Supplementary Information for

Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: the Importance of Crystallinity for Organic Avionics

G. M Paternò¹, V. Robbiano¹, K. J. Fraser¹, C. Frost², V. García Sakai² and F. Cacialli¹

¹London Centre for Nanotechnology, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

²ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK

Table of Contents:

Supplementary Figure S1 Survey spectra for P3HT and PBTTT pristine, irradiated and irradiated/annealed.

Supplementary Table ST1 XPS fitting results for pristine, irradiated and irradiated/annealed P3HT.

Supplementary Table ST2 XPS fitting results for pristine, irradiated and irradiated/annealed PBTTT.

Supplementary Figure S2 Non normalised UV-Vis absorption spectra for P3HT and PBTTT pristine, irradiated and irradiated/annealed.

Supplementary Figure S3 Full Raman spectrum for P3HT (a) and PBTTT (b).

Supplementary Figure S4 Fitting of the main in-plane ring modes of P3HT and PBTTT Raman spectra.

Supplementary Figure S5 XRD pattern for P3HT (pristine, irradiate and irr./ann.)

Supplementary Figure S6 OFETs characteristics for non-annealed P3HT and PBTTT devices (pristine, irradiated and irr./ann).

Supplementary Table ST3 OFETs characteristics for non-annealed P3HT and PBTTT devices (pristine, irradiated and irr./ann).

The mass concentrations for C (1s), O (1s) and S (2p) were calculated from the peak areas using Casa XPS software. The relative sensitivity factors (R.S.F.) used for C (1s), O (1s) and S (2p) were 1, 2.93 and 1.68, respectively. We can note a small increase of the oxygen content in both irradiated P3HT and PBTTT. However, such an increase is partially reverted by the further thermal annealing.

Supplementary Figure S1: Survey spectra for P3HT and PBTTT pristine, irradiated and irradiated/annealed.

Supplementary Table ST1: XPS fitting results for pristine, irradiated and irradiated/annealed P3HT.

РЗНТ	Pristine Peak position Mass conc.	Irradiated Peak position Mass conc.	Irradiated/Annealed Peak position Mass conc.
S (2p 3/2) neutral	163.34 eV	163.44 eV	163.52 eV
	60.88 %	42.14 %	39.65 %
S (2p 1/2) neutral	164.54 eV	164.64 eV	164.72 eV
	30.44 %	21.07 %	19.82 %
Extra component 1	166.16 eV	166.67 eV	166.06 eV
	8.68 %	14.34 %	17.46 %
Extra component 2		164.02 eV	164.06 eV
		22.35 %	23.07%

Supplementary Table ST2: XPS fitting results for pristine, irradiated and irradiated/annealed PBTTT.

PBTTT	Pristine Peak position Mass conc.	Irradiated Peak position Mass conc.	Irradiated/Annealed Peak position Mass conc.
S (2p 3/2) neutral	163.60 eV	163.70 eV	163.70 eV
	60.42 %	50.12 %	45.78 %
S (2p 1/2) neutral	164.80 eV	164.90 eV	164.90 eV
	30.21 %	25.06 %	22.89 %
Extra component 1	166.61 eV	167.50 eV	167.59 eV
	9.37 %	8.42 %	6.17%
Extra component 2		164.45 eV	164.34 eV
		16.40 %	25.16 %

For P3HT, the irradiation leads to a blue-shift, an increase of the sub-gap absorption and a bleaching of the absorption intensity. Interestingly, whereas the first two effects are exacerbated by the post-radiation annealing, we note that such thermal treatment permits a partial recovery of the intensity bleaching. Conversely, for PBTTT the post-irradiation annealing leads to a further bleaching of the intensity, although both the blue-shift and the sub-gap absorption are less evident than in P3HT.

Supplementary Figure S2 UV-Vis absorption spectra for P3HT and PBTTT pristine, irradiated and irradiated/annealed.

It is worth noting that irradiation and, to a larger extent, the post-irradiation annealing step lead to an increase in the intensity of the C-C inter-ring peak at 1210 cm⁻¹, the C-H bending coupled with the C-C inter-ring mode at 1180 cm⁻¹, the pure C-H bending mode at 1000 cm⁻¹, the C-C_{alkyl} stretching at 876 cm⁻¹ and the C-S-C ring deformation peak at 728 cm⁻¹. All those effects seem to be less pronounced for PBTTT.

Supplementary Figure S3: Full Raman spectrum for P3HT (a) and PBTTT (b).

Supplementary Figure S4

For P3HT, the spectrum of pristine P3HT can be fitted using three Lorentzians, centred at 1380 cm⁻¹, 1445 cm⁻¹ and 1455 cm⁻¹. After irradiation, we can observe the development of additional fitting components at 1350 cm⁻¹, 1420 cm⁻¹ and 1520 cm⁻¹ that keep growing upon further annealing. The last two modes have been ascribed to the C=C stretching mode in the quinoid form and C=C asymmetric stretching, and have been related to the presence of polaronic-like species in chemically doped poly (thiophenes) [ref. 39-41]. For PBTTT, we fitted the 1300-1600 cm⁻¹ region with five Lorentzians centred at 1340, 1393, 1418, 1463, and 1493 cm⁻¹. Upon irradiation and post-annealing, we note a strong broadening of the C-C intra-ring mode (1420 cm⁻¹) and the development of an additional fitting component at 1550 cm⁻¹. This can be explained in terms of decreased conformational order after irradiation. In addition, one can note an intensity redistribution between the inter-ring C=C (1418 cm⁻¹) and the intra-ring C=C (1493 cm⁻¹) modes, with an increase of the latter after irradiation and annealing.

Supplementary Figure S4: Fitting of the main in-plane ring modes of P3HT and PBTTT Raman spectra.

The XRD patterns for both P3HT and PBTTT films show no appreciable differences upon annealing and post-irradiation annealing. It is also worth noting the sharper and more intense <100> peak (lamellar stacking) observed in PBTTT, which indicates a higher crystallinity for this polymer.

Supplementary Figure S5: XRD pattern for P3HT (left) and PBTTT (right) for pristine, irradiated and irr./ann. films.

Supplementary Figure S6 and Supplementary Table ST3

The OFETs characteristics for as-cast films indicate a lower radiation tolerance if the films are not thermally annealed before neutron exposure. This suggests that the crystalline phase may have a prominent role in slowing down the neutron-induced damage. In addition the hole-mobility already increases after irradiation for both the polymers, suggesting that given the lower fraction of trapped radicals in the crystalline phase, the post-irradiation annealing is not necessary in as-cast films to access a high-doping regime.

Supplementary Figure S6: OFETs characteristics for P3HT (left) and PBTTT (right) films that were not thermally annealed before the irradiation process.

Supplementary Table ST3: Hole-mobility values for P3HT and PBTTT films that were not thermally annealed before the irradiation process.

	Mobility pristine (cm² V ⁻¹ s ⁻¹)	Mobility irradiated (cm² V ⁻¹ s ⁻¹)	Mobility irradiated & annealed (cm² V ⁻¹ s ⁻¹)
P3HT as-cast	0.0046(2)	0.0066(3)	0.0072(3)
PBTTT as-cast	0.015(6)	0.020(9)	0.025(8)