydrogen in ship-

ping, and to assist policymakers in the development of effective GHG policy for shipping,

providing a comprehensive understanding of the implications of using hydrogen in ship-

ping within the context of a decarbonised energy system. It is hoped that information

from this thesis may be useful in creating awareness of the potential that hydrogen might

have in shipping and create incentives in exploring these options at different levels in

order to demonstrate that hydrogen could be the means for a large reduction in shipping

emissions. Moreover, this thesis explores the application of a relatively new modelling

technique of soft-linking two existing models. The experience engaged in developing such

a link could be useful to educators and modellers interested in the soft-linking modelling

approach.

1.3 The structure of this thesis

The remaining chapters are organised as following: chapter 2 comprises of a literature

review of the main studies concerning the use of hydrogen as a fuel in shipping. The

purpose of this chapter is the identification of the gaps in the literature that leads to
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the research questions. Existing approaches are evaluated and a particular focus is on

the computational modelling methods.

In chapter 3 the modelling representation of hydrogen uptake in shipping is examined

in order to identify the specifications required for a complete and adequate representa-

tion. The bottom-up energy model TIAM-UCL and the bottom-up shipping model

GloTraM are analysed in this chapter with their relative representational capacity of

the target system. The studies that have linked two different models are also reviewed.

Finally the gaps in the literature are identified as well as the research questions.

Chapter 4 identifies an appropriate method that can be used to answer the identified

research questions, and then develops the method used to soft-link two existing mod-

els (TIAM-UCL and GloTraM). Linking two computational models is a relatively new

method, therefore this chapter starts by critically analyses existing studies that have ap-

plied soft-linking methods. A number of steps are identified in order to soft-link the two

models. Each step is developed in greater detail along with the associated assumptions.

Chapter 5 explores the evidence as to whether the soft-linking framework improves

the modelling representation of hydrogen uptake in shipping. This chapter is intended

to address the first research question by describing and comparing the results of inde-

pendent simulations of TIAM-UCL and GloTraM and the results of TIAM-GloTraM.

Two different scenarios are examined. They explore the evolution of the global energy

system in conjunction with the shipping system under two different emissions reduction

targets.

Chapter 6 examines the potential of hydrogen to be an alternative marine fuel.

This chapter is intended to address the second research question. A different scenario

is explored with diverse circumstances to explore what may lead to the adoption of

hydrogen as a fuel in shipping. The results from this scenario are described in detail,

analysing the implications in both the energy and the shipping systems. This chapter

comprises also of a robustness analysis where the resulting inferences are tested by

exploring a number of scenarios. This analysis is carried out in order to understand

the relationship between given uncertain input factors and the model output. The

robustness analysis highlights the relationship between specific input factors and the

possible uptake of hydrogen in shipping. It also identifies specific dynamics between the

energy and the shipping systems that can influence the potential of hydrogen to be an

alternative marine fuel.
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Finally, discussion and conclusions are provided in chapter 7 .
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20
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2.1 Introduction to the literature review

This chapter provides a literature review of the main studies concerning the use of hy-

drogen as a fuel in shipping. The aim is to identify possible gaps in the literature and

therefore the needs for further investigations. The idea of hydrogen in shipping is asso-

ciated with the portfolio of technology solutions that the shipping industry has in order

to improve its energy efficiency, and to reduce its carbon intensity. Different scopes have

been investigated for such technology solutions in shipping. The efficiency of hydrogen

powered ships, for example, is under investigation with the analysis of operating pro-

totypes. The potential efficiency of hydrogen in combination with fuel cell systems on

board ships has also been investigated by studies that have focused on maritime appli-

cations of fuel cell systems. Other scopes have included environmental and economic

factors to drive the possible adoption of hydrogen in shipping, taking into account the

supply of hydrogen. A number of approaches have been used such as the analysis of

empirical data, the cost-benefit analysis, cross-modal comparison, life cycle assessment,

general assessment, simulations of a ship’s main engine, and the use of computational

models to simulate the shipping system or the energy system. In this thesis particular

focus will be given to the studies that have used a computational modelling approach,

although it is recognised that other approaches have already provided a number of useful

insights.

The modelling approach has been applied with different purposes; for example, some

studies have discussed on the potential of hydrogen in shipping but with the broader

scope of studying alternative fuels in shipping. Other studies have focused on hydrogen

as fuel but without considering shipping among the possible users. The implications for

the modelling representation of the use of hydrogen in shipping will be reviewed in this

chapter. The purpose of such a review is the identification of the required specifications

that need to be considered for hydrogen’s modelling representation in shipping.

This chapter is organised as follows: section 2.2 provides a review of existing ap-

proaches evaluating methods used and conclusions. In section 2.3 the existing approaches

are evaluated for being the most suitable method to investigate the potential use of hy-

drogen in shipping. Section 2.4 provides a review of other relevant studies to analyse

the background theory and identify implications on the modelling representation of the

use of hydrogen in shipping. Finally, the identified implications are discussed in section
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2.5, which also provides an examination of how hydrogen has been modelled and how

such representations fit with the identified implications.

2.2 Existing approaches and main conclusions

The literature on hydrogen for marine applications is not extensive compared to what is

available on hydrogen for other transport sectors. It is possible to divide this literature

into three categories: studies specifically focused on hydrogen as a fuel in shipping,

studies with a focus on fuel cells in marine applications that have considered hydrogen

in combination with fuel cells and, finally, studies with a focus on alternative fuels in

shipping with hydrogen among the options.

Few studies were found in the first category that particularly focused on hydrogen

as fuel for shipping. Bevan et. al. (2011) and Bulletin (2013) have described the con-

struction of prototypes which have been built to demonstrate the technical feasibility on

board a ship, on a canal boat and a small cruise boat respectively. Both examples are

successfully operating. The installation on board submarines is also another successful

example of the practical implementation of hydrogen technology on board, as described

in Sattler (1998) and Psoma and Sattler (2002). Other studies have provided possible

concept designs on board specific ships. Veldhuis et. al. (2007), for example, studied the

potential for hydrogen considering a high speed catamaran serving specific routes. Upad-

hyay et. al. (2011) proposed an integrated multiple modular hydrogen fuel cell drive, and

Mulder and Mulligan (2010) proposed a hybrid electric tug powered for 80% of the op-

erational hours with fuel cell/battery hybrid and hydrogen and the remaining 20% with

a diesel generator/battery hybrid. Two other studies have been carried out discussing

the idea of using hydrogen as fuel in shipping. Farrell et. al. (2003) suggested as the

best strategy to introduce hydrogen as a transportation fuel is to use it in international

cargo shipping. The study used a cross-modal comparison in order to determine the best

strategy. Koefman (2012) provided an interesting assessment of all main implications of

using hydrogen as fuel for shipping such as: the sourcing of hydrogen, the comparison

with other fuel competitors, the loading and storing of such fuel on board ships, the

most suitable type of prime mover and the implications for the ships’ architecture.

In the second category there are the studies that have focused primarily on fuel

cells in maritime applications and that have made considerations regarding hydrogen on
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board ships. They are Vogler (2010), Sattler (2000), Ludvigsen and Ovrum (2012), Han

et. al. (2012). While discussing the fuel cells applications on board ships, these studies

have highlighted a number of key factors where fuel cells are used in combination with

hydrogen. Mainly the discussion is about the type of hydrogen storage system that

would be used on board and other requirements that would be needed to handle this

type of fuel.

Studies with a focus on alternative fuels in shipping with hydrogen among the options

are included in the third category. It is possible to further divide these studies into two

subcategories. The former includes two studies that have compared alternative fuels

against several technical, economic and environmental criteria to drive possible future

adoptions in the shipping industry. Ruud Verbeek (2011) used different sources to discuss

the production, the short and long term potential and the cost of each alternative fuel,

while DNV GL (2014) discussed the technological challenges and potential benefits from

each alternative fuel and provided a life cycle assessment (well-to-propeller analysis).

The latter subcategory includes studies that have used computational models to as-

sess the introduction of alternative fuels in shipping. Taljegard et. al. (2014) used a cost

optimisation energy systems model (Global Energy Transitions - GET RC 6.2) to anal-

yse the cost-effective fuel choices in shipping under stringent CO2 emissions reduction

targets. While Argyros et. al. (2014) used the Global Transport Model (GloTraM) to

analyse the role and demand for different fuels and energy efficiency technologies. This

model simulated the global fleet activity and its technological and operational evolution

in response to external drivers such as fuel prices, transport demand, regulations and

technology availability. Details of the hydrogen representation for this model are given

in section 3.3 and in chapter 4.

A number of considerations can be highlighted from such a variety of approaches

concerning the use of hydrogen as fuel in shipping. On one hand the experiences gained

with the practical installations on board lead to the conclusion that it is technically fea-

sible to accommodate hydrogen and fuel cells systems on ships. On the other hand it is

difficult from this type of approach to drive conclusions on the potential of hydrogen to

fuel international shipping. A number of studies have dedicated their attention to possi-

ble concept design options for several types of ships, highlighting that for applications on

board large ships different design challenges still need to be addressed. In general, many

authors seem to agree that these key factors for the technical and economic analysis of
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hydrogen as a fuel in shipping are: the weight and volume impacts of the hydrogen fuel

storage system used on board, the capital and operational costs associated with both

the storage system and the combined main propulsion machinery, and the associated

efficiency of the main propulsion engine (Upadhyay et. al., 2011; Veldhuis et. al., 2007;

Ludvigsen and Ovrum, 2012; Han et. al., 2012).

Particular attention has been given to the hydrogen storage systems. The max-

imisation of the volumetric and the gravimetric energy density of the stored fuel is an

important challenge. Although today the most commonly used hydrogen storage system

is high-pressure gas cylinders, the low volumetric density is considered a key limitation

for application on board ships. In accordance with several studies, large storage cylin-

ders are estimated to be 4-7 times in volume the traditional fuel oil tanks (Taljegard

et. al., 2014; DNV GL, 2014; Vogler, 2010). Liquid hydrogen stored in a cryogenic state

has been considered in Veldhuis et. al. (2007), Han et. al. (2012) and DNV GL (2014).

The main concerns are the low temperatures, the large energy losses, and the space re-

quired for very well insulated fuel tanks DNV GL (2014). Moreover, if liquid hydrogen

is stored in a cryogenic state, it requires a refrigeration unit which adds extra cost Han

et. al. (2012). Another promising hydrogen storage option that was investigated for ma-

rine applications is the metal hydrides hydrogen storage system, which has been tested

successfully in submarines. The main disadvantage of metal hydrides hydrogen storage

for merchant ships is the low weight percentage of hydrogen (Han et. al., 2012; Sattler,

1998). Others future options would be a carbon nano-fibres system or the generation of

hydrogen on board from easy-to-store hydrocarbons Sattler (1998). In the latter case the

efficiency of a reformer has to be taken into account in the overall efficiency of the tank

to propeller system. Besides the type of hydrogen storage system chosen, special safety

considerations have to be taken into account when hydrogen is stored on board ships due

to its low flammability limits. New requirements would be needed such as ventilation,

alarm systems and fire protection, as well as the introduction of other measures to limit

the likelihood and consequences of hydrogen leakage (Ludvigsen and Ovrum, 2012).

The main engine choices for a hydrogen fuelled ship are: fuel cells and gas turbines.

Few information wa found on hydrogen used in gas turbine for ships, while a specific topic

of interest in many of the studies is the use of fuel cells as a propulsion device associated

with hydrogen, therefore it is important to consider some of the main challenges for this

type of system in marine applications. The power requirement is a challenge as fuel
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cell systems with at least 500kW of power would be needed. In general fuel cells will

need to achieve from 1 to 5 MW to be considered a substitution for the electrical power.

Other challenges are: the high investment costs, the dimensions and weight of fuel cell

systems, their expected lifetime, their response at transient loads, and the energy and

emissions associated with their life cycle. It is recognised that these issues need more

investigations (Vogler, 2010; DNV GL, 2014).

Fuel cell systems on board ships also have a number of advantages; first, the poten-

tial reduction of fuel consumption through improved efficiency, second, the consequent

reduction of emissions. Other advantages can be the insignificant noise and vibration

levels, the potential design flexibility and lower maintenance requirements. Because of

these advantages DNV GL (2014) claimed that fuel cells can become a part of the fu-

ture shipping power systems portfolio and that the recent commercialisation of certain

land-based fuel cells applications can facilitate their use in shipping in the future.

Fuel availability and price are very important factors too for the use of hydrogen in

shipping. It is recognised that hydrogen as a fuel can be difficult and costly to produce,

transport and store. On the other hand, hydrogen is consider, competitive when it can be

produced using the surplus of energy from solar or wind energy that the grid cannot take

(Ruud Verbeek, 2011), although it depends on the capacity factor of the electrolysers.

The distribution network for hydrogen and for any other new alternative fuel is currently

limited (Ludvigsen and Ovrum, 2012), which raises a high level of uncertainty regarding

the long-term availability of such fuel. These issues are associated with the upstream

process, which should be taken into account also in terms of emissions emitted. The

impacts of upstream emissions caused from fuels that appear attractive on the basis of

their potential low operational emissions are not yet completely understood. The effects

of bringing alternative fuels into port terminals are often studied with LCA, however

more investigations are needed as it is difficult to find robust results that define such

types of effects.

Conclusions regarding the potential hydrogen uptake in shipping from the studies

that have been reviewed in this study are contrasting. On one hand there are studies that

have predicted hydrogen as being unsuitable for ships for practical, economic and energy

efficiency reasons, suggesting that traditional marine fuels will remain the preferred

marine fuels. LNG appears to be the first alternative, depending on two main factors:

the price and evidence that it helps to reduce GHG emissions (Ruud Verbeek, 2011),
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and the cost of the storage tank (Taljegard et. al., 2014). Hydrogen is seen as the most

distant future alternative to the marine fuels together with synthetic fuels and biofuels

depending on the characteristic of the ship (Taljegard et. al., 2014). On the other hand

there are studies that have envisaged a more diverse fuel mix in the future where LNG,

biofuels, renewable electricity and hydrogen all play important roles (DNV GL, 2014).

It is also suggested that a more aggressive emissions reduction policy combined with a

moderate hydrogen price may lead to a considerable uptake of hydrogen (Argyros et. al.,

2014).

Other conclusions come from considerations regarding the characteristics of the mar-

kets. DNV GL (2014), for example, claimed that for some shipping segments there are

not incentives for owners to explore any alternative fuel as fuel costs are paid by the

charterer. Farrell et. al. (2003) claimed that historically there has been a slow adoption

in innovations in the maritime industry. Whereas Ludvigsen and Ovrum (2012) claimed

that the increased availability of alternative fuels in other sectors may also accelerate

the introduction in shipping, while Farrell et. al. (2003) claimed that the introduction

of hydrogen in shipping would be a more effective way to advance hydrogen-related

technologies.

This section highlights the fact that there are different approaches for the study of

the use of hydrogen in shipping. It is difficult to drive robust conclusions due to the

numerous factors that need to be considered. The possible advantages and disadvantages

or benefits and barriers are all well described, however the conclusions regarding the

potential of hydrogen to fuel international shipping are contrasting.

2.3 Studying hydrogen in shipping with a computational

modelling approach

As discussed in the previous section there are different approaches for the study of

hydrogen as a fuel in shipping. In general they differ on the type of method used and

the specific questions that can be answered. Often, different approaches lead to different

conclusions. The boundaries in each approach can help to define the limitations and

the robustness of the relative conclusion. In this section, the existing approaches are

evaluated for being the most suitable method to investigate the potential use of hydrogen
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in shipping. By doing this, techno-economic modelling and social-technical transition

methods are also compared under a broader view.

The first existing approach is the construction of prototypes of hydrogen powered

ships. Although they are very important to overcome technical obstacles and to explore

the technical feasibility, they are not sufficient for answering questions about the future

potential use of hydrogen on a large scale. So it is too for the studies that have focused

on the concept designs of a hydrogen powered ship including the studies with a focus on

the installation on board of hydrogen in combination with fuel cell systems. They are

very useful to identify technical challenges, but they are generally limited to a techno-

economic analysis of one specific ship, sometimes taking into account few serving routes

as, for example, in Veldhuis et. al. (2007). The boundaries of these studies are depicted

to have as a core either the ship itself or a type of ship, and they generally exclude the

dynamics of the shipping system.

The second approach is the assessment based on technical, economical and environ-

mental criteria as in Farrell et. al. (2003), Koefman (2012), Ruud Verbeek (2011), and

DNV GL (2014). This type of approach can be categorised under the social-technical

transition methods. They deal with technological transitions identifying patterns and

mechanisms in the transition process. They can be very useful to identify socio-technical

drivers that are difficult to capture such as market barriers, political development, and

other global economic factors. Despite that, the conclusions reached with this type of

approach rely on assumptions that are very uncertain, sometimes not supported by a

reliable quality of empirical data, therefore they appear insufficient robust.

As mentioned, hydrogen is part of the solution that can reduce the energy and carbon

intensities of the shipping industry; the energy intensity of the shipping system has

been studied with the computational modelling approach such as that used in Taljegard

et. al. (2014) and Argyros et. al. (2014). They have used a modelling framework that is

generally implemented to investigate possible pathways to reduce the energy and carbon

intensities of the specific shipping sector or several sectors together.

Energy system models are one example. This type of model is used to analyse the

cost efficiency of energy technologies and conditions that may have an impact on such

technologies under specific CO2 emissions reduction constraints. They can be very useful

to assess the effect of new policies, although they are not able to generate scenarios

of the evolution of the energy system. Sectoral models such as shipping models are
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another example. They are suitable for evaluating pathways towards a future shipping

system taking into account a number of different factors such as the scale effect of a

ship’s size, the ship’s technical design and the ship’s operational specification under

different shipping policy scenarios. In a sectoral model energy efficiency solutions can

be technically and economically evaluated.

Different approaches can answer questions to a certain level of detail from different

perspectives; the computational modelling approach seems to be the most appropriate

tool when a large number of factors need to be taken into account. The uptake of

hydrogen in shipping depends not only on its implementation on board ships but also on

other factors that describe sectoral and global pathways of energy and carbon intensities

reduction. In this thesis, therefore, the focus is on the computational modelling approach

as it is considered to lead to new useful contributions regarding the potential of hydrogen

to fuel international shipping.

2.4 Other relevant studies for modelling hydrogen in ship-

ping

The focus of the following literature review will be on the computational modelling

approach, therefore the modelling representation of hydrogen in shipping becomes of

significant importance. In this section two other categories of study that are interesting

for the discussion of the modelling representation of hydrogen in shipping are broadly

examined. The first category includes the studies that have used computational models

for investigating other alternative fuels in shipping rather than hydrogen, while the

second category includes the studies that have modelled hydrogen as a future energy

carrier in other sectors. Both of these types of study are important for our study

because by analysing the background theory it is possible to identify implications on the

modelling representation of the use of hydrogen in shipping.

2.4.1 Existing models for the study of other alternative fuels in ship-

ping

There are a number of studies that have used models to investigate the uptake of other

alternative fuels in shipping in which hydrogen is not included. Some models take into

consideration several fuel options, many others consider only LNG as an alternative.
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A complete review is not in the scope of this thesis, rather the focus is only on the

specifications embedded in the models used. Such specifications are useful to identify

factors that are considered significant when modelling hydrogen uptake in shipping.

Among those models that explore other fuel options there is one used in DNV (2012).

This study was carried out using a simulation model very similar to the one used in

Argyros et. al. (2014). This model simulates how ship owners seek to comply with

regulations and increased energy efficiency requirements by investing in new technologies.

It is very similar in structure to the model used in Argyros et. al. (2014), however it is

less rich in technological details. Environmental and energy efficiency regulations are

included in the model. These specifications highlight the need to take into account

the effect of such regulations both in the investment decision process and in terms of

environmental impacts. In this study LSHFO, MGO and LNG are taken into account

as alternative fuels to HFO. A key assumption is LNG price projections, which can

be obtained in two different ways: linked to crude oil price or as an independent gas

market. Historical prices are used to parametrise the model. As in Argyros et. al. (2014),

fuel prices are exogenous to the model and this sophistication on LNG price projection

highlights the need to link fuel price assumptions with the dynamics that belong to the

supply of such fuel. DNV (2012) concluded that in the future the viability of many

emission reduction technologies depends heavily on various fuel prices and their relative

price differences.

The study carried out by the Environmental Protection Agency EPA (2008a) de-

veloped a framework to examine the petroleum refining industry and the marine fuels

market. In this study a model of shipping activity was used to estimate regional and

worldwide projections of future marine fuels demand. The model of shipping activity

estimated future fuel consumptions based on trade commodity projections, ship char-

acteristics and voyage characteristics. Then these consumption projections provided a

baseline for the WORLD model, a bottom-up model of the downstream oil sector, which

was used to establish projections of future refining activities. These specifications high-

light two main implications: the first is the need to represent the characterisations of

ships and voyages in greater detail to capture the dynamics inherent to the shipping

system. The second is the need to use the information from the shipping model in a

more sophisticated model that is able to represent the supply side; in this case limited

to the supply of oil products.
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There are other studies that have looked only at LNG as an alternative fuel for

shipping, addressing different technical challenges on board and offshore. Semolinos

(2013) and Verbeek et. al. (2011) have provided an economic account for the development

of LNG as a marine fuel. In these studies the techno-economic analysis have used

assumptions on investment costs on board ships and logistic costs of LNG port terminals.

It is important to note that both models distinguished different types of aggregation.

Particularly, Semolinos (2013) made considerations to represent the possible LNG supply

chains for small and large ports at first and later phases of development, while Verbeek

et. al. (2011) considered three types of ships: a short sea ship, a port ship and an inland

ship. These specifications highlight the need to take into account the constraints and

implications associated to the refuelling process at a greater level of resolution.

Another study is GL (2011) which provided a cost and benefits analysis of LNG as a

fuel for container ships taking into account specific costs for LNG technologies on board

different size ships and with varying fuel prices scenarios. This implies the need to include

the cost differences among ship types and sizes. A final example is Lloyds Register (2012)

which used a top down approach to provide a perspective on future LNG fuel demand

looking at trading patterns, refuelling demand and LNG supply availability issues. A

model was used to forecast LNG demand as a function of regulations, availability of

LNG at key ports and deployment of new buildings on selected trade routes. Input

data was collected through a survey of shipowners and port authorities. This method

highlights the need to assess the likely adoption of LNG or any other alternative fuel

taking into account both the shipowners’ and fuel suppliers’ perspectives.

As discussed, other alternative fuels in shipping have been studied with techno-

economic modelling methods. Such methods have particular specifications that are

useful to identify significant factors that a model should consider when modelling the

uptake of hydrogen in shipping. Such factors are: the environmental and energy effi-

ciency regulations, the fuel prices and availability as a function of factors associated to

the supply of such fuel, an adequate resolution of the representation of the supply and

refuelling process, and an adequate characterisation of ships and voyages.

2.4.2 Existing models for the study of hydrogen in other sectors

There are a large number of studies that have used models to analyse hydrogen as a

future energy carrier. A complete review is not in the scope of this thesis, and it can
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be found in Dagdougui (2012), Joffe and Strachan (2007) and Agnolucci and McDowall

(2013). Hydrogen in energy models has been approached in different ways. One clas-

sification of models and approaches is proposed in Dagdougui (2012), and it includes

mathematical optimisation methods, decision support system based on a geographic in-

formation system, and assessment plans for a better transition to hydrogen economy.

Another categorisation can be found in Joffe and Strachan (2007), which identifies mod-

elling approaches such as the following: optimisation models with or without spatial

models, scenario-based models with or without spatial models. Furthermore, Agnolucci

and McDowall (2013) discussed optimisation techniques that have used Mixed Integer

Linear Programming (MILP) models with explicit spatial representation of the hydro-

gen network on regional and local scales. Despite the fact that these studies have not

considered hydrogen in shipping, a number of useful insights regarding the modelling

representation of hydrogen can be obtained. In particular, the focus here is on the

challenges involved in modelling hydrogen in such models.

In order to provide a reasonable analysis of the possible pathways for hydrogen de-

velopment within the modelling approach, there are a number of challenges that need

to be considered. They are: the representation of the competition for primary en-

ergy resources, the representation of the spatial factors of the hydrogen infrastructure

development, and the level of technical detail required to appropriately represent the

various hydrogen pathways. Essentially these challenges are model specifications that

are required respectively for: including the impact of the resource competition on future

energy demands, representing the geographical dependencies of hydrogen infrastructure

on the use of local resources and on the distribution distance and flow rate, and including

the technological characterisation of different resolutions (Joffe and Strachan, 2007).

2.5 Implications on the modelling representation of hydro-

gen in shipping

Existing studies regarding hydrogen in shipping have been examined focusing on the

techno-economic modelling methods. Other relevant models have been discussed high-

lighting factors and implications for the representation of alternative fuels in shipping

and hydrogen in models. The target system in this thesis is the hydrogen uptake in
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shipping. According to Weisberg (2012), before accounting for the representational ca-

pacity of a model it is important to establish the relationship between the target system

and the model. Such a relationship can be analysed looking at the background theory of

the existing studies examined above. If we assume that this background theory is rich

enough, then we are able to highlight the feature set that is needed in a model to be

representative of our target system.

Hydrogen on board ships implies the representation within a model of the technolog-

ical concept design of hydrogen and the associated main propulsion system in a certain

level of detail. For example, if hydrogen was to be used with fuel cells, all implications

associated with the technological components should be represented, such as efficiency

of fuel cells, power density, required safety systems, effect on the cargo capacity and

range, capital and operational costs.

A hydrogen powered ship would operate within the shipping system, and it would

compete with other alternative and conventional ships in different shipping markets

characterised by specific voyage, operational specifications, ship type and size. Moreover,

other factors can influence the viability of a hydrogen powered ship such as the shipping

regulatory framework and changes in the transport demand. This implies also that the

representation of the shipping system within a model should be included in a certain

level of detail.

Hydrogen needs to be available at port refuelling terminals, therefore the represen-

tation within a model of the hydrogen supply chain for shipping should be included.

Hydrogen production, transportation and storage should be modelled in a certain level

of resolution. Hydrogen supply chain would interact with the rest of the global energy

system, competing for primary energy resources, and satisfying the demand of other

sectors. This implies also that the representation of the energy system within a model

should be included in a certain level of detail.

Finally, the price of producing hydrogen would affect the demand for such fuel and

at the same time the demand would affect the hydrogen price. A need to capture the

balance of supply and demand is required in a model such as in the approach used in

EPA (2008a).

Table 2.1 summarises the feature set of an ideal model that we assume to be rep-

resentative of the hydrogen uptake in shipping. These specifications define the feature

set of an ideal model that is assumed to be representative of the hydrogen uptake in
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shipping.

Table 2.1: Specifications for the representation of hydrogen as a fuel in shipping and
required model feature

Specifications Required model’s feature

Technological details of the con-
cept design options for hydrogen
and main machinery systems on
board ships

Accounting for the key technological components,
their energy and emissions factors
Technical compatibility of hydrogen technologies
and other energy efficiency technologies
Impact of weight and volume of hydrogen storage
systems on board
Accounting for the costs of hydrogen storage sys-
tems, costs of the associated main machinery and
costs of maintenance of hydrogen-main machinery
option, and other associated costs

Economic analysis of hydrogen-
main machinery option

Simulation of the investment evaluation process of
hydrogen technologies along with all the other al-
ternative options

Details of the shipping system
specifications

Segmentation by ship type and size
Characterisation of voyages, operational data and
routes
Accounting for current and main alternative fuels
competitor
Accounting for current and future environmental
and energy efficiency shipping regulations

Technological details of the hy-
drogen supply chains for port ter-
minals

Accounting of different hydrogen infrastructure
pathways
Costs of producing, transporting and storing hy-
drogen
Accounting for the emission effects of bringing hy-
drogen to port terminals

Details of the energy system
specifications

Interaction of hydrogen supply chains for shipping
with the rest of the global energy system
Accounting of competition for primary energy re-
sources
Accounting of spatial factors
Influence of the changes in transport demand of en-
ergy commodities
Accounting of regulations on global CO2 emissions
reduction targets

Hydrogen price for shipping Balance of supply and demand for hydrogen in ship-
ping

In general, hydrogen modelling representation can be found in the literature in two

different types of models: in energy models in which the focus is on the representation

of the hydrogen supply chain, and in sectoral models in which the focus is on the rep-

resentation of hydrogen end-user technologies. Such models differ from each other in
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their aims, system boundary and geographical scale, and in theory they are all suitable

to represent hydrogen in shipping but in a different manner.

Some of these models focus on the hydrogen supply infrastructure at a local or

national scale, answering questions regarding the best configuration that optimises a

specific object function. In these studies a greater level of technological detail on the

hydrogen supply chain is provided, however many inputs such as energy resource avail-

ability and demand are exogenous to the models. These types of models are suitable for

assessing the deployment of hydrogen supply chain technologies on a local scale, for the

assessment of the refuelling process of hydrogen in a particular area, for example. Due

to the international nature of the shipping industry, an aggregation at global level of

resolution is considered more appropriate. Moreover, these models generally lack the ap-

propriate technological details of hydrogen end-user technologies, for example hydrogen

powered ships are rarely included. Moreover, they lack an economic analysis to assess

the market penetration of hydrogen end-user technologies, and the interactions with the

rest of the energy system are not modelled.

In contrast, other models have a complete representation of the energy system, in

which the hydrogen supply chains and hydrogen end-user technologies are both modelled.

The level of resolution of such models depends on the system boundary (e.g. only one

sector, the whole energy system), and on the geographical scale (e.g. local, regional,

global). Such models have a common aim, which is the simulation of consistent scenarios

of change in the energy system under specific emissions reduction constraints (Schafer,

2012). The impacts of hydrogen technologies on the energy system can be assessed

through the analysis of such scenarios. On one hand these types of models have a good

representation of the energy system and an appropriate level of technological detail on

the hydrogen supply chain. On the other hand they have a poor level of technological

detail of hydrogen end-user technologies and energy service demand. An example of this

type of model is described in Taljegard et. al. (2014), where a bottom-up energy model

was used, and in which the entire shipping fleet was divided into only three categories:

container, coast and ocean–going ships.

In contrast to the energy model discussed above, hydrogen can be represented also

in models that aim to represent a specific sector. Generally, in these types of mod-

els the focus is on the hydrogen end-user technologies rather than on the supply chain

technologies. These models can have a good level of technological detail of hydrogen
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end-user technologies, and are often used to analyse the market penetration with specific

economic evaluations. The literature is rich of models for hydrogen in the road trans-

portation system, and few examples can be found for hydrogen in shipping. These types

of models generally lack a proper level of technological detail of the hydrogen supply

chain and the energy system.

In conclusion, based on the identified specifications there is no existing model that

can be considered representative of the hydrogen uptake in shipping. Energy models

include some factors and shipping models include other factors. Rarely are they used

in conjunction to explore the balance of supply and demand. The bottom-up energy

system model TIAM-UCL and the bottom-up simulation model of the shipping system

GloTraM are examples of these types of models. A close look at these specific models

can help to identify how the representation of the target system may be improved.
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3.1 Introduction to the methodology

The conclusion from the previous chapter is that an existing model that can be con-

sidered being fully representative of the hydrogen’s uptake in shipping does not exist.

Energy system models and shipping models can partially be considered representative as

they do not include all specified specifications. In this chapter, a possible framework for

a complete representation of our target system is examined. The framework is composed

of the bottom-up energy system model TIAM-UCL and the bottom-up shipping system

model GloTraM. The representation of hydrogen in both models is assessed against the

required specifications with the purpose of identifying shortcomings and areas of im-

provement. Hybrid models that link together two different models are also examined in

order to evaluate if they are an appropriate method to resolve the gap identified in the

literature. This analysis will motivate the two the research questions.

This chapter is organised as follows: the theoretical representational capacity of the

shipping model TIAM-UCL is assessed in section 3.2, while section 3.3 assess the theo-

retical representational capacity of the energy system model GloTraM. Finally, section

3.4 justifies why a linking approach can be an appropriate method for the study of hy-

drogen as a fuel in international shipping, and identifies the gap in the literature and

the research questions.

3.2 The representation of the target system in TIAM-UCL

The 16-region TIAM-UCL global energy system model has been developed at UCL

through the UK Energy Research Centre (UKERC). It is a linear programming cost

optimisation model which minimises total discounted energy system cost in the standard

version and maximises social welfare (consumer surplus plus producer surplus) in the

elastic demand version over the modelling period (Loulou and Labriet, 2008). TIAM-

UCL models all primary energy sources (oil, gas, coal, nuclear, biomass and renewables)

from production through to their conversion, infrastructure requirements and, finally, to

sectoral end use. In each region, resources and costs of all primary energy production

are defined. After a number of processes, several energy commodities can be used

directly within the region or can be traded (McGlade and Ekins, 2015). Hard coal,

crude oil, refined products including heavy fuel oil, natural gas, both in pipelines and as

liquefied natural gas can be traded between different regions. The trade of hydrogen is
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not allowed. Energy service demands are initially based upon energy balances in 2005

and are projected using drivers such as GDP, population, number of households, sector

output, etc. (Anandarajah et. al., 2011). The climate module of TIAM-UCL, which

converts emissions to atmospheric concentrations to radiative forcing to temperature

rises, constrains the model to a certain average global temperature rise. It is assumed

that the model has a perfect foresight. The start year is 2005 and the end year is 2100

with 5 years time-step, however, the results are generally shown only for the period from

2010 to 2050. A detailed description of input assumptions, approaches and data sources

for TIAM-UCL can be found in Anandarajah et. al. (2011).

TIAM-UCL has been used in a number of studies and it is continuously developed

and maintained by UCL. Particularly, it has been used in Anandarajah et. al. (2013)

for developing long-term scenarios of the energy system to analyse the role of hydrogen

and electricity to decarbonise the transport sector, and in McGlade and Ekins (2015) to

explore the implications of a certain emissions limit for fossil fuel production in different

regions. TIAM-UCL includes the representation of hydrogen infrastructure, and the

representation of the shipping system.

3.2.1 The representation of hydrogen infrastructure in TIAM-UCL

The representation of hydrogen infrastructure in TIAM-UCL consists of different path-

ways in the supply side of the model (Anandarajah et. al., 2013). Each pathway can be

divided into several components: production, transportation, liquefaction, distribution,

refuelling stations and end-use sector.

The production technologies are categorised into three classes: centralised large,

centralised medium, and decentralised plants. The centralised plants can be steam

methane reforming (SMR), coal gasification (CG) and biomass gasification (BG) and

they can be equipped with carbon capture and storage (CCS), although at additional

cost and with an efficiency penalty. Centralised medium size hydrogen plants can instead

be SMR, BG, and electrolysis. Finally, decentralised plants can be SMR, BG, electrolysis

with decentralised electricity production and with centralised electricity production. A

number of other production technologies such as biomass IGCC, biomass oil SMR, waste

gasification, nuclear, thermolysis, photocatalytic could become important in the future

and should be included for an accurate representation of hydrogen production. They

are not present in this version of TIAM-UCL as they are more immature technologies
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and generally with higher production costs in comparison with the ones included in the

model, so they would not add much to the representation of the hydrogen production.

Generally hydrogen transportation depends on the type of production plants. Hydro-

gen produced from large scale plants can be transported in liquefaction plants that can

be built at the production site or close to demand sites or can be transported through

pipelines in gaseous form. Hydrogen produced from medium scale plants is assumed to

be located closer to demand sites, which imply short distance transportation through

pipelines or by truck as liquid hydrogen. Hydrogen produced from decentralised small

scale plants does not have any transportation cost and differs from the previous produc-

tion plants because it can be produced with electricity generated by decentralised wind

and solar plants.

Once hydrogen is transported the distribution can take place. Liquid hydrogen can

be distributed to the transport sector by the means of refuelling stations. The latter

includes the re-gasification process as it is assumed that vehicles would adopt only high-

pressure gas cylinder hydrogen storage systems on board. Gaseous hydrogen can be

distributed to transport and industry sectors, or it can be blended with gas and supplied

to end-use sectors. Decentralised small scale plants include liquefaction and refuelling

stations and can be distributed directly to transport and other sectors or blended with

gas.

The majority of the end users vehicle technology in the transport sector in TIAM-

UCL can be hydrogen fuelled in combination with fuel cells technology. Other hydrogen

based technologies are modelled to meet demand in other sectors (residential, commercial

and industry).

The existing representation of hydrogen infrastructure in TIAM-UCL is provided in

figure 3.1. In this thesis all hydrogen data is based on Dodds and McDowall (2012) with

the exception of SMR, CG and BG production technologies investment cost data which

was updated with the values derived from Agnolucci et. al. (2013). Also, centralised

electrolysis production investment costs data was updated with the values found in

Decourt et. al. (2014). A discussion of the hydrogen data and its assumptions can be

found in Dodds and McDowall (2012), Agnolucci et. al. (2013) and Anandarajah et. al.

(2013).
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Figure 3.1: Hydrogen infrastructure in TIAM-UCL before this study. Adapted from
Anandarajah et. al. (2013)

3.2.2 Hydrogen infrastructure input data

This section provides a brief summary of all input data regarding the hydrogen infras-

tructure in TIAM-UCL. In particular, the following input assumptions are presented:

the capital investment costs, the operational costs, efficiencies and emissions factors.

The sources of this input data as found in the model TIAM-UCL are provided in Anan-

darajah et. al. (2011).

Table 3.1 provides the investment costs of hydrogen infrastructure components rep-

resented in figure 3.1, while table 3.2 provides the operational costs. SMR plants are

divided into centralised large and medium, and decentralised small plants. SMR cen-

tralised large plants are considered a mature technology with negligible reduction costs

during the time, while a slight improvement is applied for SMR centralised medium

plants. SMR decentralised plants are the most expensive at the beginning, although

their investment costs become similar to the centralised large plants after 2025. Coal

gasification is considered only in centralised large plants. Similar to SMR, these plants

are considered mature, therefore their investment costs are kept constant over time.

Medium and decentralised small plants are not taken into account as they are assumed

to not be cost effective. Biomass gasification has the same pattern of SMR. Centralised

large plants are kept constant over time, however medium plants are assumed to be-

come cheaper than the large plants after 2020. Biomass gasification at decentralised

small plants is the most expensive hydrogen production technology, however it is as-

sumed that the cost decreases over time, becoming comparable to the centralised plants

in 2050. Electrolysis is considered only in centralised medium plants and decentralised
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small plants. In TIMA-UCL, it is assumed that the former has a capacity factor of

52300 kgH2/day while the latter has a capacity factor of 1500 kgH2/day. The mix of

electricity source used in this type of plan depend on the scenario. The model select

the mix of source that meet the emissions constraints. The electricity from the grid is

distinguished in electricity from a centralised grid and from a decentralised grid. More

details of the representation of the electricity sector and its input assumptions can be

found in Anandarajah et. al. (2011).

