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Neuropathology of SUDEP
Role of inflammation, blood-brain barrier impairment, and hypoxia

ABSTRACT

Objective: To seek a neuropathologic signature of sudden unexpected death in epilepsy (SUDEP)
in a postmortem cohort by use of immunohistochemistry for specific markers of inflammation,
gliosis, acute neuronal injury due to hypoxia, and blood-brain barrier (BBB) disruption, enabling
the generation of hypotheses about potential mechanisms of death in SUDEP.

Methods: Using immunohistochemistry, we investigated the expression of 6 markers (CD163,
human leukocyte antigen–antigen D related, glial fibrillary acid protein, hypoxia-inducible
factor-1a [HIF-1a], immunoglobulin G, and albumin) in the hippocampus, amygdala, and
medulla in 58 postmortem cases: 28 SUDEP (definite and probable), 12 epilepsy controls,
and 18 nonepileptic sudden death controls. A semiquantitative measure of immunoreactivity
was scored for all markers used, and quantitative image analysis was carried out for selected
markers.

Results: Immunoreactivity was observed for all markers used within all studied brain regions and
groups. Immunoreactivity for inflammatory reaction, BBB leakage, and HIF-1a in SUDEP cases
was not different from that seen in control groups.

Conclusions: This study represents a starting point to explore by immunohistochemistry the
mechanisms underlying SUDEP in human brain tissue. Our approach highlights the potential
and importance of considering immunohistochemical analysis to help identify biomarkers of
SUDEP. Our results suggest that with the markers used, there is no clear immunohistochemical
signature of SUDEP in human brain. Neurology® 2017;88:1–11

GLOSSARY
BBB 5 blood-brain barrier; GFAP 5 glial fibrillary acid protein; HIF-1a 5 hypoxia-inducible factor-1a; HLA-DR 5 human
leukocyte antigen–antigen D related; IgG 5 immunoglobulin G; IO 5 inferior olive; NESD 5 nonepileptic sudden death;
PH-G 5 parahippocampal gyrus; SUDEP 5 sudden unexpected death in epilepsy; UCL 5 University College London; VLM 5
ventrolateral medulla.

Sudden unexpected death in epilepsy (SUDEP) is the major cause of epilepsy-related deaths.1

The cause of SUDEP is likely to be multifactorial, with evidence for genetic susceptibility2,3 and
preterminal cardiac, respiratory, and autonomic mechanisms.4,5

The tissue basis of SUDEP is unknown, with only a limited number of neuropathologic
studies.6 Sudden infant death syndrome and sudden unexplained death in childhood share
with SUDEP common characteristics, including incidence, sleep-associated death, prone
position at death, and history of febrile seizures.7,8 More detailed neuropathologic studies
have shed some light on the mechanisms underlying these conditions. Abnormal astrogliosis
in the medulla and gross asymmetry or microscopic anomalies in the hippocampus have
been reported in sudden infant death syndrome.7,9–12 MRI studies in SUDEP have high-
lighted hippocampal volume asymmetries13 and atrophic changes in the brainstem,14
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Table 1 Clinical and pathology data of individual cases