Table 3.1: Capital investment costs of hydrogen infrastructure components in
$(2010)/(GJ/yr)

Description 2005 2015 2025 2050

Centralised large H2 from NGAS 16.50 16.50 16.50 16.50
Centralised large H2 from Hardcoal 39.60 39.60 39.60 39.60
Centralised large H2 from Browncoal 39.60 39.60 39.60 39.60
Centralised large H2 from BIO-GASIF 42.90 42.90 42.90 42.90
Centralised mid H2 from NGAS 34.74 34.74 28.12 23.16
Centralised mid H2 from C-ELC 71.50 37.40 23.10 23.10
Centralised mid H2 from BIO-GASIF 56.66 47.86 37.77 37.77
Decentralised small H2 from NGAS 85.00 59.40 18.89 15.11
Decentralised small H2 from BIO-GASIF 140.80 140.80 78.87 47.30
Decentralised small H2 from C-ELC 122.78 76.49 30.22 18.89
Decentralised small H2 from D-ELC 122.78 76.49 30.22 18.89
Centralised large H2 from NGAS +CCS 18.76 18.76
Centralised large H2 from coal +CCS 41.14 41.14
Centralised large H2 from BIO-GASIF+CCS 45.32 45.32
Trasportation -Long distance pipeline GH2 8.79 8.79 8.79 7.80
Trasportation -Long distance Truck LH2 17.26 16.51 15.76 12.78
Liquefaction- Large plant 28.33 19.83 11.33 11.33
Liquefaction- Medium and decentralised plants 28.33 23.61 18.89 18.89
Liquefaction- Liquefaction decentralised plant 28.33 23.61 18.89 18.89
Distribution- Pipeline GH2 18.18 17.76 17.34 17.34
Distribution- Truck LH2 5.18 4.95 4.73 4.73
Distribution- Refuelling station GH2 and LH2 37.40 32.73 28.05 20.90
Distribution - Refuelling station LH2 to GH2 50.60 44.55 38.50 29.70
Distribution- Decentralised refuelling station 71.50 64.08 56.65 38.50

Hydrogen can be transported using two different transportation options: long-distance

pipeline in gaseous form or by trucks after the liquefaction process. The transportation

by trucks over long distance is assumed to be more expensive than the transportation

by long-distance pipeline. The average distance for hydrogen transportation is assumed

to be 800 km. Hydrogen liquefaction plants are subjected to a scale effect, so that large

plants are assumed to be cheaper than medium and decentralised liquefaction plants.
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Two types of distribution can be distinguished. The first is the distribution by means

of pipeline and trucks, like the transportation but over shorter distances. In contrast

with the hydrogen transportation investment costs, the distribution by trucks of liquid

hydrogen is assumed to be cheaper than the distribution of gaseous hydrogen through

pipeline. The average distance for hydrogen distribution is assumed to be 100 km.

Table 3.2: Operational costs of hydrogen infrastructure components in
$(2010)/(GJ/yr)

Description 2005 2015 2025 2050

Centralised large H2 from NGAS 0.83 0.83 0.83 0.83
Centralised large H2 from Hardcoal 1.98 1.98 1.98 1.98
Centralised large H2 from Browncoal 1.98 1.98 1.98 1.98
Centralised large H2 from BIO-GASIF 1.98 1.98 1.98 1.98
Centralised mid H2 from NGAS 1.39 1.39 1.12 0.93
Centralised mid H2 from C-ELC 3.58 1.87 1.16 1.16
Centralised mid H2 from BIO-GASIF 3.97 3.35 2.64 2.64
Decentralised small H2 from NGAS 3.40 2.38 0.76 0.60
Decentralised small H2 from BIO-GASIF 9.86 9.86 5.52 3.31
Decentralised small H2 from C-ELC 6.14 3.82 1.51 0.94
Decentralised small H2 from D-ELC 6.14 3.82 1.51 0.94
Centralised large H2 from NGAS +CCS 0.62 0.62
Centralised large H2 from coal +CCS 1.91 1.91
Centralised large H2 from BIO-GASIF+CCS 1.65 1.65
Trasportation -Long distance pipeline GH2 0.27 0.27 0.27 0.24
Trasportation -Long distance Truck LH2 1.73 1.73 1.73 1.73
Liquefaction- Large plant 1.98 1.39 0.79 0.79
Liquefaction- Medium and decentralised plants 1.98 1.65 1.32 1.32
Liquefaction- Liquefaction decentralised plant 1.98 1.65 1.32 1.32
Distribution- Pipeline GH2 0.46 0.45 0.44 0.44
Distribution- Truck LH2 0.52 0.52 0.52 0.52
Distribution- Refuelling station GH2 and LH2 1.87 1.64 1.40 1.05
Distribution - Refuelling station LH2 to GH2 2.53 2.23 1.93 1.49
Distribution- Decentralised refuelling station 3.58 3.20 2.83 1.93

The second type of distribution is that by means of refuelling stations. Different

investment costs are assumed depending on the type of refuelling station. If liquid

hydrogen is distributed and gaseous hydrogen is used in the end-users technologies,

than a re-gasification process is assumed at the refuelling station. This results in an

increased investment cost compared to the refuelling stations that don’t require any

further transformation. Decentralised small scale hydrogen production plants include

refuelling stations that are assumed to be more expensive than the other cases. This

is because they will likely be used to meet initial demands before a full-scale hydrogen

infrastructure is built. In fact, high hydrogen delivery costs can be justified in more
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remote and less populated areas where there are weak economies-of-scale (Anandarajah

et. al., 2013).

The efficiency of each hydrogen infrastructure components as represented in TIAM-

UCL are provided in table 3.3. As mentioned previously, the centralised plants can be

equipped from 2025 with CCS, but with additional cost and with an efficiency penalty.

In general, the efficiencies of all these technologies are assumed to improve over time.

Table 3.3: Energy efficiency of hydrogen infrastructure components (%)

Description 2005 2015 2025 2050

Centralised large H2 from NGAS 80.00 82.42 85.00 85.00
Centralised large H2 from Hardcoal 64.94 64.94 64.94 64.94
Centralised large H2 from Browncoal 64.94 64.94 64.94 64.94
Centralised large H2 from BIO-GASIF 50.00 50.00 50.00 50.00
Centralised mid H2 from NGAS 75.00 77.42 80.00 80.00
Centralised mid H2 from C-ELC 75.00 79.69 85.00 90.00
Centralised mid H2 from BIO-GASIF 50.00 50.00 50.00 50.00
Decentralised small H2 from NGAS 65.00 71.72 80.00 80.00
Decentralised small H2 from BIO-GASIF 50.00 50.00 50.00 50.00
Decentralised small H2 from C-ELC 75.00 79.69 85.00 90.00
Decentralised small H2 from D-ELC 75.00 79.69 85.00 90.00
Centralised large H2 from NGAS +CCS 81.00 81.00
Centralised large H2 from coal +CCS 63.00 63.00
Centralised large H2 from BIO-GASIF+CCS 60.61 60.61
Transportation -Long distance pipeline GH2 88.90 88.90 88.90 88.90
Transportation -Long distance Truck LH2 90.89 90.89 90.89 90.89
Liquefaction- Large plant 84.04 84.04 84.04 84.04
Liquefaction- Medium and decentralised plants 76.85 76.85 76.85 76.85
Liquefaction- Liquefaction decentralised plant 84.04 84.04 84.04 84.04
Distribution- Pipeline GH2 94.00 94.00 94.00 94.00
Distribution- Truck LH2 99.62 99.62 99.62 99.62
Distribution- Refuelling station GH2 and LH2 94.00 94.00 94.00 94.00
Distribution - Refuelling station LH2 to GH2 98.00 98.00 98.00 98.00
Distribution- Decentralised refuelling station 98.00 98.00 98.00 98.00

An emissions factor for a number of hydrogen infrastructure components is assumed

in TIAM-UCL. It is the emission from a process as a function of each unit of activity.

The activity is equal to the flow of the primary commodity which in this case is hydrogen.

The emissions modelled are: CO2, CH4, and N20; the emissions factors are expressed

in kt/PJ and are shown in tables 3.6, 3.4 and 3.5.
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Table 3.4: CO2 emissions factors of hydrogen infrastructure components
(kt(CO2)/PJ)

Description 2005 2015 2025 2050

Centralised large H2 from NGAS 70.13 70.13 66.00 66.00
Centralised large H2 from Hardcoal 151.23 151.23 151.23 151.23
Centralised large H2 from Browncoal 155.69 155.69 155.69 155.69
Centralised large H2 from BIO-GASIF 7.00 7.00 7.00 7.00
Centralised mid H2 from NGAS 74.80 74.80 70.13 70.13
Centralised mid H2 from C-ELC - - - -
Centralised mid H2 from BIO-GASIF 7.00 7.00 7.00 7.00
Decentralised small H2 from NGAS 86.31 78.22 70.13 70.13
Decentralised small H2 from BIO-GASIF 7.00 7.00 7.00 7.00
Decentralised small H2 from C-ELC 1.33 1.25 1.18 1.11
Decentralised small H2 from D-ELC - - - -
Centralised large H2 from NGAS +CCS 6.39 6.39
Centralised large H2 from coal +CCS 16.68 16.68
Centralised large H2 from BIO-GASIF+CCS 7.95 7.95

Table 3.5: CH4 emissions factors of hydrogen infrastructure components
(kt(CH4)/PJ)

Description 2005 2015 2025 2050

Centralised large H2 from NGAS 0.16 0.16 0.15 0.15
Centralised large H2 from Hardcoal 0.83 0.83 0.83 0.83
Centralised large H2 from Browncoal 0.83 0.83 0.83 0.83
Centralised large H2 from BIO-GASIF 1.00 1.00 1.00 1.00
Centralised mid H2 from NGAS 0.17 0.17 0.16 0.16
Centralised mid H2 from C-ELC - - - -
Centralised mid H2 from BIO-GASIF 1.00 1.00 1.00 1.00
Decentralised small H2 from NGAS 0.20 0.18 0.16 0.16
Decentralised small H2 from BIO-GASIF 1.00 1.00 1.00 1.00
Decentralised small H2 from C-ELC - - - -
Decentralised small H2 from D-ELC - - - -
Centralised large H2 from NGAS +CCS 0.15 0.15
Centralised large H2 from coal +CCS 0.83 0.83
Centralised large H2 from BIO-GASIF+CCS 1.00 1.00

3.2.3 Shipping representation in TIAM-UCL

Two categories of shipping are included in TIAM-UCL, one that considers the trade of

non-energy commodities, and another that considers the trade of energy commodities.

The trade of energy commodities is determined endogenously by TIAM-UCL based on

the balance supply and demand among regions. The fuels consumed by ships for such

a type of trade are estimated within the model. In contrast, the trade of non-energy

commodities consists of two energy service demands that must be satisfied: international
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Table 3.6: N2O emissions factors of hydrogen infrastructure components
(kt(N2O)/PJ)

Description 2005 2015 2025 2050

Centralised large H2 from NGAS 0.78 0.78 0.73 0.73
Centralised large H2 from Hardcoal 2.78 2.78 2.78 2.78
Centralised large H2 from Browncoal 2.78 2.78 2.78 2.78
Centralised large H2 from BIO-GASIF 1.00 1.00 1.00 1.00
Centralised mid H2 from NGAS 0.83 0.83 0.78 0.78
Centralised mid H2 from C-ELC - - - -
Centralised mid H2 from BIO-GASIF 0.01 0.01 0.01 0.01
Decentralised small H2 from NGAS 0.95 0.86 0.78 0.78
Decentralised small H2 from BIO-GASIF 1.00 1.00 1.00 1.00
Decentralised small H2 from C-ELC - - - -
Decentralised small H2 from D-ELC - - - -
Centralised large H2 from NGAS +CCS 0.73 0.73
Centralised large H2 from coal +CCS 2.78 2.78
Centralised large H2 from BIO-GASIF+CCS 1.00 1.00

shipping named TWI, and domestic shipping named TWD. Usually international and

domestic shipping energy service demands are based on the sum of the fuels that were

consumed in that year in each region using IEA statistics. These energy service demands

are projected forward using the regional growth in GDP.

Two generic ship technologies are available to satisfy these demands and their effi-

ciency is assumed to increase by about 1% per year. Normally four types of fuel can

satisfy the shipping energy service demands. They are: diesel, diesel from biomass, gaso-

line, heavy fuel oil and coal. TIAM-UCL chooses the mix of fuels based on its objective

function. In years after the base year it is assumed that the maximum relative share of

each of the four fuels increases. The maximum share of each fuel change so that any

combination of fuels can be used.

3.2.4 Theoretical representational capacity of TIAM-UCL

TIAM-UCL is suitable to assess the hydrogen supply chain and its interactions with the

rest of the global energy system. The resolution used is appropriate to represent a global

deployment of hydrogen infrastructure technologies for shipping, although it is not able

to capture and evaluate bunkering operations at port terminals. The different hydrogen

pathways in the supply side are considered exhaustive and appropriate for the scope of

this thesis. However, the shipping system specifications are poor. Hydrogen powered

ships were not present before this thesis, and the entire shipping system is reduced to
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a few categories of shipping trade with no further characterisation of ship types and on

board technologies. The economic analysis is based on the objective function chosen.

This is suitable to assess the cost effective choices that sectors might have in order to

meet specific emissions reduction policies. The use of hydrogen in shipping was not

included before this thesis but hydrogen was instead an option for other sectors such as

other transport modes, residential and industrial.

3.3 The representation of the target system in GloTraM

GloTraM (Global Transport Model) is the maritime model that has been developed at

UCL through the research project Low Carbon Shipping – A Systems Approach. Its

use and development is also part of the more recent research project The Shipping in

Changing Climates (SCC). According to Smith et. al. (2013b), GloTraM is a bottom-up

time-domain simulation model that calculates the evolution over time of the global fleet

in order to estimate the CO2 emissions trajectories of the shipping industry. Figure

3.2 shows the conceptualisation of the model. A number of exogenous input data are

selected at the beginning of the simulation and are considered external to the dynamics

of the model. The model is capable of simulating how the fleet evolves both through

stock turnover (newbuild and scrappage) and fleet management (lay-up, retrofit and

operation). Outputs of the model are energy use, emissions and costs.

The CO2 emissions trajectories are driven by two main factors: the transport demand

(e.g. t.nm) over time, and the transport carbon intensity (e.g. gCO2/t.nm) over time.

The nature of the transport demand determines: which ships are allocated to which

routes, the number of ships that are laid up, and the number of new builds (Smith et. al.,

2013b). A transport demand scenario is selected at the beginning of the simulation, and

is considered external to the system’s dynamics. Transport demand and its supply are

broken down into a number of component shipping markets e.g. dry, container, oil tanker

etc. Each shipping market has specified commodity types and ship size categories. Table

3.7 provides the size classification by ship type used in this thesis, although it is possible

to break down the fleet as desired. The allocation of ship types and sizes to specific

trade flows and routes makes it possible to obtain national and regional statistics on

CO2 emissions.
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Figure 3.2: The global transport system as conceptualised in GloTraM

The CO2 emissions trajectories are also driven by the transport carbon intensity. It

is a function of the evolution of a fleet’s composition and their technical and operational

specifications. The choices that are made to determine technical and operational speci-

fications of new build and existing ships are driven by both the profit maximisation of

the ship owner and regulatory compliance. An important feature of the model is also its

representation of the interaction between technical and operational specifications and

the inclusion of technology additionality and compatibility (Smith et. al., 2013b).

GloTraM has already been used to evaluate future fuel mix in shipping as described

in Argyros et. al. (2014). A more complete description of the method can be also found

in Smith et. al. (2013b), and the derivation of the model’s baseline input data can be

found in Smith et. al. (2013a). GloTraM includes the representation of hydrogen powered

ships, and the representation of hydrogen prices and availability at ports.
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Table 3.7: Ship type by size category

Ship type Tonnes/TEU/m3

>= <

container 0 1000
1000 2000
2000 3000
3000 5000
5000 8000
8000 +

wet crude 0 10000
10000 60000
60000 80000
80000 120000
120000 200000
200000 +

wet prod. chemical ad wet other 0 5000
5000 10000
10000 20000
20000 60000
60000 +

dry 0 5000
5000 10000
10000 35000
35000 60000
60000 100000
100000 200000
200000 +

gas carriers 0 50000
50000 100000
100000 200000
200000 +

3.3.1 Hydrogen ships in GloTraM

GloTraM includes two types of technology, the first category includes all emissions abate-

ment measurements that can be implemented on board (e.g. wind system, solar, super-

structure streamlining etc.). The second category includes a number of main machinery

options. Each of these options consists of the main engine, the auxiliary engines and

fuel storage systems. The main engines and fuel types are matched with a compatibility

matrix that defines which fuel can be used with which engines. Each combination engine

and fuel can be compatible with a number of emissions abatement measurements. The

types of engines and fuels can be selected at the beginning of the simulation.

Hydrogen as a fuel can be considered only in combination with fuel cell systems tech-

nology. Any of the ship type and size categories included in the model can theoretically
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adopt hydrogen and fuel cells on board. Based on the objective function, each combi-

nation is assessed by the model. Along with the other possible combinations, hydrogen

and fuel cells systems are characterised by a number of input parameters that describe

the performance and costs associated with this main machinery option. They are:

1. Unit procurement cost (UPC) or upfront capital cost. This parameter assumes

the investment costs associated with the hydrogen and fuel cell systems.

2. Through life cost (TLC) excluding fuel costs or in other words, the operational

costs excluding the costs of the fuel. If a fuel cells system is selected such opera-

tional costs depend on the fuel cell stack changes and other maintenance require-

ments.

3. Specific fuel consumption at 75% MCR (sfc), which enshrines both the efficiency

of fuel cell system technology and the energy density of hydrogen.

4. Dead weight tonnes loss (dwt loss) to estimate the effect of the hydrogen fuel on

the possible loss of cargo carrying capacity e.g. due to lower energy volumetric

density of fuel storage compared to the traditional oil storage tanks.

The assumptions behind these input parameters are in the scope of this thesis and

their estimations are provided in more detail in section 4.8.

3.3.2 Hydrogen prices in GloTraM

In addition to the performance and cost parameters associated with the main machinery

technologies, another important input parameter is the fuel prices projection. The model

GloTraM uses exogenous fuel prices projections that theoretically can be chosen by the

user as desired. In general, fuel price projections are obtained from other studies or they

are derived from oil and gas prices projections.

In general, hydrogen price projections have been obtained by implementing a techno-

economic analysis of a basic hydrogen infrastructure. This analysis is external to the

model so the hydrogen infrastructure is not part of the dynamics of GloTraM. The

infrastructure is composed of a hydrogen production plant at a centralised location from

natural gas through steam methane reforming technology. A short pipeline of 100 km is

assumed for the transportation of hydrogen to the delivery point. A liquefaction plant
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is assumed to be off-shore. A more extensive description of the parameters used in this

analysis can be found in Smith et. al. (2013a).

3.3.3 Theoretical representational capacity of GloTraM

Based on the description given in the previous sections, it can be concluded that Glo-

TraM is suitable to assess the hydrogen uptake in shipping due to the great details that

specify the shipping system. In addition hydrogen based technologies on board are de-

scribed at an adequate level of detail that takes into account the main factors such as

costs, efficiency and impact of the cargo capacity. This level of resolution ensures that

the interactions between hydrogen ships and the rest of the shipping system are cap-

tured. The model is capable of assessing how competitive hydrogen powered ships might

be in comparison with other competitor technologies in a number of shipping markets

described in terms of ship types and size categorises. The level of resolution used implies

that the implementation of hydrogen technologies on board is simplified as the model

does not take into account many details associated with the design challenges. Despite

the simplification used the model is considered appropriate to represent the main drivers

that would lead to the adoption of hydrogen technologies on board ships.

Hydrogen price projection is obtained by analysing a very simple supply chain for

shipping. Such analysis is external to the model and is not considered suitable to assess

the hydrogen supply chain and its interactions with the rest of the global energy system.

In general, fuel prices in GloTraM do not take into account the dynamics of the balance

supply and demand for any type of fuel. The exclusion of such iterations and dynamics

is a limitation of the model in representing the uptake of hydrogen in shipping.

3.4 The study of hydrogen in shipping with hybrid model

Using the discussion in the previous sections we can reach a number conclusions regard-

ing the modelling of hydrogen use in shipping.

When an bottom-up energy system model is used to investigate hydrogen as an

alternative marine fuel, we are able to account in some level of detail the competition for

primary energy resources, the spatial factors, the effects of global economic and climate

policy drivers. However this type of model generally lacks a proper representation of

the shipping system, and is not able to capture the interaction between the technical
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and operational specifications of ships that would occur in the event of switching to an

alternative fuel such as hydrogen. TIAM-UCL is an example of such models. It has

a detailed representation of hydrogen infrastructure system that includes a number of

pathways describing the infrastructure requirements from the production stage to its

final use.

When a bottom-up shipping simulation model is used to investigate hydrogen as

an alternative marine fuel, we are able to analyse the interactions that occur within

the shipping system. With this type of model we have the possibility to take into

account factors such as the weight, volume, and cost of hydrogen fuel storage, the

main machinery (e.g. fuel cells system), and the cost of maintenance of hydrogen-

fuel cells machinery. These models ensure an accurate representation of the shipping

system at different resolutions (e.g. different ship type and ship size), that is impossible

to capture with energy system models. GloTraM is an example of such models, it

can simulate different scenarios with different fuel availability and prices, together with

other exogenous assumptions to include the signals from the global energy and economic

system. Often the results are very sensitive to these type of assumptions and we are not

able to take in account the fact that the fuel prices and their availability are affected by

other energy service demands that are external to the shipping system yet internal to

the dynamic of the global energy system.

As mentioned above there are a number of valuable findings from these types of

models, however both appear to fail in considering all specifications required for the

study of hydrogen uptake in shipping. They often provide divergent results, and both

do not consider the supply and demand balance of hydrogen as an alternative marine fuel.

The conclusions reached by using these types of models appear not sufficiently robust

suggesting that a more rigorous approach is needed with a more complex representation

of the hydrogen uptake in shipping.

In the field of energy and climate policy assessments, similar contexts have been

recently addressed by analysts with an innovative method such as linking two different

models. The remaining sections provide a literature review of studies that have applied

this method, and identify the possible areas of improvement that lead to the research

questions of this thesis.
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3.4.1 Existing approaches of linking models

More often energy and climate policy assessment studies have proposed the integration

between two models. The increasing computational power and the development of more

standardised programming language are facilitating this process. A classification of the

linking approaches is reported in section 4.2, while in this section the focus is on the

reasons behind the need to link to different models.

A particular family of linking approaches is the soft-linking that is possible to divide

into two category of studies: the first, that has linked top-down macroeconomic and

energy bottom-up models, and the second that has linked energy-economic wide model

and sectoral model.

The studies in the first category have justified their approach claiming that such

a method is suitable to investigate the interactions between the energy system and

the rest of the economy. Generally macroeconomic top-down models are suitable for

modelling the entire economy, simulating at macro-level the economy system. They

usually lack an accurate technological representation of the energy sector. In contrast,

bottom-up energy models include the technology details that are required to capture the

interactions within the energy system such as the substitution possibilities for energy

commodities between sectors. They usually lack details of the economy and they treat

sectoral differences without applying microeconomic foundations.

First examples of this type of studies are Manne and Wene (1992), Wene (1996),

Jacobsen (1998), Böhringer (1998) and Messner and Schrattenholzer (2000). More re-

cent studies include Kumbaroğlu and Madlener (2003), which developed SCREEN (Sus-

tainability Criteria for Regional Energy policies) according to the theory developed by

Jacobsen (1998). The need in this study was raised from the wish to overcome the

gap between top-down and bottom-up models using the strengths of different modelling

approaches to obtained a technologically detailed energy policy model. Schaefer and

Jacoby (2006) developed CGE-MARKAL by linking a macroeconomic model CGE and

a MARKAL type model of the transport sector. As stated in this study: since top-down

models include the macroeconomic description lacking in bottom-up models, and the lat-

ter include the technology detail lacking in the former, analysts have tried to gain the

joint advantage of these two methods by combining them. The macroeconomic model

under various policy assumptions provides fuel prices, carbon taxes and transport de-

mands that are passed to the MARKAL model of transport technology, which along
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with other input generates that mix of technologies that minimises discounted cumula-

tive costs. Other more recent examples can be found in Bosetti et. al. (2006), Hourcade

et. al. (2006), Bauer et. al. (2008), Böhringer and Rutherford (2008), Böhringer and

Rutherford (2009), Moyo et. al. (2012), and Riekkola et. al. (2013). Also in these stud-

ies, the strong interactions between the energy system and the rest of the economy are

the reasons why a combination of top-down and bottom-up methods is emphasised.

Another stream of linking approaches are the studies that have developed a link

between energy-economic wide model and sectoral model. These types of studies fall

in the second category and generally they have justified their approach claiming that

the linking method is suitable to capture different dynamics that generally take place at

different levels of resolution.

A first example is Strachan et. al. (2009), who linked a spatial (GIS) modelling of

hydrogen supply, demands and infrastructures, with an economy-wide energy systems

model (MARKAL) to explore hydrogen scenarios under long term CO2 emissions re-

duction constraints. The approach in this study is to use the strength of energy system

models and limit the overall energy system interactions by focusing specifically on the

spatial drivers of hydrogen deployment. The (GIS) tool is therefore used to characterise

energy resources, infrastructures and demands. The results from different scenarios

provided a spatial matching of supply and demand for optimal zero-carbon hydrogen

deployment.

Another example is Shukla et. al. (2010), who developed an integrated modelling

framework by soft-linking a land use model and the ANSWER MARKAL model. In

this study the need for an integrated analysis comes from the fact that the energy system

model ANSWER MARKAL is not suited for the analysis of land use, while a dedicated

model can ensure that land requirements for different renewable energy sources are

consistent with the overall storyline. The land use model analyses the land demand for

the deployment of large-scale solar, biomass and biofuel plantations, and calculates the

demand for land from agriculture, non-agricultural uses, and forests, which are passed

to the energy system model.

More recently, Deane et. al. (2012) linked a dedicated power systems model (PLEXOS

for Power Systems) and an energy model (Irish TIMES). By providing a transfer of

information from the power systems model to the energy systems model, in this study the

goal is to improve understanding of the energy systems model’s results and to understand
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what elements of the power system are important. As explained in Deane (2012), the

two models are different in their focus and application. The power system model aims

to represent the electrical power and does not consider the rest of the energy system.

It takes into account more constraints and can process detailed temporal information

and capture ancillary services. While the energy system model has the electrical power

system endogenous driven by the combined behaviour of supply sectors and end-use

sectors. It does not deal with any of the metrics described in the power model. Therefore

the dynamics between the electrical power system and the rest of the energy system are

captured in the energy system model which provides to the power systems model an

electrical portfolio, fuel prices and demand. The power systems model enhances the

energy systems model with greater and more realistic output derived from detailed

assessment of the power system.

All this type of studies share the view that a combined model can provide better

results using the strengths of both models, rather than trying to incorporate the models

in one single model.

3.4.2 Area of improvements and research questions

The possible use of hydrogen in shipping has been studied with different approaches. A

computational modelling approach is considered both suitable and a promising means of

generating new knowledge and insights to investigate the possible uptake of hydrogen in

shipping. Different models have been used so far, with various identified shortcomings.

The scope to improve on these existing modelling approaches and address some of their

shortcomings has been identified. Two specific types of models have been analysed:

energy systems models and shipping system models. Although these approaches have

highlighted a number of findings, the conclusions reached appear divergent and not

necessarily sufficiently robust.

In particular, the theoretical representation capacity of two specific models has been

assessed: TIAM-UCL and GloTraM. On the one hand, TIAM-UCL has the ability to

represent the technological details of the hydrogen supply chains, and the energy system

specifications in detail. On the other hand GloTraM has the ability to represent the

technological details of the concepts design options for hydrogen and main machinery

systems on board ships, the economic analysis of hydrogen-main machinery option, and

the shipping system specifications in detail.
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In similar context, analysts have tried to use the strength of two models by linking

them. It is claimed that this would improve the results and in many cases would allow to

capture interactions between different objects. The use of a linking approach between

TIAM-UCL and GloTraM is seen as a possible new framework that can improve the

modelling representation of hydrogen in shipping. By linking the two models, factors

that are usually exogenous become endogenous to the framework (e.g fuel prices and

demands). It is believed that this method can investigate the causal links between the

energy and the shipping systems and provide new knowledge and insights regarding the

potential of hydrogen to fuel international shipping.

In this thesis the link between TIAM-UCL and GloTraM has been developed through

a code that has generated the integrated framework called TIAM-GloTraM. The linked

model has the potential to overcome the shortcomings of existing models, therefore the

first key research questions that this thesis will intend to answer is: “is the modelling

representation of hydrogen uptake in shipping improved in TIAM-GloTraM compared to

TIAM-UCL and GloTraM?”. TIAM-GloTraM has also the potential to provide new

knowledge on the use of hydrogen in shipping, therefore, the second key research ques-

tions is: “What type of results does TIAM-GloTraM provide regarding the potential of

hydrogen to compete with LNG and current marine fuels to fuel international shipping?

Under what circumstance would hydrogen be able to compete with LNG and current

marine fuels in shipping and what would be the main economic and environmental im-

plications?”
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4.1 Developing a method for how to soft-link TIAM-UCL

and GloTraM

This chapter provides a description of the method developed to soft-link the shipping

model GloTraM and the global energy system model TIAM-UCL. The development of

such method was required as a standard method for linking two different models does

not exist. Based on the existing literature, however, it has been possible to highlight a

number of common proceedings from other studies. Such proceedings have been analysed

and taken into account when developing the method for how to soft-link GloTraM and

TIAM-UCL. This particular method is based on four main steps. The first step is

the identification of what to link, therefore establishing the degree of the linkage. The

second step includes the development of all modifications and assumptions that are

required to enable the link. The third step includes the actual process of transferring

information from one model to another. Finally the fourth step includes the analysis

of the consistency of the two models and the introduction of a process that ensure this

consistency.

This chapter is organised as follow: section 4.2 provides a classification of the link-

ing approaches used to date. Section 4.3 examines the proceedings and key steps of

the studies that have analysed or experimented the soft-linking of two existing models.

Section 4.4 provides an overview of the method. Sections 4.5 developed the first two

steps of the method: the degree of the linkage and the process of enabling the links.

Both are described in greater detail in section 4.6 (region definition), section 4.7 (fuel

options) and section 4.8 (on board hydrogen technologies). Section 4.9, instead, pro-

vides the modifications to the initial condition. Section 4.10 develops the steps and

assumptions used to transfer information from TIAM-UCL to GloTraM, while section

4.11 develops the steps and assumptions used to transfer information from GloTraM to

TIAM-UCL. Finally section 4.12 explains the theoretical consistency of the two models

and the iterative procedure implemented for ensuring this consistency.

4.2 Classification of the linking approaches

Linking different models is a relatively new idea, and several researchers have attempted

to classify the linking approaches used to date. A commonly used classification is the one
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proposed in Böhringer and Rutherford (2009), in which various modelling efforts that

combine energy bottom-up and economic top-down models are divided into three cate-

gories. The first category is called soft-linking in which existing large-scale bottom-up

and top-down models are coupled. In contrast, the second and third categories of linking

approaches are both called hard-linking. While the former consists of the addition of a

simplified representation of one model in another, the latter combines bottom-up and

top-down within the same optimisation framework using the mixed complementarity

problem solving routines as described in Böhringer and Rutherford (2009). The linking

approach proposed in this study focuses on the soft-linking approach as hard linking

would be too complex, if not impossible due to the different individual theoretical foun-

dations of TIAM-UCL and GloTraM.

A more complete definition of soft-linking can be found in Riekkola et. al. (2013):

when models are soft-linked, the macroeconomic model and the energy system model op-

erate together in an iterative process until convergence in central parameters is achieved.

Another definition is in Kumbaroğlu and Madlener (2003): the passing of price and

quantity variables between the process oriented (bottom-up) and economic (top-down)

sub-models and solving them iteratively. Wene (1996) declared that the soft-linking ap-

proach is generally used when the bottom-up and top-down models describe the same

object. However the author also declared that there are other forms of soft-linking where

the models do not describe the same object, and that this latter case is used to investigate

causal links between different objects. Studies that have used a soft-linking approach

are classified in two categories in Shukla (2013). The first category includes studies that

have linked top-down and bottom-up models and the second category includes studies

that have linked sectoral and economy-wide models. According with Shukla (2013) the

studies in the second category have used a sectoral model to help the modelling of sector

specific issues, dynamics and policies in detail.

Based on the definition found in the literature the approach in this study is to soft-

link the sectoral shipping model and the energy-system model. Such models describe

two different objects, the shipping and the energy systems; the soft-linking approach

enables the investigation of the causal links between the two systems.
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4.3 Methods for how to soft-link models

In this section key studies regarding the soft-linking approach are analysed. The aim

is to identify common proceedings, key steps and challenges that need to be taken

into account when developing a method to soft-link TIAM-UCL and GloTraM. Some

studies have focused on the linking process for pedagogic reasons, others have focused

on practical experiments.

The soft-linking process is in principle described in a number of studies: Bauer et. al.

(2008), Böhringer and Rutherford (2009), Riekkola et. al. (2013), Wene (1996). The de-

scriptions of how to soft-link two models vary among studies, for example Riekkola et. al.

(2013) and Wene (1996) have focused on the level of linkage by discussing which infor-

mation should be exchanged. These information are called connection points in Riekkola

et. al. (2013) or common measuring points in Wene (1996). A number of steps are de-

scribed including: identifying similarities and differences between models, identifying

overlaps and exogenous variables, and finally identifying what to link. Wene (1996) par-

ticularly emphasised the need to identify common, unambiguous measuring points for a

controllable soft-link. According to the author, such points are the basis of the common

language that should guide the following development of the soft-linking procedures.

So, first the common areas should been identified, second the purpose of the soft-linking

constrains the choice of which common measuring points should be exchanged.

Another study that focused on the steps to undertake when soft-linking two models

is Bauer et. al. (2008). Such steps are described as: development of a reduced form

of one system model, identification of the parameters taken from the optimal solution,

introduction of an iterative procedure, and the identification of a stopping criterion. This

study is important as it introduces the concept of an iterative procedure with stopping

criteria. An iterative procedure is also introduced in Böhringer and Rutherford (2009),

such procedure is used with the purpose of reaching the equilibrium prices and quantities

between both models. In other words this should ensure that the two linked models are

working in conjunction and providing consistent results.

The system theoretical consistency is a key challenge and many studies have debate

it. Wene (1996), Hourcade et. al. (2006), Bauer et. al. (2008), Böhringer and Rutherford

(2009), Moyo et. al. (2012), Shukla (2013), Riekkola et. al. (2013) have argued that such

consistency can be reached. Others have argued that simultaneous equilibrium cannot
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be guaranteed in the soft-linking approach, as explained in more detail in Bauer et. al.

(2008).

A number of other key challenges are also presented in these studies; they can be

summarised as: the need for a conversion process when exchanging variables that takes

into account the differences in scope of the models (e.g. levels of disaggregation), the

need to synchronise particular parameters in order to calibrate the reference scenario,

the examination of the differences in the modelling platforms and software, and of the

difference in the time horizon (Riekkola et. al., 2013; Moyo et. al., 2012).

These studies have mainly focused on the description and interpretation of the linking

process, however other studies have actually developed practical experiments. Four

examples that are relevant to this study are briefly examined in the following paragraphs.

The first example is Schaefer and Jacoby (2006), which linked a global top down

economic model and a MARKAL type model of the transportation sector. The two

models are linked by means of another model that simulates the split among transport

modes. Relative price of fuel and transportation demand are output of the economic

model and input of the MARKAL model that simulate the uptake of technologies. The

split model is also used to convert the transport demand from the economic model

to the same level of aggregation of the MARKAL model. Total energy use in the

transport sector should be consistent between the two models, and this is achieved with

different calibration steps. The aggregate technology parameters in the economic model

are adjusted to be consistent with the more detailed specification in MARKAL. The

discount rate in MARKAL is adjusted to be consistent with the base-year fuel cost

shares of the economic model. In this study it is possible to identify two important

implications: the need for a conversion process due to the different aggregation levels

of the models, and the need for a criterion for the model consistency based on the

calibration of key parameters.

The second example is Strachan et. al. (2009) which linked a UK MARKAL energy

systems model with a spatial model of hydrogen supply, demands and infrastructures. A

geographical information system (GIS) tool was used to characterise the spatial drivers of

hydrogen deployment such as the location of hydrogen production resources and demand

areas. This characterisation provided a number of scenarios on demand disaggregation,

supply disaggregation, and analysis on liquid, small-scale and large-scale pipeline hydro-

gen infrastructures that were integrated into the UK MARKAL energy systems model.
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The integration was made by means of different hydrogen infrastructures input parame-

ters such as capital and non-energy operating costs, technical performance (i.e., energy

losses or required inputs), connectivity from resources to demand points, and minimum

and maximum bounds on use. In this study it is not possible to find concepts such as

model consistency or convergence of models, the key emphasis instead is on the inte-

gration into the energy model of spatial drivers of hydrogen deployment that can be

captured at a different level of resolution and with a different representational structure.

This integration required a sort of translating and conversion process.

The third example is Rosenberg et. al. (2010) which linked a Norwegian MARKAL

energy system model with a hydrogen infrastructure model called H2INVEST. The latter

has higher level of detail of hydrogen technologies and infrastructure, and includes tech-

nical, geographical and economic parameters. It optimises the evolution of a hydrogen

supply infrastructure for a given development of hydrogen demand. In the descrip-

tion of the interaction between MARKAL and H2INVEST it is possible to identify a

number of steps. First step is the definition in the MARKAL model of the initial con-

ditions and required modifications to hydrogen technology data, and the definition of

the distribution patterns of hydrogen demand in H2INVEST model. Second step is the

identification of the parameters to exchange: transport costs and distances are trans-

ferred from H2INVEST to MARKAL, while the hydrogen demand for urban and rural

areas is transferred from MARKAL to H2INVEST. Third step is the introduction of an

iterative process that validates and calibrates the MARKAL assumptions on hydrogen

distribution, and ensures the convergence towards a consistent solution.

Finally, a more recent study described in Deane et. al. (2012) linked an electricity

power system model PLEXOS and an Irish TIMES energy system model. In this study

it is possible to identify the need for sharing specific common inputs in both models such

as the electricity profile shape and renewable generation profiles. Then a starting point

with specific initial conditions was used to execute the TIMES model. The electricity

generation portfolio is passed to the power system model, along with fuel prices and

carbon prices. Due to the different time profile, annually in TIMES and half-hourly in

the power system, a conversion process is used along with other assumptions based on

historical data. There isn’t any iterative process implemented, however once the power

system model is executed, results from both models are compared and the reliability and

flexibility of the power system is examined. This should ensure that the energy system
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model has included the more detailed representation of the electrical power system, and

therefore prove the consistency of the entire system.