Case PM no.
Sex/age at
death, y

Age at onset of
epilepsy/duration, y Epilepsy type Mode of death

Brain region
present

SUDEP, definite

1 EP271 M/40 36/4 Epilepsy related to alcohol abuse NA H, M

2 EP266 M/38 7/31 Focal (temporal) lobe epilepsy of
unknown cause

NA A, H, M

3 NA F/18 16/2 Unclassified NA A, H, M

4 NA M/53 Unknown Unclassified. Left-sided HS and
contusions found at postmortem

NA H, M

5 NA F/27 0.75/26 Unclassified. Left-sided HS found
at postmortem

NA H, M

6 NA M/19 Long term Unknown. No lesion identified on
neuropathology

NA A, H, M

7 NA M/42 11/31 Focal structural, old surgical scar
from treated brain abscess

NA H, M

8 NA F/58 47/11 Structural-metabolic
(hemimegalencephaly)

NA H, M

9 NA M/41 Unknown Unclassified NA H, M

10 NA M/69 54/15 Unclassified NA A, H, M

11 NA F/17 4/13 Unclassified. Febrile convulsions
as child

NA A, H, M

12 NA F/44 5/39 Unclassified NA H, M

13 NA F/33 Unknown Unclassified NA A, H, M

14 EP253 M/40 Unknown Unknown NA H

SUDEP, probable

15 EP067 F/45 14/31 Genetic generalized epilepsy NA A, H, M

16 EP099 M/47 1.5/46 Focal (temporal) lobe epilepsy of
unknown cause

NA M

17 EP088 F/40 8/32 Focal epilepsy of unknown cause NA A, H, M

18 EP130 F/19 1.2/18 Focal epilepsy of unknown cause NA A, H, M

19 EP219 F/27 Unknown Unknown NA A, H

20 EP240 F/37 4/32 Focal epilepsy of unknown cause NA H, M

21 EP252 M/21 Unknown Unknown NA A, H, M

22 EP290 F/48 0.5/47 Focal epilepsy of unknown cause NA A, H, M

23 EP286 M/31 Unknown Focal epilepsy of unknown cause NA A, M

24 NA M/26 Unknown Unknown NA H, M

25 EP210 M/49 12/37 Genetic generalized epilepsy NA H, M

26 EP304 M/50 11/39 Structural-metabolic NA A, H

27 EP296 M/49 4/45 Unclassified NA A

28 EP262 F/40 8/32 Unclassified NA A, H

Epilepsy without
SUDEP control

29 EP102 M/82 5/51 Focal epilepsy of unknown cause Bronchopneumonia H, M

30 EP133 F/51 22/29 Structural-metabolic Metabolic derangement,
possibly secondary to
pneumonia

H, M

31 EP039 F/46 0.25/45 Focal epilepsy of unknown cause Bronchopneumonia A

32 EP047 M/60 3/57 Focal epilepsy of unknown cause Pulmonary edema A

33 EP213 M/66 1/65 Dravet syndrome Bronchopneumonia A

34 EP031 M/44 7/37 Unclassified Pulmonary edema H, M

35 EP135 M/83 3/77 Focal epilepsy of unknown cause Pulmonary embolism A, H, M

Continued
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warranting neuropathologic corroboration.
Seizures spreading into the amygdala, which
is functionally connected to the medulla,
may cause cessation of spontaneous breath-
ing.15 Focal neuronal loss and gliosis have
been described within amygdaloid subnuclei
in SUDEP.16

Seizures can damage the brain through
hypoxic stress17,18 and alter blood-brain bar-
rier (BBB) integrity19–21 and promote
inflammatory processes22,23 through chronic
or acute changes. Our aim was to identify

possible neuropathologic signatures of SUDEP
in 3 brain regions, the medulla, hippocam-
pus, and amygdala, which might be consid-
ered specifically to “prime” the brain in
epilepsy for SUDEP or to reflect its occur-
rence. We investigated neuropathologic
changes using commonly used markers of
inflammation, gliosis, BBB disruption, and
acute neuronal injury due to hypoxia in
SUDEP, epilepsy, and nonepileptic sudden
death (NESD) cases. This was an exploratory
study of these processes in SUDEP intended