4.4 Procedures for soft-linking TIAM-UCL and GloTraM

From the discussion in the previous section, we can deduce that there is not a standard

methodology on how to soft-link two models, especially when sectoral models are used

(e.g. transportation sector, spatial model of hydrogen supply, electricity power system).

Due to the differences in such models the way we would link them with an wide energy-

economic model would be technically different depending on the type of sectoral models

involved. The experiences gained in these studies, however, allow us to depict a number

of common key steps that can be categorised in the following key general procedures:

1. Deciding the degree of the linkage, identifying common areas, and deciding on

which information to exchange

2. Identifying and deciding on common input assumptions, initial conditions and

other required modifications

3. Translating and converting the exchanged variables in order to ensure the com-

patibility with the same level of sector/regional aggregation and disaggregation

4. Ensuring that the exchanged variables are calibrated within the system model

5. Introducing a proceeding such as an iterative procedure with a stopping criteria

that ensures the convergence of the models towards the system consistency.

A brief overview of the method proposed for soft-linking the shipping model GloTraM

and the global TIAM-UCL energy system model is provided below. The result of such

method is the development of a new system model called TIAM-GloTraM. The following

sections of this chapter describe all steps to develop TIAM-GloTraM in greater detail.

TIAM-UCL provides scenarios of the global equilibrium of the energy system, which

also include future shadow prices of marine fuels (including hydrogen), carbon prices,

and the trade of energy commodities. GloTraM provides scenarios of the evolution of

shipping fleet composition and their technical and operational specifications, thus the

future annual shares and consumptions of the marine fuels. TIAM-UCL is first used

to provide marine fuel prices, carbon prices, and the trade of energy commodities to
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GloTraM, which in turn feeds shipping energy service demands, and fuel mix shares

back into TIAM-UCL.

A schematic representation of the two models and of the links that were implemented

to transfer information between TIAM-UCL and GloTraM is shown in figure 4.1. This

representation also shows that important exogenous parameters for each model are en-

dogenised by the soft-linking. The run of TIAM-GloTraM consists of a number of itera-

tions. In each iteration the parameters are exchanged between the models. A numbers

of scripts written in Matlab were developed in order to automate this process.

Figure 4.1: TIAM-GloTraM: Links between TIAM-UCL and GloTraM

Initial conditions and other modifications are set up to ensure that both models share

common input parameters (see section 4.5). Eventually, both models operate together in

an iterative process until convergence is achieved in a central parameter (the fuel prices).

By doing so, an important element is ensured; the entire model system TIAM-GloTraM

achieves consistency.

4.5 Degree of the linkage

According to Wene (1996), it is important to identify common, unambiguous measuring

points for a controllable soft-linking. In order to identify the so called common measuring

points, first the common areas are examined, so that it is possible to choose which

information to exchange based on the purpose of the soft-linking. Once this is done, a

common language can be implemented, which guides the development of the soft-linking

procedures.
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4.5.1 Common areas

In this section a description of the common areas is provided. Both models have a

representation of the following elements:

1. Regions of the World

2. Shipping energy demand (fuel quantities and shares)

3. Marine fuels options (availability and prices)

4. Carbon price

5. Shipping fleet

6. Trade by ships of energy commodities between different regions

In TIAM-UCL the World is divided into 16 regions, while GloTraM has 11 regions.

Details about which countries are included in each region can be found in Anandarajah

et. al. (2011) and Smith et. al. (2013a).

Shipping energy demand in TIAM-UCL is divided into: energy required by ships for

the trade of non-energy commodities and energy required by ships for the trade of energy

commodities. The former is further divided into energy required for the trade between

different regions (international), and energy required by ships for the trade within the

same region (domestic). Both energy service demands are expressed in PJ per year and

are projected according to:

demand(t) = demand(t− 1) ∗ (driver)ε (4.1)

with ε known as the decoupling factor and driver the growth in an exogenously

specified factor such as GDP, population, GDP/capita etc. In the base year (2005)

such demands are based on the sum of the fuels that were ”consumed” (sold to ships)

in that year within each of the 16 regions using IEA statistics. On the other hand

energy consumed by ships for the trade of energy commodities between different regions

is expressed as a percentage of the total PJ of energy transported per year for each trade

origin destination. Such trades are calculated endogenously within the model.

In GloTraM the shipping energy demand corresponds to the amount of fuels con-

sumed per each ship type and size category. This is an output of the model based on the
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model framework. It is possible to obtain the fuel consumed of ships trading inbound to

a region (international import), outbound from to a region (international export), and

within a region (domestic) by ship type and size categories.

Marine fuel options and the relative prices is an important common area. In TIAM-

UCL there are four marine fuel options: heavy fuel oil (TRAHFO), diesel (TRADSL),

gasoline (TRAGSL), and coal (TRACOA), although it is possible to produce diesel from

biomass. In the base year (2005) and the years 2010 and 2015 the relative shares of such

fuels are forced to use the exact value given in the IEA statistics. In the years after 2015

it is assumed that the maximum relative share of each of the four fuels increases under

specific constraints set by the user. The shadow prices of such fuels are generated by

the model endogenously based on the objective function as explained in section 4.12.

In GLoTraM conventional marine fuels are represented by two categories for resid-

ual fuel of different sulphur contents (HFO and LSHFO), and one category for marine

distillates (MDO/MGO). Alternative fuels options are LNG, methanol, hydrogen and

biomass derived products equivalent or substitutes for all the options mentioned. Marine

fuel prices are exogenous to the model and set by the user. In Argyros et. al. (2014),

for example, fuel prices projections are obtained with different approaches. Oil-derived

fuels (HFO, LSHFO, MDO, MGO, and Methanol) are assumed correlated to the oil

price forecast and gas-derived fuels (LNG and hydrogen) are assumed correlated to gas

price. Oil and gas price projections are taken from DECC (2012), and generally they

are different based on the scenario selected. The assumptions and model used to obtain

projections of marine fuel prices can be found in Smith et. al. (2013a).

In TIAM-UCL, carbon price is calculated endogenously by the model. Emissions of

a number of greenhouse gases (GHG), merged in a single CO2-equivalent emission, are

calculated, and used as input into the climate module. Based on the constraints in the

global temperature rise, a number of emission mitigations can be accomplished such as

for example: improved efficiency, CO2 sequestration, demand reductions as reaction to

increased carbon price. Therefore carbon price varies based on the emission reduction

target selected, and on the ways the model has to mitigate such emissions. In contrast,

in GloTraM carbon price is exogenous to the model and it is selected at the beginning

by the user based on the scenario selected. In Argyros et. al. (2014) carbon price is

taken from DECC (2012) which provides three scenarios for this variable (Smith et. al.,

2013a).
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Shipping fleet is another common element. In TIAM-UCL two generic ship technolo-

gies are available to satisfy respectively the energy required for international trade, and

domestic trade of non-energy commodities. The efficiency of these two generic ships is

assumed to increase by about 1% per year, and there are no associated investment or

operating costs (other than fuel costs). In GloTraM the global fleet can be divided into

a number of ship type categories, each of them classified by a number of size categories.

Initial conditions of the technical and operational specifications of each category are

defined at beginning. The algorithm within the model defines the new specifications for

the new building ships.

The last common area between the two models is the trade by ships of energy com-

modities between different regions. In TIAM-UCL the trades of energy commodities are

generated to meet the energy services demands in each region. This is done based on its

objective function. This also means that the impact of environmental policies on energy

and permit trade is taken into account.

In GloTraM the trades of energy commodities are included in the transport demand.

The transport demand is selected at the beginning based on the scenario selected, and it

is an exogenous input variable. In particular, projections of transport demand are based

on a number of datasets. The first dataset is from the TRANSTOOLS V-2 approach

(TENconnect, 2009), which provides the trade for a country to country level and by

commodity. Commodities are disaggregated to the NSTR level 2 (99 commodity groups).

Among these commodity categories there are also energy commodities. Another dataset

is from Buhaug et. al. (2009) which uses a globally aggregated value of transport demand

(Smith et. al., 2013a). Such projections are based on the IPCC SRES scenarios for

development of the future transport demand with particular focus on the A1B scenario

(IPCC, 2013a). Greater details of transport demand scenarios in GloTraM can be found

in Smith et. al. (2013a).

4.5.2 Exchanged variables

Once the common areas are defined, the choice of which information to exchange can be

made, and it is based on the purpose of the soft-linking. In this thesis the purpose is on

the representation of a possible future uptake of hydrogen in shipping. The interest is in

learning about the interactions between two represented systems: the energy system that

embodies the supply of marine fuels and the hydrogen supply infrastructure, and the
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shipping system that embodies the hydrogen technologies on board. Having examined

the common area, it is possible to decide on the variables to exchange.

Among the most important variables, there are the quantities of marine fuels con-

sumed and their relative shares by regions. The simulation in GloTraM of the projections

of future consumption of marine fuels is taken as the true representation, and therefore

the quantities and shares are among the variables that need to be exchanged from Glo-

TraM to TIAM-UCL. This is linked into the energy model as shipping energy demand.

Marine fuels availability and relative prices are other important variables that need to

be exchanged. The simulation of fuels availability and price projections under different

scenarios is better represented in TIAM-UCL, therefore they should be exchanged from

TIAM-UCL to GloTraM. This implies that a decision needs to be made about which

marine fuels to include among the options and how to match TIAM-UCL and GloTraM’s

fuel options. This discussion is provided in section 4.7.

In TIAM-UCL, carbon price is a possible mitigation option that would vary based

on the specified carbon target. This variable has an impact on the voyage cost represen-

tation in GloTraM. Moreover the fuel choices made in the shipping industry may have

implications on how this variable can vary. If the scope is learning about the interactions

between the two represented systems, it is important to include this variable among the

ones to be exchanged from TIAM-UCL to GloTraM.

Technology specifications of the shipping fleet could be transferred from GloTraM

to TIAM-UCL, however this would result in an addition of complexity in the energy

system that would not necessarily provide a more precise answer. The purpose indeed

is not the integration of the two models and adding more details to either. Conversely,

the purpose is on analysing the interactions between two different systems. This is why

the specification of the shipping fleet is not transferred but rather it is simplified in

TIAM-UCL. More details on how this is done are given in section 4.11.

A more complicated common area between the two models is the trade by ships

of energy commodities between different regions. In TIAM-UCL such trades are part

of the distribution of energy commodities, which can be seen as a component of the

infrastructure of the supply. This component would have its own energy and emission

performance, and it would be developed differently based on the specified scenario. At

the same time such trade is part of the transport demand in shipping, which is an input

assumption in GloTraM. While TIAM-UCL could inform the shipping system about
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such trade, GloTraM could inform the energy system about the specifications of the

fleet that would provide such trade.

Under wider CO2 mitigation scenarios hydrogen can have the potential to reduce the

emissions of a number of energy technologies in the energy system. This could have an

impact on the mix of energy resources used, and thus on the future international trade

which corresponds to the future transport demand of the shipping system. Therefore this

trade should be included among the exchanged variables from TIAM-UCL to GloTraM

with the purpose of investigating the effect of this feedback and ensuring a greater level

of consistency between the two models.

The specifications of the future shipping fleet can influence the shipping transport

costs that consequently can influence the trades within the global energy system. In this

thesis these specifications are not transferred from GloTraM to TIAM-UCL because it is

assumed that changes in such specifications would have a negligible effect on the trades

of energy commodities. On one hand it is recognised that this assumption is a limitation

of this version of the model and further research should put more attention regarding

it. On the other hand, the effects on the energy system caused by changes of transport

costs are not in the scope of this thesis therefore additional developments are left to

further research efforts.

TIAM-UCL does not provide carbon or GHG emissions per each pathway in the

upstream, rather emissions are calculated by process. An attempt to allocate upstream

emissions to a single fuel commodity (hydrogen for shipping) is provided in section 6.3.3,

however, such upstream emission are not exchanged between the models. Although it is

recognised that they should be accounted to demonstrate the overall emissions impact

of any potential future marine fuel, the upstream emissions are assumed to be excluded

from the objective function of the shipping model. In other words, the shipowner profit

maximisation approach assumes that the upstream emissions of any marine fuel are not

included in the equation but only fuel price and operational emissions. As a consequence,

upstream emission are not exchanged from TIAM-UCL to GloTraM.

Having defined the variables to be exchanged, a number of modifications need to be

considered in both models before developing the soft-linking procedures. The variables

chosen to be exchanged between TIAM-UCL and GloTraM are: marine fuels demand

(quantities and shares), marine fuels options (availability and prices), carbon price, and

trade of energy commodities. Modifications were required in both models, in order to
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enable the links. Such modifications can be seen as developments applied to a number

of assumptions and settings of the models. They regard:

1. the regions definition

2. the common portfolio of fuel options

3. the on board hydrogen technologies

4. the initial conditions on marine fuels demand

Each of these will be described in more detail in the next sections.

4.6 Regions definition

As mentioned in TIAM-UCL the World is divided into 16 regions, while GloTraM con-

siders 11 regions. GloTraM regions were changed and matched with TIAM-UCL regions.

Figure 4.2 shows the regions as defined in TIAM-GloTraM. The regions are defined as:

Africa (AFR), Australia (AUS), Canada (CAN), Central and South America (CSA),

China (CHI), Eastern Europe (EEU), Former Soviet Union (FSU), India (IND), Japan

(JPN), Mexico (MEX), Middle East (MEA), Other developing Asia (ODA), South Korea

(SKO), United Kingdom (UK), Unite State of America (USA), Western Europe (WEU).

Figure 4.2: Regions as defined in TIAM-GloTraM
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4.7 Common portfolio of fuel options

Assumptions on conventional and alternative fuels in shipping have to be consistent in

both models in order to have a common portfolio of fuel options. Table 4.1 provides

the list of fuel options in TIAM-UCL, and how they were matched with the fuel options

in GloTraM in order to generate the common list used in this thesis. Assumptions on

which fuel type to include were required, as well as a number of modifications to the

models’ structures to accommodate such a common list of fuels in both models.

Table 4.1: Fuel options in TIAM-UCL and GloTraM and common portfolio in TIAM-
GloTraM

TIAM-UCL GloTraM TIAM-GloTraM

TRAHFO HFO Heavy fuel oil (HFO)
TRADSL MDO/MGO Marine distillates (MDO)
TRAGSL - -
TRACOA - -
TRADLS-Bio Biomass derived products -
- LSHFO -
- LNG LNG
- Methanol -
- Hydrogen Hydrogen

As mentioned in the previous sections, conventional marine fuels in TIAM-UCL are

heavy fuel oil (TRAHFO), diesel (TRADSL), gasoline (TRAGSL), coal (TRACOA),

while in GloTraM they are residual fuels of different sulphur contents (HFO and LSHFO),

and marine distillates (MDO/MGO). TRAHFO was matched with HFO, and TRADSL

was matched with marine distillates fuels MDO/MGO.

Alternatives to the conventional fuels in TIAM-UCL are TRAGLS and TRACOA

and diesel produced with biomass. In contrast, alternative fuels in GloTraM are rep-

resented by biomass derived products equivalents or substitutes of the other options,

as well as LNG, methanol and hydrogen. TRAGLS and TRACOA were excluded as

well as LSHFO, biofuels, and methanol, and only LNG and hydrogen were included as

alternative fuels in this thesis.

Coal and gasoline were excluded from this thesis as they are not considered future fuel

options in shipping, although coal has been used in the past. Low sulphur heavy fuel oil

(LSHFO) refers to a category of fuel obtained from the refinery and it generally requires

extra equipment and processing to extract the additional sulphur EPA (2008a). Not all

refineries include such additional requirements and there is an ongoing discussion on the
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availability of such types of fuel to meet future energy demand from shipping. Although

it is recognised that LSHFO could play a role in the imminent future fuel mix in shipping,

it was decided to exclude this option as the purpose of this thesis is to focus on a long

term solution. It was assumed that LSHFO would have a minor role in the long term

because it has a high carbon content that might not be in line with a decarbonisation

strategy. Instead other alternative fuels with low carbon content are considered more

likely to take up in shipping in long term. This assumption adds uncertainty to the

results and more investigations are required in support of this hypothesis. In further

research efforts it is suggested to consider LSHFO as a future marine fuel option.

In this thesis the decision to exclude a biofuels option was taken, as it was assumed

that biofuels in shipping will have relatively little uptake in the future. IEA (2011), for

example, reported that 11% of the total biofuels use would be adopted in shipping in

the 2050 BLUE Map scenario corresponding to about 3 EJ. The total contribution of

biofuels in 2050 might be not so significant considering that 3 EJ represents a relative

small share of the current energy required in shipping and that the latter is projected to

increases significantly in the future (Smith et. al., 2015). In general biofuels for shipping

face two main obstacles. The first obstacle is that biomass production suffers from the

competition with the agriculture sector, and the second is that the current and future

production of biofuels is likely to be used in other transportation sectors. In aviation,

for instance, advanced biofuels are seen as the only low-CO2 option for substituting

kerosene. Biofuels can also be blended with conventional fossil fuels, and many vehicles

in inland transportation systems are compatible with the blends currently available (EU,

2013). Another reason in support of the decision to exclude biofuels in this study is that

they are modelled in a different manner than the other options in both models. As

consequence, their inclusion would have required extensive modifications in both models

that are considered out of the scope of this study. It is recognised, however, that they

should be included for an accurate representation of the system and this is a limitation

of this version of the model.

Methanol could be a valid alternative, however its deployment in the shipping indus-

try would depend on the way it would be produced, and its demand as a conventional

chemical. If it would be produced from biomass it would follow the same considerations

of biofuels. TIAM-UCL models methanol production; however its representation is quite

poor, therefore in this thesis it was decided to exclude methanol among the options.
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LNG is considered the main competitor of hydrogen as an alternative fuel in the

long term, therefore it is included in the portfolio of fuel options for this thesis. LNG is

certainly the most pronounced alternative in the shipping industry to date. Uncertain-

ties regarding LNG are related to possible competing users of natural gas, and to the

future global market for gas, which is difficult to predict. TIAM-UCL is able to model

LNG dynamics on the supply side and GLoTraM has it among the options. LNG was

introduced as a transport fuel in shipping and its trade between different regions was

enabled in the energy model TIAM-UCL.

Hydrogen is in the scope of the thesis, therefore it is included in the common portfolio.

Two important assumptions were made. First assumption is that only liquid hydrogen

storage system will be used on board ships. Second assumption is that liquid hydrogen

will be available at bunkering terminals. The representation of hydrogen infrastructure

in TIAM-UCL was modified according to this assumption. The justifications behind

these assumptions will be examined in more detail in the following sections.

In conclusion, four type of fuels were chosen for the combined system: HFO, MDO,

LNG, and hydrogen. These options are considered a sufficient starting point for this

research, however, other fuels such as biofuels, methanol and ammonia could play a role

in the future for shipping. It is recognised that for an accurate and complete representa-

tion it is necessary to include all fuel competitors (especially other low-carbon options)

that might be used in shipping to take in account the competitiveness of hydrogen in

comparison with all other options.

‘

4.7.1 Hydrogen storage in maritime applications

An important assumptions used in this thesis is that assumption only liquid hydrogen

storage system will be used on board ships, however there are many types of hydrogen

storage systems. There are at least three hydrogen storage system categories: high-

pressure gas cylinders, liquid hydrogen storage, and metal hydrides. Each of these

categories can contains a number of storage systems which may differ by type of material

used. In general, on board ships where space requirements can be more important than

weight, it becomes of high importance the volumetric density of hydrogen storage system

as it influence the volume requirements on board. The volumetric and gravimetric

hydrogen density of hydrogen storage systems can vary significantly. Generally metal
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hydrides storage systems offer the highest volumetric density followed by liquid and

gaseous storage. A brief description of maritime applications for each of these types is

provided below, while a complete discussion of hydrogen storage systems can be found

in IEA (2006), Züttel et. al. (2010) and Jens Oluf Jensen and Bjerrum (2010).

High-pressure gas cylinders hydrogen storage system is the most developed system

and is being used on board ships such as the FCS Alsterwasser inland passenger ship,

which has been sailing since August 2008 (Zemships, 2008). The relatively low energy

requirements for this particular ship made it possible to accommodate ten gas cylinders

with a low impact on space on board. The very low volumetric density of about 27 kg
m3 ,

however, could be a limit for the application on board larger ships. If we assume that the

same amount of energy would be stored on ships, then gas cylinders hydrogen storage

system would occupy about ten times more volume than the HFO tanks. In addition,

the gravimetric energy density is also relatively low, less than 5% mass for a pressurised

gas storage steel tank. High-pressure gas cylinders hydrogen storage system is certainly

the type of storage that is today commercially available and more developed compared

to the other systems. Its application on board ships, however, is seen as a key challenge

when the volume occupied is taken into account (Gerd, 2009).

Liquid hydrogen storage systems can have a volumetric density of about 75 kg
m3 and

gravimetric density of about 10%. Liquid hydrogen can be stored in cryogenic tanks

at 21.2K at ambient pressure and in open systems. Hydrogen stored in hydrocarbons

such as ammonia are considered in this thesis as a different alternative fuel and not as a

form of hydrogen storage, however according with Züttel et. al. (2010) ammonia has the

potential for the highest gravimetric hydrogen energy density (17.6% mass) although

the volumetric energy density appears to be lower (about 15 kgH2/m3ammonia) than

liquid hydrogen. The volumetric density of liquid hydrogen at the boiling point (21 K) is

70.8 kg
m3 . This is approximately double than high-pressure gas cylinders. According with

Züttel et. al. (2010), one of the challenges for liquid hydrogen storage is the thermal insu-

lation of the cryogenic storage vessel in order to reduce the boil-off of hydrogen (typically

0.4% 1
day for tanks with a storage volume of 50 m3, 0.2% for 100 m3). The continuous

boil-off of hydrogen limits the possible applications for liquid hydrogen storage systems,

however, applications in which hydrogen is consumed within a rather short period of

time, e.g. shipping space, could be possible. In this thesis the boil-off of hydrogen is,

therefore, assumed to be negligible. It is recognized, however, that more investigations
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are needed on this aspect. Rohde and Nikolajsen (2013) created a concept for a zero-

emission ferry powered by liquid hydrogen. The hydrogen was stored in C-type tanks

on deck, capable of holding 140 m3. The gravimetric energy density was assumed to be

around 10-15%, which is generally higher that of high-pressure gas cylinders and metal

hydrides.

Metal hydrides could be used to store hydrogen on board ships. They have been

successfully used in submarines (Hammerschmidt, 2016). Although they have a high

volumetric density (150 kg
m3 is found in Mg2FeH6 and Al(BH4)3), all the metallic hydrides

that work around ambient temperature and atmospheric pressure have a volumetric

density of about 50 kg
m3 , and a gravimetric hydrogen density limited to less than 2%

mass (Züttel et. al., 2010). This means that if we assume that the same amount of

energy would be stored on board ships, then such a hydrogen storage system would

weigh about 7 times more than the current HFO tanks. Although space requirements

can be more important than weight on board ships, the very low gravimetric density

could limit its application for large ships (as in general large ships store relatively larger

amount of fuel on board). In addition the metal hydrides storage system is the less

developed and it seems there are not commercial applications yet.

The focus of this thesis is on the potential of hydrogen as a fuel in shipping, deciding

on which is the best type of hydrogen storage system on board ships requires more

research efforts which includes a detailed examination of efficiency, leakages and costs

for each of the possible storage system as well as other types of considerations such as

safety, location, and extra technological equipment that any hydrogen storage system

would require on board. However, one of the most important characteristics for maritime

applications appears to be the energy density of the storage system in terms of volume

and weight occupied.

As example, table 4.2 provides some estimate of volumetric and gravimetric energy

density in various materials and systems.

The interest, in this thesis, is focused on a hypothetical hydrogen storage system

that might be used on board ships in the future, and of which it is possible to assume

representative volumetric and gravimetric energy densities. Liquid hydrogen appears

to have an optimal trade-off of volumetric and gravimetric energy density that could

suit for an application on ships, therefore it is assumed that only liquid hydrogen would

be used in shipping. It is assumed that such a hypothetical hydrogen storage system
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Table 4.2: Gravimetric and volumetric hydrogen density in various materials and
systems. The density is estimated for systems and in parenthesis is the theoretical

limit of the material given. Source:(Züttel et. al., 2010)

Storage type grav. density (%) vol. density
(kgfuel/kgsystem) (kgfuel/m3system)

pressure cylinder (500 bar, 25◦C) 4 27
liquid hydrogen ( 1 bar, −253◦C) 3 (100%) 40(71)
metal hydrides (1 bar, 25◦C) 1.2 (1.85%) 50(110)
complex hydrides (1 bar, 150◦C) 4 (13.5%) 50(120)
metals (1 bar, 25◦C) Zn (H2O) 3 (3.8%) 90
ammonia (1 bar, −33◦C) (17.6%) (15)
hydrocarbons (1 bar, 25◦C) 14 (14%) 10
water (1 bar, 25◦C) 11 11

has a volumetric density of about 75 kg
m3 and gravimetric density of about 10%. It is

recognised that further effort should be concentrated on this topic as the volumetric and

gravimetric energy density for each of the hydrogen storage types described above can

vary significantly within each type of category. The study of which might be the best

hydrogen storage option for shipping is left to further research.

4.7.2 Hydrogen infrastructure for shipping

The representation of hydrogen infrastructure in TIAM-UCL is analysed in section 3.2.1.

The production and transportation components of the hydrogen infrastructure can also

be representative in the case of the shipping industry. Hydrogen from centralised large

and medium scale plants in both forms (gaseous and liquid) can be available for the

distribution at refuelling port terminals.

The distribution components depend on the assumptions of the type of hydrogen

storage system that would be adopted on ships. In this thesis it is assumed that only

liquid hydrogen is used on ships, therefore liquid hydrogen from centralised and decen-

tralised plants was linked to the hydrogen-powered ships while gaseous hydrogen was

not linked to the shipping sector as a liquefaction process on board ships is considered

unlikely to happen. A bunkering component was added into the representation which

includes the storage of hydrogen at ports. Input assumptions for this component were

not found in the literature, therefore, they were derived from the input assumptions

found in TIAM-UCL used for LNG. The capital investment cost for hydrogen bunker-

ing component was assumed to be 70 $(2005)/(GJ/yr), while the operational costs 2.40

$(2005)/(GJ/yr). The efficiency was assumed to be 40% (including leakages and losses).
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As a consequence, the representation of hydrogen infrastructure was modified as

shown in figure 4.3. Moreover, because it is assumed that hydrogen would be produced

with regional resources, hydrogen trade between different regions was not enabled. The

latter assumption is another limitation of this version of the model as hydrogen trade

should be included for an accurate representation of the system. In this thesis it is

assumed that only locally produced hydrogen can be found sustainable, so that hydrogen

is close to the energy demands of users, while the energy sources to produce hydrogen

can be traded worldwide with the exception of electricity for electrolysis .

Figure 4.3: Hydrogen infrastructure in TIAM-UCL for this thesis

4.8 On board hydrogen technologies

The shipping model GloTraM includes a number of important assumptions regarding

the main machinery options on board ships. The main machinery options are all com-

binations of the main engines and types of fuel that are evaluated within the shipping

model. Their key assumptions are intended to be representative of all shipping fleet or

sometimes of a specific ship type and size categories. Often the estimated parameters

come from a generalisation as not always differentials among ship types are taken into

account. The combinations of main engines and types of fuel considered in this thesis

are described in table 4.3, which provides the type of fuel associated with each main

engine .

Besides the conventional options with HFO and MDO fuels in combination with in-

ternal combustion engines (ICE) in shipping, LNG and hydrogen were also considered
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Table 4.3: Main engine and fuel type combinations

Fuel

Description HFO MDO LNG H2

2 stroke diesel v v
4 stroke diesel v
diesel electric v v
4 stroke spark ignition v v
fuel cells v v

with ICE; while fuel cell systems were considered in combination with LNG and hydro-

gen. Hydrogen could also be used in gas turbine or as hybrid solution with other fuel,

however, these options have not be included in this thesis. Different technological con-

figurations can be associated with each of these combinations, however it was preferred

to keep a general description of the main machinery options, avoiding complexity and

small differences among the options that are not considered relevant to the scope of the

research questions.

Each of these combinations is evaluated within the shipping model during the process

that defines newbuild ships and retrofits. It is important to have a good estimate of

the performance of each combination as the specific performance’s parameters affect the

model’s choice of the main machinery option.

The energy and economical performances of each combination are provided by the

parameters analysed in section 3.3, however these parameters depend on several assump-

tions; for example costs and space requirements of hydrogen storage system on board

depends on the assumption of the type of storage system. The process of defining such

key assumptions involves considerable uncertainty as it is sometimes difficult to have

reliable data; for example it is difficult to predict what the capital cost of hydrogen stor-

age systems for ships would be in the future. Nevertheless the interest is on the effects

that these assumptions have in driving the global fleet evolution and therefore the pos-

sible uptake of hydrogen. Hence, although these assumptions can be very sensitive and

somehow fragile, it is expected that the estimated values are going to be representative

in order to examine the effects that they would have on the fleet evolution. Eventually

an analysis of the results would be helpful to understand the relative influences of such

parameters as examined in chapter 6).

The following parameters were estimated for on board hydrogen technologies: the
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specific fuel consumption (sfc), the dead weight tonnes loss (dwt loss), the unit procure-

ment cost (UPC), and the through life cost (TLC). The methods and assumptions used

to estimate such parameters are examined in more detail in the next subsections. For

the sake of completeness LNG assumptions are also provided.

4.8.1 Analysis of the specific fuel consumption

The specific fuel consumption (sfc) is defined by the formula 4.2. It depends on the

efficiency of the main engine system [η], and the energy density of the fuel used in

kWh/kg [δ], therefore sfc enshrines both the efficiency of the engine and the energy

content of the fuel.

sfc =
1

η ∗ δ
(4.2)

The efficiency of the main engine system is a key variable. Current marine engines

are already considered very efficient, reaching up to more than 50%. The efficiencies used

in this thesis for conventional marine engines were taken from Smith et. al. (2013b) and

are presented in table 4.4. Conversely, the efficiency of fuel cell systems was estimated.

Such efficiency can vary significantly with the type of fuel cells and the load factor

Alkaner and Zhou (2006). Furthermore, fuel cells efficiency can be improved by thermal

integration, allowing energy-recovery systems for use in conjunction/integration with

fuel cell systems. This makes it difficult to estimate a representative efficiency of fuel

cell systems on ship. According with Han et. al. (2012) and Ludvigsen and Ovrum

(2012), however, fuel cells might be more efficient than the other conventional marine

engines. In this thesis the electrical efficiency of fuel cell systems was assumed to be

constant and equal to 55% as found in Ludvigsen and Ovrum (2012).

When fuel cells are used on board an electric motor also has to be taken into account

to convert the electricity in mechanical work for the propeller. The efficiency of the

electric motor is assumed to be 95% taken from ABB (2013). The efficiency of fuel

cells in combination with the electric motor was therefore 52%. Furthermore, when fuel

cells are used with other hydrocarbon such as LNG, a reformer is needed. So in this

case the efficiency of the reformer has to be taken into account. Generally fuel cells

with a reformer have much lower efficiency at partial load due to heat losses and other
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inefficiencies in the reformer. We assumed the efficiency of the reformer on board ships

to be about 70% based on Docter and Lamm (1999).

Assumptions and results of the analysis of sfc using formula 4.2 are presented in the

table 4.4. Energy density of hydrogen and LNG are assumed respectively to be 33.33

and 13.89 kWh/kg. Sfc for hydrogen with fuel cells is estimated to be about 57 g/kWh.

To store hydrogen in a liquid state, an active cooling is required. The amount of

cooling would depend on the heat transfer to the hydrogen, which would depend on

the effectiveness of the tank insulation which can vary. There is not a single figure,

according with Jens Oluf Jensen and Bjerrum (2010), the energy demand for liquid

hydrogen storage is on the order of 40-45 % of LHV, and it should be possible to reach

25% 21% of LHV in very large liquefaction plants. Moreover, there will inevitably be

some boil-off as the gaseous hydrogen is removed from the tank through a valve to

prevent a high-pressure build-up and subsequent structural damage to the tank. In a

well-designed system, the boil-off would be used to power the ship engines, so minimising

losses. In general, a boil-off rate depends on the tank insulation and the effectiveness

of the active cooling system. These parameters are not included in the calculation of

sfc and further analysis would be needed in order to identify the impact on sfc. It

is assumed that a liquid hydrogen storage system would be implemented on board so

that the energy demand and losses are minimisied and therefore negligible. This is a

limitation of the approach used in this thesis and a discussion on the possible implication

on the final results is provided in section 7.2.2.2.

Table 4.4: Specific fuel consumptions of the main machinery options

Name main engine system η Fuel type δ (kWh/kg) sfc (g/kWh)

HFO2S 2 stroke diesel 52% HFO 11.25 171
HFOdEle diesel electric 47% HFO 11.25 189
MDO2S 2 stroke diesel 52% MDO 11.84 162
MDO4S 4 stroke diesel 47% MDO 11.84 180
MDOdEle diesel electric 47% MDO 11.84 180
LNG4SI 4 stroke spark ign. 48% LNG 13.89 150
LNGRFC Reformer+FC+Ele mot 37% LNG 13.89 197
H2HFC FC+Ele mot 52% H2 33.33 57



Chapter 4. TIAM-GloTraM 80

4.8.2 Analysis of the loss of cargo capacity

The dwt loss is a parameter to estimate the effect of the alternative fuel storage systems

on loss of cargo carrying capacity due to their typically lower energy density. This

analysis does not take into account the technical issues relative to the conceptual design

and engineering of a hydrogen-powered ship, this analysis instead focuses on the extra

space requirement that might be needed in comparison with a conventional fuel oil tank.

In the case of hydrogen in combination with fuel cells the power density of future ma-

rine fuel cells systems should also be included, as ships require a high power installed on

board and a fuel cells system’s volume and weight increases incrementally with the power

installed (Krčum et. al., 2004). Data on large fuel cells power density were not found in

the literature, although a possible design solution would be to allocate different module

of fuel cells in different location on board ship in order to limit the space requirement.

How manufacturers would cope this is highly uncertain. In this thesis, it is assumed that

hydrogen storage system density is expected to have the biggest impact on the loss of

cargo capacity because of the very low volumetric density of hydrogen storage system,

therefore, only the fuel storage system affects the loss of cargo capacity. Although, more

research should be dedicated to explore the applicability and space requirement of fuel

cells in the maritime context, a robustness analysis discussed in section 6.5 will explore

the sensitivity of the results in comparison with variation of the hydrogen volumetric

energy density. This variation can also been seen as the inclusion of marine fuel cells

space requirements.

To evaluate the loss of cargo carrying capacity, first the volume occupied by the

hydrogen storage system is calculated (VH2), second the volume occupied by a HFO

storage tank is calculated (Vref) as a reference of comparison against which the extra

volume is estimated. The dwt loss is then calculated converting the extra volume ex-

pressed in m3/kWh in tonnes/kWh, assuming that each m3 on board ships is equal to

0.8 tonnes of cargo capacity (see formula 4.3), and dividing all per the energy stored on

board in KWh (Est).

dwt loss =
(V H2 − V ref) ∗ 0.8

Est
(4.3)

The volume occupied by a fuel storage system can be expressed as a function of the

amount of fuel required on board and the volumetric density of the fuel storage system.



Chapter 4. TIAM-GloTraM 81

So, formula 4.3 can be written as:

dwt loss =
(SH2/γH2) ∗ 0.8 − (Sref/γref ) ∗ 0.8

Est
(4.4)

The kilograms of fuel stored on board is Sx, while γH2 is the volumetric density of

the liquid hydrogen storage system, assumed to be equal to 40 kg/m3 based on Kunze

and Kircher (2012). In contrast, γref is the volumetric density of a HFO tank, and it is

assumed to be equal to 930 kg/m3 based on Monique and Vermeire (2012).

The assumptions on the amount of hydrogen that would be stored on board are very

uncertain, because it would depend on the type of ship, the size and the specific design,

but also on the demand for energy produced on board, which in turn depends on the

desired range (hours that a ship would sail with a full tank), the power installed and

the voyage conditions during a full tank voyage. The kilograms of fuel stored on board

(Sx) can be estimated with the formula 4.5.

Sx = Eout ∗ sfcmm (4.5)

Where:

Eout is the demand for energy used on board.

sfcmm is the specific fuel consumption of the main machinery option.

The demand for energy used on board can be estimated with the formula 4.6.

Eout =

n∑
i=1

(R ∗ Ti) ∗ (P ∗ Li) (4.6)

Where:

R is the range of the ships in hours

Ti is the time in % of R in which the ship sails in each mode i.

Li is the engine load in % of the P (power installed) in which the engine is working in

each mode i.

The voyage conditions during a full tank voyage can be assumed, precisely they are:

the time spent in a specific engine mode and the engine load. They were assumed equal
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to the one found in the TEAMS model of Winebrake et. al. (2007) and are presented in

table 4.5. Also, they are assumed to be constant, so they do not change according to

ship type and size and type of fuel on board.

Table 4.5: Assumed engine mode and the engine load condition during a voyage that
would consume the full tank

Idle Manoeuvring Precautionary Slow Cruise Full Cruise

Mode [T] (%) 1.25% 1.75% 5.00% 7.00% 85.00%
Load factor [L] 2.00% 8.00% 12.00% 50.00% 95.00%

The energy stored on board in KWh for hydrogen can be expressed as:

Est =
EH2

ηFC
(4.7)

EH2 is the energy produced on board with the hydrogen and fuel cells system com-

bination and ηFC is the assumed efficiency of fuel cells. It is, therefore, possible to write

equation 4.4 as:

dwt loss =

[
EH2 ∗ sfcH2FC ∗ 0.8

γH2
−
Eref ∗ sfcref ∗ 0.8

γref

]
∗ ηFC
EH2

(4.8)

dwt loss =
(
∑n

i=1RH2 ∗ Ti ∗ PH2 ∗ Li) ∗ sfcH2FC ∗ 0.8

γH2

−
(
∑n

i=1Rref ∗ Ti ∗ Pref ∗ Li) ∗ sfcref ∗ 0.8

γref

∗ ηFC∑n
i=1RH2 ∗ Ti ∗ PH2 ∗ Li

(4.9)

dwt loss =

[
RH2PH2 ∗ 0.8

ηFC ∗ βH2 ∗ γH2
−
Rref ∗ Pref ∗ sfcref ∗ 0.8

γref

]
∗ ηFC
RH2 ∗ PH2

(4.10)

dwt loss =

[
0.8

βH2 ∗ γH2
−
Rref ∗ Pref ∗ sfcref ∗ ηFC ∗ 0.8

RH2 ∗ PH2 ∗ γref

]
(4.11)

It is possible to write RH2 and PH2 as a proportion of Rref and Pref using the factors

f1 = RH2/Rref and f2 = PH2/Pref . Also, the efficiency of fuel cells can be expressed

as ηref + f3. So, equation 4.11 becomes:
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dwt loss =

[
0.8

βH2 ∗ γH2
−
sfcref ∗ (ηref + f3) ∗ 0.8

f1 ∗ f2 ∗ γref

]
(4.12)

By varying the factors f1, f2, and f3 the loss of cargo capacity can be evaluated as

shown in figure 4.4. If f1=1 and f2=1 this means that we assume the range and power

installed on board a hydrogen-powered ship will not change in comparison to a reference

ship with HFO. If f3 varies then it means that the efficiency improves and a new surface

is generated in the figure. On the other hand if f1 and f2 are minor than one, it means

that the range and power of the hydrogen-powered ship is in percentage lower than

the reference ship with HFO. For example if f1=0.8, it means that the range of the

hydrogen-powered ship is 80% of the range of the reference ship.The variation of the

factors generates surfaces in figure 4.4, that shows how these range, power and efficiency

affect the loss of cargo capacity. If the range and the power decrease significantly there

would be no loss of cargo capacity. When the surface is under the zero level, it means that

there would be more space available for cargo for the hydrogen-power ship than in the

reference ship with HFO. also shows that if range and power on board ships is reduced

then the loss of cargo capacity due to the lower density of hydrogen storage systems

decreases and eventually results in having no impact on extra space requirements. In

this thesis it is assumed that range and power of a hydrogen power ship will remain

the same as the reference ship with HFO on board. Using equation 4.11 the dwt loss

was estimated to be 0.52 tonnes/kWh. Also, the effect of LNG tank specifications was

calculated with the same method, therefore assuming the volumetric density of the tank

equal to 420 kg/m3 the dwt loss for LNG is estimated at 0.06 tonnes/kWh as reported

in table 4.6.

Table 4.6: Assumptions and estimates of dwt loss for LNG and Hydrogen storage
systems on board

Type δ (kWh/kg) Vol. δ (Kg(f)/m3) dwt loss (te/MWh)

LNG tank 13.89 420 0.06
Liquid H2 tank 33.33 40 0.52

4.8.3 Analysis of the upfront capital cost

The upfront capital cost (or unit procurement cost) of the main machinery is assumed

to be constituted of two components: the capital cost of the main propulsion system

(UPC mp) and the capital cost of the fuel storage system (UPC fst), as shown in
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Figure 4.4: Loss of cargo carrying capacity (tonnes/kWh) due to the effect of a liquid
hydrogen storage system on board in relation to range, power and efficiency changes

formula 4.13. The capital cost of the main propulsion systems is generally found in $

per kW of power installed, while capital cost of the fuel storage systems is generally

found in $ per kg of fuel stored. The unit procurement costs of the conventional main

machinery options were taken from Smith et. al. (2013b); they include both the cost of

the engine and the cost of the fuel storage system. Conversely, a different approach was

undertaken for the options with hydrogen and LNG.

UPCtot = UPCmp + UPCfst (4.13)

Generally, capital costs of the main machinery technologies depend on the costs of

the components and their size, yet the capital cost of new technologies such as fuel cells

and hydrogen storage systems are affected also by other factors such as the predicted

annual production volume, the learning curve ratio, and the R&D activities. In this
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thesis data was collected from a number of sources and best-guess of projected costs

for marine fuel cells and for liquid hydrogen storage systems on ships were estimated.

Although it is recognised that such costs will vary over time, only the projected costs

are used as the shipping model is assessing future technology costs.

Many studies have looked at the estimates of capital cost of fuel cells in other appli-

cations, and less focus has been placed on the estimates for fuel cell systems in maritime

applications. One of the most studied applications is the automotive application. A

recent study published by IEA on the technology roadmap for hydrogen and fuel cells

(IEA, 2015) provided current initial investment costs of a number of fuel cells types for

automotive application; they vary from 200 to 6000 $/kW. Another study was carried

out by a consortium of several companies and organisations, (Anon, 2009), envisaging a

projected cost for fuel cells in cars of 42 $/kW in 2050. The energy system TIAM-UCL

includes assumptions on fuel cell systems costs in different applications such as bus, car,

commercial, light, medium and heavy trucks based on a number of sources and reported

in Dodds and McDowall (2012). McDowall (2012) carried out a study on the technology

learning curve for fuel cell systems, identifying a current capital cost in cars of 883 $/kW

and a floor cost of 27 $/kW; in comparison the US DOE 2015 target is $30/kW. James

et. al. (2012) carried out a study on the cost estimates of stationary fuel cell systems in

relation to the power system and the production rate. This study recognised that capital

cost decreases with increasing system power and with increasing production rate. The

cost of SOFC systems with 100 kW power and a high production rate was estimated at

402 $/kW. Data of costs were collected from a number of other studied such as Dodds

et. al. (2015); Schoots et. al. (2010); Zaetta and Madden (2011)

Little data on marine fuel cell system costs was found in literature. So far in maritime

application, the attention is mainly focused on the use of fuel cell systems as auxiliary

engines as for propulsion purposes the high power demand, requires a fuel cell system

of about 5 MW, which is not an existing technology at the moment. On one hand the

required higher power size on board ships could reduce the cost in terms of $/kW. On

the other hand in shipping, fuel cells may not have the same reduction potential as fuel

cells for land-based transportation vehicles, since they may not be produced on the same

volume scale (Taljegard et. al., 2014). Sødal (2003) refereed to different estimates for

predicted marine fuel cells capital costs, ranging from 100 to 1500 $/kW. More recently,

Cohen et. al. (2011) proposed an SOFC module on board ships and used an acquisition
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cost of 884 $/kW, and Ludvigsen and Ovrum (2012) referred to a target investment

cost of 1500 $/kW, while Han et. al. (2012) refereed to a cost of 750 $/kW with a high

production volume. Data on costs was also collected from a number of other studies

including Gerd (2009); EPA (2008b).

Figure 4.5: Projected fuel cell costs

Capital costs found in literature are shown for each specific application in figure 4.5.

It is difficult to estimate a projected fuel cell system capital cost for marine applications

as not much data is available, however this thesis identifies a best-guess projected cost for

marine fuel cell systems of 830 $/kW. This is lower than the cost suggested in Ludvigsen

and Ovrum (2012), however it is close to the value used in Cohen et. al. (2011) and higher

than the one in Han et. al. (2012). The figure 4.5 also shows the reduction cost functions

used to obtain the projected costs for marine fuel cells.

Fuel cells systems would require an electric motor to convert the electricity produced

in mechanical work for the propeller. Therefore, the unit cost of an electric motor has to

be taken into account. It may vary with size, however a constant value is used equal to

116 $/kW according with ABB (2013). When LNG is used with fuel cells, a fuel reformer

is required to extract hydrogen, which increases the UPC of the main machinery option.
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According with FCH (2015) the cost of the reformer required on board is approximately

of 20-30% of total fuel cells system. As consequence about 350 $/kW were added to the

unit cost of fuel cells.

The second component of UPCtot is the capital cost of the fuel storage system. The

capital cost of the liquid hydrogen storage system needs to be converted from $/kg to

$/kW of power installed, in order to sum the two terms in formula 4.13. The formula

4.14 is used to estimate the UPC fst in $/kW, assuming a certain amount of fuel stored

on board Sx for each ship type with an assumed power installed Px on board.

UPCfst =
(Sx ∗ ucsi)

Px
(4.14)

Where:

UPCfst is the unit capital cost for hydrogen storage technology of power size Px in

$/kW

S is the kilograms of fuel required on board for a ship type x.

ucs is the unit capital cost of hydrogen storage technology in $/kg

The unit capital cost of hydrogen storage technologies in terms of $/kg(H2) (ucsh2)

depends on many factors; first it depends on the type of storage technology chosen.

As discussed previously, hydrogen storage system options are generally classified: com-

pressed gaseous hydrogen, liquid hydrogen and solid-state hydrogen storage. Many types

of hydrogen storage technologies exist under each of these options, however a generic

liquid hydrogen storage system option was assumed in this thesis. James et. al. claimed

that for such a type of storage system the unit cost generally decreases as hydrogen

storage capacity increases. A recent study from IEA (2015) estimated the cost of liquid

storage systems ranging from 27 to 333 $/kg with a capacity of 30 Mton. It remains

difficult however to estimate the unit cost as not much research has been devoted to

estimate the cost of hydrogen storage technologies of large dimension on board ships.

Although some cost variations can result from using larger capacity, a constant value

equal to 71 $/kg was assumed as best-guess unit cost of a liquid hydrogen storage tech-

nology on board based on data found in Dodds and McDowall (2012). The estimated ucs

for hydrogen includes the standard required safety systems. There might be a need of
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extra safety equipment, however in this simplification extra costs associated with these

were ignored.

Although there are different options for the storage of LNG on board ships, it was

assumed a unit cost of 3000 $/m3 as found in Andersen et. al. (2011). Taking into

account the energy density of LNG, it corresponds to 7.14 $/kg.

The kilograms of fuel stored on board (Sx) can be calculated with the formula 4.5

described above. The formula 4.5 can be incorporated in 4.14 obtaining formula 4.15.

UPCfst =
(Eout ∗ sfcmm) ∗ ucsi

P
(4.15)

UPCfst =
(
∑n

i=1R ∗ Ti ∗ P ∗ Li) ∗ sfcmm ∗ ucsi
P

(4.16)

Eout depends on the range and the power and the operational conditions during a

voyage that would consume a full tank. The range for the base year ships fleet by type

and size category were obtained using fuel capacity data from Clarckon database 2011,

as well as for sfc and power installed. During the simulation of the evolution of the global

fleet the ratios Eout
P was assumed to remain constant to the base year ships fleet. These

ratios were calculated for each ship type and size category aggregation of the baseline

fleet in 2010, and the average of the sizes was used as representative for the ship type

category. Then they are used in formula 4.15 to calculate the total UPC of the fuel

storage system. Using sfcH2FC the UPCst for the liquid hydrogen storage system were

estimated by ship type and size categories as shown in figure 4.6. The estimated cost

of the hydrogen storage system UPCH2 was finally added to the cost of fuel cell system

UPCFC as described in formula 4.13 to obtain the total UPC.

4.8.4 Analysis of the through life cost

In addition to the upfront capital cost the through life cost (TLC) also needs to be

estimated for all main machinery options. It is expressed as $/kW per year. The

simplification taken in this thesis is that the cost differences among the main machinery

options are negligible apart from the replacement of the fuel cells stack. Only the main

machinery options that includes fuel cells are affected by the TLC.
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Figure 4.6: Liquid Hydrogen storage costs by ship type and size

The current lifetime of fuel cells stack vary in a range from 10,000 to 90,000 hours,

therefore during the life of a typical vessel (generally 30 years) the fuel cell stack needs

to be replaced. It was assumed a representative lifetime of 47,500 hours and the cost of

the fuel cells stack equal to 60% of the whole fuel cells system as the average found in

James et. al. (2010). Using the equivalent annual cost (EAC) of all fuel cells replacements

required during the ship’s lifetime, it was possible to calculate the TLC per year. Such

EAC was calculated with the formula 4.17 taken from Copeland et. al. (2005). The

resulting value of TLC was estimated at 87 $/kW.

EACfcs =
NPV

At,r
(4.17)

Where:

NPV is the net present value calculated as
∑30

t=0
FC

(1+i)t with discount rate i = 5% and

time of the cash flow t.

A is the annuity factor calculated as 1−(1+r)−t
r



Chapter 4. TIAM-GloTraM 90

t is the ship lifetime (30 years)

r is the interest assumed equal to 10%

4.9 Modifications to the initial conditions

In the TIAM-UCL model the energy demands for international and domestic shipping

are based on the data of fuel sales by country using IEA datasets, as explained in section

3.2.3. These energy demands are projected using the regional growth in GDP. The model

chooses the mix of fuels, however upper and lower bounds constrain the share that each

fuel is allowed to reach in each time step. Such bounds are input assumptions and are

set to avoid unrealistic uptake.

Instead, in this thesis fuel quantities and shares are taken from the output of Glo-

TraM, so TIAM-UCL does not choose the mix of fuels, and demands are not exogenous.

At the first run of TIAM-UCL, however, fuel quantities and shares have to be calibrated

to certain initial conditions. This is an important input assumption as it may have

an effect on the final results. Such initial conditions are derived from data reported in

Smith et. al. (2015) and assumptions derived from Argyros et. al. (2014) and provided

in section 5.2.

4.10 Transferring information from TIAM-UCL to Glo-

TraM

As analysed in section 4.2 when two models are soft-linked two important processes

take place when transferring information from one model to the other. They are: the

translating and converting process that ensures the compatibility between the variables,

and the calibration process that ensures the models work under consistent input vari-

ables. In this section both processes are developed in order to transfer information from

TIAM-UCL to GloTraM.

The information that is transferred from TIAM-UCL to GloTraM is: the trade of

energy commodities also called transport demand of energy commodities in GloTraM,

the marine fuel prices, and the carbon prices. The methods developed are presented in

the following subsections.
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4.10.1 Transport demand of energy commodities

TIAM-UCL simulates the trade of energy commodities between different regions, while

GloTraM uses exogenous transport demand aggregated by group of commodity between

different countries. The trade between different regions from TIAM-UCL needs to be

converted into trade between different countries in GloTraM. Therefore only trade of en-

ergy commodities between different countries that belong to different regions is modified

in GloTraM, while trade of energy commodities between different countries that belong

to the same region is not modified in GloTraM. Table 4.7 provides the list of energy

commodities that are defined in TIAM-UCL and the associated group commodity as

defined in GloTraM.

Table 4.7: Energy commodities as defined in TIAM-UCL and the associated group
commodity as defined in GloTraM

TIAM-UCL GloTraM

Commodity description Name Energy
density
MJ/tonnes

Group commodity description

Bio crops BIOCRP 17000 Wood and cork
Bio diesel BIODST 39000 Fuel derivatives
Bio jet kerosene BIOJTK 39000 Fuel derivatives
Bio kerosene BIOKER 39000 Fuel derivatives
Bio naphta BIONAP 39000 Fuel derivatives
Solid biomass BIOSLD 15000 Wood and cork
Hard coal COAHCO 24000 Coal
LNG GASLNG 55000 Gaseous hydrocarbons
Crude oil OILCRD 42000 Crude petroleum
Distillates OILDST 42600 Fuel derivatives
Gasoline OILGSL 40500 Fuel derivatives
Heavy fuel oil OILHFO 40500 Fuel derivatives
Naphta OILNAP 44000 Fuel derivatives
Natual gas liquids OILNGL 42000 Fuel derivatives

There might be a case in which the energy commodity as defined in TIAM-UCL

does not cover all commodities defined in each group in GloTraM, resulting in a possible

underestimation of such trade. For example bio-crops is associated with the group com-

modity wood, however in the group commodity wood there may be other commodities

that are not defined in TIAM-UCL. It is assumed that the commodities as defined in

TIAM-UCL are representative of all commodity groups as defined in GloTraM, although

it is recognised that this approximation can be a limitation of this approach.
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In order to convert the trade by region into trade by country, the transport demand

dataset present in the shipping model was used. The dataset was used to obtain the

countries shares that are assumed to be the same in TIAM-UCL trade. For example,

for a specific commodity trade in a specific year between region A and region B, the

countries’ shares of region A are calculated as ratios of the total trade from region A

over the trade from the specific countries that belong to region A. Similarly it is done for

the receiving region B. So that, when TIAM-UCL calculates the trade between region

A and B, such countries’ shares are used to convert the regional level trade to country

level trade. Figure 4.7 shows an illustrative example of such a process. This process

is done for each time step, for each energy commodity, for each trade. Since regional

trade is expressed in PJ in TIAM-UCL, they are converted into tonnes, using the energy

densities reported in table 4.7. Each commodity group trade is associated to a specific

ship type as in the transport demand dataset in GloTraM.

Figure 4.7: Illustrative example of converting regional trade from TIAM-UCL to
trade by country level in GloTraM

If a regional trade calculated in TIAM-UCL does not exist in the transport demand

dataset in GloTraM, then a representative country is used to transfer such trade from

regional level to country level. In this case the entire regional trade is associated with

the trade of two specific countries in origin and destination regions.
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It is important to note that TIAM-UCL also takes into account the fuel consumed

for such trade of energy commodities. This needs to be considered when transferring

quantities from GloTraM to TIAM-UCL in order to avoid the double counting of such

consumptions. This is explained in section 4.11.

4.10.2 Production derived cost as a proxy for fuel price

In TIAM-UCL the price of producing a commodity affects the demand for that commod-

ity, while at the same time the demand affects the commodity’s price. This thesis uses

the elastic demand version of the model, which allows energy service demands to react

to changes in commodity prices. So, for example, the hydrogen price affects its demand

in shipping, which is affected by its price. In addition, the CO2 shadow prices estimated

in any scenario can influence the commodity prices. A cost mark-up will be reflected

in the commodity price if the steps to produce such a commodity require energy that

is carbon intensive. So, for example, a mark-up will increase the commodity prices of

oil in a carbon-constrained scenario as the extraction, processing, and transport of such

commodities requires energy which is carbon intensive.

The TIAM-UCL model generates endogenously a shadow price for each commodity

by matching supply and demand. The shadow price is defined as the price paid for

an increment of additional production, and it incorporates the costs of production,

the choice of substitutes, the constraints that are imposed (e.g. ramp-up rates on new

sources of production), and any long-term energy-service demand elasticities. ‘Price’ and

‘shadow price’ are not necessarily the same as the latter does not include some elements

that are in the real world as extraction taxes. Due to these taxes the commodity price

of oil is significantly lower than in the real world (the global-average government tax

take of a barrel of oil is around 67%) (McGlade and Ekins, 2014).

In order to use such shadow prices as a proxy of real prices different assumptions are

made. Particularly, diverse assumptions are considered for conventional oil derived fuels

(HFO and MDO), and for alternative marine fuels (LNG and hydrogen).

As noted, shadow prices of oil derived fuels in TIAM-UCL generally tend to be lower

than the expected real prices. If we use such shadow prices in GloTraM this can have an

impact on results as the model is calibrated for marine real fuel prices. It is assumed,

therefore, that for such fuels the shadow price plus a mark-up corresponds to a proxy

of the real world price. Based on this assumption a fixed cost-mark up was added to
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the estimated shadow prices. The fixed cost mark-up is calculated as the percentage

difference between the TIAM-UCL shadow price and the real world fuel prices in 2010

taken from Smith et. al. (2013a). This means that the relative increase in shadow prices

is indexed back to the real price in 2010. A similar approach has also been used in

Solano and Drummond (2014).

Nowadays, for example, gas price is driven from factors such as type of contract and

oil price. These factors are not modelled in TIAM-UCL, so the estimation of the shadow

prices for LNG and hydrogen in TIAM-UCL implies an assumption that a global price

would be formed in the future. Hydrogen and LNG global markets do not yet exist,

so their prices are based on fuel production costs, and supply-demand fundamentals.

In this thesis, it is assumed that shadow prices of hydrogen and LNG calculated in

TIAM-UCL are representative of future real prices.

TIAM-UCL does not provide a shadow price if there is no demand for a commodity.

For instance, if hydrogen or LNG are not demanded in shipping during the period

2010 to 2015 then their prices are not available. In this case it is assumed that the

average global price for that period is higher than the first observed global price, in this

example the price in 2015. This assumption is based on the consideration that a global

price before the actual demand takes place is affected by the investment required for

the development of a global supply infrastructure. It is difficult to estimate how much

higher the global prices in this specific period would be compared to the first observed

prices estimated in TIAM-UCL. In this thesis a factor of 10% has been used to take

into account a penalty that would represent the fact that early adopters will have to

pay a high price, eventually the price will decrease as the global supply infrastructure

for hydrogen and LNG develops.

It is important to note that TIAM-UCL estimates regional shadow prices, while

GloTraM uses as input exogenous global fuel prices. Therefore, each global fuel price is

calculated as a weighted average of the regional shadow prices. Generating a single global

price on the basis of the diverse regional prices is a large simplification for commodities

such as LNG and hydrogen which would have different pricing mechanisms around the

world, especially in the near future. So, in reality there would be locations where

hydrogen or LNG could have a competitive price and other locations where hydrogen

or LNG prices would be extremely expensive. However, as the focus is on a long term

view it can be expected that the global price for LNG and hydrogen will develop.
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4.10.3 Carbon price

Carbon price can be transferred from TIAM-UCL to GloTraM. Generally, TIAM-UCL

simulates the global carbon prices in order to meet the emissions reduction target of the

selected scenario. GloTraM, instead, requires an exogenous shipping carbon price, or

alternately it can be estimated internally through a feedback of the output back to the

shipping system. The latter case is used in the simulations where the shipping industry

is restricted on the total amount of GHG that can be emitted until 2050 to a certain CO2

budget. This case simulates the implementation of a Market Based Measure (MBM),

which adjust the cost-benefit available in the model to enable take-up and in-sector

emissions mitigation.

As consequence two different cases can be considered. In the first case, it is assumed

that the shipping carbon price is equal to the global carbon price as estimated in TIAM-

UCL. The assumption in this case is that the global carbon price that derives from a

global action of all sectors to de-carbonise, is representative of a shipping carbon price

although the latter is acting independently from the rest of the energy system. In the

second case, this assumptions is rejected and instead it is assumed that the shipping

carbon price is equal to the one estimated internally in GloTraM. The assumption in

this case is that a shipping carbon price will be set according to the introduction of a

MBM measurement that uses the part of the carbon taxes to fund environmental and

low carbon programmes and investments.

The first case is considered in the simulations analysed in chapter 5, while the second

case is considered and explained in more detail in chapter 6.

4.11 Transferring fuel consumptions from GloTraM to TIAM-

UCL

This section presents the process of transferring information from GloTraM to TIAM-

UCL. The projections of future consumption of marine fuels are taken from GloTraM

and then they are transferred in terms of quantities and shares by region in TIAM-UCL.

Future consumption of marine fuels can be expressed in GloTraM as fuels consumed

by ships trading inbound to a region (international import), outbound of a region (inter-

national export), and within a region (domestic). The disaggregated consumptions are
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calculated based on estimated ship movements in terms of number of discrete voyages

that are required to satisfy the allocated transport supply. Operational data is consistent

for inbound, outbound and domestic voyages by ship type and size categories, however

differences are considered for laden and ballast voyages. In particular, it is assumed

that the voyage is always leaden if it is a container ship, otherwise, every loaded voy-

age is followed by a ballast voyage. Other assumptions regarding the fleet operational

characterisation can be found in more detail in Smith et. al. (2013a) and Smith et. al.

(2013b).

On the other hand, TIAM-UCL requires the energy consumed by ships that trade

between different regions (international trade), and energy consumed by the ships that

trade within the same region (domestic trade). Both energy service demands are ex-

pressed in PJ per year and exclude the energy consumed by the ships that trade energy

commodities as they are calculated endogenously within the model.

In summary, GloTraM estimates the fuel consumptions and TIAM-UCL requires

marine fuel demands by region. In order to transfer this information from GloTraM

to TIAM-UCL a conversion process is needed. As a first step, two simplifications were

applied. First no distinction was assumed between international and domestic energy

service demand in TIAM-UCL, rather a generic energy service demand was considered

that includes both international and domestic. Second no distinction was assumed

between inbound, outbound and domestic voyages, rather the global fuel consumptions

were taken into account. This means that the total consumption of marine fuels at

global level needs to be decomposed into marine fuel demands by region.

Such marine fuel demands are associated to the region where the refuelling takes place

and not where the fuel is actually produced as it is the energy model to establish the

region where it is most cost effective to produce the fuel and to transport to the refuelling

location. The second step of the conversion process is, therefore, the decomposition of

the global fuel consumption in regional marine fuel demands that corresponds to assume

where ships refuel at regional level.

In the real world, route and schedule decisions affect the options for refuelling char-

acterised by their geographical locations, port costs, and bunker price Vilhelmsen et. al.

(2014). According with Oh and Karimi (2010), ship operators make their refuelling deci-

sions after monitoring the market prices and trends, and searching for the best possible

prices on their trade routes. Typically prior to the arrival at a port the fuel supplier
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and the ship operator reach an agreement on the bunkering price and refuelling time-

lines, then the refuelling process proceeds. Since the defined regions are relatively big

it is possible to ignore such dynamics and assume that ships refuel in specific ports

constrained by the configuration of the maritime trade network. The configuration of

maritime trade routes is a function of obligatory points of passage, which are strategic

locations of physical constraints (coasts, winds, marine currents, depth, reefs, ice) and of

political borders Rodrigue et. al. (2013). It is possible to assume that this configuration

is going to be relatively unchanged over time, and that any changes to this configuration

would have a minor effect on the refuelling options. In addition, the location of refu-

elling ports terminals is influenced by logistics and transport cost factors. According

with EPA (2008a) often such terminals are strategically located close to supply sources

(petroleum refineries) and consumers of transported goods (major population centres),

and along high-density shipping routes. This is why a few ports seem to dominate fuels

sales because of their strategic location Vilhelmsen et. al. (2014). Large bunkering ports

such as Singapore, Rotterdam and Gibraltar, Panama, and Los Angeles, San Francisco,

New York, Philadelphia, Houston, and New Orleans dominate the market and affect

the sales of their country. IEA provides statistics of the marine fuels sales. The most

important fuels used as bunkers in IEA’s datasets are fuel oil and gas diesel. The former

dominates the markets; figure 4.8 shows an intensity world map of fuel oil sales in 2010

for international shipping by country. This map confirms that the majority of fuel sold

to shipping is focused on few locations.

statistics/figuresales.pdf (Personal)/PhD3/Thesis/PicturesFigures/Bunkers statistics/figuresales.pdf
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Figure 4.8: Fuel oil (HFO) sales to fuel ships 2010 in million tonnes
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Historical marine fuels sales by country can be aggregated by region as defined in

TIAM-GloTraM, so regional shares can also be calculated. Such shares were calculated

per each fuel and were used to disaggregate the global fuel consumptions estimated by

the shipping model into regional fuel demands. For the base year 2010, the actual shares

in that year were used to disaggregate the global fuel consumptions in 2010 in regional

fuel demands. These demands where used to calibrate the energy model at base year.
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Figure 4.9: Historical shares of marine fuel oil sales aggregated by TIAM-GloTraM
region - Africa (AFR), Australia (AUS), Canada (CAN), Central and South America
(CSA), China (CHI), Eastern Europe (EEU), Former Soviet Union (FSU), India (IND),
Japan (JPN), Mexico (MEX), Middle East (MEA), Other developing Asia (ODA),
South Korea (SKO), United Kingdom (UK), Unite State of America (USA), Western

Europe (WEU). Source: IEA World Energy Statistic

The projected global fuel consumptions were disaggregated in regional fuel demands

by using fixed regional shares obtained with the analysis of historical trends. Figure 4.9

provides the trend of fuel oil sale shares (domestic and international) by region. The

shares of some regions such as Western Europe, Australia, Canada, Central and South

America, UK, and Middle East seem to be almost constant over time. Other regions
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show a more unstable trend. USA and Japan have decreased their shares especially

during the last decades, conversely South Korea since 1985 has increased its share and

it seems to be stable over the last decade. China and Other developing Asia have clearly

increased their shares, while Former Soviet Union dramatically dropped its shares in

1990 and only in recent years has a significant share. Other regions such as Mexico,

India, and Eastern Europe seem to have a very small share.

Figure 4.10, instead, shows the historical trend of gas diesel sales shares (domestic

and international) by region. The shares of some regions have unstable trends, for

example China increases significantly, while Former Soviet Union and Western Europe

decrease. The rest of the regions seem to have almost a constant share. Even though

dramatic changes are observed, since 1990 such changes are generally small for many of

the regions.
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Figure 4.10: Historical shares of marine gas diesel sales aggregated by TIAM-
GloTraM region - Africa (AFR), Australia (AUS), Canada (CAN), Central and South
America (CSA), China (CHI), Eastern Europe (EEU), Former Soviet Union (FSU), In-
dia (IND), Japan (JPN), Mexico (MEX), Middle East (MEA), Other developing Asia
(ODA), South Korea (SKO), United Kingdom (UK), Unite State of America (USA),

Western Europe (WEU). Source: IEA World Energy Statistic
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Another way to present the variance of the regional shares is by using the box plots.

For each region, it is possible to represent the variance of the share with a rectangle that

ends to the upper and lower quartiles. Figure 4.11 shows the box per region for fuel oil

and for gas diesel considering IEA historical data from 1991 to 2011. It also includes the

mean, the median and the outliers per region. In general it can be observed that median

and mean are very similar. The biggest variances for fuel oil are observed in Western

Europe, USA, Other developing Asia (that includes Singapore), and China. Overall the

shares in (%) can be considered relatively constant.

Based on the means presented in figure 4.11, fixed shares were considered in order

to disaggregate the projected global fuel consumptions into projected regional fuel de-

mands. In particular, the means of historical regional shares of fuel oil and gas diesel

were used for HFO and MDO demands respectively. There is no historical data for LNG

and hydrogen in shipping, therefore it is assumed that such alternative fuels would be

available and sold at the main refuelling port terminals as for the current conventional

marine fuels. This means that the regional shares would be similar to the one for HFO

and MDO. As consequence the mean of the regional shares of both fuel oil and gas diesel

fuels were used to obtain the fixed shares for LNG and hydrogen.

Figure 4.11: Variance of the regional shares for fuel oil on the right, and for gas diesel
on the left. Data from 1991 to 2011. Source IEA World Energy Statistics. Overall the
shares in (%) can be considered relatively constant, although variances are observed in

particular regions.

In conclusion it is assumed that ships would always refuel in specific regions and

such shares will not changes significantly in the future. Nevertheless, it is assumed

that possible future variance of such shares would not affect the results dramatically

and therefore they are neglected. Once the fixed shares were estimated, it was possible
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to decompose the total marine fuel consumption into regional marine fuel demands and

finally, quantities and shares from GloTraM were transferred as shipping energy demands

in TIAM-UCL.

4.12 Consistency

The last part of the soft-linking process undertaken to link TIAM-UCL and GloTraM

is the introduction of a proceeding that ensures the convergence of the models towards

the system consistency. This is done using an iterative procedure with a stopping crite-

ria. Such theoretical consistency concerns of the understanding of how the two models

interact with each other, and the implications of reaching the system consistency. In

order to analyse such theoretical consistency, the objective functions of both models are

discussed first, then the iterative process and its implications are examined.

4.12.1 The objective functions

TIAM-UCL belongs to the family of TIMES models. According with Loulou and Labriet

(2008), TIMES model computes a partial equilibrium on energy markets. This means

that the supply-demand equilibrium has the property of maximising the total surplus,

defined as the sum of suppliers’ and consumers’ surpluses.

The supply-demand equilibrium is at the intersection of the supply function and the

demand function, in which an equilibrium quantity QE and an equilibrium price PE are

obtained as shown in figure 4.12.

Figure 4.12: Supply-demand equilibrium in TIAM-UCL
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The supply curve characterises the set of suppliers of a commodity, where the sup-

pliers of a commodity are technologies that procure a given commodity, for example

hydrogen. Such a supply curve is endogenously derived by the model itself, providing

the marginal production cost of the commodity as a function of the quantity supplied.

Usually in TIMES models the supply curves are represented by non-linear functions as

a stepped sequence of linear functions. For example a supply of some resource may be

represented as a sequence of linear segments, each with rising unit cost. Such horizontal

steps indicate that the commodity is produced by a certain set of technologies. Each

time the quantity produced increases, a change in the production mix occurs, due to the

fact that one or more resources in the mix is exhausted, and the system starts using a

different (more expensive) set of technologies. This generates one step of the staircase

supply function (Loulou and Labriet, 2008).

On the other hand the demand curve characterises the consumers of a commodity,

that are technologies or demands that consume a given commodity, for example the

shipping energy demand. Generally such demand curves are exogenously defined by the

user, and they are assumed to have a constant own price elasticity function defined by

the following equation:

D

D0
=
( P
P0

)e
(4.18)

where D0 and P0 is a reference pair of demand and price values obtained from solving

a reference scenario, and e is the own price elasticity of that energy service demand

chosen by the user.

The supply-demand equilibrium is reached when the total surplus is maximised. The

suppliers’ surplus is the net revenue attached to a given commodity, corresponding to the

area between the horizontal segment SS′ and the supply curve. Similarly, the consumers’

surplus is the opportunity gain of all consumers who purchase the commodity at a price

lower than the price they would have been willing to pay, corresponding to the area

between the segment CC ′ and the demand curve. The total surplus of an economy is

the sum of the suppliers’ and the consumers’ surpluses, therefore for a given quantity

Q, the total surplus is the area comprised between the two inverse curves and located

at the left of Q. The total surplus is maximised when Q is equal to the equilibrium

quantity QE Loulou and Labriet (2008).
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As mentioned GloTraM provides scenarios of the evolution of shipping fleet’s com-

position and their technical and operational specifications. Such evolution is simulated

assuming that the trade-off of design speed, energy efficiency and sunk costs are aligned

with a single agent, the ship owner Smith (2012). Therefore every investment is evalu-

ated by maximising the annual profit of the ship owner expressed as:

πpa = Rpa − Cs pa − Cv pa (4.19)

Where Cs pa is the annual sunk (or fixed costs), Cv pa is the annual variable costs,

and Rpa is expected annual revenue generated from a series of cargo movements. It

is said that a rational ship owner will select a design and operation specification that

maximises profit (Smith, 2012). The annual revenue Rpa is a function of the price paid

for units of transport supply and the quantity of transport supply per year. The latter

is in turn a function of the design and operation specifications such as the dwt, the days

spend at sea, the loaded efficiency and the speed. The sunk costs Cs pa are composed of

both capital costs and annualised fixed operating costs, where capital costs are divided

into investments in energy efficiency and hull and investments for the engine, for exam-

ple fuel cells with hydrogen. Fixed operating costs are exclusive of voyage costs. The

voyage costs Cv pa are the variable costs associated with a voyage. These are a function

of fuel prices, fuel carbon content, carbon price, efficiency of the main machinery, and

other technical and operational specifications (Smith, 2012). This implies that GloTraM

calculates the consumption of the marine fuels by simulating the way the shipping in-

dustry is likely to respond to a number of inputs such as future fuel prices, carbon prices,

and transport demand. In other words the consumption of marine fuels is a function of

fuel prices, carbon price, transport demand, technology and a number of other technical

and operational specifications of the shipping system.

4.12.2 The iterative procedure

The consumption of a marine fuel corresponds in TIAM-UCL to the technologies that

consume a given commodity, which characterises the demand curve. When transferring

marine fuel consumptions from GloTraM and TIAM-UCL, it corresponds to the demand

curve represented as a vertical line as illustrated in 4.13 for each time step. The theoret-

ical consistency of TIAM-GloTraM is ensured by the iterative process. Figure 4.13 also
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illustrates the steps involved in this process. First TIAM-UCL is solved determining

the supply curve and the equilibrium Q0 and P0 based on initial condition D0. This

also parametrises GloTraM input data, which computes the fuel consumption, thus the

demand curve D1. In the next iteration TIAM-UCL evaluates the energy market based

on the new demand curve, finding a new equilibrium in Q1 and P1. This parametrises

again GloTraM input data, which generates the new demand curve D2. The iterative

process converges when the equilibrium prices of two consecutive iterations (for example

P3 and P2) are relatively small so that the changes in the fuel quantities (fuel demands)

are negligible.

Figure 4.13: Iterative process between TIAM-UCL and GloTraM

The iterative process consists in a continuous exchanging of information between

TIAM-UCL and GloTraM until convergence in central variables is achieved. The central

variables are the fuel prices, while the convergence is ensured by a stopping criteria. The

iterative process stops when fuel price projections at iteration n change by less than 5%

than the fuel price projections at iteration n + 1 for all fuel types in all years of the

analysed period.

It is important to note that the consistency of TIAM-GloTraM is ensured not only

by the iterative process but also by the entire soft-linking method developed which takes

into account all main steps developed in this chapter.

4.12.3 Assumptions embedded in the soft-linking framework

The developed soft-linking framework embeds assumptions about the real world phe-

nomena. The target system is the uptake of hydrogen in shipping taking into account
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the supply of hydrogen in shipping and its use on board ships. The real world phenom-

ena, therefore, is the interaction between the energy system that provides energy in the

form of fuels to ships and the shipping system itself. If we assume that the dynamics

of supply and demand of hydrogen in shipping in the real world are similar to the ones

in the model TIAM-GloTraM, then it becomes important to highlight what are the as-

sumptions that the developed linking procedure embeds about the interaction between

the energy and the shipping systems.

A first assumption regards the two different assumed behaviours of the systems. The

shipping system and the energy system act under different philosophical aims, which

means that there are two different objective functions with two different scope. In other

words, on one hand the energy system informs the shipping system of the fuels prices

based on the least-cost abatement function, and on the other hand, the shipping system

inform the energy system of fuels shares due to the investment that shipowners would

adopt based on profit opportunity.

Another assumption regards the behaviour of the shipping system under a global

decarbonisation scenario. In the case in which shipping carbon price is set equal to the

global carbon price estimated in TIAM-UCL, essentially it means to include the shipping

system within the optimal decarbonisation of the whole energy system. Because of this,

the framework allows the shipping system to buy offsets for CO2 emissions from the rest

of the economy. So, in this case although the shipping system acts differently to the other

sectors, it receives from the rest of the energy system the global carbon price that would

be required if there will be a global effort to mitigate emissions. Alternately, setting the

shipping carbon price equal to the one calculated in GloTraM means that the shipping

system will act independently to meet its own CO2 budget, while it is allowed to by offset

for CO2 emissions from the rest of the economy at a fixed proportion. Also in this case

the shipping system acts differently to the other sectors, however it sends back to the

rest of the energy system the fuel shares that would meet the internal shipping emission

target and the energy system will estimated fuel prices and global carbon price as it

there will be a global effort to mitigate emissions. A possible alternative regarding the

behaviour of the shipping system under a global energy decarbonisation scenario is that

instead to have the assumptions that the rest of the energy system would act together,

also the other sectors would act independently (based on different objective function)

fighting each other to maintain a certain carbon budget that it would be proportional
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to their relative contribution. This is not captured by the developed framework and it

can be considered as a further area of research.