Table 1 Continued

Case PM no.
Sex/age at
death, y

Age at onset of
epilepsy/duration, y Epilepsy type Mode of death

Brain region
present

36 EP154 M/77 5/72 Focal epilepsy of unknown cause Bronchopneumonia A, H, M

37 EP196 M/84 16/64 Unclassified Bronchopneumonia A

38 EP236 M/74 14/50 Focal epilepsy of unknown cause Adenocarcinoma of the bowel
with metastasis

A

39 EP188 M/86 14/72 Structural-metabolic Bronchopneumonia/lung cancer A

40 EP244 M/60 7.5/53 Unclassified Aspiration of stomach contents A

NESD control

41 NA M/75 NA NA Myocardial infarct H, M

42 NA F/35 NA NA Cardiac arrest H, M

43 NA F/85 NA NA Bilateral pulmonary embolism A

44 NA M/43 NA NA Acute heart failure/inferior
myocardial infarct, old with
recent extension

M

45 NA M/49 NA NA Antero-lateral and inferior
myocardial infarcts

A, M

46 SD028-08 F/44 NA NA Cardiovascular disease,
Marfan syndrome

A, H, M

47 SD032-09 F/60 NA NA Cardiovascular disease;
hypertensive heart disease

A, H, M

48 SD006-10 F/32 NA NA Cardiovascular disease;
Marfan syndrome

A, M

49 SD018-11 F/50 NA NA Peritonitis; bowel infarction A, H, M

50 SD029-11 F/42 NA NA Bronchial asthma; pulmonary
congestion

A, H, M

51 SD023-12 F/50 NA NA Bronchial asthma; pulmonary
congestion

H, M

52 SD024-12 M/44 NA NA Amitriptyline and
dihydrocodeine toxicity

A, H, M

53 SD038-12 M/51 NA NA Cardiovascular disease;
ruptured cardiac aneurysm

H, M

54 SD042-12 M/29 NA NA Suspension by a ligature A, M

55 SD044-12 M/46 NA NA Suspension by a ligature A, H, M

56 SD049-12 M/60 NA NA Ischemic and hypertensive
heart disease

A, H, M

57 NA F/38 NA NA Cardiorespiratory failure A, H

58 NA M/29 NA NA Hypertrophic cardiomyopathy H, M

Abbreviations: A 5 amygdala; H 5 hippocampus; HS 5 hippocampal sclerosis; M 5 medulla; NA 5 not applicable; NESD 5 nonepileptic sudden death; PM 5

postmortem; SUDEP 5 sudden unexpected death in epilepsy.
For unclassified, determination was not possible from available data; for unknown, no data were available for determination.
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to generate hypotheses for further testing in
larger cohorts.

METHODS Standard protocol approvals, registrations,
and patient consents. The project has been approved

through National Research Ethics Service Committee South

Central–Hampshire B reference 12/SC/0699. Tissue from

all postmortem cases was retained with era-appropriate

consent.

Case selection. All SUDEP and epilepsy cases were selected

either from archives in the Epilepsy Society Brain and Tissue

Bank, University College London (UCL) Institute of

Neurology (London, UK) or via Brain UK (http://www.

southampton.ac.uk/brainuk) from the pathology department

at Derriford Hospital (Plymouth, UK). Cases were categorized

according to a recent scheme24 on the basis of all available

information, including detailed clinical and investigational

data (e.g., MRI, EEG), and general postmortem findings,

including organ histology and toxicology. NESD control

tissues were obtained through the MRC Sudden Death

Brain Bank, Edinburgh. We included 3 patient groups:

SUDEP (definite and probable24), epilepsy controls, and

NESD. From these cases, blocks were selected from the

medulla, hippocampus, and amygdala (both sides when

available). The clinical details and number of cases in each

group are presented in table 1.

Immunohistochemistry. Primary antibodies and experimental

conditions are listed in table 2. Immunohistochemistry was per-

formed on 5-mm-thick formalin-fixed paraffin-embedded

sections. Endogenous peroxidase activity was blocked with 1%

hydrogen peroxide. The sections were incubated with primary

antibodies in diluent buffer (Dako, UK Ltd, Ely, UK) followed

by 30 minutes of incubation at room temperature with secondary

antibodies. Immunocomplexes were visualized with Dako DAB1

Chromogen (Dako, Glostrup, Denmark). Sections were washed

with phosphate-buffered saline (Fisher Scientific, Ltd,

Leicestershire, UK) between all steps. Negative controls were

run simultaneously but without primary antibodies.

Semiquantitative evaluation (medulla, hippocampus, and
amygdala). All sections were evaluated semiquantitatively twice

by one observer (Z.M. or D.O.) and independently reviewed in

10% of cases by a second observer (M.T. or Z.M.). In the

medulla, 6 regions of interest on the left and right sides were iden-

tified, 4 with known autonomic/cardiorespiratory regulatory

functions: (1) floor of the fourth ventricle containing the dorsal

nucleus of the vagus nerve and the 10th and 12th cranial nerve

nuclei, (2) solitary tract, (3) arcuate nucleus, and (4) ventrolateral

medulla (VLM) containing the pre-Bötzinger complex and

nucleus ambiguus. In addition, 2 control medullary regions, (5)

the inferior olives (IOs), and (6) pyramidal tracts were included.

These easily identified regions were used with the rationale that if

there were any “global” premortem insult involving the brainstem

(e.g., hypoxia, infection), molecules such as hypoxia-inducible

factor-1a (HIF-1a) and human leukocyte antigen–antigen D

related (HLA-DR) would be more globally upregulated in control

regions and in key autonomic-regulatory regions. In hippocampal

sections, 8 regions of interest were studied: (1) dentate gyrus, (2)

CA4, (3) CA3, (4) CA2, (5) CA1, (6) subiculum, (7)

parahippocampal gyrus (PH-G), and (8) PH-G white matter.