Chapter 5

Results of the soft-linking

framework

5.1 Introduction to the results

This chapter addresses the first research question: how the soft-linking framework can

improve the modelling representation of the uptake of hydrogen in shipping. To answer

this question the results of key variables obtained with TIAM-GloTraM are compared

with the ones obtained with independent runs of TIAM-UCL and GloTraM. The aim is

to demonstrate that the soft-linking framework improves the modelling representation

of hydrogen’s take-up in shipping by providing a more consistent set of results that

enables the explanation of dynamics between the energy and the shipping systems that

cannot be observed with independent simulations. If so, TIAM-GloTraM represents

an improvement of the substance of modelling hydrogen in shipping in terms of its

representational capacity of the target system, and it can be used to explore possible

emergences in the energy-shipping system.

A total of six simulations were examined. Table 5.1 describes the six simulations.

There are two reference scenarios: 4◦C and 2◦C. The first is a scenario that simulates the

target system, ensuring that the average global temperature rise is below 4 ◦C, while

the second is a scenario with a deep decarbonisation that ensures an average global

temperature rise is below 2◦C. First, TIAM-UCL and GloTraM were independently

used to simulate the two reference scenarios, then TIAM-GloTraM was used.

There are a large number of outputs from each simulation, however the focus is only

107
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Table 5.1: Simulations

Simulation name Description

IT4D Independent TIAM-UCL 4◦C
IG4D Independent GloTraM 4◦C
TG4D TIAM-GloTraM 4◦C
IT2D Independent TIAM-UCL 2◦C
IG2D Independent GloTraM 2◦C
TG2D TIAM-GloTraM 2◦C

on the key variables that are transferred between the two models; these are: the shipping

transport demand of energy commodities, fuel and carbon price, the fuel consumptions

and fuel shares mix. Such variables are not always outputs of the model used in each

simulation, for example the trade of energy commodities is an output in IT4D and IT2D,

while it is an input in IG4D and IG2D. Table 5.2 summarises such differences among

the simulations.

Table 5.2: Variables examined

Variable Model

TIAM-UCL GloTraM TIAM-GloTRaM
Trade of energy commodities Output Input Output
Fuel and carbon prices Output Input Output
Fuel shares mix Output Output Output
Fuel consumption Input Output Output

A simple comparison between these variables is unable to completely demonstrate

that the results from TIAM-GloTraM are an improvement of the ones from the inde-

pendent runs, because such variables are not all outputs of the model used. Every time

a variable is an input then assumptions are required; for instance, fuel prices are out-

put from TIAM-GloTraM and input in GloTraM. This means that when fuel mix are

compared, it is difficult to demonstrate that one result is an improvement of the other

results as the fuel prices input assumptions in GloTraM could have influenced the results

and they cannot be associated with the representational capacity of the model. In other

words, because of the different boundaries of the models, they cannot be used under the

same exact assumptions, which prevents a fair comparison of the results themselves.

Even though the comparison of the results cannot demonstrate that TIAM-GloTraM

can provide improved results, such a comparison is still very useful. The interpretation

of the results for the variables in table 5.2 reveals a different level of insights depending

on the model used. If TIAM-GloTraM is able to provide a more consistent and detailed
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interpretation of its results, it demonstrates that the model is an improvement of the rep-

resentation of the target system. The relationship between the modelling representation

and interpretation is the focus. If my interpretation of the results can be more complete,

detailed, and consistent then I should have a improved modelling representation of the

system.

This chapter is organised as follows: section 5.2 and section 5.3 provide a general

description of the key assumptions used for the two reference scenarios, including the

assumptions required when the variables examined are inputs of the model used. Section

5.4 provides the results from the independent runs of TIAM-UCL for the 4◦C and 2◦C

reference scenarios (IT4D and IT2D). Similarly, section 5.5 provides the results from

independent runs of GloTraM (IG4D and IG2D). Then section 5.6 provides the results

from TIAM-GloTraM. Finally the comparison of the results and discussion are provided

in section 5.7.

5.2 Key assumptions in TIAM-UCL

This section provides the key assumptions of the reference scenarios in the energy model.

In particular they regard: the constraint on carbon-equivalent (CO2e) emissions, the

availability of bioenergy and carbon capture sequestration technologies (CCS), and the

projection of the shipping energy demand. As mentioned there are some differences in

the assumptions used depending on the simulation. Such differences will also be detailed

in this section.

The scenarios 4◦C and 2◦C refer to the average global temperature rise. In practice,

a global constraint on CO2e emissions is applied on the energy model. TIAM-UCL is

constrained to keep the atmospheric concentrations of CO2e below a certain value of

ppm in all years up to 2100. The 4◦C scenario constrains the model to 720 ppm, while

the 2◦C scenarios to 425 ppm. This results in an equal chance of keeping the average

global temperature rise respectively below 4◦C and 2◦C (McGlade and Ekins, 2014).

The model is free to determine the least-cost global abatement as it is assumed that

there will be a global effort to mitigate emissions. However, regional emission caps are

also imposed on the model in order to provide more realistic scenarios. For instance,

in the 2◦C scenario the maximum pledges made as part of the Copenhagen Accord are

used to constrain the model in 2020 (McGlade and Ekins, 2014).
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In addition to the emissions constraints, a number of other factors are important in

the energy model that are relevant for describing the reference scenario. They are: the

availability of bioenergy and CCS technologies. For these assumptions there were no

differences between the reference scenarios 4◦C and 2◦C.

Although in this thesis biofuels are not considered in shipping, in a low carbon

scenario they might compete with hydrogen in other sectors. In addition, since hydrogen

can be derived from biomass like biofuels, it becomes important to evaluate the global

availability of bioenergy. Such a parameter is highly uncertain, however in both reference

scenarios it was assumed that the global availability of biomass grows steadily over

time from 47 EJ/year in 2005 to 118 EJ/year in 2050. This is in accordance with the

assumption used in McGlade and Ekins (2014).

The availability of CCS technologies is another important factor. In both the ref-

erence scenarios it was assumed that in 2020 in each region CCS can be applied to a

maximum of 15% of total electricity generation. After 2020 all CCS technologies can

grow at a maximum rate of between 10 and 15% per year. Instead, from 2030 CCS is free

to be applied to the majority of processes and technologies without restriction McGlade

and Ekins (2014). In particular for hydrogen production plants, CCS technologies can

be applied after 2020 in SMR, coal gasification and biomass gasification centralised large

plants, but it is not considered in centralised medium and decentralised plants.

When TIAM-UCL is used independently, assumptions regarding the shipping energy

demand over the period studied are required. This demand is exogenous to the model,

although TIAM-UCL is free to choose the fuel shares mix that meets such a energy

demand. It is expressed in PJ per year for each region and it is distinguished in interna-

tional and domestic shipping energy demands (TWI and TWD) as shown in figure 5.1.

In this thesis, those shipping energy demands are derived from data reported in Smith

et. al. (2015) and Argyros et. al. (2014).

In TIAM-GloTraM the shipping energy demand corresponds to the total fuel con-

sumption (international and domestic) estimated in the shipping model. It is endogenous

to the model, although initial conditions of the regional demands and fuel shares mix

are required. Such initial conditions include the fuel share projections which are used

to initialise the first run of TIAM-UCL. The fuel share projections are then overwritten

by the results obtained from GloTraM, so effectively they do not have a real impact on

the final results. The initial condition are estimated using the same data sources for the
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Figure 5.1: Exogenous regional shipping energy demand. On the left international
shipping energy demands by region. On the right domestic shipping energy demands
by region. Africa (AFR), Australia (AUS), Canada (CAN), Central and South America
(CSA), China (CHI), Eastern Europe (EEU), Former Soviet Union (FSU), India (IND),
Japan (JPN), Mexico (MEX), Middle East (MEA), Other developing Asia (ODA),
South Korea (SKO), United Kingdom (UK), Unite State of America (USA), Western

Europe (WEU)

independent runs of TIAM-UCL.

5.3 Key assumptions in GloTraM

This section provides the key assumptions of the reference scenarios in the shipping

model. In particular they outline: the shipping regulations, the shipping transport

demand, the economic factors, and the main engines and fuel characteristics. As in

the energy model TIAM-UCL, there are some differences in the assumptions used in

GloTraM depending on the simulation. Such differences will also be provided in this

section.

The shipping model takes into account the MARPOL regulation. It includes the

limit of sulphur and nitrogen content of marine fuel as defined in the regulation. The
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only difference between the two reference scenarios is in regard to the implementation

date of a limit of 0.5% to the sulphur content of marine fuel. In the 2◦C scenario the

date at which the global 0.5% sulphur cap is anticipated in 2020 as shown in figure 5.2,

while for the 4◦C scenario starts in 2025.

Figure 5.2: Sulphur regulations in the reference scenarios

In addition to the regulations another important factor that defines the reference

scenarios in GloTraM is the shipping transport demand. There is a difference in this

variable depending on whether GloTraM is used independently or TIAM-GloTraM is

used.

In the independent runs of GloTraM the transport demand is completely exogenous

and is based on the assumptions used in Smith et. al. (2013a). This demand describes

aggregations of 100 commodities traded between all of the world’s countries in terms of

their annualised mass flows and annualised values. It represents the trade that would be

required under a low carbon scenario. In particular, this shipping transport demand is

associated with the assumptions used for the A1B scenario in IPPC SRES. The charac-

teristics of such a scenario consists of very rapid economic growth, a global population

and the rapid introduction of new and more efficient technologies. In addition, the A1B

scenario is distinguished by its technological emphasis on a balance across all sources,

in the sense that the system does not rely too heavily on one particular energy source

(IPCC, 2013b).

The global trade of energy commodities is part of the shipping transport demand

and it can be divided into trade between different regions and trade in the same region.

Figure 5.3 provides the total trades for each commodity group. It also provides the

total by energy commodity. Overall we can observe an increased total trade of coal
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and wood, while the total trade of crude petroleum, gaseous hydrocarbons and fuel

derivatives increases gradually until 2040, and starts to decrease afterwards. In each

commodity group the trade between different regions represents the majority of the

total trade, except for fuel derivatives and gaseous hydrocarbons, where the trade in the

same regions represents a more significant part.

Figure 5.3: Exogenous total trade of energy commodities assumed in GloTraM

In the independent runs of GloTraM the shipping transport demand is equal in both

4◦C and 2◦C reference scenarios, as it was assumed there were no significant changes in

the transport demand due to a different global emissions target.
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The transport demand in the soft-linking framework is the same as the one provided

above except for the transport demand of energy commodities between different regions.

The shipping transport demand of non-energy commodities and energy commodities in

the same region remains exogenous and is based on the assumptions used in Smith et. al.

(2013a). In contrast, the shipping transport demand of energy commodities between

different regions is endogenous to the model and it changes based on the reference

scenarios. As can be expected in a scenario with a more decarbonised energy system,

the trade of energy commodities can be different from a scenario with lower focus on

emissions abatement mechanisms. It is recognised that only this part of the trade of

energy commodities is endogenous as the trade of energy commodities by ships in the

same regions are not modelled in the energy model and so they are exogenous to TIAM-

GloTraM.

Fuel price assumptions are different by simulation. In the independent runs of Glo-

TraM, fuels and carbon prices are taken from the independent runs of TIAM-UCL

respectively for the 4◦C and 2◦C reference scenario. In contrast, in the soft-linking

framework the fuels and carbon prices are endogenous variables. With particular regard

to the for carbon price, two different approaches can be considered. The first approach

assumes that the shipping’s carbon price is equal to the global carbon price as estimated

in TIAM-UCL. The second approach assumes that the shipping’s carbon price is equal

to the one calculated internally in GloTraM in order to meet a certain CO2 budget. In

the simulations considered in this chapter the first approach was used, while the second

approach was used in the simulations analysed in chapter 6.

Besides the fuels and carbon prices, a number of exogenous economic data is used

to determine the ship owner’s costs and revenue. The first is the barrier factor (TC),

which represents the effect of market barriers in setting the time charter prices. In

both reference scenarios a value of 0.5 is assumed (if TC is equal to 1 it means there is

a perfect market and zero barriers). The second is another barrier factor (VC), which

represents barriers in the voyage charter market. It is set at the default of 1 which means

that there are no barriers in the voyage charter market. Another two factors are finally

included: the interest rate used to discount future profits (disc), and the time horizon

(NPVyear) over which the profitability of an intervention (change in design speed, fuel

or adoption of low carbon technology) is assessed. In both reference scenarios disc is

equal to 10% and NPVyear is equal to 5 years.
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The assumptions regarding the main engine and fuel characteristics are used to eval-

uate important factors for each fuel/machinery option. The assumptions for the main

engine are: unit capital cost, efficiency, life time and unit cost associated with required

component replacement. The assumptions for the fuels are: energy density, gravimetric

and volumetric energy density of the storage system, and unit cost of the storage sys-

tem. The characteristics of the main engines considered in this thesis are provided in

table 5.3, while the characteristics of fuels are provided in table 5.4. These are input

assumptions, and they are equal in both reference scenarios.

Table 5.3: Main engine options

main engine system η $/kW life(hr) $/kW (repl)

2 stroke diesel 52% 400 - -
4 stroke diesel 47% 400 - -
diesel electric 47% 500 - -
4 stroke spark ign. 48% 400 - -
Fuel cells 55% 830 47500 498
-Electric motor 95% 116 - -
-Reformer 70% 350 - -

Table 5.4: Fuel options

fuel kWh/kg kg/m3 Kg(f)/Kg(s) $/kg

HFO 11.25 930 1 -
MDO 11.84 880 1 -
LNG 13.89 420 0.8 7.14
Liquid H2 33.33 38 0.09 71

5.4 TIAM-UCL independent simulations

This section provides the results of the examined variables obtained with the independent

runs of TIAM-UCL. The trade of energy commodities, the fuel mix in shipping and fuel

and carbon prices are presented and examined for IT4D and IT2D scenarios.

5.4.1 Scenario 4 Celsius degree with TIAM-UCL

The shipping transport demand of energy commodities between different regions is en-

dogenous in TIAM-UCL. A global constraint on CO2e emissions affects the way each

region meets its energy needs. Each region would require different amounts and types of

energy commodities, which would affect the total trade of each energy commodity group
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in terms of the amount required and trends over the period studied. It is important to

note that the shipping transport demand does not represent the total consumption of

the energy commodities, therefore it would be incorrect to only use these variables to

explain how each region meets the emissions target.

Figure 5.4 displays the global trade in tonnes over the period from 2010 to 2050 of

five energy commodities groups for the scenario IT4D as defined in section 4.7. How

the patterns of this trade change between regions is not in the scope of this thesis,

nevertheless the interest is only on the total trade. Overall the results from the IT4D

scenario show an increased total trade of wood, coal and fuel derivatives and a decline in

the total trade of crude petroleum and gaseous hydrocarbons. In particular, the trade

of commodity group wood rose slightly until 2035 and showed an upward trend in the

remaining years. The trade of coal remained almost constant until 2040, after that it

tended to increase. There were considerable fluctuations in crude petroleum trade until

2040, then such trade dropped dramatically. Fuel derivatives which include oil-derived

fuels and biofuels trade rose significantly in this scenario while gaseous hydrocarbons

trade, which corresponds to natural gas, remained constant over the period. The restric-

tion to keep the temperature rise below 4 ◦C in 2100 did not require significant increases

in trading cleaner energy sources. The projected energy demand would require an in-

creased trade of coal and fuel derivatives. Only in the latest period, the trade of crude

decline and wood started to slightly increase, which can be associated with the use of

more available biomass. Natural gas, which can be seen as a cleaner energy source, did

not increase significantly highlighting the fact that in this scenario traditional energy

sources remained the most traded.

In the independent runs of TIAM-UCL, the model selects the cost-effective fuel

option that is in line with the global emission target. Figure 5.5 shows the results of

the fuel shares mix in shipping of the IT4D scenario. At the top right of the figure,

fuel consumption is expressed in EJ per year with the corresponding CO2 emissions on

the top left expressed in tonnes per year. At the bottom the same results are displayed

as percentage of the total. In this scenario TIAM-UCL selected HFO as the most cost

effective fuel in shipping. The use of MDO in shipping fell dramatically during the first

years as its use is more cost effective in other sectors of the energy system. LNG started

to take up from 2035 reaching its share of about 30% in 2050. Hydrogen take up in

shipping was not observed. In this scenario the shipping sector increased significantly
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Figure 5.4: TIAM-UCL trade of energy commodities between different regions IT4D
scenario

its emissions. The global shipping CO2 emissions reached a value of almost 1400 million

tonnes in 2050, of which about the 80% is associated with HFO consumption.

TIAM-UCL endogenously produces a shadow price for all fuels used in shipping; they

were converted in global fuel price as explained in section 4.10.2. Figure 5.6 displays

the global fuel prices in $ per tonnes and $ per GJ weighted with the regional fuel

consumptions of IT4D scenario. Their trends were almost the same, increasing steadily

over time. HFO and LNG prices were almost the same, while MDO and hydrogen

resulted to be more expensive than the others.

In this simulation, hydrogen price depends on the equilibrium between its demand

and supply. The global demand of hydrogen in IT4D scenario is relatively small and

the amount of hydrogen demanded in shipping was so small that cannot be appreciate

in figure 5.5. The hydrogen supply is affected by the demands of hydrogen in other

sectors of the energy system. In IT4D scenario, hydrogen was produced from coal

gasification, therefore important investments were not required for the production of a

more sustainable hydrogen.

Finally, carbon price was clearly negligible in this scenario. Figure 5.9 shows its trend.

In order to keep the temperature rise below 4◦C a global carbon prices was not necessary
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Figure 5.5: TIAM-UCL emissions and fuel consumptions IT4D scenario. On the left,
emissions in tonnes at the top and share (mass) % at the bottom. On the right, fuel

consumptions in EJ at the top and share (mass) % at the bottom

Figure 5.6: TIAM-UCL fuels prices IT4D scenario in $/tonnes (left) and $ /GJ (right)

meaning that the emissions target would be achieved only with the introduction of more

convenient and efficient technologies.

5.4.2 Scenario 2 Celsius degree with TIAM-UCL

In the IT2D scenario a lower global constraint on CO2e emissions was applied. The total

trade of energy commodities between different regions was affected by the more stringent
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constraint. Figure 5.7 displays the global trade in tonnes over the period 2010-2050 of

the five energy commodity groups for the scenario IT2D. Overall such results show an

increased total trade of wood and gaseous hydrocarbons and a significant decline of the

total trade of coal and crude petroleum respectively after 2015 and 2040. Fuel derivatives

trade increased gradually until 2025 and then a tendency to remain almost constant was

observed afterwards.

Figure 5.7: TIAM-UCL trade of energy commodities between different regions IT2D
scenario

The trade of commodity group wood rose gradually and it can be associated to an

increased demand of solid biomass to be traded. Fuel derivatives are composed of oil

derived fuel and biomass derived fuels, its relative increasing trend in this scenario can

be associated to an increased demand of biofuels that offsets a declined demand of oil

derived fuels. Coal trade decreased considerable over the period studied, which can be

correlated with the stronger decarbonisation path. Crude petroleum trade fluctuated

slightly until 2040, then such trade drop dramatically. Gaseous hydrocarbons trade rose

significantly meaning that in a deep de-carbonised energy system there would be a high

trade of natural gas.

Results of the fuel shares mix in shipping for IT2D scenario are shown in figure 5.8.

In this scenario LNG started to take up from 2020, quickly increasing to cover almost
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the entire fleet by 2030. MDO in shipping was not a cost effective solution as it might be

too expensive and in demand from other sectors. HFO remained the only solution until

2020, after which its use fell dramatically. Hydrogen take up in shipping was negligible.

The global CO2 emissions reached a value of around 1000 million tonnes in 2050, of

which about the 95% is associated with LNG consumption.

Figure 5.8: TIAM-UCL emissions and marine fuel consumptions IT2D scenario

The tighter restrictions on the global emissions caused the introduction of a carbon

price as mechanism to meet the emissions target. Figure 5.9 shows the trend of such

carbon prices in IT2D. The increasing trend over the period 2015 to 2050 is a reason

why LNG started to be more cost effective due to the lower carbon content of such fuel.

Figure 5.10 displays the global fuel prices weighted with the regional fuel consump-

tions for IT2D scenario. HFO prices fell steadily until 2030 associated with a drop in its

demand, although it tended to stabilise and eventually increase afterwards. The trend of

hydrogen prices was very similar to the trend of LNG prices until 2035 but considerably

more expensive. Afterwards hydrogen price increased as it was in demand from other

sectors. Hydrogen price depends on its demand and supply. In contrast with IT4D,

the demand of hydrogen from other sectors was higher in this scenario. Hydrogen was
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Figure 5.9: Carbon prices IT4D and IT2D scenarios in TIAM-UCL

produced from SMR and after 2025 with biomass gasification with CCS. This change in

the production made its prices more expensive, although hydrogen demand in shipping

was still negligible.

Figure 5.10: TIAM-UCL fuels prices IT4D scenario in $/tonnes (left) and $ /GJ
(right)
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5.5 GloTraM independent simulations

This section provides the results of the examined variables obtained with the independent

runs of GloTraM. As for the independent runs of TIAM-UCL, the scenarios examined

are IG4D and IG2D. Only the fuel mix in shipping is presented as the trade of energy

commodities and fuel and carbon prices are exogenous variables for these simulations.

5.5.1 Scenario 4 Celsius degree with GloTraM

In this simulation, the transport demand is exogenous to the model and is equal to the

one defined in section 5.3. Also fuel and carbon prices are exogenous input data in

GloTraM. The fuel price projections obtained from the independent simulation IT4D

scenario were used in this scenario named IG4D. Results obtained with GloTraM can be

very sensitive to these exogenous input assumptions which are very difficult to predict.

Other fuel and carbon price projections could have been used, however each of them

would be based on different assumptions being not endogenous to the model. Because

the results depend also on these input data a comparison between the fuel mix obtained

with GloTraM and the one obtained with TIAM-GloTraM cannot be exhaustive for

demonstrating that TIAM-GloTraM provides an improved fuels mix projection. The

focus is, therefore, on the different types of insight and not on the results itself.

Results of the fuel mix in shipping for IG4D scenario are shown in figure 5.11. In this

simulation a rapid uptake of LNG was observed, and the total ship fleet analysed resulted

to be completely powered by LNG from 2040. LNG prices in this scenario are assumed

to be extremely competitive as it is very similar to HFO prices (figure 5.6). The small

price difference made LNG use very convenient from the shipowner’s profit perspective.

Abatement technology options on board ships were not found to be convenient, and

a switch to LNG resulted to be the most profitable option that would comply with

the MARPOL regulations. The use of HFO and MDO decreased significantly over the

period studied with a similar trend, while there was not an uptake of hydrogen in this

scenario. The global CO2 emissions reached a value of around 1000 million tonnes in

2050, which is associated entirely to LNG consumption.

The switch to LNG in this scenario can be associated with its convenient price in

comparison with conventional marine fuels. Such a LNG price made the option of

switching to LNG more profitable than the use of HFO with scrubber and MDO.
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Figure 5.11: GloTraM emissions and fuel consumptions IG4D scenario

5.5.2 Scenario 2 Celsius degree with GloTraM

The scenario IG2D is obtained with an independent simulation of GloTraM. In this case,

fuel and carbon prices are assumed to be equal to the one obtained with the independent

simulation IT2D. As for IG4D, the transport demand is assumed exogenous to the model

and is equal to the one defined in section 5.3. The fleet’s operational specifications, the

main engines and fuel characteristics and technology options were kept the same as

IG4D, so the only differences were on MARPOL regulations (introduction of a global

sulphur in 2020) and fuel and carbon prices assumptions.

Results of the fuel mix in shipping for IG2D scenario are shown in figure 5.12. In

this simulation hydrogen was taken up from 2020 and it showed a tendency to remain

stable at around 10% of the total fuel consumption with a slightly decrease after 2035.

The assumed hydrogen prices combined with an increased carbon prices and stringent

sulphur regulation made this option profitable for some ship type since 2025. After

2035, hydrogen price increased, while LNG price remained stable. Although, carbon

price continued to increase in this period, the increased gap between hydrogen and LNG
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prices made LNG more convenient from the shipowner’s revenue perspective. LNG

started to be used from 2025 and its share increased over the period. However, LNG

uptake was lower than the one in IG4D scenario (60% in comparison of the 95%) due

to the smaller gap between LNG and HFO prices. HFO and MDO shares decreased but

they maintained together approximately 40% of the total consumption in 2050, meaning

that such fuels with abatement technology on board were still profitable for some specific

ship types and size categories.

Figure 5.12: GloTraM emissions and fuel consumptions IG2D scenario

The global shipping CO2 emissions reached a value of approximately 900 million

tonnes in 2050 associated with HFO and MDO consumption for the 40% and for the

remaining 60% associated with LNG. There are no contributions from hydrogen in CO2

emissions since it does not have any associated operational emissions (see figure 5.12).

In this case the introduction of a carbon price and a more stringent shipping regu-

lations from 2020 had an important role in making LNG and hydrogen an investment

opportunity as HFO and MDO prices were assumed to remain low and almost constant.

There was an uptake of hydrogen in this scenario, however it is important to note

that the hydrogen price is derived from the simulations of TIAM-UCL (IT2D). This
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price does not take into account such uptake of hydrogen in shipping. Being exogenous

to the model, hydrogen price is based only on the assumption and results derived from

the simulation IT2D.

5.6 TIAM-GloTraM simulations

This section provides the results of the examined variables obtained with the simulations

using TIAM-GloTraM. The reference scenarios are: TG4D and TG2D. TIAM-GloTraM

uses the iterative process consisting of a continuous exchanging of information between

TIAM-UCL and GloTraM until convergence. Therefore, along with the final results at

last iteration, also the results from the iterative runs are presented and examined in this

section. All variables examined in this chapter are output of TIAM-GloTraM, therefore

results and associated interpretations are provided for: the trade of energy commodities,

fuel and carbon prices, and fuel shares mix.

5.6.1 Scenario 4 Celsius degree with TIAM-GloTraM

In the simulation TG4D the modelling framework TIAM-GloTraM is constrained to keep

the average global temperature rise below 4◦C. The iterative process including in this

simulation stopped at the 10th iteration, reaching the convergence as defined in section

4.12.

The transport demand is the first variable examined. In particular the trade of

energy commodities between different regions is shown in figure 5.13 which displays the

results of the iterative runs from each commodity group and the results at final iteration

for all commodity groups in TG4D scenario. In each iteration TIAM-UCL provides

a new transport demand of energy commodities based on the only variation of fuel

consumptions and fuel shares mix in shipping. There were relatively small differences

for all commodity groups by each iterative run suggesting that the influence of a different

fuel mix in shipping on the trade of such commodity groups are relatively small.

The differences among the iterative runs can be easily observed for gaseous hydro-

carbons. Such a trade increases and after 2030 varies among the iterative runs. In

particular, in some iterations the ratio at which the trade increases is higher than in

others. This can be explained by the fact that LNG in that period can have an oscil-

latory uptake in shipping among the iterative runs as analysed in more details later in
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Figure 5.13: Convergence of energy commodities trade TG4D scenario

this section. When the share of LNG is high, more natural gas is traded among regions,

and vice versa. The trade of all the other commodities: coal fuel derivatives, crude

petroleum and wood, had minimal changes among the iterative runs, suggesting that

these commodity were not affected by the changes of fuel mix in shipping.

Overall, the transport demand in TG4D scenario at last iteration is characterised by

an increased trade of fuel derivatives, a fluctuation of the trade of crude petroleum and a

gradual increase of coal, gaseous hydrocarbons and wood trade. In particular, the trade

of commodity group wood increased significantly from 2040, while the trade of gaseous
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hydrocarbons increased from 2030. The trade of coal remained almost constant until

2040, after which it tended to increase substantially, while the trade of crude petroleum

declined after 2030. The trade of fuel derivatives rose significantly in this scenario

reaching a higher value of the trade of coal during 2045 to 2050. Similar to IT4D

simulation, the constraint to keep the temperature rise below 4 ◦C did not required a

significant switch to cleaner energy sources. In fact, the trade of coal and fuel derivatives

including oil derived fuels were the ones with the most significant increase.

Carbon price was negligible in this scenario similarly to IT4D simulation. Figure 5.18

shows its trend at final iteration. In contrast with the GloTraM’s independent runs, fuel

prices and fuel mix in shipping are both output variables of the soft-linking framework.

Figure 5.14 shows the fuels shares mix by iterations, while figure 5.15 shows the fuel

prices by iterations. At beginning of the simulation, initial conditions of fuel shares

were assumed in TIAM-UCL. As can be observed in figure 5.14, the initial conditions

of hydrogen share increase from 2020 reaching more than 20% in 2050. As mentioned

earlier in this chapter, such initial fuel share projections do not have a real impact on

the final results as they are only used to initialise the first run of TIAM-UCL. The

differences at base year 2010 are explained by the fact that at first iteration GLoTraM

overwrites the fuel share initial conditions based on the price generated after the first

run of TIAM-UCL. Therefore, in the first iteration hydrogen price is associated with

the initial condition of an increasing uptake of hydrogen. Despite that, the shipping

model did not see economically convenient the switch to hydrogen and its share appears

basically negligible along the whole period. Also, the following iterations generated a

negligible hydrogen share which is correlated with the hydrogen price shown in figure

5.15. There were no appreciable variations among the iterations except for the first

iteration. At those prices and without the introduction of a carbon price, hydrogen was

found to be inconvenient for the shipowner’s revenue perspective. The fact that there is

an increasing hydrogen price after 2035 can be associated to the hydrogen demand from

other sectors of the energy system.

The dynamic of how the converge is reached can be clearly examined by looking at

HFO and LNG variables. Initial conditions of the HFO share starts from more than 60

% in 2010 and steadily decreases reaching about 40% in 2050. In contrast LNG share

increases constantly covering about 20% of the total in 2050 (figure 5.14). The initial

conditions are responsible for the associated fuel prices in first iteration, shown in figure
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Figure 5.14: Convergence of fuel shares in shipping TG4D scenario

5.15. Consequently, HFO and LNG fuel prices in first iteration are responsible for the

associated fuel shares in the first iteration, and so on.

It is possible to distinguish two different types of trend. In the first type, HFO

share decreased similarly to the initial conditions reaching 40% in 2050, and LNG share,

instead, increased reaching about the 40%. In the second type of trend, HFO share de-

creased significantly to about the 20% in 2050, and LNG share increased to about 80%.

As a response of the first type of shares, HFO price increased dramatically ranging be-

tween 700 and 900 $/tonnes (17 and 22 $/GJ) in 2050 and LNG increased moderately

reaching almost 1000 $/tonnes in 2050 (18 $/GJ). Instead, as a response to the second

type of shares, HFO price increased ranging between 500 and 600 $/tonnes (12 and 15

$/GJ) in 2050 due to the lower associated demand, while LNG price increased reaching

almost 1200 $/tonnes (22 $/GJ) in 2050 due to the higher associated demand. Eventu-

ally the dynamics just described reached a convergence as defined in section 4.12 where

HFO share stabilised at 20% of the share and LNG share at 80% in 2050.

Another type of dynamic can also be highlighted. The fact that over time HFO

share decreased and LNG share increased affected their associated prices. HFO became
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Figure 5.15: Convergence of fuel prices TG4D scenario

cheaper and LNG more expensive. This trend continued until a point in which HFO

became again competitive compare to LNG as the price difference was reduced. So the

model in absence of other more convenient option returned to the option of HFO with

scrubber. In fact, HFO share slightly increased after 2040 or 2045 in some iterations,

and LNG share decreased at the same time (for instance, iteration 1, HFO increased

and LNG decreased after 2045 or iteration 8, HFO increased and LNG decreased after

2040). Another way to explain this dynamic is by looking at the LNG prices and shares

by iterations. During the period 2040 to 2050 LNG prices increased in all iterations but

with a different slope. The iterations in which LNG prices increased more rapidly, the

difference with HFO price decreased and LNG shares decreased as the model returned

to the option of HFO with scrubber. In contrast, the iterations in which LNG price

increased with a lower slope, the price difference with HFO is large enough to make the

option of switching to LNG cost effective. As consequence, LNG share increased and

HFO share decreased.

The trend of LNG price have a small peak in 2020 associated with the investment

required for new infrastructure to cope the increased demand of LNG from that year.
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The price of MDO by iteration did not vary significantly. MDO shares has a similar

trend of HFO share.

The fuel mix for TG4D scenario at final iteration is shown in figure 5.16. In this

simulation LNG was adopted from 2020. HFO and MDO shares decreased significantly

covering in total approximately 20% of the total consumption. The remaining share

is only LNG as hydrogen was not adopted in this scenario. The global CO2 emissions

reached a value of approximately 1100 million tonnes in 2050 of which about the 80% is

associated with LNG consumption and the other 20% is associated with HFO and MDO

consumption.

Figure 5.16: TIAM-GloTraM fuels shares TG4D scenario

5.6.2 Scenario 2 Celsius degree with TIAM-GloTraM

The iterative process in TG2D scenario achieved the convergence after four iterations.

The resulting trade of energy commodities of this scenario is displayed in figure 5.17. It

is possible to observe the trajectories of the iterative runs from each commodity group

and the trajectory at final iteration for all commodity groups in this scenario. Similarly

to the TG4D scenario, there are relatively small differences among the iterative runs
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for all commodity groups, which suggest that the influence of a different fuel mix in

shipping on the trade of these energy commodity groups are relatively small.

Figure 5.17: Convergence of energy commodities trade TG2D scenario

Overall, the resulting trade of energy commodities showed an increased trade of wood,

fuel derivatives and gaseous hydrocarbons. The trade of wood increased constantly over

time, while the trade of fuel derivatives increased until 2040 and tended to stabilise

afterwards. The trade of crude petroleum reached a peak in 2030 and then decreased

rapidly. Instead the trade of coal decreased until 2020 and then tended to remain stable.

The trade of gaseous hydrocarbons rapidly increased, and reached a value similar to the
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trade of fuel derivatives in 2050. In this scenario the trade of energy commodities with

high carbon content such as crude oil, coal and part of fuel derivatives declined, while

natural gas, biomass and biofuels increased due to the more stringent emission target in

comparison with TG4D scenario.

In order to meet 2◦C target a carbon price was introduced and it was estimated

endogenously. Figure 5.18 displays such carbon price in TG2D at last iteration. It

constantly rose between 2025 and 2045 reaching approximately 250 $/tonnes in 2045.

Afterwards it increased more rapidly hitting a peak of almost 450 $/tonnes in only 5

years.

Figure 5.18: Carbon prices TG4D and TG2D scenarios in TIAM-GloTraM

Using the soft-linked model, it is possible to analyse the fuel shares and prices per

each iteration. Figure 5.19 shows the fuels shares by iterations, while figure 5.20 shows

the fuel prices by iteration. At beginning of the simulation, initial conditions of fuel

shares were assumed in TIAM-UCL and they are the same used in TG4D scenario. No

significant uptake of hydrogen was observed in any iteration as hydrogen prices resulted

to be more expensive and the introduction of a carbon price as estimated in the energy

system was not enough to find hydrogen a convenient fuel for the shipowner’s revenue

perspective. Moreover after 2035 hydrogen prices rapidly increased as it was found cost

effective in other sectors of the transport sector.
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LNG shares showed a similar trend in all iterative runs. It started in 2020 and

increased very rapidly until 2040. After 2040 in some iterations the share continued to

increase but with a less steep slope. The bigger variance among the iterative runs was

observed during the period 2040 to 2050, although LNG prices had a similar trend in

all iterative runs. This can be explained by looking at HFO shares in the same period,

which show a similar variability due to a difference in HFO prices by iterations (see

figure 5.20). When HFO price was low, HFO share increased and LNG decreased, in

contrast when HFO price was high, HFO share decreased and LNG share increased.

Eventually this dynamic found a convergence after four iteration.

In general HFO shares tended to remain almost constant until 2020, then rapidly

decreased until 2040 and continued to decrease more gradually until 2050. Also MDO

shares tended to have similar trends among the iterative runs. They slightly increased

until 2020, then decreased until 2040 and continued to decrease more gradually until

2050.

Figure 5.19: Convergence of fuel shares in shipping TG2D scenario

Fuel mix in shipping for TG2D scenario at final iteration is displayed in figure 5.21.

In this simulation a rapid uptake of LNG was observed starting from 2020. HFO and
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Figure 5.20: Convergence of fuel prices TG2D scenario

MDO consumptions decreased until 2040 then remained almost constant, however their

shares decreased significantly over the period studied. Hydrogen did not take up in this

scenario either. The global CO2 emissions reached a value over 900 million tonnes in

2050 of which about the 80% is associated with LNG consumption and the other 20%

is associated with HFO and MDO consumption.

5.7 Comparing the results of the soft-linking framework

In the previous sections the results of two reference scenarios have been presented. These

results have been obtained from the independent runs of TIAM-UCL and GloTraM and

from TIAM-GloTraM, respectively. The evidence of how TIAM-GloTraM improves the

modelling representation of hydrogen uptake in shipping is provided in this section.

In order to discuss this evidence, the results of the key variables are compared. The

aim is to demonstrate that TIAM-GloTraM is able to provide a more consistent and

detailed explanation of its results, and potentially to unfold emergences that cannot be

captured with the independent runs. If so, TIAM-GloTraM is a model with an improved
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Figure 5.21: TIAM-GloTraM fuels shares TG2D scenario

representation of the uptake of hydrogen, and its results are an improvement at the level

of their substance.

The key variable that are compared in the next sections are: the shipping transport

demand, the fuel and carbon prices and the fuel mix in shipping.

5.7.1 Transport demand

The transport demands of energy commodities among different regions in each simulation

are compared in this section. Figure 5.22 shows for each commodity group the trend of

the transport demand by scenarios; when available, third party data are also plotted for

the base year 2010 and are based on UNCTAD (2012).

Transport demand is an exogenous variable in the independent runs of GloTraM

(IG2D and IG4D), instead, it is an endogenous variable in the independent runs of

TIAM-UCL and TIAM-GloTraM (IT4D, IT2D and TG4D and TG2D). The trajecto-

ries of the trade of energy commodities groups’ wood and coal in the scenarios IG2D

and IG4D (exogenous trade) is consistently higher than the transport demand obtained
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Figure 5.22: Transport demand by scenarios

endogenously in the simulations IT4D, IT2D and TG4D and TG2D. The exogenous

transport demand refers to a World with a focus on a balance across all energy sources

which can favour the trade of biomass and at the same time does not penalise the trade

of coal. Instead, the endogenous transport demand shows more remarkably the effects

of different emissions reduction policies (4◦C and 2◦C scenarios). In fact, the trajecto-

ries in simulations IT4D and TG4D are similar to each other, as well as for IT2D and

TG2D. In the 2◦C scenario there is a higher level of trade of commodity group wood

than in 4◦C scenario. The difference can be associated with the increasing demand of
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clean energy sources in the 2◦C scenario. In addition, the commodity group wood in

the exogenous trade demand includes commodities that are not modelled in TIAM-UCL

which explains why the endogenous transport demand for this group is lower from the

base year 2010.