In the amygdala, 3 regions of interest were studied: (1) lateral

nuclei, (2) basal nuclei, and (3) accessory basal nuclei. Grading

scales for semiquantitative evaluation of immunoreactivity scores

for all markers are detailed in appendix e-1 at Neurology.org.

Quantitative analysis. To supplement the semiquantitative

data, quantitative evaluation of pathologic changes was carried

out in the hippocampal sections stained for HLA-DR and in

the amygdalar sections stained for glial fibrillary acid protein

(GFAP). Slides were digitized with a whole slide scanner

(LEICA SCN400 scanner, LEICA, Cambridge, UK) at 340

magnification. Definiens Tissue Studio 3.6 (Definiens AG,

Munich, Germany) was used to outline the regions of interest

on the scanned slides. Immunostaining was automatically

Table 2 Primary antibodies and experimental conditions

Primary antibody
target Source

Clone or
reference Supplier Dilution Incubation time Pretreatment Secondary antibody

CD 163 Mouse mAb EDHu-1 AbD Serotec, UK 1/2,000 Overnight at 48C HIER, Tris-based buffer,
pH 9

Universal anti-mouse/
rabbit HRP (DAKO
Envision, UK)

HLA-DR Mouse mAb CR3/43 Dako, UK 1/100 Overnight at 48C HIER, Tris-based buffer,
pH 9

Universal anti-mouse/
rabbit HRP (DAKO
Envision)

GFAP Mouse mAb 6F2 Dako, UK 1/1,000 Overnight at 48C HIER, Tris-based buffer,
pH 9

Universal anti-mouse/
rabbit HRP (DAKO
Envision)

IgG Rabbit pAb A0423 Dako, UK 1/20,000 60 min at RT Proteinase K Universal anti-mouse/
rabbit biotinylated
(VECTASTAIN, ABC
HRP kit, Vector, UK)

Albumin Rabbit pAb A0001 Dako, UK 1/60,000 Overnight at 48C None Universal anti-mouse/
rabbit HRP (DAKO
Envision)

HIF-1a Mouse mAb ESEE122 Abcam, UK 1/1,500 Overnight at 48C HIER, citrate-based
buffer, pH 6

Universal anti-mouse/
rabbit biotinylated
(VECTASTAIN, ABC
HRP kit, Vector, UK)

Abbreviations: GFAP 5 glial fibrillary acid protein; HIER 5 heat-induced epitope retrieval; HIF-1a 5 hypoxia-inducible factor-1a; HLA-DR 5 human
leukocyte antigen–antigen D related; HRP 5 horseradish peroxidase; IgG 5 immunoglobulin G; mAb 5 monoclonal antibody; pAb 5 polyclonal antibody;
RT 5 room temperature.
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Figure 1 Macrophage infiltration, microglial activation, and gliosis in SUDEP and control cases

(A–C) Macrophage infiltration, (D–I) microglial activation, and (J–L) gliosis. (A) Semiquantitative evaluation of CD163 marker
in the medulla. Expression of CD163marker was significantly lower in sudden unexpected death in epilepsy (SUDEP) cases
than in epilepsy without SUDEP controls in inferior olives (IOs) (**p, 0.0005) and ventrolateral medulla (VLM; *p# 0.001).
(B) CD163-immunopositive perivascular macrophages are less frequent in a SUDEP case (a, c) than in an epilepsy without
SUDEP control (b, d) in both VLM (a–b) and IO (c–d) regions in the medulla. (C) Semiquantitative evaluation of CD163 marker
in the hippocampus. (D) Semiquantitative evaluation of human leukocyte antigen–antigen D related (HLA-DR) marker in the
medulla. (E) SUDEP case presenting high immunoreactivity for HLA-DR on microglial cells in medulla in the VLM (a), floor of
the fourth ventricle (IVth V; b), pyramidal tracts (PT; c), and IOs (d). (F) Semiquantitative evaluation of HLA-DR marker in the
hippocampus. (G) Quantitative evaluation of HLA-DR immunostaining in the hippocampus by Definiens software. (H) Hip-
pocampus of a SUDEP case presenting higher immunostaining for HLA-DR in subgranular zone (SGZ; a) and in CA3 (b), with

Continued
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detected by Definiens software, which gave the percentage of the

immunolabeled area in each region of interest. Details of

threshold-based analysis of immunostaining by Definiens

software are given in appendix e-1.