The endogenous transport demand (IT4D, IT2D and TG4D and TG2D simulations)

shows also the effects of different emissions reduction policies in the trade of commodity

group coal. In this case it can be observed a higher level of trade of commodity group

coal in the 4◦C scenario than the one in 2◦C scenario.

The endogenously calculated trade of crude petroleum (IT4D, IT2D and TG4D,

TG2D simulations) is generally higher than the one reported in the exogenous transport

demand (IG2D and IG4D). All trajectories show a common feature, after an increasing

trend they reach a peak and then decline steeply. It can be observed that the peaks occur

at different times. For instance, the peak in the exogenous transport demand (IG2D

and IG4d) occurred in 2040, while for TG4D and IT4D occurred in 2030. Instead, in

TG2D and IT2D the peak occurred in 2035. There might be a number of reasons for such

differences that will be analysed later in this section, in general the endogenous transport

demand is remarkable different as it is influenced by the global emissions constraints.

During the period 2010 to 2020 the endogenously calculated trade of crude petroleum

is higher than the exogenous trade due to the calibration of the data that occurs in

TIAM-UCL. For this particular period the data are the sum of both crude petroleum

and fuel derivatives, however TIAM-UCL takes into account of such misallocation.

The exogenous transport demand assumed in the independent runs of GloTraM for

the commodity group fuel derivatives is lower than the endogenous calculated demand

in the independent runs of TIAM-UCL and TIAM-GloTraM. Instead, the exogenous

trade of gaseous hydrocarbons is half way between the endogenous calculated demands

in 4◦C and 2◦C scenarios. These difference can be associated to the fact that the

exogenous transport demand refers to a balanced use of all energy sources, which in

this case penalised the trade of fuel derivatives (that include also oil derived fuels) and

encouraged the trade of natural gas.

The endogenous transport demand of natural gas in IT2D and TG2D shows an

increasing trend in the 2◦C scenario, while fuel derivatives increases at a lower rate

than the 4◦C scenario. In contrast, in the latter scenario, it can be observed that the

endogenous transport demand of natural gas declines over time while the demand of fuel
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derivatives increases.

The comparison between the exogenous and endogenous transport demands high-

lights that an exogenous trade demand is based on assumptions that are difficult to

correlate with the dynamics that can occur within the energy system. In this case the

transport demand is external to the model, and it is only possible to analyse how the

transport demand affects the shipping system and consequently the fuel mix. In con-

trast, the endogenous transport demand is affected by the different emissions reduction

targets. For example, it was observed that the trade of coal and gaseous hydrocarbons

increases in 4◦C scenario and decreases in 2◦C scenario.

The endogenous transport demand can also be affected by the fuel mix in shipping.

For example, an high uptake of LNG in shipping may affect the trade of natural gas

among regions. It also includes the effect that the transport demand can have on the

fuel mix in shipping. For example a high transport demand can drive to a high shipping

energy demand which may select a fuel rather than another based on the scenarios as-

sumptions. Both models, TIAM-UCL and TIAM-GLoTraM, estimate the endogenous

transport demand taking into account these effects. The trade obtained from TIAM-

GloTraM includes the feedback of the fuels mix estimated in GloTraM. The trade ob-

tained from the independent runs of TIAM-UCL includes the feedback of the fuels mix

estimated in the energy model itself. Although both models include such a feedback,

the way the fuel mix is generated is different. For instance, both simulations IT4D and

TG4D report the use of LNG in shipping, and in both simulations, the trade of the

gaseous hydrocarbons commodity group is affected by the uptake of LNG.

The benefit of using the soft-linking is, therefore, only in the way the fuel mix

is estimated. Although the soft-linking is able to capture the effect of fuel mix on

transport demand the difference on the final results on the trade of energy commodities

are relatively small. Marine fuels represent a small percentage of the total transport

demand, so the complexity of the soft-linking added a relatively small benefit on the

representation of such effect.

5.7.2 Carbon price

Another important variable to be examined is the carbon price. Figure 5.23 shows the

carbon price for each simulation. The main considerations are:
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1. carbon price obtained from the independent runs of TIAM-UCL was used as ex-

ogenous input data in the independent runs of GloTraM. So, the simulations IG4D

and IG2D use the same carbon prices as of IT4D and IT2D, respectively.

2. the carbon price in IT4D and TG4D simulations are very low and negligible

3. the trajectories of carbon price in IT2D and TG2D simulations are very similar

to each other. However, in TG2D carbon price increased more rapidly than in

IT2D during the period 2045 and 2050, reaching more than 400 $/tonnes. Such

an increases can be explained by the fact that the higher demand of LNG in

shipping which may have affected the global carbon price. Because LNG became

more expensive a higher carbon price was necessary in order to make it economical

viable for shipping.

In the simulations using TIAM-GloTraM it was assumed that the shipping’s carbon

price is equal to the global carbon price as estimated in the energy model. However,

this assumption does not mean that the carbon price in the independent runs of TIAM-

UCL is the same of the one in TIAM-GloTraM as the latter includes the feedback of

a different fuel mix derived from the shipping model. As analysed in the last point of

the considerations above, this difference provides important evidence of how the model

TIAM-GloTraM is able to highlight an effect that was not possible to observe in any

other simulation.

Figure 5.23: Carbon prices for each simulations with TIAM-UCL and TIAM-
GloTraM
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5.7.3 Fuel shares and prices

The main purpose of this section is to compare the fuel shares and prices obtained in each

simulation and to highlight the different explanations that can be derived from using

different models. First, the fuel shares and prices for the 4◦C scenario are compared,

followed by the 2◦C scenario.

The shares and prices for the 4◦C scenario for each fuel are displayed in figure 5.24.

The shares of HFO and LNG are significantly different, although they share a common

trend. In all cases, HFO share decreased and LNG share increased. The use of HFO

remained dominant in IT4D, while in IG4D the uptake of LNG is much higher and its

share reached 100% of the mix in 2040. It is important to note that IT4D and IG4D have

the same fuel prices, however, while in IT4D fuel prices are depended on the relative fuel

shares, in IG4D fuel prices are exogenous and independent on the relative fuel shares.

The iterative process embedded in TIAM-GloTraM reached the convergence when

the resulting trend is in the middle between the trend observed in IT4D and the one

observed in IG4D. In the simulation TG4D, the trend of HFO price shows a big dip

between 2030 and 2035 and rose again afterwards. This trend can be associated to

the uptake of LNG, which reached a high level of penetration which causes the drop of

HFO price. After 2035, however, HFO found again a market as its price is very low.

Therefore, HFO share started to increase and its price too increase again.

MDO price in IT4D resulted to have a similar trend to the one in TG4D, although

the prices in the latter were consistently higher than the one in IT4D. MDO share in all

scenario tended to decrease and eventually it is zero due to the increasing MDO price

influenced also by its demands from other sectors.

In the simulation TG4D, the algorithm used is responsible for hydrogen shares and

associated prices. Particularly, when transferring fuel consumptions from GloTraM to

TIAM-UCL even though there is no uptake of hydrogen in shipping after 2025, the

algorithm adds a small share for hydrogen before sending the shares into the energy

system so that hydrogen price for shipping can be estimated. In fact, hydrogen share

increased from, 3.7 × 10−2 % in 2030 to 3.8 × 10−2 % in 2050. These shares also represent

very small amounts of fuel, and they effect the associated prices. In the simulation IT4D

the price is associated with very small amount of uptake of hydrogen in shipping which

are allowed since the linear property of the energy model.
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The demand of hydrogen from other sectors is not significant until 2045, and only in

the last period from 2045 to 2050 hydrogen started to be used in other transport sectors

in both simulations and it had an effect on its price, particularly for TG4D simulation.

Figure 5.24: Fuel shares and prices 4◦C scenarios

Fuel shares and prices for the 2◦C scenario for each fuel are displayed in figure 5.25.

The main observation from all simulations is that HFO and MDO share decreased and

LNG share increased. Hydrogen share also in these scenarios is negligible. It is possible

to interpreter these results differently depending on the model used.

In the independent simulation of TIAM-UCL and in the simulation using TIAM-

GLoTraM, fuel prices and share influence each other. HFO and LNG prices are asso-

ciated with their corresponding shares. HFO price reacted to its decreasing demand,

demonstrating a tendency to fall during the period in which LNG share reaches a higher

level of market penetration. HFO and LNG appear strictly interconnected each other

as they are almost exclusively used in shipping.

Fuel and carbon price obtained from IT2D simulation were used for IG2D simula-

tion. Fuel shares in IG2D depend on the profit maximisation function and the assumed

exogenous fuel prices. Under these assumptions LNG share increased and HFO share

decreased but at a lower rate than the IT2D simulation. LNG and HFO shares in TG2D

were somehow in the middle of the corresponding shares observed in IT2D and IG2D,
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confirming that TIAM-GloTraM finds a balance of fuels supply and demand at which

correspond to different fuel prices.

The main difference between the independent simulation of TIAM-UCL and TIAM-

GloTraM is that in the latter, fuel prices are associated with their fuel shares which are

influenced by the technical and operational drivers included in the profit function of a

shipowner.

Another dynamic can be highlighted by analysing the shares and prices of MDO and

hydrogen. In particular, MDO price increased gradually until 2035 and at the same

time hydrogen price reached its lowest point. This can be explained by looking at the

demands in other sectors as both fuels are not exclusively used in shipping. For example

in TG2D, MDO demand in the global transport sector dropped from 2035 to 2050 from

a total share of 43% to 8% in 2050, while hydrogen demand increased in the same period

from 0.5% to 20% (similarly it happened in IT2D simulation). So, in the global transport

sector hydrogen demand increased after 2035 at the expenses of diesel fuel demand. This

had an effect on MDO price which dropped in TG2D simulation and showed a tendency

to remain stable in IT2D simulation. Eventually, in the last period (from 2045 to 2050)

hydrogen price reached an extremely high value due to its increased demand in bus and

trucks, and MDO again found its market and its price started to increase.

The difference price obtained between IT2D and TG2D is due to the fact that in the

former the linear property of the energy model allows very small amount of uptake of

hydrogen, while in the latter the algorithm implemented does not allow it.

5.7.4 An improved modelling representation of the target system

The aim of this chapter was to explore whether the soft-linking framework enables the

explanations of the dynamics between the energy and shipping systems that may not

be observed with the independent simulations. The key output were compared among

the different simulations in order to test whether TIAM-GloTraM generates new insight

into the dynamics of the shipping-energy system and therefore improves the modelling

representation of the uptake of hydrogen in shipping. The focus of the comparison was on

the interpretations of the results and not on the results itself as the different boundaries

of the models prevent a fair comparison of the results. Evidences of new insight were

found by comparing the following key output: marine fuel prices and demands, carbon

price and fuel mix, the shipping transport demand of energy commodities.
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Figure 5.25: Fuel shares and prices 2◦C scenarios

The first evidence is the fact that in TIAM-GloTraM, marine fuel prices are af-

fected by the associated fuel demands in shipping. An example of this influence can

be observed analysing the results of the scenario TG4D (see section 5.6.1). LNG share

reached approximately 50% of the total in 2035, and consequently the demand of HFO

decreased and its price fell from that year. This effect was not observed in the inde-

pendent simulations of TIAM-UCL and GloTraM. TIAM-GloTraM, instead, captured

the balance of supply and demand of those marine fuels. Such a balance is reached by

using the estimated fuel prices of the energy model in conjunction with the estimated

fuel demands of the shipping model. The estimation of fuel prices includes factors of the

supply infrastructure, the estimation of fuel demands includes factors of the economic,

operational, and technical characteristics of the shipping industry. Marine fuel prices are

exogenous to the shipping model (GloTraM), and shipping energy demand is exogenous

to the energy model (TIAM-UCL). In TIAM-GloTraM, instead, both the fuel prices and

the energy demand are endogenous to the model. The fact that these parameters are

endogenous and that the results are sensitive to this representation is an improvement of

the modelling representation of the marine fuels supply and demand. As a consequence,

also the representation of the uptake of hydrogen is improved.
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In regard to the fuel price an additional evidence in support of an improved represen-

tation of the potential uptake of hydrogen in shipping is that the soft-linked framework

overcomes the unrealistic representation of very small technology capacity. The linear

property of TIAM-UCL makes the uptake of very small amount of hydrogen possible,

which for example, could signify that the corresponded hydrogen prices is not repre-

sentative of a real economy. This can be considered unrealistic in some scenarios (see

IT4D and IT2D scenarios in section 5.4). The algorithm used in the soft-linking frame-

work, instead, prevents such representation correcting hydrogen price every time there

is an unrealistically small uptake of hydrogen. In TG2D and TG4D scenarios, it can be

observed that hydrogen price (varying from 3 to 9 $/kg) is consistently corrected and

therefore it is always higher than the corresponded price in IT2D and IT4D scenarios

(varying from 1 to 5$/kg).

Another evidence of new insight generated with TIAM-GloTraM can be found by

comparing carbon price and fuel mix among the simulations. For example, it was found

that carbon price in the TG2D scenario made LNG more attractive in shipping in com-

parison with HFO and MDO; the increased demand of LNG in shipping also increased

the associated price. In order to maintain the economical viability of LNG in shipping,

the global carbon price increased too (see section 5.6.2). This dynamic was not observed

in IT2D as TIAM-UCL does not include a feedback loop of marine fuel mix demand

on carbon price. It was not observed in IG2D as GloTraM in this instance uses an ex-

ogenous carbon price. TIAM-GloTraM, instead, includes the effects of the marine fuel

mix on the carbon price (whether it is global or in-sector) which improves the modelling

representation of the uptake of marine fuels. As consequence, also the representation of

the uptake of hydrogen is improved.

The use of TIAM-GloTraM generates a transport demand of energy commodities by

ships that respond not only to the different target emissions (4◦C and 2◦C scenarios)

but also to the possible effect of a difference fuel mix in shipping. In scenario TG2D,

for instance, it can be observed the effect of using LNG in shipping on the trade of

natural gas among regions (see section 5.6.2). The global energy systems energy mix

(and therefore transport demand scenarios), were only minimally sensitive to the mix

of energy sources used in the shipping industry, the dominant source of variation in the

global energy system remains the temperature target. Therefore, there is not a clear

benefit in using TIAM-GloTraM in comparison with TIAM-UCL for this particular
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parameter, although the modelling representation of the uptake of hydrogen is more

completed in TIAM-GloTraM as it includes the effect that the use of hydrogen may

have on the shipping transport demand. Both models (TIAM-GloTraM and TIAM-

UCL), however, have an improved modelling representation than GloTraM, in which

the transport demand is exogenous to the model.

It can be concluded that the soft-linking framework is able to model the supply

and demand balance of the selected marine fuels, taking into account two important

aspects simultaneously. On one side, the profitability of marine fuels within the shipping

system, on the other side, the costs of supplying these fuels to the ships. These aspects

improve the representational capacity of TIAM-GloTraM to represent the uptake of

marine fuels. Therefore, TIAM-GloTraM can be considered an improvement in the

substance of modelling hydrogen in shipping, and it can be used to explore possible

emergences into the energy-shipping system.
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This chapter addresses the second research question: what can the framework TIAM-

GloTraM tell us about the potential of using hydrogen to fuel international shipping? If

hydrogen would be used in shipping what would be the main economic and environmental

implications? Therefore, this chapter examines the circumstances in which it would be

possible to see an uptake of hydrogen in shipping.

Following the establishment in chapter 5, that a soft-linked model enables a more

realistic representation of the shipping-energy system interaction, such circumstances are

analysed using the developed modelling framework TIAM-GloTraM. In order to explore

on appropriate shipping mitigation strategies of CO2 emissions, it has been introduced

a scenario different from the ones explored in the previous chapters. In this scenario

the shipping sector is constrained to emit a certain amount of CO2 until 2050. The

economic and environmental implications of the use of hydrogen are addressed by the

analysis of the results under this scenario. In order to provide credibility of the results,

the viability of hydrogen in shipping is tested with a robustness analysis. The findings of

sensitivities cases are examined to provide further insights on the potential of hydrogen

to fuel international shipping.

This chapter is organized as following: section 6.1 introduces and justifies the con-

cept of applying a carbon budget in shipping. Section 6.2 examines the consequences

of the decarbonisation of the shipping sector and examines the main drivers for the use

of hydrogen in shipping. Section 6.3 analyses the environmental implications of using

hydrogen focusing on shipping CO2 emissions. Section 6.4, instead, analyses the eco-

nomic implications. Finally in section 6.5 the robustness of the results are tested with

the robustness analysis.

6.1 Introducing a carbon budget in shipping

Emissions reduction regulations are being implemented or under debate in many coun-

tries. Following the Paris Agreement at the COP21 under the UNFCCC (United Nations

Framework Convention on Climate Change) framework, it is recognised that all economic

sectors should identify appropriate sectoral mitigation strategies of GHG emissions in or-

der to hold the increase in global temperature “well below 2 and aiming for 1.5 degree”.

Countries have committed themselves to achieve a decarbonisation trajectory with a
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peak of GHG emissions as a priority and substantial reduction of annual GHG emis-

sions afterwards. Although shipping was not included in the Paris Agreement, shipping

emissions are becoming a concern as all scenarios for the projected shipping emissions

provided in (Smith et. al., 2015) do not see a downward trend. Since 2009 the IMO has

considered whether international shipping should be subject to an explicit CO2 emission

reduction target. During the MEPC68 the Marshall Islands provide the justification to

establish a GHG emission reduction target for international shipping, forecasting that

the sector could constitute between 6% and 14% of total anthropogenic carbon dioxide

emissions in 2050 MEPC.1/Circ.6851 (2015). During the MEPC69, instead, the ICS

proposed that the IMO should agree to develop an Intended IMO Determined Contri-

bution on behalf of the international shipping sector as soon as possible, so that the

shipping industry will account for a ”fair share” of the total CO2 emission in the future.

Establishing CO2 reduction commitments is therefore believed to be the way forward.

In the previous chapter we used the framework TIAM-GloTraM in order to estimate

projections of fuel mix in shipping under a scenario in which the average global temper-

ature rise is constrained to be below 2 degree Celsius (TG2D). Under this scenario the

uptake of hydrogen was not observed in shipping. However, the underlying assumption

in this scenario is that the shipping sector is not committed to a CO2 emissions reduc-

tion target and it is allowed to buy unlimited offsets of CO2 emissions from the rest of

the economy. The global energy system is acting as single entity to mitigate the emis-

sions, so it is assumed a global carbon market in which carbon credits will flow to the

sector with the lowest mitigation costs first. As consequence the resulting sectoral fuel

selection are based on the maximisation of the social welfare as defined in the objective

function in TIAM-UCL. This simplification of the real world system is acceptable if the

modelling framework is utilised to analyse the use of primary energy sources in order

to meet the 2-degree temperature rise target. It is, instead, less useful when such type

of simplification is adopted to identify fuel selection and associated emissions trajectory

that can occur in specific economic sectors such as the shipping sector.

Emissions reduction regulations for a specific sector can affect the uptake of fuels

in different ways. Speculation that accounts for a ”fair share” for shipping is therefore

required. The introduction of a scenario with a CO2 reduction target is justified by the

need to include in the modelling framework TIAM-GloTrAM a mechanism that enable

a decarbonisation pathway in shipping in accord with a defined ”fair share”.
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The definition of an appropriate ”fair share” for shipping is under debate, however a

simple starting point is to assume that the current shipping emissions share is preserved

in the future. The same assumption has been used under the 2-degree global warming

scenario in the Shipping in Changing Climates research project (Smith and Wrobel,

2015). This can be seen as an appropriate mitigation strategy which is proportion-

ated to the “well below 2 and aiming for 1.5 degree” global decarbonisation trajectory.

Therefore, the new scenario is introduced which not only ensures that the average global

temperature rise is constrained to be below 2 degree Celsius, but also so the shipping

industry is restricted on the total amount of GHG that can be emitted until 2050 to a

certain budget. The new scenario is named TG2D CB. The hypothesis is that hydrogen

could take up as marine fuels under these new circumstances.

Under the scenario 2 degree, the framework TIAM-GloTraM calculates the global

cumulative CO2 emissions over the period 2010 to 2100 to be 1474 GtCO2. The inter-

national shipping sector accounted for approximately 2.3% of the global CO2emissions

in 2010 (Smith et. al., 2015). Assuming that future shipping emissions share will be

consistent with such a share it is possible to estimate a CO2 shipping budget. The

carbon budget is calculated as a proportion of the global cumulative emissions, resulting

in 34Gt over the time period from 2010-2100. A number of different shares could have

been used, however for the sake of this research only one representative value is explored

and such a value is considered to be appropriate.

In TG2D scenario, however, at base year 2010 shipping emissions represents 1.2% of

the total which is lower than the 2.3% reported in Smith et. al. (2015). This underesti-

mation derives from the fact that in this thesis only five ship types were included, and

that the shipping model was effected by an unbalance between the supply (shipping)

and demand (transport demand) at base year which caused an overestimation of ships

that were laid up in that year with consequent under estimation of emissions. In view of

this underestimation the carbon budget used in this thesis has been scaled taking into

account that at base year the emission calculated from the shipping model represent

approximately the 55% of the one provided in Smith et. al. (2015). The CO2 shipping

budget, therefore, resulted to be 19Gt.

The shipping carbon budget allows the calculation of a ”target trajectory” at which

corresponds an equivalent cumulative emissions. Figure 6.1 displays the global CO2

emissions reduction trajectory, and the shipping CO2 emissions trajectory in the scenario
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without carbon budget. It also displays the target trajectory that ensures consistency

with CO2 shipping budget of 19Gt. The new scenario TG2D CB looks at bridging the

gap between the shipping emissions and the so defined target trajectory.

Figure 6.1: World’s total CO2 emission (top); shipping CO2 emissions and shares (as
percentages of the word’s total emissions) (bottom dotted line) and target trajectory

(bottom red line)

6.1.1 Implementing a shipping market-based measure in TIAM-GloTraM

The shipping sector might comply with the CO2 budget in different ways. By incor-

porating in the modelling framework TIAM-GloTraM a market-based measure (MBM)

mechanism, the amount of emissions that the shipping sector emit is ensured to be under

the budget. The introduction of an emissions cap guarantee a decarbonisation pathway

through the implementation of a carbon pricing and a system for addressing revenue

deployment.

A carbon price specific for shipping is introduced in the framework TIAM-GloTraM

which adjust the cost-benefits available in the model to enable take-up and in-sector

emissions mitigation measures. Shipping carbon price is estimated through the re-

iteration of GloTraM’s modelling steps. In each iteration if the gap between the target
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trajectory and the net shipping emissions is not bridged, the shipping carbon price in-

crease proportional, and the GloTraM’s modelling steps are repeated until the gap is

bridged. These iterations are embedded into the soft-linking framework, so that each

time information is exchanged between TIAM-UCL and GloTraM. The latter is re-

iterated until the constraint on carbon budget is satisfied. The information estimated

in the shipping model is then exchanged back to TIAM-UCL. By implementing such a

MBM mechanism the framework TIAM-GloTraM is characterised by two iterative pro-

cesses. The first iteration process is between TIAM-UCL and GloTraM, the second is

the re-iteration of GloTraM’s steps.

The MBM assumes that the revenue from carbon pricing is allocated in different

proportions for out-sector and in-sector purposes. In this scenario it is assumed that

40% of such revenue is allocated to developing countries in order to compensate them

for negative costs incurred from introducing a MBM (rebate mechanism). A further

50% of the revenue is allocated to the international shipping sector; the 80% of this

revenue is assumed to be used within the shipping sector, while the remaining 20% to

purchase emission credits in economic sectors other than the international shipping sector

(emission offsetting out-of-sector). The final 10% of the revenues from carbon pricing

is assumed to be allocated to the Green Climate Fund to finance further mitigation

activities, climate change adaptation or technology transfer, and/or to other purposes.

Table 6.1 provides details of the MBM. This should only be considered an example

of possible ways of distributing the revenue, as speculation is required to identify a

foreseeable implementation of an MBM for the shipping industry.

Table 6.1: Assumed proportions of the revenue deployment due to the carbon pricing

Purposes proportion (%)

Rebate mechanism 40%
Out-sector offset purchase 10%
In-sector re-investment 40%
Green Climate Fund 10%
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6.2 The decarbonisation of the shipping sector

This section presents the results for the shipping sector under the scenario with a CO2

emissions reduction target. First, the emissions trajectory is presented with the associ-

ated shipping fuel mix by ship type. Second, the fuel selection is analysed by looking at

key drivers. Finally the uptake of hydrogen is presented by ship type. The results are

analysed to determine the circumstance in which it would be possible to see an uptake of

hydrogen in shipping and what would be hydrogen’s role in shipping. This will provide

an answer to the first part of the second research question regarding the potential of

using hydrogen to fuel international shipping.

6.2.1 Shipping with a carbon budget constraint

The results for the scenario with a carbon budget in shipping (TG2D CB) are obtained

after the modelling framework TIAM-GloTraM reaches the convergence. This is achieved

after 5 iterations between TIAM-UCL and GloTraM. Each iteration the shipping model

GloTraM achieves the compliance with the defined carbon budget after a number of

”re-iterations” of GloTraM’s steps. So, in addition to the iterations of the soft-link,

there are also separate re-iterations of GloTraM occurring during each iteration.

The introduction of the MBM enabled a decarbonisation pathway, which was achieved

with the contribution of CO2 offsetting and in-sector technical and operational emis-

sions abatement measures. Figure 6.2 shows the decarbonisation of the shipping sector

by ship type under the carbon budget constraint of 19Gt. The figure also displays the

total shipping operational emission trajectory (global fleet), the total target trajectory,

the trajectory of the tonnes of CO2 emissions offsets and the net emission trajectory

obtained as operational emissions minus offsets.

The graph in figure 6.2 highlights the contribution of CO2 offsets and the effect

of in-sector measures on the net shipping emissions trajectory. In particular, shipping

emissions are projected to increase until 2030. During this period the gap between

the target trajectory and operational emissions was mainly bridged by CO2 offsets.

During the period from 2030 to 2040 a rapid decarbonisation was observed which can be

associated mainly to container and gas carrier ship types. The shipping emissions were

reduced as new buildings and retrofitted ships emit less. The contribution of in-sector

measures reduced the need to purchase CO2 offsets during such period. Instead, during
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Figure 6.2: Decarbonisation of the shipping sector in TG2D CB scenario. Total
emissions trajectory, target trajectory, CO2 offsets and net emissions trajectory

the last decade 2040 to 2050, the reduction of operational emissions was not sufficient

to meet the target trajectory so offsetting started to increase again.

All ships types contributed to the reduction of operational emissions from 2030. In

particular, gas carrier type reduced operational CO2 emissions of 86% from 2030 to

2050. During the same period unit container reduced the CO2 emissions approximately

of 71%, while wet crude of 57%, wet product chemical of 34% and dry of 29%.

Based on the results of this scenario, the shipping sector would be able to buy CO2

offsets from other sectors during the period 2010 to 2030. This may ensure the sector to

meet the target trajectory in that period and at the same time invest in technical and

operational emissions abatement measures. The effect of the latter would be observed

from 2030 when the operation shipping emission would reach a peak. From 2030 shipping

would be required to dramatically decrease its operational emissions. Some ship types

may find it more economically convenient to decarbonise. For example, container and gas

carrier types might be the ones with the greatest opportunity to reduce their emissions,

followed by wet and dry types. In long term from 2040 to 2050, meeting the defined

target trajectory could mean a further challenge for the sector and the contribution of
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offsetting might become again of significant importance.

The cumulative emissions in this scenario is in line with the constraint on carbon

budget. The decarbonisation pathway can be explained by looking at the fuel mix.

Figure 6.3 displays the fuel mix share by ship type and it can be observed that across

ship types the fuel mix show a similar trend. The energy demand of conventional marine

fuels such as HFO and MDO, reduced over time, while LNG and hydrogen demand

increased. LNG was used from 2020 and its share tends to remain stable from 2030 to

2050, while hydrogen was taken up in shipping from 2030 in all ship types. Hydrogen in

combination with fuel cells have no operational emissions associated, as a consequence,

shipping emissions appeared to be reduced.

Container and gas carrier types are the ships that showed more uptake of hydrogen.

Hydrogen share for those types reached in 2050 about 80% and 90% respectively, which

can be associated with the greatest decarbonisation observed in these types. The up-

take of hydrogen was also significant in the other ship types. Its shares in 2050 were

approximately 50% for dry and wet crude, and 60% for wet product chemical type.

In conclusion, this results show that in order to meet the carbon budget constraint,

low carbon system such as hydrogen in combination with fuel cells might be required to

lower down the operational emissions and to comply with the target trajectory. On this

view hydrogen would play a key role for the decarbonisation of the shipping sector as its

potential would be associated with the compliance of a CO2 emissions reduction target.

For some ship types it might be more economically convenient to switch to hydrogen

such as for container and gas carrier types.

6.2.2 Drivers and choices in a decarbonised shipping sector

In a decarbonised shipping sector, a number of different drivers influence the model’s

decisions. The results of the scenario TG2D CB are analysed in this section in order

to determine how such key drivers have influenced the uptake of hydrogen. The main

drivers that are analysed are: transport demand, carbon price, fuel price, and the com-

petitiveness of fuel/machinery options.

A dominant driver for the observed energy demand trend in shipping is the transport

demand. The model projected an increasing transport demand for the majority of ship

types modelled. As a consequence, the energy demand increased. Figure 6.4 shows the
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Figure 6.3: Fuel mix in TG2D CB scenario by ship type.

transport demand by ship type on the top and the total shipping energy demand by

fuel type on the bottom. A decreasing in trade is projected only for wet crude due to

the low demand of crude commodities. A reduction by 12% is observed from 2010 to

2050. In contrast a significant increasing is observed for unit container which transport

demand increased by 500%. Overall, the energy demand increased in accordance with the

transport demand by 180% from 2010 to 2050. During this period hydrogen accounted

for about 30% of the cumulative energy demand.

The need to meet an increased transport demand means, therefore, that the shipping
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Figure 6.4: Transport demand by ship type (top), energy demand by fuel type (bot-
tom) - scenario TG2D CB
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sector would require more energy. Such energy demand would be associated with a fuel

mix in which hydrogen has a growing demand.

In addition to the transport demand, another important driver in a decarbonised

shipping sector is the carbon price. The shipping carbon price is set to reach the given

CO2 trajectory, taking into account both in-sector and out-sector abatement options. If

the shipping carbon price is higher than the global carbon prices, then it is reasonable to

purchase offsets. This dynamics, however, is limited at 20% of the revenue generated as

there is the need to make sure the carbon price causes some in-sector decarbonisation,

and to avoid the risk that all purchasing of the emissions credits occurs outside of the

shipping industry. The resulting shipping carbon price for the scenario TG2D CB is

presented in figure 6.5. As a comparison, the figure also shows the global carbon price.

In a decarbonised shipping sector carbon price is required to be approximately 250%

higher than the global carbon price in 2050.

Figure 6.5: Comparison between shipping carbon price and global carbon price in
TG2D CB scenario

The trend of carbon price puts an increasing penalty on fuels with high carbon

content. Therefore, ships that use conventional fuel such as HFO and MDO would pay
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additional costs. As a consequence, there would be a clear advantage for fuel with lower

carbon content such as LNG and hydrogen.

As for carbon price, also fuel prices are endogenously estimated in the modelling

framework. The trend of fuel prices is another important driver and is associated with

the demand generated in the model. Figure 6.6 shows fuel prices in TG2D CB scenario.

LNG price is comparable to the MDO price in terms of $/tonnes. HFO is consistently

the cheapest fuel, while hydrogen is the most expensive. Hydrogen price during the

period 2010 to 2035 decreased by 100% from 6000 to 3000 $/tonnes, while it increased

in the year following by 180% reaching more than 8000 $/tonnes in 2050.

Figure 6.6: Fuel prices in TG2D CB scenario

During the period 2010 to 2035 hydrogen price would gradually decrease as it is

assumed that high associated with the development of the supply infrastructure would

eventually reduce although it might be that hydrogen first introduced would be where

infrastructure cost is lowest. In contrast, the increasing hydrogen demand during the

period 2035 to 2045 can explain the significant and rapid increasing of hydrogen price

in that period. The growing share of hydrogen demand in shipping can also explain the

drop of LNG price during the period 2040 to 2045.



Chapter 6. Implication of using hydrogen 159

An additional important factor is the price difference among marine fuels. In partic-

ular the difference between hydrogen price and other marine fuels prices is an important

drive for the selection of hydrogen in shipping. For example, the peak of LNG price in

2040 reduces the gap with hydrogen price in that year, although in general after 2035

the gap between hydrogen price and other fuel prices increases over time.

The carbon and fuel prices are part of another driver which in this thesis has been

called the competitiveness factor. As explained in the previous chapters the shipping

model simulates the choices for new buildings and retrofits and for the technical and op-

erational emissions abatement measures assuming that the most profitable solution will

be selected. One way to explain the selection criteria of main machinery and fuel type

is by looking at the competitiveness of each fuel/machinery option. The competitive-

ness factor is intended to be indicative of the relative advantages of the fuel/machinery

options modelled. Such a factor is expressed in $/kWh and it is defined by the formula

6.1 as indicative “price per unit of shaft output power. The lower the factor, the higher

the competitiveness of fuel/machinery option.

Cjy = (pfiy + (Cfi ∗ Cpy)) ∗ sfcj (6.1)

where:

• Cjy is the competitiveness factor of the main machinery and fuel combination j at

year y

• pfiy is the price of fuel i at year y

• Cfi is the carbon factor of fuel i

• Cpy is the shipping carbon price at year y

• sfcj is the specific fuel consumption of the main machinery and fuel combination

j

The competitiveness factor is calculated for the baseline ship design (the techni-

cal and operational specification of the 2010 fleet), so such factor is not exhaustive in

explaining the fuel and machinery choices as the ship’s technology and operational spec-

ification vary over time. Figure 6.7 shows the competitiveness factor of some of the key

fuel/machinery options that are considered to be indicative for each fuel type.
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Figure 6.7: Competitiveness of fuel/machinery options

During the period 2010 to 2025 the use of HFO with 2SD engine appeared to be

the most competitive, while the use of LNG with 4SSI started to reduce the gap with

HFO and MDO options. Hydrogen was the less competitive due to the high hydrogen

price. During the period 2025 to 2030, the combination of a decreased hydrogen price

(approximately 4000 $/Tonne), and carbon price (approximately 200 $/Tonne), and

greater efficiency of fuel cells system made the option hydrogen with fuel cells the most

competitive. During the period 2030 to 2050 the hydrogen’s option maintained its

advantage mainly thanks to an increasing carbon price.

6.2.3 Hydrogen demand by ship type and size

Under the assumption of a carbon budget in shipping, hydrogen appeared to be used from

2030. As explained in the previous section a number of factors influence the selection

of fuel, however the peculiar characteristics of specific ship type and size categories also

might have an effect on the uptake of hydrogen. Figure 6.8 shows hydrogen shares for

each ship type by size categories.
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Figure 6.8: Hydrogen share per ship type by size category ranging from the smallest
size 1 to the largest size 8 in wet crude

The category unit container switched more rapidly to hydrogen when compared to

other ships types; for middle size category (3 and 4) the share of hydrogen on total

energy demand reached already 20-25% in 2030. Afterwards the uptake of hydrogen

was observed in all size categories of unit container type. The middle sizes categories

(3 and 4) remained the categories with higher hydrogen share in comparison with the

other sizes categories over time, suggesting that for smaller ship types the impact of

hydrogen storage volume on the ship’s payload capacity penalised the hydrogen uptake

in these categories. In contrast, for bigger ships the impact of high investment cost with
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the main machinery could have penalised the uptake of hydrogen.

In the category ship type dry, instead, the uptake of hydrogen was observed in all

size categorise from 2035. In 2050 the share of hydrogen on total energy demand by

size appeared to be over 50% in almost all size categories. Similar to the container,

in this case the smallest and largest size categories seems to be penalised, however

hydrogen seems to be very competitive in ship type dry of category size 2 from 2040.

In the category wet crude, hydrogen share by size appeared quite similar across the

categories except for small size (1 and 2). Only in 2050, the share for small size reached

values similar to the other size categories. Hydrogen in the wet chemical and gas carrier

categories appeared to be systematically more convenient in large ships rather than small

ships. In particular, gas carrier fleet appeared to switch almost completely to hydrogen.

The analysis of the uptake of hydrogen across different ship type and size categories

highlights the fact that such a fuel could be more or less economically competitive

across the different categories. There is not a common pattern among such categories.

The smallest and biggest unit container and dry ships could be penalised by the high

volume required to store hydrogen on board. The same would also be for small ships of

wet chemical and gas carrier types. Large unit container and dry ships would also be

penalised by the high costs associated to large engine/equipment. In contrast, large wet

chemical and gas carrier types don’t seems to suffer these costs. They would convert

almost the complete fleet with hydrogen in 2050.

In general, it can be concluded that the observed differences between categories could

be explained by a combination of different factors. Costs and space requirements could

be some of the key factors but also transport demand, fuel price and carbon price could

influence the profitability of a particular type and size category. A detailed analysis

across categories is left to further research effort.

6.3 Environmental implications of using hydrogen in ship-

ping

This section focuses on the main environmental implications of using hydrogen to fuel

international shipping. In this thesis, the focus is mainly on emissions implications,

other possible environmental implications are not addressed. The main implications

that will be discussed are the following: the effect on the decarbonisation pathway by
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ship type, the effect on total shipping emissions share, the effect on hydrogen supply

and consumption in a decarbonised energy system. This will provide an answer to the

second part of the second research question.

6.3.1 Decarbonisation by ship type

In a decarbonised shipping sector the trend of emissions emitted by ship type decreases

over time. Figure 6.9 shows the shipping CO2 emissions by ship type. Container ships

are by far the principal emitter until 2040. They drastically decreased their emissions

from 2030 becoming the second emitter during the period 2040 to 2050. The emissions

of wet chemical products and dry showed a tendency to remain constant, although after

2030 they started to decrease slightly. The emissions of gas carrier ship type also showed

a tendency to decrease over the period 2030 to 2050. The emissions of wet crude ship

types do not appear to increase and then start to decrease after 2030. This trend can

be associated with the decrease of transport demand for crude commodities.

Figure 6.9: CO2 emissions by ship type category in the TG2D CB scenario

Transport demand by ship type represents one driver for the observed CO2 emissions

trends, however, the dominant driver is the carbon intensity of the fleet. One way
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to observe this is by looking at the operational emissions by unit of transport work

(EEOI) and at the averaged carbon factor of the fleet. Variations in the EEOI can

result from changes in a number of parameters such as: composition of the fleet, capacity

utilisation, design and operating speeds, the use of other energy efficiency technology

and operational interventions, and fuel choice. Figure 6.10 on the bottom, shows the

trends EEOI by ship type. A drastic reduction is observed over time across all types.

In this thesis, the composition of the fleet and capacity utilisation is held constant

across time. The use of other energy efficiency technology and operational interventions,

along with the changes of design and operating speeds had an effect on the trajectory

of the EEOI. However, these other parameters would have a secondary impact in com-

parison with the fuel choice. If the trends of design and operating speeds between the

scenario TG2D and TG2D CB are compared, they show a great similarity. The same is

for the uptake of energy efficiency technology and operational interventions. This means

that the switch to alternative fuels with low operational emissions remains the principal

explanation for the observed shipping emissions reduction.

Fuel choice drives the changes in the carbon intensity of the fleet as fuels with low

or zero carbon content reduce the average carbon factor of the fleet. The reduction of

the averaged carbon factor is one of the dominant driver of the observed EEOI trend.

Figure 6.10 on the top shows the averaged carbon factor by ship type over time. In

general, all types drastically reduce this factor after 2030. Container and gas carrier

ships that have the highest hydrogen share reduced their carbon factor by 83% and 67%

respectively from 2010 to 2050.

Focusing on the selection of fuel choice, these results show the effect of the use of

hydrogen on the average carbon intensity of the fleet.

6.3.2 The effect on the shipping emissions share

A comparison of the results obtained from the 2 degree scenarios with and without a

shipping carbon budget (TG2D and TG2D CB) can be useful to analyses the differences

between a future fleet with or without the use of hydrogen.

Despite the fact that both scenarios TG2D and TG2D CB simulated a decarboni-

sation of the energy system that ensure an average global temperature rise below 2◦C,

the shipping emissions and the associated share have different trajectories. Figure 6.11
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Figure 6.10: Average carbon factor by ship type (top), EEOI by ship type (bottom)

displays the shipping CO2 emissions and annual shares on the global CO2 for TG2D

and TG2D CB scenarios. In TG2D, the global CO2 emissions declined over time, while



Chapter 6. Implication of using hydrogen 166

the contribution of shipping emissions increased reaching 5.2% of the total in 2050. The

shipping CO2 emissions increased from approximately 450 million tonnes in the base

year 2010 to approximately 1000 million tonnes. In TG2D CB the contribution of ship-

ping emissions increased similar to the one in TG2D until 2025. Afterwards the CO2

emissions started to decrease reaching 2% of the total in 2050.

Figure 6.11: Shipping CO2 emissions and annual shares of the total CO2 for TG2D
and TG2D CB scenarios

Figure 6.12 shows the shipping operational CO2 emissions by fuel type.

The trajectory of the shipping emissions share in the scenario with a carbon budget

in shipping is associated with the decarbonisation of the rest of the energy system. It

is possible to link the response of the shipping system with the responses of the other

main economic sectors in order to analyse the emission implications of using hydrogen

in shipping within the context of a decarbonised energy system.

Under the assumption that the global energy system acts as a single entity to mitigate

emissions, carbon credits flow to the sector with the lowest mitigation costs first. So the

sectors in which mitigation measures can be applied in the most cost-effectively manner

will decarbonise first. Figure 6.13 on the top shows the annual CO2 emissions by sector.
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Figure 6.12: Shipping operational CO2 emissions by fuel type in TG2D CB scenario

From 2010 to 2035 the electricity power sector is responsible for the majority of

decarbonisation, reducing its share from 31% to 7%. The electricity sector would be

affected by a significant change switching to clean technologies such as renewables. The

carbon intensity reduction of this sector is seen as the least cost option during the first

25 years of the examined period which should ensure an optimum use of primary energy

sources in order to meet the 2C-temperature rise target.

From 2035 to 2050 the CO2 sequestration technologies become of significant impor-

tance. The access to CO2 emissions sequestration technologies and to “clean” electric-

ity contributes to the global decarbonisation. During this period the transport sector

(excluding shipping) also decarbonises thanks to the availability of clean electricity, re-

ducing its share from 30% to 28%. Sectors such as industry also contributes to the

decarbonisation.

Focusing on the transport sector, figure 6.13 on the bottom shows the annual CO2

emissions for all transport modes indexed to their value in 2010. With respect to the

value in 2010, the shipping emissions trajectory shows a similar trend in comparison

with the decarbonisation trajectory of car category. However, truck (HGV, LGV) and
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Figure 6.13: Emissions by sectors in TG2D CB scenario(top). Annual CO2 emissions
for all transport modes indexed to their value in 2010 (bottom)



Chapter 6. Implication of using hydrogen 169

bus categories drastically reduce their emissions from 2030/2035. Bus and LGV reduce

their emissions to almost zero. All together, they are responsible for the decarbonisation

of the transport sector during this period. In comparison with the global decarbonisa-

tion trajectory the latter categories start to decarbonise later than other sectors (e.g.

electricity).

Aviation and rail emissions increase over the period 2010 to 2050. These sectors are

difficult to decarbonise from the point they are in 2010. While rail does not account for

a significant share of the emissions emitted by the transport sector, aviation does. It is

expected that the two sectors will offset CO2 emissions over the period 2010 to 2050.

Within the transport sector, the car, truck and bus mode categories would start to

adopt clean technologies from 2035. As an example, figure 6.14 presents the fuel share

mix in car, bus and truck transport modes categories. Car appears to switch gradually to

electric based vehicle, while bus switches to fuel cells vehicles with hydrogen. In category

bus, for example, hydrogen takes up from 2035 and until 2050 its share reaches almost

100% in this category as shown in figure 6.14. In category truck instead a significant

share of hydrogen starts in 2040 and increases to about 50% in 2050, while for the

category car hydrogen share is quite low being constant around 3% over the period 2040

to 2050. Hydrogen in large vehicles like the categories truck and bus could be favoured

as for those categories battery electric vehicles may be unsuitable.

The decarbonisation of the other sectors made available offsets of CO2. This means

that during the first period 2010 to 2030 shipping would be in competition for CO2

offsetting. The main competitor in the transport sector would be aviation.However, the

purchasing of CO2 offsets would not be sufficient to meet the target trajectory meaning

shipping emission share would therefore increase in that period (see figure 6.13).

Under the assumptions that the purchasing of emissions credits outside of the ship-

ping industry is limited to a certain share, some in-sector decarbonisation would be

required. Shipping carbon price would have to be higher than the global carbon prices,

to make it reasonable to purchase offsets and to enable the uptake of emissions reduction

measures. As consequence, the increasing carbon price adjusts the cost-benefit evalua-

tion and hydrogen can become economically viable from 2030. Switching to hydrogen

would reduce the operational shipping emissions and the associated shipping emissions

share during the period 2030 to 2050 (see figure 6.13).
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Figure 6.14: Hydrogen share by mode in TG2D CB scenario

6.3.3 Hydrogen supply and consumption in the decarbonised energy

system

The use of hydrogen in shipping affects the supply and consumption of hydrogen in the

decarbonised energy system.

The supply of hydrogen includes the production, the transportation and distribution.

Figure 6.15 on the top shows the breakdown of hydrogen production. Hydrogen was

produced mainly with SMR with CCS and biomass gasification with CCS production

plants. Such production technologies covered almost the entire production (up to 80%),

while the rest was produced from SMR without CCS and coal gasification with CCS

production plants. In this scenario the production in absolute value reaches about 38000

PJ in 2050.

Hydrogen was produced in large centralised plants, and it was transported in pipeline

and distributed in gaseous form for industry, mix with gas and upstream, and at refu-

elling stations for bus, car and trucks. A certain amount of hydrogen was liquefied in

large plants close to the production site, and transported over long distance with trucks.
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Figure 6.15: Hydrogen production and consumption in TG2D CB scenario

Afterwards the liquid hydrogen was distributed to refuelling station at port terminals

to meet the shipping demand.

The described supply refers to a global aggregated level. The actual configuration in

specific port would depend from many local factors. The analysis of the best hydrogen

supply at ports level is out of the scope of this thesis.

The most attractive use of hydrogen within the context of a decarbonised energy sys-

tem would be mainly as fuel for the transport sector. The bottom graph in figure 6.15

shows the breakdown of hydrogen consumption. Hydrogen started to be used in shipping

from 2030 representing approximately 70% of the total consumption. From 2040 hydro-

gen consumption for truck rapidly increased and overcame the shipping consumption.

In 2050 hydrogen in shipping represented 30% of the total consumption.

The use of hydrogen for shipping contributed, therefore, for a significant part of the

total consumption. The supply associated with the hydrogen been used in shipping had

also emissions implications. In this thesis upstream emission are defined as all emissions

of industrial activities from the point of resource extraction to the point of distribution

of a fuel. The model does not allow a clear separation of the upstream emissions for
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each end user technologies. An attempt of associating the upstream emissions per each

marine fuel was undertaken by allocating emissions of each process proportionally to the

energy use of each technology. This first attempt provided an estimate of the upstream

emissions by marine fuel type and the upstream emissions associated with the use of

hydrogen in other sector as shown in figure 6.16.

Figure 6.16: Hydrogen and other marine fuels upstream CO2 emissions in TG2D CB
scenario

While at base year the emissions are dominantly associated with HFO, in 2050 the

upstream emissions for the use of LNG in shipping accounts for the majority of the share.

Instead, the upstream emissions associated with hydrogen in shipping are relatively low.

Also the contribution of the emissions associated with the use of hydrogen in other sectors

appears to be relatively small. A possible interpretation would be that the emissions of

hydrogen production with fossil fuels such as natural gas and coal was reduced by the

use of CCS technology.

It is important to highlight that in this thesis upstream CO2 emissions are only

estimated and they are not considered in the objective function of the shipping model.

In other word, it is assumed that the shipowner will take his decision only by considering

operational CO2 emissions. On the other hand, the energy model estimates the upstream

CO2e emissions for all hydrogen production and they are passed to the climate module,

which makes sure that the global mix of technologies is in line with the climate target.
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6.4 Economic implications

This section focuses on the main economic implications of using hydrogen to fuel inter-

national shipping. This will provide an answer to the second part of the second research

question of this thesis. The main economic implications that will be discussed are hydro-

gen price, profitability of hydrogen powered ship and the revenue deployment associated

with the carbon pricing.

6.4.1 Hydrogen price

One of the main economic implication is the hydrogen price. Such a price is derived

endogenously from the estimated costs of production and the estimated hydrogen de-

mand. The cost of producing hydrogen can vary among regions, therefore there are

some differences in price among different regions. Similarly, hydrogen demand is differ-

ent among regions and this depends on the assumptions used to estimate regional shares

(see section 4.11). Figure 6.17 on the top shows hydrogen regional prices for shipping.

Hydrogen price for shipping would be different from the price of hydrogen for other

sectors. Figure 6.17 on the bottom shows a comparison among hydrogen prices in

different sectors. The model provides a price when the fuel is actually used in a sector,

this is why hydrogen price in shipping appears in 2030. the cheapest hydrogen was

observed for car category. The difference between the price for car and for ships is

almost consistent over the period. Hydrogen price for car resulted to be approximately

50-60% lower than the price for ships. The price of hydrogen for shipping would be

the most expensive due to the extra costs assumed with the delivery and bunkering of

hydrogen at ports.

The trends of hydrogen price among sectors are very similar during the period 2030

to 2050. It decreased until 2035 and increased rapidly afterwards. The increasing price is

due to the fact that hydrogen was produced mainly from biomass and natural gas which

became more expensive over time under this 2 degree scenario. Both commodities were

found more expensive while the ratio of biomass and natural gas used in production did

not change significantly.
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Figure 6.17: Weighted average and regional hydrogen price (top). Hydrogen price by
sector (bottom)
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6.4.2 Profitability of hydrogen ships

Another economic implication is the effect on the profitability of ships by type and size

categories. Based on the model’s output ships powered with hydrogen and fuel cells

would become more profitable in most of the cases during the time. For example, figure

6.18 displays the profits indexed to the values in 2010 of container ship type for the

smallest size category (size 1) and for a large size (size 4). Only the key fuel/machinery

options are plotted as they are considered to be indicative for each fuel type option. The

estimated profits are different from the competitiveness factor explained in section 6.2.2

as in this case ship’s technology and operational specification changes are included in

the calculations.

Figure 6.18: Profitability of fuel/machinery options

The results showed that the profitability of machinery options that use HFO in

small containers (size 1) were lower than the other options. Over time hydrogen became

more competitive and it appeared to be one of the most profitable from 2040 in close

competition with LNG’s option.

Instead, the profitability among fuel/machinery options of the large size category

is very different. For the machinery options that use MDO and HFO the profits de-

creased over time, while for the options with LNG and hydrogen it showed a tendency

to increase. From 2010 to 2030 hydrogen with fuel cells increased rapidly overtaking

the other main fuel/machinery options. During the period 2045 to 2050 LNG’s options

started to decrease slightly while hydrogen with fuel cells option was more profitable

over time.
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6.4.3 Revenue deployment

Another economic implication regards the deployment of the carbon pricing’s revenue.

As discussed previously the uptake of hydrogen is observed because the introduction of

a high carbon price. The cost-benefit is adjusted so that emissions reduction measures

such as the switching to hydrogen becomes economically viable. The increasing ship-

ping carbon price generates high budgets for the MBM mechanism. Such a mechanism

assumes that the revenue generate from a carbon pricing are deployed on rebate mecha-

nism (40%), on Green Climate Fund (10%), on in sector investments, and on out sector

purchase of CO2 offsets. Figure 6.19 shows the global and shipping carbon pricing as

well as how the revenue from this pricing is deployed.

The estimated budget for CO2 offsets appears to be not sufficient to ensure that the

shipping emissions match with the target trajectory. The shipping carbon price goes up

rapidly over time to enable the uptake of emissions reduction measures. The portion

of the budget for in-sector reinvestment is assumed to be used for infrastructure and

supply chains to enable the fuel to be supplied at ports prices and for grandfathering of

vessel investigation. However, the reinvestment portion is essentially treated as external

and not affecting of any system responses. The necessary decarbonisation is achieved as

the carbon price ”forces” the sector to use hydrogen to decarbonise, however costs on

the sector would be high due to a high shipping carbon price.

6.5 Testing the viability of hydrogen’s potential in ship-

ping

This section examines the viability of hydrogen in shipping by performing a robustness

analysis of the results of the scenario TG2D CB. In addition, the findings of sensitivi-

ties cases are examined to provide further insight on the potential of hydrogen to fuel

international shipping.

One conclusion from the scenario with a carbon budget in shipping is: if the dynamics

of supply and demand of hydrogen in shipping are similar to the ones in the model TIAM-

GloTraM, then there are circumstances in which the shipping industry could be keen to

invest in hydrogen powered ships based on the maximization of the shipowner’s profit,
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Figure 6.19: Carbon pricing and revenue deployment

and compliance of a defined carbon budget. If so, how uncertain is this result and what

are the factors mostly responsible for the uncertainty?

This type of question sits in line with the definition of a sensitivity analysis according

with Saltelli and Annoni (2010). The sensitivity analysis can ”explore how the impacts of

the options you are analysing would change in response to variations in key parameters

and how they interact”. In other words, it quantifies the output variability and describes

the relative importance of each input in determining this variability Campolongo et. al.

(2011).

According with Song et. al. (2013), there are a wide range of sensitivity analyses (SA)

methods; two broad categories are local SA and global SA. An example included in the

first category is the local one-at-a-time (OAT) sensitivity which explores the sensitivity

of a model output to a given input factor. This method should be used only if all factors

in a model produce linear output responses. On the other hand, in a global SA the entire

parameter space of the model is explored simultaneously for all input factors. Different

techniques have been developed for the global SA and the advantage of using them is

that they provide not only information about the effect of a factor but also regarding
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the interaction among the factors.

The development of complex computer simulation models such as TIAM-GloTraM

involve numerous choices and simplifications. Sources of uncertainty can be for example

the parameter input variability, model algorithms and structure, and the model calibra-

tion. In addition, TIAM-GLoTraM calculates several outputs depending on a very large

number of input parameters. Often the output responses are not linear and moreover

each simulation requires significant computational time. As recognized also in Campo-

longo et. al. (2011), for such complicated type of model the estimation of quantitative

sensitivity measures could be infeasible. Since the uncertainty and sensitivity analysis

are not in the scope of this thesis, a possible sensitivity analysis is left to further work.

Instead the focus is on a robustness analysis as defined in Weisberg (2012).

The objective of this type of analysis is to determine which aspects of the model

make trustworthy predictions or can reliably be use in explanations. The purpose is

to understand the relationship between a given uncertain input factor and the model

outputs. The interest is not on the quantification of the uncertainty and so on the

relative importance of each input factor, but rather on the robustness of the inference

by testing if the model is excessively depended on fragile assumptions. Since there are

a large number of assumptions the main focus in this analysis is only on assumptions

associated to hydrogen related technologies that have been introduced in this thesis.

Generally the steps of the robustness analysis are: first step, the examinations of a

group of similar but distinct models looking for a robust behaviour. Second step, the

finding of the core structure that gives the robust property. Third step, the investigation

of the limits of the robustness (Weisberg, 2012). In this analysis of the results only the

third step is applied, as it is assumed that the robust behaviour is that hydrogen is up

taken as a future fuel for specific ship type in a scenario with a carbon budget. The

objective is to investigate the limits of such theorem.

It is important to distinguish between finding a robust theorem and confirming a

theorem. According with Weisberg (2012), the robustness analysis cannot confirm on

robust theorem as it is based on the manipulation of the model and it is not based

on empirical data from observations and experiments, that are, the only ones that can

provide a confirmation. However it identifies hypotheses whose confirmation derives from

the confirmation of the framework used. In addition, it can help to discover situations

in which the robust theorem can be defeated Weisberg (2012).
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6.5.1 Analysis of the input assumptions

The investigation of the limits of a robust theorem can be performed with three different

types of analysis as defined in Weisberg (2012): parameter, structural and representa-

tional. The parameter robustness analysis examines what changes when the value of a

parameter is varied. The structural analysis examines what happens if new mechanistic

features are added or excluded to the model. The representational analysis examines

what happens if features of the model have new representational framework.

The parameters analysis tests if changes to a parameter of the model changes the

behaviour of the model. There are a larger number of parameters that can be of relevant

importance on the uptake of hydrogen. For example, all the parameters associated with

the supply of hydrogen (e.g. costs and emissions factors of each production plant,

transportation and distribution options) could influence the mix of technologies selected

and therefore also the price of hydrogen. Other parameters that are not associated to

hydrogen related technologies could also be of importance for the uptake of hydrogen.

For example, the time of period of the NPV, or the economic parameters that simulate

how revenue is passed between the shipowners and operators could influence the selection

of the most profitable options and therefore the uptake of hydrogen.

In this analysis only a limited number of parameters were chosen in order to have

a manageable number of scenarios. The parameters chosen are identified as the ones

that are deemed to have greatest significance on the uptake of hydrogen. They are:

investment cost of hydrogen production plants from biomass, volumetric density of hy-

drogen storage system, hydrogen storage system and fuel cell investment costs, fuel cell

efficiency, carbon budget. Table 6.2 provides the list of the selected parameters, the

value used in IT2D CB, and the new value used in parameters analysis.

A common and normally adequate approach on how to choose new values of a param-

eter is to specify values within equal sized intervals and select a level for each parameter

that encompass the range of possible outcomes for that variable, or at least the ”rea-

sonably likely” range Pannell (1997). A possible approach is to select the maximum

and minimum levels, however it is a subjective choice of the modeller to define what

constitutes ”reasonably likely” range Pannell (1997).

In this thesis the parameter space was sampled in reasonable values and speculations

were made on both extremes of the space. As the scope is to test how robust is the
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inference of the uptake of hydrogen in TG2D CB scenario, only values that would likely

test such inference were explored. For instance, only more expensive hydrogen storage

technologies are tested as cheaper technologies are likely to have a positive effect on the

uptake of hydrogen in shipping. In addition, as the space of reasonable values increase,

it can becomes computationally expensive to explore on a relatively high number of

values, therefore for each parameter only the values in table were explored which are

considered a justifiable limit.

Table 6.2: Parameter robustness analysis (PRA)

Parameter Unit Value
used in
TG2D CB

Value used
for PRA

Large biomass gasification US$2010/GJ/yr) 42.9 115.5
Large biomass gasifica-
tion+CCS

US$2010/GJ/yr) 45.32 122

Medium biomass gasifica-
tion

US$2010/GJ/yr) 47.85 174.9

Decentralised biomass
gasification

US$2010/GJ/yr) 140.8 220

Vol. density H2 storage Kg(f)/m3(s) 38 27
H2 storage cost on board $/Kg 71 333
FC cost $/KW 830 1670
FC efficiency % 55 % 65%
Carbon budget Gt 19 28

The first parameter is the investment cost of hydrogen production plants from

biomass. Since it was observed that hydrogen is significantly produced from biomass,

there is an interest to test if hydrogen is still a valuable option if the cost of producing

it with biomass increases, and what type of change we can observe. This parameter is

subjective to a discount rate over the period studied; the table above provides only the

value estimated at base year 2010 and are derived from the value in the UKTM-UCL

model.

The volumetric density of hydrogen storage system on board ships is the second

parameter; its value is highly uncertain, in addition in this thesis the power density

of fuel cell has not been taken into account so it makes sense to explore a situation in

which more space is required on board. A lower value based on the volumetric density of

gaseous hydrogen storage system can explore the potential changes on the loss of cargo

capacity when adopting hydrogen and fuel cells technologies on board.
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Both hydrogen storage system and fuel cell investment costs are based on the values

in Dodds and McDowall (2012). Such values are relative low compared to others found in

the literature, therefore there is an interest in exploring higher costs associated to these

technologies. The values used in PRA are based on a number of sources as reported in

figure 4.5.

Finally, fuel cell efficiency can be improved with the recovering of the heat; a better

efficiency could be favourable for fuel cells in combination with LNG rather than in

combination with hydrogen. So, there is uncertainty regarding the effect of a higher

fuel cells efficiency on the uptake of hydrogen in shipping. It is reasonable, therefore, to

explore higher value then the one used in TG2D CB. The value used in PRA is based

on the range proposed in Ludvigsen and Ovrum (2012).

A final important parameter is the carbon budget. In TG2D CB scenario it is set

to 19 Gt for the fleet analysed in this thesis. It corresponds to 55% of the total carbon

budget (34 Gt), which may ensure the shipping sector to account for about 2.3% of

the global CO2 emissions. There is, however, the potential for shipping being allowed

a greater share of emissions because of the sensitivity of developing country impacts of

shipping CO2 mitigation. It is difficult to define on how greater could be the share of

emissions and such estimation is considered out of the scope of in this thesis. However,

in order to explore the potential for shipping being allowed a greater share, a value of

3% of share has been considered appropriate. Taking into account only the fleet being

analysed (which is assumed to account for the 55% of the emissions), the carbon budget

to be used in this analysis of the results is 28 Gt.

Other parameters associated with hydrogen exist in the model and together with

these there may be other parameters that can change the behaviour of the model such

as the ones associated with the economic assumptions in GloTraM or with the biomass

availability in TIAM-UCL. Due to the scope of this analysis these further explorations

are left to future effort.

Differing from the parameter analysis is the structural robustness analysis which

examines what happens if a new mechanistic features is added to or excluded from

the model. This can be seen as the setting of a new scenario where a new set of

technologies or regulations are introduced. There are many cases that could be explored

however in this analysis the focus is only on one new feature: the exclusion of land-based

carbon capture storage technologies (CCS). The CCS technology is crucial in meeting
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the emissions target and several energy models have demonstrated the significant impact

that such technologies could have Anandarajah et. al. (2013). Since in TIAM-GloTraM

hydrogen can be produced in large plants with or without CCS there is an interest in

understanding what type of changes would be seen if this technology is excluded.

Another example of structural analysis in TIAM-GLoTraM is the addition of biofuels

in shipping. This would be an interesting test as a significant share of hydrogen is

produced with biomass, so it would be important to understand if biofuels could take

over hydrogen uptake in shipping. This is left to future effort due to the reasons explained

in section 4.7.

Final type of robustness analysis is the representational analysis. It examines what

would change if a features of the model has a new representational framework. An

example is the assumption used for the representation of where ships trading between

each couple origin and destination regions would refuel, see section 4.11. It can be

interesting to explore what would change if instead of using fixed shares of fuel sales

per region a different representation will be used. This type of modification requires

further modelling effort that are not considered strictly related to the scope of this

thesis, therefore such type of representational analysis is left to future work.

Summing up, this section has provided the objective of this analysis of the results

which is the investigation of the relationship between given uncertain input factors and

the model output. The analysis is carried out by a parameter and structural robustness

analysis. Table 6.3 provides a summary of the simulations that were used for such

analysis. Next sections provide the results and a comparison of the results obtained

from these simulations.

Table 6.3: Simulations for the parameter and structural robustness analysis

Name type Factor

TG2D Fc parameter FC cost
TG2D Ff parameter FC efficiency
TG2D IT parameter Carbon budget
TG2D Sc parameter H2 storage cost on board
TG2D Vl parameter Vol. density H2 storage
TG2D BioC parameter Investment cost of hydrogen production plants from biomass
TG2D nCCS structural CCS technology
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6.5.2 The robustness of hydrogen’s potential in shipping

The most important output of the robustness analysis is that in all ”sensitivity” cases

the modelling framework selected hydrogen among other options. Hydrogen is present

despite the fact that the robustness analysis explored on variations of the input factors

that could have discouraged the use of hydrogen in shipping. This confirms that in a

decarbonisation system, hydrogen has the potential to be used in international ship-

ping. The constrain of a carbon budget forces the shipping system to decarbonise and

the model always finds hydrogen as part of the solution for the decarbonisation. The

cumulative amount of fuels used by scenario during the period 2010 to 2050 is shown in

figure 6.20.

Figure 6.20: Fuel mix in shipping by scenario over the period 2010 to 2050

In relative terms the majority of the sensitivity cases used hydrogen for approxi-

mately 30% for their cumulative energy demand. In the scenario with high cost of fuel

cells system (TG2D Ff), hydrogen represents the 27% of the energy demand, while in

the scenario with high costs of hydrogen production plants from biomass (TG2D bioC)

it represents the 33%. Within this range are the scenarios TG2D Vl,TG2D Ff and
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TG2D nCCS which are respectively the scenarios with high volumetric density, with

high fuel cell efficiency and with no availability of CCS.

The remaining scenarios have significant differences in comparison with the reference

scenario TG2D CB. High cost of fuel cells and hydrogen storage systems would have a

visible impact on the uptake of hydrogen. The scenario with high cost of storage system

TG2D Sc, for example, presented the lowest amount of hydrogen used in shipping among

all scenarios representing about 8% of the cumulative energy demand. The scenario

TG2D IT which has a higher carbon budget, also includes hydrogen in its fuel mix

(about 24% of the total energy demand), although, as expected the uptake of hydrogen

is lower than the one in the reference scenario TG2D CB .

Small differences among scenarios can be observed also in absolute terms. For exam-

ple, the high efficiency of fuel cells in (TG2D Ff) is the reason why the energy required

by the shipping system is lower in comparison with the other scenarios.

6.5.3 Analysis of the sensitivity scenarios

The analysis of the sensitivity scenarios can highlight the differences of the key environ-

mental and economic implications and their relationship with the given set of uncertain

input factors by scenario. For example, variations of the input factors can affect the

shipping emissions and the associated emissions share. The combinations of these effects

would have an impact on the dynamics between the energy and the shipping systems and

ultimately on the uptake of hydrogen in shipping. In view of this, the following sections

examine in more detail three main topics by scenario: the decarbonisation pathways,

the hydrogen supply and the key economic implications.

6.5.3.1 The sensitivity of the decarbonisation pathway

The decarbonisation pathways of the shipping sector by scenario are very similar to

each other in the majority of the robustness scenarios. The combined effects of both

trajectories, operational emissions and offsets of emissions, ensures the meeting of the

defined target trajectory and therefore of the carbon budget. Figure 6.21 shows on the

top the decarbonisation trajectories (operational CO2 emissions) and on the bottom the

offsets of CO2 emissions purchased by year for each scenarios. If the shipping emissions

are high as in the case of scenarios TG2D Sc and TG2D IT, then the shipping industry



Chapter 6. Implication of using hydrogen 185

would buy high level of CO2 offsets in order to meet the carbon budget. The trends are

also correlated; when the system drastically reduces its emissions, for example, during

the period 2030 to 2040 in scenarios TG2D Ff, TG2D Vl and TG2D CB, then the offsets

of CO2 decreases proportionally. In general it can be observed that the only scenario in

which the shipping emissions are consistently below the reference scenario is TG2D bioC,

while TG2D nCCS and TG2D Ff present periods in which are below and period in

which are above the trajectory of TG2D CB scenario. The emissions trajectories of the

remaining scenarios are consistently above the one of TG2D CB scenario.

The emissions trajectory is correlated to the trend of the fuel mix. The fuel mix

for each scenario is displayed in figure 6.22. As expected, the greater use of hydrogen,

the lower the operational emissions and vice versa. For example, in scenarios TG2D IT

and TG2D Sc do not present a significant drop in shipping emissions, as the amount of

hydrogen used was relatively low and instead a consistent uptake of LNG was observed.

In the scenario with high cost of fuel cells (TG2D Fc), instead, the adoption of hydrogen

started in 2035 (five years later than in the reference scenario) with a relatively low

amount; in view of this, considerable high operational emissions can be observed in that

year.

The changes made to the input factor’s values as defined in the robustness analysis

have also had an effect in terms of shipping emissions as share of total world CO2

emissions. Figure 6.23 shows the trends of such shares for each scenario. Clearly, in

scenarios TG2D IT and TG2D Sc the share increases over time meaning that the rest of

the energy system is decarbonising faster that the shipping industry. The latter relied

to a greater level on offsetting in order to comply with the carbon budget constraint. In

scenario TG2D Fc, the delayed adoption of hydrogen makes the shipping’s share reaches

a peak in 2035 rather than 2030 as in the reference scenario.

In the scenario TG2D nCCS the shipping’s share is higher than the reference scenario

TG2D CB. One can expect that the share in TG2D nCCS would be lower because the

significant uptake of LNG and hydrogen, and the phasing out of HFO and MDO. In fact,

the emissions share in this scenario can be associated to the different global emissions

decarbonisation trend. Other sectors of the energy system adopted cleaner technologies

without CCS technologies earlier so that the global emissions declined at a higher degree

until 2020, and at a lower degree after 2020. In view of this the global emissions during

the period 2040 to 2050 are higher in absolute terms in TG2D nCCS scenario than in
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Figure 6.21: Shipping’s operational emissions trajectory by scenario (top). Offsets of
CO2 emissions trajectory by scenario (bottom)
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Figure 6.22: Fuel mix trends by scenario

any other scenarios. The shipping’s share, therefore, cannot decline under a certain

level, although shipping stopped the use of HFO and MDO.

6.5.3.2 The sensitivity of hydrogen supply

Another important implication due to the variations of the input factors is on the hydro-

gen production and consumptions within the global energy system. Hydrogen production

is of particular interest as it would eventually affect hydrogen production costs and its

relative price and demands. Figure 6.24 shows the cumulative production of hydrogen

in PJ over time per production technologies by scenario. Most of the scenarios main-

tain a similar breakdown to the one observed in the reference TG2D CB. Hydrogen was

produced mainly with SMR with CCS and biomass gasification with CCS. Significant

changes are observed, instead, in scenarios TG2D bioC and TG2D nCCS. The higher

cost of biomass production technology favoured the uptake of SMR technology with

CCS covering almost all production. The absence of CCS technology, instead, created

a situation in which hydrogen is produced almost evenly with biomass gasification and

electrolysis.
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Figure 6.23: Shipping emissions as share of total world emissions

The change in hydrogen production technologies would be in line with the decar-

bonisation of the global energy system. This means that the production of hydrogen

might adapt to different conditions, however the emissions associated with that would

be counterbalanced in other parts of the energy system. An analysis of the associated

upstream emissions due to different configuration of the hydrogen’s supply (including

transportation and distribution) could reveal the relative impact of different solutions.

This is, however, left to further research effort.

Hydrogen end users consumption can also be affected by changes to the input fac-

tors. Figure 6.25 shows the cumulative hydrogen consumption of the main end users by

scenario over the period 2010 to 2050. The total amount of hydrogen used in absolute

terms changes by scenario. The category truck is the main user in the majority of the

sensitivity scenarios, followed by shipping, car and bus categories.

The high cost of hydrogen storage system in scenario TG2D Sc, decreased the con-

sumption of hydrogen in ships which represented approximately 13% of the total. In

contrast, the high cost of biomass production technologies in scenario TG2D bioC de-

creased the hydrogen consumption in other sectors but not in shipping as it becomes
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Figure 6.24: Cumulative hydrogen production technologies by scenario

the main consumer over time representing approximately 45% of the total hydrogen

consumption. The use of hydrogen in ships for the other robustness scenarios ranges

between 26-36% of the total.

The observed differences in hydrogen consumption by sector in the robustness scenar-

ios can be associated to the diverse hydrogen demands’ response, which in turn depends

on the changes on the option’s cost-effectiveness and the changes on hydrogen price.

6.5.3.3 Economic implications by scenario

Hydrogen price also varies among the sensitivity scenarios. Due to the changes in the

estimated costs of production and the estimated demand, the trend of hydrogen price

also changed. Figure 6.26 on the bottom presents the trend of such price by scenarios. In

the majority of the cases, hydrogen reached its lowest value in 2035 and then increased

afterwards. There are, however, some differences. For example, hydrogen prices in

scenario TG2D Fc decreased until 2030 and then fluctuated until 2040 and showed a

tendency to increase afterwards. In contrast, in scenario TG2D nCCS the lowest point

is reached in 2030, and the price is significantly higher than all the other scenarios. This
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Figure 6.25: Cumulative hydrogen end-user consumptions by scenario

means that switching to hydrogen might be more expensive in this case as the use of

more expensive hydrogen production technologies would cause its price to increase.

At the base year 2010, hydrogen price is different among the sensitivities scenarios as

it is derived from the price estimated at the year in which it starts to be used in shipping.

For example, in the scenario in which hydrogen takes up from 2030, the price in that

year is used to extrapolated backwards until the base year 2010. This was explained in

more detail in section 4.10.2.

Shipping carbon price is another important output of the model and its trend changes

due to the variations to the input factors. Figure 6.26 on the top shows the trends of

carbon price by scenario. All scenarios have a very similar trend and prices per year,

except for the scenario TG2D nCCS. In this case the values are significantly higher

reaching almost 1500 $/tonnes in 2050, although the trend remained similar to the

other scenario. The absence of CCS technology can explain the very high carbon prices

as emissions reduction measures need an extra economic incentive in order to be cost

effective and compete with conventional technologies.
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Figure 6.26: Shipping carbon prices trends by scenario (top). Hydrogen prices for
shipping by scenario (bottom).
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6.5.4 Variability of hydrogen adoption

The changes introduced with the robustness analysis affected the way the modelled

factors influence each other. As consequence, in each sensitivity scenario a different

trend of the uptake of marine fuels was observed. Hydrogen adoption over time is one

of the observed effects. This section highlights and consolidates the key dynamics that

might emerged in each of the robustness scenario and what this meant for the adoption

of hydrogen in shipping.

In the scenario with high cost of fuel cells technology (TG2D Fc), for example, the

following dynamics could emerge. The increased investment cost of hydrogen solution

would decrease the uptake of hydrogen. In view of this, shipping emissions would increase

and therefore also the gap with the target trajectory. Such a gap in turn would push

the purchasing of CO2 offsets during the period 2030 to 2035, delaying the deployment

of hydrogen in shipping. Despite that, the condition in 2040 would find hydrogen as

the most convenient option, therefore, its uptake would start to increase from that year.

Such dynamic is very similar to what could be observed in the scenario with high cost

of hydrogen storage technology on board (TG2D Sc). In this case, a significant negative

impact on the uptake of hydrogen would be observed until later in 2045 when hydrogen

would be a convenient option for some specific ships. As consequence, the level of offsets

of CO2 would increase over time in order to comply with the carbon budget restriction.

An increasing in fuel cells efficiency in scenario TG2D Ff reduces the operational cost

of the hydrogen solution with a consequent high uptake of hydrogen. As consequence in

this scenario it could be observed a rapid phasing out of HFO and MDO uses in shipping.

In view of that, during almost over the period 2010 to 2050 the shipping emissions in

this scenario are lower than the reference scenario TG2D CB.

In TG2D IT scenario the different carbon budget effects the gap between the shipping

emissions and the target trajectory, although the dynamics and the resulting fuel mix

trend remains very similar to the reference scenario. In TG2D Vl scenario, instead,

the only effect is the increased operational cost of hydrogen solution in shipping which

does not seems to have generated a significant difference with the reference scenario

TG2D CB.

In TG2D bioC the fact that biomass production technologies are more expensive

changed the way hydrogen is produced. Hydrogen production plants based on SMR
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with CCS technology would be the most convenient. The uptake of hydrogen in other

sectors would decrease because other low carbon options would be used (e.g. electricity

from renewable). The shipping section, instead, would not find other convenient options

and hydrogen would remains an attractive solution. Moreover, price difference between

hydrogen and LNG and MDO from 2035 would be very small at an energy base, which

means that hydrogen could become more economically attractive. In this scenario,

hydrogen would take up from 2030 reaching higher value than the reference scenario

TG2D CB in 2050.

The absence of CCS technology in TG2D nCCS scenario had two main effects. The

first effect is that the way hydrogen is produced may have changed as biomass gasification

and electrolysis would become the most cost-effective solution. The second effect is that

the energy system would require a very high carbon price in order to stimulate the use

of cleaner technologies and to meet the target of 2 degree temperature increase. So, the

global emissions trajectory would be different from the other robustness scenarios. It

may decrease more rapidly than the other scenarios during the period until 2025 and at

a lower degree afterwards. The uptake of hydrogen in shipping would still be observed,

however the trajectory of the shipping carbon prices and shipping emissions share would

be different in comparison with all the other scenarios.
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This thesis has focused on understanding and exploring the potential and implica-

tions of using hydrogen to fuel international shipping. The literature review highlighted

that a key gap in the current literature was the absence of analysis that combines suf-

ficient resolution of the shipping system within a representation of the global energy

system. This led to the identification that further insight could be gained through

soft-linking two models which simulate the shipping and the global energy systems,

respectively. As a consequence the structure of this thesis was:

1. First, to develop and deploy a soft-linked modelling representation of the shipping-

energy system. This was used to test whether it generates significant new insight

into the dynamics of the shipping-energy system putting a particular focus on

questions regarding hydrogen and the fuel mix in shipping.