Statistical analysis and graphical representation. Statistical
analysis was carried out with SPSS for windows (version 21, IBM

Corp, Armonk, NY). GraphPad Prism software (version 6.1) was

used for the graphic representation of the data. Nonparametric

(Mann-WhitneyU) tests were used to compare immunoreactivity

scores between groups, and a stringent value of p # 0.001 was

considered significant. We did not correct for multiple compar-

isons because this was a study intended to generate hypotheses.

RESULTS Inflammation. Immunoreactivity for
CD163 (medulla, hippocampus), HLA-DR (medulla,
hippocampus, amygdala), and GFAP (amygdala) was
observed in all studied groups and regions of
interest. Semiquantitative and quantitative (when
applied) evaluation showed no difference overall
between SUDEP cases and either control group
in the immunoreactivity score, except for CD163
marker, which in VLM and IOs in SUDEP cases
labeled fewer perivascular or parenchymal
macrophages than in the epilepsy control group
(p , 0.0005 and p # 0.001, respectively, figure 1,
A and B). This differential pattern of staining was
not observed when SUDEP cases were compared
to the NESD group.

In the medulla and hippocampus, the expression
of CD163 marker was observed mainly in perivascu-
lar macrophages (figure 1, A–C). HLA-DR was im-
munolabeled in cells of microglial morphology,
sometimes aggregating into nodules. Particularly in
the medulla, intense HLA-DR immunostaining was
noted in the VLM, solitary tract, floor of the fourth
ventricle, and pyramidal tracts (in SUDEP and
NESD cases, figure 1, D and E). In the hippocampus
in all studied groups, HLA-DR–immunopositive cells
were numerous in the dentate gyrus (especially in the
subgranular zone), in the CA3-CA4 subfields, and in
the white matter (figure 1, F–H). Fewer immunore-
active cells were observed in the CA1 subfield and the
subiculum. In the amygdala, HLA-DR immunolab-
eling demonstrated intense microglial staining in all
studied groups and nuclei (figure 1I). In the amyg-
dala, in both control groups, the HLA-DR immuno-
labeling appeared more widespread and intense
than in SUDEP cases, but these observations
were not supported by semiquantitative analysis.

GFAP-immunopositive astrocytes were numerous in
all studied groups and amygdala subnuclei (figure 1,
J–L) as either isolated cells with frequent multiple
strongly labeled processes or patchy areas of gliosis.

BBB integrity. Immunoreactivity for immunoglobulin G
(IgG; medulla, hippocampus, amygdala) and albu-
min (medulla, hippocampus) was observed in the
cytoplasm of neurons, astrocytes, and small cells with
the morphology of oligodendroglia in all studied
groups and regions of interest, indicating a compro-
mised BBB. In the medulla and amygdala, there
was no difference overall between SUDEP cases and
either control group in the immunoreactivity score
(figure 2, A–C, G, and H).

In the hippocampus, prominent immunolabeling
of a proportion of pyramidal neurons and astroglial
cells was observed for both markers in all studied
groups and subfields (figure 2, D–F). The dentate
granule cell layer showed a prominent mosaic-like
pattern of labeling of neurons and dendritic processes
(figure 2E, a and e). The only differences were noted
in the CA1 subfield and PH-G, with lower IgG
immunoreactivity observed in SUDEP cases com-
pared to NESD controls (both p # 0.001, figure
2E, b, f– h).

Acute neuronal injury. No significant differences were
noted between SUDEP cases and either control group
in any studied regions of interest for HIF-1a immu-
nolabeling except for the hippocampus, where fewer
HIF-1a–immunopositive cells were noted in PH-G
in SUDEP cases and the epilepsy control group than
in NESD controls (both p# 0.001, figure 3, C and D,
e and f).

In the medulla, positive cytoplasmic neuronal
labeling and a perisomatic synaptic immunolabeling
pattern in the surrounding neuropil were seen in all
groups studied (figure 3A). A high intensity of stain-
ing was observed in the majority of cases in the VLM
(figure 3B, b and e) and in the dorsal nucleus of the
vagus nerve in the floor of the fourth ventricle (figure
3B, c and f). In comparison, the 12th cranial nerve
nucleus showed less intense or absent immunoreac-
tivity (figure 3B, d and g). There was also immuno-
labeling in the arcuate nucleus. The IO nuclei showed
a prominent band-like immunoreactivity of the neu-
ropil, but pyramidal and white matter tracts were not
labeled.