2. Second, to deploy that modelling framework under a plausible scenario in which

significant uptake of hydrogen occurs, and create new knowledge from that deploy-

ment in what the implications might be for the competitiveness of hydrogen over

LNG and current marine fuels in shipping and how robust these implications are.

This chapter is organized as following: the first section consolidates the most im-

portant findings of this thesis. The second section examines how the findings should be

interpreted, highlighting general conclusion remarks and limitations that may restrict

such remarks. Finally, the third section provides recommendations for future research

based on further questions that this thesis has raised.

7.1 The findings of this thesis

This section provides a consolidation and a review of the most important findings and

whether or not they support the original hypothesis. Such findings can be divided into

two parts: the first part includes the findings associated with the development of a new

approach for the evaluation of the potential use of hydrogen in shipping. The second

part includes the findings associated with the analysis of scenarios in which an uptake

of hydrogen in shipping occurs. When possible this section also provides evidence of

whether the findings agree with the conclusions of other researchers.
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7.1.1 Modelling the energy-shipping system

In this thesis two existing models, TIAM-UCL and GloTraM, have been soft-linked

through a code written in Matlab which automates the interactions between them. The

developed method to soft-link the two models is based on procedures that were also

used in other studies. An important feature of such a method is that it ensures the

consistency between the two models (see chapter 4). The original hypothesis was that

a soft-linked framework of an energy and a shipping model would have an improved

modelling representation of the potential uptake of hydrogen in shipping. The results

of this thesis lend support of this hypothesis as there are a number of important pieces

of evidence which suggest that TIAM-GloTraM improves the modelling capacity for

simulating the supply and uptake of hydrogen in shipping. Evidence of the modelling

improvement has been provided by comparing the results of the framework TIAM-

GloTraM and the independent simulations of TIAM-UCL and GloTraM. The evidence

was found in: the ability of the model to simulate the equilibrium between marine fuel

prices and demands, the ability of the model to capture the dynamics between the carbon

price and the shipping fuel mix (how these outputs influence each other), the ability to

generate fuel price projections that overcome the limitation of the linear property of

the energy system model, the ability of capturing the dynamics between the transport

demand among regions and the fuel mix evolution of the global fleet. More details of

this evidence was provided in section 5.7.4.

The comparison between the independent and the soft-linked simulations of a specific

set of scenarios represents a case study in which the developed framework has taken a

step in the direction of evaluating the potential of hydrogen to fuel international ship-

ping. The comparison has highlighted the capability of the framework of modelling the

investment decision for ships powered by hydrogen in conjunction with the develop-

ment of a hydrogen supply infrastructure with a more robust approach compared with

the energy and shipping models. It is difficult to compare this type of finding with

other researchers as the development of similar soft-linked model (energy-shipping sys-

tem) has not been found in the existing literature. However, the fact that the model

TIAM-GloTraM is able to endogenouse a number of variables is in agreement with the

best practice to include in a model the most important variables and dynamics of the

intended target system (Weisberg, 2012).
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7.1.2 The use of hydrogen in shipping

The second research question of this thesis was regarding the circumstances in which

hydrogen could become part of the future marine fuel mix and its key implications. So,

the linked model TIAM-GloTraM has been deployed under a plausible scenario in which

significant uptake of hydrogen occurs. The simulation of a number of scenarios then

provided several findings that highlight the conditions that would favour the uptake of

hydrogen and the most important associated implications.

The robustness analysis undertaken in this thesis confirmed that hydrogen could be

present among the marine fuel mix in all sensitivity scenarios considered. Therefore, to

some extent the option of hydrogen in a decarbonised shipping sector appeared to be

robust in relation to the uncertainty associated with specific key factors analysed in this

thesis.

In conclusion, the key circumstances for the potential uptake of hydrogen that were

found in this thesis are: the introduction of an emissions cap and a MBM mechanism in

shipping, a hydrogen price ranging between 4-8 $/kg and competitive investment costs

of hydrogen technologies on board ships (fuel cells and hydrogen storage technologies),

and finally the supply of hydrogen mainly based on natural gas and biomass with CCS

technology or electrolysis in case of an absence of CCS. The main implication of a switch

to hydrogen is that shipping emissions could be reduced significantly over time.

7.1.2.1 A shipping emissions regulation

Under the scenario in which there is a shipping carbon budget of 34 Gt until 2100

and a MBM mechanism that adjusts the carbon price according with such budget,

hydrogen became a competitive option for the majority of ship type and size categories.

In this scenario the switch to hydrogen was mainly driven by an increasing carbon

price in shipping, from zero to approximately 1400 $/tonnes during the period 2010 to

2050. Although hydrogen price increased, the fuel became competitive as it did not

have any associated carbon costs. In contrast, under the scenario (TG2D) in which the

shipping carbon price increased from zero to 430 $/tonnes during the period 2010 to 2050,

hydrogen was not economically viable. Due to the high hydrogen price and investment

costs of hydrogen related technologies (fuel cells and hydrogen storage system), the

business case for hydrogen powered ships was not competitive. The comparison of these
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two scenarios (TG2D and TG2D CB) leads to the conclusion that the first important

condition necessary to see hydrogen used in shipping would be a shipping emissions

regulation that consists in: the introduction of a carbon budget of 34 Gt, and a MBM

that deploys an increasing carbon price reaching about 1400 $/tonnes in 2050.

The MBM mechanism introduced in the scenarios of this thesis limits the amount of

budget used to purchase CO2 offsets to a certain share of the total revenue generated

with the carbon pricing. This implies that there are two other conditions that may be

necessary to see the uptake of hydrogen in shipping. The first is that other sectors would

have to decarbonise more to make CO2 offsets available in a global carbon market, the

second is that in a future emission regulation the amount of offsets the shipping sector

will be able to purchase has to be limited as a high level of offsetting means less incentive

to reduce the operational emissions of ships, and therefore to the uptake of low carbon

fuel such as hydrogen. Based on the results of this thesis such limit would be about 10%

of the total revenue.

7.1.2.2 Hydrogen costs

Under the scenario with a carbon budget in shipping, hydrogen is projected to range

between 4 to 8 $/kg. In general, such estimate is relatively in line with other recent esti-

mates of hydrogen price which range from 0.9 to 11 $/kg (SBA, 2014; IEA, 2015; Ohira,

2016; Michalski and Bünger, 2016), depending on assumptions about the production

technologies. This projected price could be another important condition for the use of

hydrogen in shipping as hydrogen price influence the ship’s profitability. For example,

in the scenario (TG2D CB) hydrogen in combination with fuel cells was found as the

most profitable option in several ship type and size categories from 2030 (see section

6.4.2).

Under this scenario (TG2D CB) hydrogen was found more suitable for middle size

container and dry ship type, and small size wet chemical and gas carriers types than

small or very large unit container and dry ships which could be penalised by the high vol-

ume required to store hydrogen on board. In large ships, the high costs associated with

large engines and equipment could also penalise the use of hydrogen. The analysis of the

sensitivity scenarios have highlighted that high costs of fuel cells and hydrogen storage

systems could have a significant impact on the uptake of hydrogen in shipping. High

investment costs of fuel cells could reduce the uptake of hydrogen up to 20%, whereas,
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high costs of hydrogen storage system up to 74% in comparison with the reference sce-

nario (TG2D CB). This implies that the assumptions of the projected investment costs

for marine fuel cell systems of about 830 $/kW, and for liquid hydrogen storage tech-

nology of about 71 $/kg would be another important condition for the use of hydrogen

in shipping.

7.1.2.3 The supply of hydrogen

Another important premise for the use of hydrogen in shipping regards its supply in-

frastructure. Based on the results of this thesis, hydrogen production with SMR in

combination with CCS and biomass gasification with CCS could cover up to 80% of the

global production. This combination of production technologies finds support also in

other studies in which see the global hydrogen production system, initially based on fossil

fuel such as natural gas, and progressively shifting toward renewable sources (Mueller-

Langer et. al., 2007; Barreto et. al., 2003). This thesis also found that electrolysis could

be used to produce hydrogen under the assumption of an absence of CCS technology

(see scenario TG2D nCCS in section 6.5). In this scenario, the absence of CCS tech-

nology affected the decarbonisation trajectory of the other sectors which reduced their

emissions at a high rate in order to account for the emissions that will not be captured

with CCS. the take-up of hydrogen in shipping was still observed for the decarbonisa-

tion of the sector, however, a means to produce hydrogen with low emissions impact

was required such as biomass gasification and electrolysis (with electricity produced in

a way that is in line with the climate target according with TIAM-UCL). The total

hydrogen production was approximately 50% from electrolysis plants. The use of other

technologies for the production of “greener hydrogen” have been under investigation in

other studies. The use of electrolysis, for example, is another common option that is

often found to have high potential in the future (McDowall and Eames, 2007).

The scenarios analysed in this thesis highlighted that hydrogen could also be sup-

plied in other sectors of the global energy system. This is also of relevant importance

as the investment for hydrogen supply infrastructure depends also on the demands of

other sectors. In the scenario with a carbon budget in shipping the total amount of

hydrogen produced in 2050 was about 30% used in shipping and 60% used in trucks,

and the remaining 10% used in other sectors. The amount of hydrogen that was found



Chapter 7. Discussion 200

to be used in shipping in 2030 was about 70% of the total hydrogen consumption, how-

ever, the demand for road transport modes such as the truck category increased rapidly

and overcame the shipping demand in the long term. The main use of hydrogen was,

therefore, found in the transportation sector. This is in accordance with many studies

(SBA, 2014; Ekins, 2010; Mansilla et. al., 2012), although, a recent growing interest is

on the use of hydrogen to provide back-up power for the electricity grid (SBA, 2014;

DOE, 2014).

In all scenarios of this research hydrogen was found to be suitable for large vehicles

like ships, trucks and buses. The role of hydrogen for the long-term decarbonisation of

these categories is also highlighted in Anandarajah et. al. (2013) which is in line with a

common conclusion that large vehicles might be more suitable for the use of hydrogen.

7.1.2.4 Main implications

The introduction of a carbon price would increase the profitability of a hydrogen powered

ship, this effect would favour a switch to hydrogen which would reduce the emissions of

the sector over time significantly. Under the scenario with a carbon budget of 34 Gt in

shipping, hydrogen’s share of the total fuel demand for container and gas carrier types

reached about 80% and 90% in 2050 respectively, whereas, its shares was approximately

50% for dry and wet crude, and 60% for wet product chemical type in 2050. Such a

penetration of hydrogen within the marine fuel market reduced the average carbon factor

of the fleet, as well as the average carbon intensity. The changes in the carbon intensity

of a fleet can be observed by looking at the trend of EEOI. For example, the averaged

EEOI for container type changed from 125 to 15 gCO2/tenm during the period 2010 to

2050 (see section 6.3.1).

As a comparison, the uptake of hydrogen from 2030 under the scenario with a car-

bon budget is in disagreement with the findings of (Taljegard et. al., 2014), which sees

hydrogen to be chosen from 2070 under a base case scenario with 400 ppm CO2 global

concentration constraint which could be a result from the fact that the GET model

allows overshoot (over 400 ppm) during the century and therefore the carbon constraint

is not as strict in 2030-2050 compared to the TIAM-GloTraM model. It is, instead, in

line with the findings of (Argyros et. al., 2014) which sees the uptake of hydrogen in

2030 under a scenario with a more aggressive emission reduction policy combined with

a moderate hydrogen price.
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The introduction of hydrogen would also enable the reduction of the shipping emis-

sions share. The total shipping CO2 emissions in the scenario with a carbon budget

were found to be 367 million tonnes in 2050. As a consequence, the contribution of

the shipping emissions in a decarbonised energy sector decreased. The emissions of the

analysed fleet as a percentage of the total CO2 emissions came to 2% in 2050. As a

comparison to the scenario in which the uptake of hydrogen does not occur, the total

operational emissions continued to increases. The shipping CO2 emissions reached 958

million tonnes in 2050, and as a consequence, the contribution of the shipping emis-

sions in a decarbonised energy sector increased. The emissions of the fleet analysed as

percentage of the total CO2 emissions came to 5.2% in 2050.

7.2 Interpretation and limitations of the results

This section provides a critical analysis of the findings of this thesis, examining how

the findings should be interpreted. It generalises from the findings and highlights the

limitations that restrict the extent to which the findings can be generalised. This section

comprises of two main parts: the first part focuses on the findings and limitations with

regard to the method used to study the uptake of hydrogen in shipping, while the second

part focuses on the findings and limitations in regard to the projected uptake of hydrogen

and what this means for the shipping industry.

7.2.1 Modelling the interactions between two systems

The successful case study of TIAM-GloTraM has demonstrated that the soft-linked ver-

sion of the models TIAM-UCL and GLoTraM has an advanced modelling representation

of the energy-shipping interaction. This leads to two type of interpretations: one is on

the utilisation of the method used to develop the soft-linked model, another is on the

extension of the modelling representation to a wider target system.

A standard procedure for linking two models was not found in the literature and

current studies have used different techniques and referred to the same terminology of

soft-linking. If sectoral models (e.g. the shipping model) are involved in the linking pro-

cess it becomes even more difficult as the way they would be linked would be technically

different depending on the type of model. A part of the literature review undertaken

in this thesis has, however, given the opportunity to detect a number of common key
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steps among the studies that have focused on the linking process for pedagogic reasons,

and the studies that have undertaken practical experiments. In this thesis, these steps

have been categorised in more general procedures and applied for the development of

TIAM-GloTraM. The successful case study of TIAM-GloTraM, means that the method

used to soft-link TIAM-UCL and GloTraM could be used as an example in future stud-

ies that aim to represent the interaction between two different systems. More generally,

the key steps and challenges highlighted in this thesis could be taken into account when

developing a method to soft-link any two models.

The second type of interpretation regards the extension of the modelling represen-

tation to a wider target system. There are at least two possible extension that can be

derived from the case study of this thesis. Essentially, the developed soft-linked model

opens the door to a new modelling representation of any alternative fuels in shipping.

Conceptually, the framework adds a greater level of sophistication to the study of alter-

native fuels. It could be extended to represent a wider range of fuels taking into account

the parameters that influence the investment decision for ships in conjunction with the

parameters of the development of a supply infrastructure.

In addition, the interaction between the energy and shipping system as modelled

in TIAM-GloTraM could be extended to other transportation modes. In practice, it

could be assumed that such modelling of the global energy system (that selects the most

cost-effective options to achieve an emissions target) and the shipping system (that

selects the most profitable options based on signals from the global energy system), is

representative of the real world phenomena of the interaction between the energy and

any transportation mode.

There are, however, limits that restrict such interpretations of the successful case

study of TIAM-GloTraM. The most important is that TIAM-GloTraM cannot be val-

idated. The confirmation of the findings is associated with the confirmation of the

framework itself, which cannot be currently assessed since the only way to validate the

findings is a comparison with reality, which is impossible for future scenarios. So it’s not

possible to know if this is a correct modelling representation of the real world behaviour.

Obviously, this is an important limitation which affects all findings of this thesis.

Another limitation regards to the modelling representation of the energy-shipping

interactions. The fact that the two models have two different theoretical behaviours can

limit the derived interpretations. In effect, the energy model is constrained to use the
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fuel mix derived from the shipping model. Such constraint applied to a single sector

of the energy model has implications on the other sectors, as the latter receives the

signals from a single sector and then acts as a single entity. This assumption appears

weak as other sectors may behave more independently and influence the interaction

between the energy system and the shipping sector. The interpretations are therefore

limited by all other possible representations of the energy and shipping interaction and

more generally of the energy and other sectors’ interaction. Although, the developed

modelling framework gives an alternative option to the pure cost optimisation behaviour

of the energy system model and to the pure profit maximisation of the shipping model,

it is possible that a different representation may produce entirely different results.

7.2.2 The meaning of the uptake of hydrogen in shipping

Based on the analysis carried out in this thesis, it can be concluded that hydrogen

could be one of the options available for decarbonising the shipping industry. From this

finding several interpretations can be formulated, which are divided into four topics.

The first topic covers what this finding means for the uptake of other low carbon fuels

or equivalent fuels that were not modelled in the framework. The second topic covers

the implications that can be derived for fuels and infrastructure, while the third topic

regards the implications for government and industry. Finally, key learning for the IMO

GHG policy debate are derived from the overall findings of the thesis.

7.2.2.1 Low carbon fuels in shipping

One of the findings of this thesis is that shipowners could invest in hydrogen powered

ships based on the maximisation of the profit and their compliance with a defined carbon

budget. Under the scenario analysed in this thesis, the global fleet gradually switched

from conventional marine fuels and LNG to hydrogen in order to decarbonise. The fact

that hydrogen was found as a viable option for a drastic reduction of emissions shows

that LNG is not a viable long term solution from a decarbonisation point of view, rather

the uptake of a low carbon fuel such as hydrogen is necessary for a decarbonisation

in line with the target. However, hydrogen is the only low carbon fuel that is used

in the model as other possible marine fuels such as biofuels, and other synthetic fuels

are excluded from the marine fuels portfolio. Hydrogen becomes economically viable

only with a high carbon price meaning that the industry could adopt any type of low
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carbon fuel as long as its price in combination with carbon price reaches the economic

advantage in comparison with high carbon content fuels. In other words, the carbon

price can in theory offset the high price of any low carbon fuel relative to fossil fuels. So

in conclusion, the fact that the model responded with a high sensitivity to the carbon

budget regulation by switching to hydrogen means that the shipping industry could

adopt any other similar low carbon fuel.

The understanding of the future price of low carbon fuels and their availability as

well as their upstream emissions appears to be more complex. This is a limitation of the

interpretation derived above as the supply of such fuels needs to be represented within

the energy model in order to evaluate the net impact of using energy sources for the

production and distribution of these types of fuel.

7.2.2.2 Fuels and infrastructure

The analysis of the findings also leads to important interpretations in regards to the

fuels and the associated infrastructure. For example, in this section considerations are

made from analysing the following key aspects found in this thesis: the use of LNG as

a marine fuel, the production of hydrogen from natural gas, the use of CCS technology,

and the fuel storage system on board ships.

From a decarbonisation point of view, the fact that LNG and other technical and op-

erational energy efficiency measures did not appear sufficient for the necessary emission

reduction and that hydrogen, instead, may be a viable option from 2030, implies that

there are some associated implications arising from the use of LNG as a marine fuel.

The projected use of hydrogen from 2030 implies that investments would be required

soon, in order to ensure a worldwide hydrogen infrastructure for shipping. However,

at the same time LNG would compete with hydrogen, as it was found that LNG could

significantly get taken up from 2025 (just 5 years before the first use of hydrogen). This

situation could have important implications on the supply infrastructure. It might not

be completely justifiable to invest in LNG infrastructure as LNG ships could not be

competitive after a relatively short period of time (5-10 years). So, today’s investments

are particularly important in shipping as not only the infrastructure but also the ships

have a long average lifetime (approximately 30 years).

The use of hydrogen in shipping produced from natural gas raises other interpreta-

tions. It may be possible that the emissions implication of using natural gas as fuel on
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board is more significant than the emissions of using natural gas to produce hydrogen. In

some scenarios of this thesis was observed that hydrogen produced from natural gas and

bio-energy with CCS technology is a possible option. Although, such a mix means that

hydrogen cannot be considered completely a green hydrogen, the mix of energy sources

used to produce such hydrogen remains in line with the 2 degree target. Essentially, it

may be acceptable to pay the price of upstream emissions producing hydrogen from not

100% renewable energy sources as it will still be in line with the broader strategy of the

energy system which may see renewable energy be used in a more cost effective way in

other sectors. For example, under the scenario of the high cost of biomass production

technologies (TG2D BioC) hydrogen was produced almost entirely from natural gas with

CCS. This thesis, however, has not provided robust evidence of the emissions of using

natural gas to produce hydrogen for shipping, which means that the interpretation that

it can be acceptable to use hydrogen produced from fossil sources is limited by further

analysis on this aspect.

Another interpretation can be derived from the scenario with an absence of CCS

technology. This thesis found that hydrogen may be produced from electrolysis and

biomass and that the global energy system will have to decarbonise with a high rate in

order to compensate the emissions that cannot be sequestrated with CCS. This finding

shows that CCS is an important technology that may enable the hydrogen production of

relatively low cost and upstream emission and at the same time ensure that the supply

is in line with a global decarbonisation trajectory.

In general the supply infrastructure of any fuel is very complex and the interpreta-

tions provided in this section can be limited by the low resolution used to represent them

into the global energy model. In reality it is likely that an infrastructure configuration

may change based on specific local factors, in particular when factors at port level are

taken into account. Another element that may limit the given interpretations above is

the representation of hydrogen trade among regions. Hydrogen trade is not enabled as it

is assumed that the production of hydrogen should be developed relatively close to the

energy demands of users, while the energy sources to produce hydrogen can be traded

worldwide. This of course could not be the reality as it is possible that hydrogen will

be produced where it is more convenient and traded into the locations where it will be

demanded. This may have an effect on the projected supply infrastructure of hydrogen

and therefore on the derived interpretations.
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The selection of an alternative fuel is also influenced by the infrastructure on board

ships. Another finding of this thesis remarks that there are cost implication for the space

requirement of liquid hydrogen storage system. Based on the size of the ship such cost

implications may play a crucial role, for example, for small ships the space requirement

may have a significant impact on the economics of the ship. Such considerations are valid

not only for liquid hydrogen but also for any other alternative fuel. The characteristic

of the fuels and the associated storage systems are very important as they may lead to

different technical design solutions which may change the cost implication.

As mentioned in section 4.8.1, to store hydrogen in a liquid state, an active cooling

is required, and there will inevitably be some boil-off, however,these were not accounted

as it wa assumed that they would mean minimised and therefore negligible. As a con-

sequence the sfc could be higher than the one used in this thesis. This is a limitation

of the interpretation derived above because in addition to the cost implication, there is

also a performance implication.

A final consideration on hydrogen infrastructure is that the results of this thesis are

based on global trend, more likely not all routes would shift to hydrogen. Perhaps the

development of an infrastructure would start just a few major routes where hydrogen

would have the lowest cost and upstream emissions associated.

7.2.2.3 Government and industry implications

Under a carbon budget constraint this thesis found that hydrogen is taken up from 2030,

however this projected evolution was only possible under two important premises, which

may have important implications for the industry and the government.

The first premise was that during the first period (2020 to 2030) the shipping industry

was able to buy CO2 offsets without competing with other sectors and that the other

sectors were able to decarbonise so that CO2 offsets were available. The decarbonisation

of the shipping industry during this period relied on this premise as a relatively large

amount of CO2 offsets was purchased. One possible implication of this condition is that

the shipping industry would have to find agreements with other sectors or regions to

ensure the access to such an amount of offsetting during this period.

In long term the CO2 offsets was not found to be so crucial for the decarbonisation

but rather the availability of hydrogen worldwide as a marine fuel from 2030 became

important. This premise along with the fact that in 2030 shipping was found as the
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main consumer of hydrogen (using about 70% of the total production), implies that the

shipping and hydrogen production industries would have to work closely to facilitate

that a large amount of hydrogen will be available from 2030. In addition, if hydrogen

will be chosen the shipping industry would have to collaborate with other stakeholders

in particular with ports authorities in order to ensure that hydrogen infrastructure at

ports will be facilitated. Moreover, hydrogen supply industry may have an interest in

stipulating contracts with shipping company in order to facilitate a competitive price.

For example, during the initial period before a worldwide infrastructure will be con-

structed, hydrogen price can be lined to the conventional marine fuel price, so that the

price is not necessarily linked to the balance between supply and demand but on the

expectation that such a fuel will be taken up in shipping. Finally, shipping may be

in competition with other transportation mode for the use of hydrogen after 2030 in

particular with buses and trucks. This implies that integration and collaboration with

these modes may help with the access of shipping to hydrogen in the future.

Other important implications for the industry can be derived from the finding re-

garding the ship propulsion system. Hydrogen was found a viable option in combination

with fuel cells system as a propulsion engine. A key assumptions is, therefore, that fuel

cells with a high power output will be available for marine applications, which means

that a dramatic acceleration on the development of this technology should be under-

taken. If hydrogen will be chosen with fuel cells, the shipping industry would have to

collaborate with fuel cell producers in order to facilitate that this technology will be

available in a relatively short time (5-10 years) for marine applications. As highlighted

in the sensitivity cases, the uptake of hydrogen was found sensitive to the cost of fuel

cells systems.

A similar argument used for fuel cell technology can be used for the hydrogen storage

system. Hydrogen was found as a viable option in combination with liquid hydrogen

storage systems on board ships. This has two implications in terms of cost and space

requirements due to the low volumetric energy density of hydrogen. The robustness

analysis undertaken in this thesis has already demonstrated that a change in these as-

sumptions can affect the uptake of hydrogen significantly. Hydrogen storage is, therefore,

considered an important aspect and if hydrogen will be chosen the shipping industry may

have an interest in collaborating with hydrogen storage producers in order to facilitate

that such technology will be available for marine applications.
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Without emissions sequestration technology such as CCS the production of hydrogen

switched to use clean energy sources and technology. Under this scenario, hydrogen was

produced with electrolysis plant and biomass gasification. These technologies are gener-

ally more expensive and increase the hydrogen price. As consequence, the introduction

of a very high carbon price was required in order to make hydrogen economically viable,

which means that there may be significant cost implications for the sector under this

case.

This thesis concluded that hydrogen could be one of the few options available for

decarbonising the shipping industry. Operational and technical efficiency measurements

and the switch to LNG could not be sufficient to keep the global shipping emissions

share to the current level. This has implications for governments. The reduction of

GHG emissions in the policy debate of governments should not be associated directly to a

growing role for LNG in shipping. Financing and/or a facilitation programme for LNG as

an alternative fuel for shipping should be carefully assessed as the emissions implications

associated with this fuel remains significant and the high investment requirement for the

infrastructure remains risky. Port regulation should also take into account these types

of considerations.

Hydrogen for shipping may be produced from natural gas in combination with CCS

technology. In order to allow the shipping industry to have access to such a fuel, gov-

ernments should consider this type of production in the development of a guide for the

definition of sustainable hydrogen. It may be more cost effective to resolve the problem

of emissions at the point of production rather than enable the global shipping fleet to

use fossil fuels such as natural gas.

7.2.2.4 Key learning for IMO GHG policy debate

This thesis highlights key learnings for the IMO which has started a debate for future

policy that may allow the decarbonisation of the sector and its future CO2 emissions

share as percentage of the global CO2 emissions. In particular, this thesis found that

even with the introduction of the global carbon price, there was no reduction of ship-

ping emissions and therefore the shipping share continued to increase. In contrast, the

introduction of a target that allows the carbon price to increase proportionally, made

hydrogen a viable option for a drastic emissions reduction, which in turn kept the future

shipping emissions share at a value similar to the current share. This means that from
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a policy point of view the establishment of a target should have a high priority to avoid

being dependent on the fact that all other sectors will succeed doing more than this

equal burden sharing.

Essentially, it appears that the key element is the introduction of a regulation that

limits the amount of CO2 emissions from ships. The most important effect would be

that the introduction of a carbon pricing system would reduce the gap between the cost-

effectiveness of low carbon fuels and conventional fossil-fuel derived fuels. The switch to

low carbon fuel would be the key driving force for the decarbonisation of the sector in

line with the decarbonisation of the wider energy system and therefore to the pathway

to the Paris target.

In addition, the fact that hydrogen has shown the ability to decarbonise the sector

means that incentives for low carbon fuels should be a focus of the regulatory framework,

while other technical and operational measurements should be of secondary importance.

As a switch to LNG would not ensure the decarbonisation of the sector, this fuel should

be considered only as a fuel for transition to low carbon fuels or not considered as an

alternative for the decarbonisation of the sector.

Finally, it must be recognised that there is a great uncertainty surrounding the form

of a future emissions reduction regulation as the hypothetical MBM adopted in this

thesis is only one possibility. Different forms of regulation may produce different results,

and affect the interpretations provide in this thesis.

7.3 Recommendations for further research

This thesis raises several questions and limitations that deserve further attention, which

leads to a number of recommendations for future research. They can be divided in four

areas. The first area regards the extra features that could be added to the modelling

framework TIAM-GloTraM. The second area regards the exploration of uncertainty

associated with the findings and interpretations of this thesis. The third area focuses

on the technical challenges of the design of hydrogen powered ships. Finally, the fourth

area comprises all other relevant topics of research that can be raised from this research.

The following sections examine each of these areas.
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7.3.1 Adding features to TIAM-GloTraM

TIAM-GloTraM could be further developed in order to include a number of possible

features that may improve the modelling representation of the energy and transport

systems’ interaction.

7.3.1.1 Soft-linking other transport modes

As already mentioned energy system models are less useful when the focus is on the

exploration of technology diffusion, so other transport modes may not decarbonise as

projected which may have several implications such as CO2 offsets may not be available

as reported in the short term. To overcome the limitations of having only the shipping

industry acting differently from the rest of the energy model, other models that simulate

other transport modes could be soft-linked to the energy model. In this way the evolution

of other transport modes can be represented with a specific objective function and

sectoral emissions target. The energy model would focus on the best way to use the

energy sources, while specific sectoral models would focus on the technology selection.

7.3.1.2 The estimate of the carbon price

The estimate of the global carbon price is based on the assumption that in a global

market all information is available across all industries, and industries will decarbonise

where it is most cost effective first. So it is possible that the global carbon price is

relatively low compared to what is actually necessary in the real world in which perfect

information may not exist. In contrast, the estimate of the shipping carbon price is

based on the assumption that the shipping industry sets its own target, and sends a

signal to the rest of the economy which decarbonises where it is most cost effective. The

shipping carbon price is higher than the global carbon price as it takes into account

factors and barriers that are embedded in a specific sector. The fact that global and

shipping carbon price are estimated in two different ways raises questions around the

effect of different carbon pricing systems across different sectors and regions. Therefore,

a different representation of the estimate of the carbon price that take into account this

difference may improve the modelling representation of the energy and transport sector

interaction.
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7.3.1.3 Other fuels

This thesis highlights the potential of any low carbon fuel to uptake in shipping. Fuels

such as biofuels and other synthetic fuels could, therefore, be included in the portfolio

of marine fuels and their supply could be represented within the energy model. The

inclusion of such fuels could also help understand the difference on upstream emissions

among fuels and the competitiveness of hydrogen in comparison with these types of fuels.

7.3.1.4 Including the changes of transport cost

This thesis found that under the scenario in which shipping is constrained to decarbonise,

the sector might be subjected to a carbon pricing system which can lead to changes in the

fleet specification. Both elements, the carbon prices and the specifications of the future

shipping fleet influence the transport costs which in turn may influence the transport

demand. The model TIAM-GLoTraM captures this interaction only in part through

its ability to capture the dynamic between the transport demand and the fuel mix

evolution of the global fleet. However, it is assumed that transport demand would not be

affected by any transport cost consequences of technical and operational energy efficiency

measurement and MBM regulation. Further effort could, therefore, be dedicated to

represent in the model how these elements may change and how they may effect the

transport demand.

7.3.1.5 The bunkering infrastructure and the trade of hydrogen

The supply infrastructure of hydrogen appears to be of relevance in relation to the de-

rived hydrogen price, however, there are two important limitations in the modelling

representation of the supply in TIAM-GLoTraM: the level of aggregation used to repre-

sent the infrastructure and the representation of hydrogen trade among regions. On the

one hand, more effort could be dedicated for a more accurate modelling representation

of bunkering infrastructure at ports and on the other hand the international trade of

hydrogen could be introduced into the energy system model.

7.3.2 Exploring uncertainty

More effort could be dedicated to exploring the uncertainty of the results provided in

this thesis. An extended robustness analysis is the first example, a larger number of
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parameters could be included in the robustness analysis, as well as a larger number of

reasonable values of the input factors. There are many uncertain parameters that are

inputs to each of the scenarios. Systematically varying those parameters can help to

test the robustness of the outputs of the modelling and therefore provide greater insight

into the viability, constraints and likelihood of different future pathways for the sector.

This could be useful not only to test the robustness of the results but also to reveal

thresholds at which the energy and shipping interaction may have dramatic changes.

This thesis has provided two main global decarbonisation pathways. One is achieved

with the shipping sector decarbonising predominantly using a switch to hydrogen, in the

other, instead the decarbonisation is carried out by other sectors and shipping switches

to LNG without decarbonise (at least before 2050). The key driver of such different

pathways is the introduction of a specific carbon budget in shipping which forces shipping

to decarbonise at the same rate as the global economy overall rate. This justifies the

need for deeper inspection and exploration of different regulatory measures that may

reduce shipping emissions. One example could be the run of a number of sensitivity

scenarios with different carbon budgets or a different modelling representation of an

emissions reduction regulation.

Hydrogen does not seem to be competitive as marine fuel under the scenario without

the specific carbon budget, therefore, further research questions could be explored such

as how uncompetitive hydrogen actually is in this particular scenario? How far away

is it from being competitive? Why is it less competitive in shipping compared to the

other transport modes? Different sensitivity scenarios built around the scenario without

a carbon budget (TG2D) could, therefore, be useful to answer these questions.

The transport demand used in this thesis changes based on different scenarios, how-

ever, it is only the trade of energy commodiites that differs among scenarios. Different

transport demands of non-energy commodities could, therefore, be explored in order to

explore the sensitivity of the results to this input parameter.

In this modelling work, hydrogen price is derived as a global average of the cost

of production, however, in the practice during the first period of development, the hy-

drogen price may not be directly linked to the supply and demand balance and the

hydrogen supplier may stipulate a contract with a shipping company in order to ensure

a competitive price and market share. A modelling representation of this dynamic could

be included in the model for any alternative fuels in order to explore the effect on the
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findings of such behavior.

7.3.3 Ship design

In this thesis only the liquid hydrogen storage system has been considered, even though

other different hydrogen storage options exist that could be used in maritime applica-

tions. The fuel cell system is another technology that is assumed to be available for

shipping, however, a fuel cell system with sufficient power that can be used as propul-

sion system for large ships, currently does not exist. More research should be dedicated

to those technologies in relation to their applicability and future capital costs in the

maritime context. Such research should also consider the technical challenges involved

with the installation on board ships and the associated safety aspects.

Liquid hydrogen system on board ship as well as other hydrogen storage system would

need energy for storage and there will inevitably be some boil-off. The magnitude of

these would depend from on the tank insulation and the effectiveness of the active cooling

system, as well as the design solution adopted (e.g. heat recover). More research effort

should be dedicated on this in order to estimate more accurate figures and to analyses

the implication on the potential uptake of hydrogen.

Fuel cells and hydrogen storage systems will have most likely a lower volumetric den-

sity in comparison with the current marine engine and oil tank system. In this thesis the

potential loss of cargo capacity was estimated without considering a possible reduction

in range and power in comparison with the reference ship. The method used takes into

account only the extra space that it might be required in comparison with a reference

HFO tank and it analyses the theoretical loss of cargo capacity. This assumption implies

that more research effort could be dedicated around the design and sizing requirements

of alternative fuel storage systems and fuel cells systems on board ships.

7.3.4 Other relevant topics of research

The evaluation of the risks that the shipping industry could face in a decarbonised energy

system is another important topic that can be raised from this thesis. The development

of a systematic method that takes into account the specifications of a fleet of ships,

and the associated transport costs could support the investment decisions of shipping

companies.
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The recent focus on LNG as alternative marine fuel and the findings of this thesis

which do not see LNG as an option for the decarbonisation of the sector raises questions

regarding the LNG bunkering infrastructure investment that is currently being deployed.

Moreover, the possible use of natural gas to produce hydrogen raises questions on the

upstream emissions implication; It would be useful to investigate what are the net emis-

sions implication of using natural gas as a fuel for shipping or of using it to produce

hydrogen. Upstream emissions are obliviously very important; in this thesis they are

accounted in the energy model and in its climate module which include all upstream

emissions and makes sure that the mix of technologies is in line with the climate target.

However, they are not easily quantifiable because it is not possible to extract in a clear

way this information from TIAM-UCL. On the other hand, the shipping model does

not needs to account for the upstream emissions as in this thesis it is assumed that the

shipowner will take his decision only based on operational emissions. Further analysis

is required in order to answer questions on net emissions implication (upstream plus

operational).

Finally, as mentioned above, long-term contracts can generate prices that are not

necessarily linked with the balance of the supply and demand, but on the expectation

that a particular fuel will be taken up in shipping, therefore, more effort could be

dedicated to the exploration of the acceptability and expectation of the use of hydrogen

in shipping and the associated commercial and financial dynamics that might arise. A

road-map exercise could also creates awareness on the potential of the fuel to be used

in the sector.
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Francis ; Grünewald, Philipp ; McDowall, Will ; Ekins, Paul: Hydrogen and fuel

cell technologies for heating. A review. In: International Journal of Hydrogen Energy

40 (2015), Nr. 5, S. 2065–2083

[Dodds and Hawkes 2014] Dodds, PE ; Hawkes, A: The role of hydrogen and fuel

cells in providing affordable, secure low-carbon heat. (2014)

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/65698/6658-decc-fossil-fuel-price-projections.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/65698/6658-decc-fossil-fuel-price-projections.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/65698/6658-decc-fossil-fuel-price-projections.pdf


References 219

[DOE 2014] DOE: Early Markets. Fuel Cells for Backup Power. 2014. –

URL http://californiahydrogen.org/sites/default/files/ftco_early_mkts_

fc_backup_power_fact_sheet.pdf

[Ehteshami and Chan 2014] Ehteshami, Seyyed Mohsen M. ; Chan, SH: The role

of hydrogen and fuel cells to store renewable energy in the future energy network–

potentials and challenges. In: Energy Policy 73 (2014), S. 103–109

[Ekins 2010] Ekins, Paul: Hydrogen energy: economic and social challenges. Earth-

scan, 2010

[Endresen et. al. 2008] Endresen, Øyvind ; Eide, M ; Veritas, DN ; Dalsøren, HS ;

Isaksen, IV ; Sørg̊ard, E: The environmental impacts of increased international

maritime shipping, past trends and future perspectives. In: Proceedings of the Global

Forum on Transport and Environment in a Globalising World, Guadalajara, Mexico,

November, 2008, S. 10–12

[EPA 2008a] EPA: Global Trade and Fuels Assessment -Future Trends and Effects of

Requiring Clean Fuels in the Marine Sector. In: Assessment and Standards Division

Office of Transportation and Air Quality U.S. EPA420-R-08-021 (2008)

[EPA 2008b] EPA: Technology Characterization. Fuel Cells. Environmental Protec-

tion Agency, 2008
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