Figure 1 legend, continued:
lower immunoreactivity in the CA1 (c). (I) Semiquantitative evaluation of HLA-DR immunostaining in the amygdala. (J) Semi-
quantitative evaluation of glial fibrillary acid protein (GFAP) immunostaining in the amygdala. (K) Quantitative evaluation of
GFAP immunostaining in the amygdala by Definiens software. (L) HLA-DR–immunopositive microglial cells in lateral nuclei
(LN) of the amygdala are less abundant in a SUDEP (a) than in a nonepileptic sudden death (NESD; b) case, but expression of
GFAP-immunopositive astrocytes is not different in a SUDEP (c) and a NESD (b) case. Scale bar in B, E, H.b, H.c, L.a, L.b 5

50 mm; in H.a, L.c, L.d 5 100 mm. ABN 5 accessory basal nuclei; AN 5 arcuate nucleus; BN 5 basal nuclei; DG 5 dentate
gyrus; ST 5 solitary tract; Sub 5 subiculum; WM 5 white matter.
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In the hippocampus and amygdala, the pattern
shared across the groups was of scattered cytoplasmic
immunolabeling in single neurons in all subfields and
nuclei (figure 3, C–F). Moreover, in the hippocam-
pus, in SUDEP cases and NESD controls, a granular
labeling pattern of staining was noted on fine pro-
cesses at synapses within the dentate gyrus and molec-
ular layer (figure 3D, a and b) and within the

pyramidal cell layer of CA2. Synaptic-like staining
was also prominent in the layer II nodules in the
subiculum (figure 3D, c and d) and in all amygdaloid
nuclei. The epilepsy control group did not show this
prominent synaptic-like staining pattern.

DISCUSSION SUDEP is rare, but it is the most dev-
astating outcome in epilepsy. A number of risk factors

Figure 2 BBB impairment in SUDEP and control cases

(A–C) Medulla, (D–F) hippocampus, and (G–H) amygdala. (A) Semiquantitative evaluation of immunoglobulin G (IgG) marker in
the medulla. (B) Fewer IgG-immunopositive neurons and astrocytes were present in ventrolateral medulla (VLM; a) and the
floor of the fourth ventricle (IVth V; c) in a sudden unexpected death in epilepsy (SUDEP; b) than in a nonepileptic sudden
death (NESD; d) case. (C) Semiquantitative evaluation of albumin marker in the medulla. (D) Semiquantitative evaluation of
IgG marker in the hippocampus. Expression of IgG marker in SUDEP cases in CA1 and parahippocampal gyrus (PH-G ) was
significantly lower than in NESD controls (*both p # 0.001). (E) Lower expression of IgG marker in the hippocampus of
a SUDEP (a–d) than in a NESD (e–h) case in mosaic-like pattern of expression in the dentate gyrus (DG; a, e), pyramidal
neurons in CA1 (b, f), subiculum (Sub; c, g) and PH-G (d, h). (F) Semiquantitative evaluation of albumin marker in the
hippocampus. (G) Semiquantitative evaluation of IgG marker in the amygdala. (H) Fewer IgG-immunopositive cells were
present in lateral nuclei (LN) in the SUDEP (a) than in the NESD (b) case and in accessory basal nuclei (ABN; c and d,
respectively). Scale bar for B, E, H 5 100 mm. AN 5 arcuate nucleus; BBB 5 blood-brain barrier; BN 5 basal nuclei;
IO 5inferior olive; PT 5 pyramidal tracts; ST 5 solitary tract.
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and terminal pathophysiologic phenomena have been
determined. The cause remains unknown, although
genetic factors may play a role.2,25 Associated acute
neuropathologic alterations have been poorly investi-
gated. We report a detailed analysis of postmortem
brain tissue from people who have died of SUDEP,

looking for acute cellular alterations in comparison to
a variety of controls. With the markers used, there is
limited evidence for a specific or stereotypical patho-
logic cellular reaction pattern occurring in people who
have died of SUDEP in terms of inflammation, glio-
sis, BBB disruption, or acute neuronal injury due to

Figure 3 Immunohistochemistry patterns of neuronal and synaptic staining for HIF-1a in SUDEP and
control cases

(A) Semiquantitative evaluation of hypoxia-inducible factor-1a (HIF-1a) immunolabeling in the medulla. (B) HIF-1a expression in
the medulla of a sudden unexpected death in epilepsy (SUDEP) case (a) demonstrating band-like pattern in inferior olives (IOs;
arrow) and strong immunolabeling in ventrolateral medulla (VLM; arrowhead) and floor of the fourth ventricle (IVth V) in the dorsal
vagal nuclei (asterisk). Positive neurons in VLM (b, e) and IVth V dorsal vagal nuclei (c, f) were less frequent in a SUDEP case (b, c)
than in aNESDcase (e, f). Absenceof immunopositive neurons in IVthV12th cranial nerve in bothSUDEP (d) andNESD (g) cases.
(C) Semiquantitative evaluation of HIF-1a immunolabeling in the hippocampus. Expression of HIF-1a marker in SUDEP cases in
parahippocampal gyrus (PH-G) was significantly lower than in NESD controls (*p # 0.001). (D) HIF-1a expression in the hippo-
campus demonstrating single immunopositive neurons and perisomatic immunolabeling (arrows) in the CA4 subfield and prom-
inent synaptic-like staining in the dentate gyrus (DG) in a SUDEP (a) and a NESD (b) case. Less HIF-1a immunolabeling in layer II
nodules in the subiculum (Sub) in a SUDEP (c) than in a NESD (d) case. HIF-1a expression in the PH-G presenting fewer immuno-
positive cells and perisomatic labeling (arrows) in SUDEP (e) than in NESD (f) case. (E) Semiquantitative evaluation of HIF-1a
immunolabeling in the amygdala. (F) HIF-1a expression in the amygdala shows fewer immunopositive neurons in a SUDEP (a–c)
than in a NESD (d–f) case in lateral nuclei (LN; a, d), basal nuclei (BN; b, e), and accessory basal nuclei (ABN; c, f). Scale for B.a 5

1 mm; B.b–B.g 5 100 mm; D.a, D.b 5 100 mm, D.c, D.d 5 200 mm, D.e, D.f 5 50 mm; F 5 50 mm. AN 5 arcuate nucleus; PT 5

pyramidal tracts; ST solitary tract.
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hypoxia. The only significant differences were shown
in the medulla for CD163 and in the hippocampus
for IgG and HIF-1a markers.

In the medulla, lower immunolabeling of CD163
was noted in VLM and IOs in SUDEP cases than in
epilepsy controls, but these differences were not seen
when SUDEP cases were compared to NESD con-
trols. CNS macrophages are heterogeneous; resident
microglia of myeloid lineage origins populate the
CNS during embryonic development, while perivas-
cular, meningeal, and choroid plexus macrophages
of bone marrow origin are renewed from circulating
monocytes.26 Perivascular macrophages are distin-
guished from microglia by expression of the CD163
marker.27 They occupy a strategic location at the BBB
and have antigen recognition, processing, and pre-
senting properties, supporting a possible role in the
regulation of perivascular inflammation in the CNS.27

CD163-immunoreactive macrophages have been
identified in the parenchyma in several inflammatory
diseases such as HIV-related encephalitis, multiple
sclerosis, and Alzheimer disease.27–29 The low expres-
sion of this marker observed in SUDEP would sug-
gest as a hypothesis that acute macrophage-derived
immunoreaction in the medulla is not important in
SUDEP.

In the hippocampus, differences were noted in the
PH-G, with lower IgG and HIF-1a immunoreactiv-
ity, and in the CA1 subfield, with lower IgG immu-
noreactivity, in SUDEP cases compared to NESD
controls. One of the consequences of BBB dysfunc-
tion is leakage of blood-borne cells into the brain.
Indeed, a passive accumulation of various proteins
could lead to aggregation, which perturbs neuronal
function and survival.30,31 IgG uptake has been asso-
ciated with several signs of neuronal dysfunction.32

IgG binding may also be a response to the cell death.
Such processes have been reported in aging brain.33

Moreover, in the injured brain, naturally occurring
IgG autoantibodies have been shown to bind specif-
ically to dying neurons and were suggested to pro-
mote phagocytosis and removal of injured neurons.31

Hypoxia changes several processes in neuronal phys-
iology,34 many aspects of which involve HIF-1a.35 A
small number of cells immunoreactive to HIF-1a
were recently reported in postmortem samples from
patients with epilepsy.36 HIF-1a has a relatively short
half-life of only several minutes, and because it is
rapidly degraded in normoxia, there is essentially no
detectable level of HIF-1a protein under these cir-
cumstances.37 Amongst NESD cases, 16 of 18 had
documented hypoxic/ischemic conditions as a cause
of death and presented intense HIF-1a immunolab-
eling in all studied brain areas. Therefore, the findings
of only occasional HIF-1a–immunopositive cells in
SUDEP cases and lower IgG immunoreactivity

suggest the relative lack of BBB impairment or hyp-
oxia associated with SUDEP cases in this series
compared to other sudden death cases. This leads to
the hypothesis that prolonged impaired cerebral
perfusion/oxygenation is not always a critical process
in the mechanism of death in SUDEP. These ob-
servations may seem paradoxical given the recent
finding from the MORTEMUS (Mortality in Epi-
lepsy Monitoring Unit) study5 documenting terminal
cardiorespiratory arrest in SUDEP. There are a num-
ber of possible reasons for our observations, including
the possible heterogeneity of underlying causation in
SUDEP whatever the terminal event, that hypoxia
does not affect the whole brain to equal severity, or
that there is reduced metabolic demand in tissue due
to postictal generalized electric suppression. That
HIF-1a immunoreactivity is seen in NESD tissue
argues against insensitivity of the assay as a technical
explanation.

We qualitatively evaluated IgG and albumin
immunoreactivity in overall cell populations (includ-
ing neurons and astrocytes) without cell-specific dis-
tinction. However, it has been reported that
parenchymal accumulation of albumin, particularly
in astrocytes, induces downregulation of inward-
rectifying Kir4.1 potassium channels and impairs
gap junction coupling, leading to an increase in
extracellular potassium level, precipitating epilepti-
form activity.38,39 High extracellular potassium and
glutamate concentrations and severe hypoxia/anoxia
can also trigger spreading depolarization. When
spreading depolarization affects structures responsi-
ble for breathing control, it may worsen hypoxia,
thus generating a vicious circle resulting in shutdown
of cardiorespiratory centers and flattening of the
EEG.40 Therefore, functional dysregulation of the
neuronal, glial, and microvascular networks at
the BBB may be of relevance in the pathophysiology
of sudden death, and we suggest that this area needs
further investigation.

There are limitations of our study. The circum-
stances of life, death, and postmortem conditions in
humans often vary significantly between cases, in
contrast to studies in animal models in which premor-
tem and postmortem conditions can be controlled.
We used a number of SUDEP and control cases col-
lected over many years. Moreover, we also used tissue
from other centers around the United Kingdom. In
such studies, premortem and postmortem variations
are inevitable, for example, with respect to postmor-
tem intervals and tissue processing differences
between centers and over time. The cohort used in
the current study is not a systematically collected
population-based sample and therefore may not be
representative of all SUDEP. We had a limited num-
ber of controls in our study, especially epilepsy
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controls. Another potential limitation is the different
tissue sampling between cases in that sections of
medulla, hippocampus, and amygdala were not all
at identical levels. However, we used adjacent sections
stained with Luxol fast blue and cresyl violet to enable
proper orientation of each section, and we examined
only the sections in which each region of interest was
entirely present. Another constraint is that not all 3
brain regions were available from each patient, which
may have affected the comparison between the stud-
ied groups. We emphasize that our study was in-
tended to generate hypotheses and that further
work is needed. We examined a limited number of
antigens, which may not represent all aspects of
inflammation, BBB integrity, and hypoxic stress.
We could not use most “omics” techniques because
all material available in this study was fixed and
embedded without details on premortem and agonal
conditions. We are aware that use of omics techni-
ques may provide information for a larger number of
genes and gene products involved in mechanisms
underlying pathology, which cannot be obtained with
traditional techniques. However, cases of SUDEP
with brain tissue available for research are very lim-
ited, and we attempted to make the most of the lim-
ited resources available. Finally, we note that none of
our SUDEP cases were from acute monitoring units,
so the immediate preterminal period was not electro-
physiologically documented.

This study represents a starting point to explore
the neuropathology and cellular alterations associated
with SUDEP.We did not find any distinct pathogno-
monic brain processes to support activation of inflam-
matory, BBB impairment, or cell stress/hypoxia
pathways. However, further investigation of the role
of glioneuronal interactions and the BBB impairment
may be worthwhile.
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