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Preclinical amyloid pathology biomarker positivity: effects on
tau pathology and neurodegeneration
K Höglund1,2,5, S Kern1,3,5, A Zettergren1,3, A Börjesson-Hansson1,3, H Zetterberg1,4, I Skoog1,3 and K Blennow1

Brain autopsy and biomarker studies indicate that the pathology of Alzheimer’s disease (AD) is initiated at least 10–20 years before
clinical symptoms. This provides a window of opportunity to initiate preventive treatment. However, this emphasizes the necessity
for biomarkers that identify individuals at risk for developing AD later in life. In this cross-sectional study, originating from three
epidemiologic studies in Sweden (n= 1428), the objective was to examine whether amyloid pathology, as determined by low
cerebrospinal fluid (CSF) concentration of the 42 amino acid form of β-amyloid (Aβ42), is associated with biomarker evidence of
other pathological changes in cognitively healthy elderly. A total of 129 patients were included and CSF levels of Aβ42, total tau, tau
phosphorylated at threonine 181 (p-tau), neurogranin, VILIP-1, VEGF, FABP3, Aβ40, neurofilament light, MBP, orexin A, BDNF and
YKL-40 were measured. Among these healthy elderly, 35.6% (N= 46) had CSF Aβ42 levels below 530 pg ml− 1. These individuals
displayed significantly higher CSF concentrations of t-tau (Po0.001), p-tau (181) (Po0.001), neurogranin (P= 0.009) and FABP3
(P= 0.044) compared with amyloid-negative individuals. Our study indicates that there is a subpopulation among healthy older
individuals who have amyloid pathology along with signs of ongoing neuronal and synaptic degeneration, as well as tangle
pathology. Previous studies have demonstrated that increase in CSF tau and p-tau is a specific sign of AD progression that occurs
downstream of the deposition of Aβ. On the basis of this, our data suggest that these subjects are at risk for developing AD. We also
confirm the association between APOE ε4 and amyloid pathology in healthy older individuals.
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INTRODUCTION
The pathological hallmarks of Alzheimer’s disease (AD), the most
common cause of dementia, are the aggregation and deposition
of β-amyloid (Aβ) peptides into plaques, hyperphosphorylation
and aggregation of tau protein with formation of tangles along
with atrophy due to neurodegeneration.1 Although still contro-
versial, biomarkers reflecting the accumulation of Aβ deposition in
the brain are believed to be the earliest detectable sign of AD in
healthy elderly2,3 and studies both in autosomal dominant AD and
late-onset AD suggest that tangle formation occurs after deposi-
tion of Aβ in brain.2,4 Three core cerebrospinal fluid (CSF)
biomarkers, reflecting the key characteristics of AD pathology,
are included in the diagnostic criteria.5 The presence of brain
amyloid pathology is reflected by a decrease in CSF Aβ42 levels,6,7

whereas high levels of tau correlate with greater intensity of
neuronal degeneration and high levels of phosphorylated tau
correlate with neurofibrillary tangle load in the brain.8

The concordance between amyloid PET images and CSF Aβ42 is
above 90%.9–11 Recent failures in clinical trials, where patients who
already have cognitive symptoms or dementia have been
included, suggest that we need to treat AD at the prodromal or
even preclinical phase of the disease. Brain autopsy studies, and
more recent biomarker studies, indicate that the pathology is

initiated at least 10–20 years before clinical symptoms.2,12–19 This
knowledge provides a window of opportunity to initiate treatment
to prevent the disease. However, this emphasizes the necessity for
biomarkers that identify individuals at risk for developing AD later
in life. Further, we need to gain knowledge on the development
and progression of concomitant pathology.
Although presence of amyloid pathology is part of the

diagnostic criteria,20 amyloid pathology is not specific for AD.
Plaque pathology may be present in individuals with Parkinson’s
disease21 in patients with both familial22 and iatrogenic23

Creutzfeldt–Jakob disease, and in cases with traumatic brain
injury.24 We also know that around 30% of healthy elderly
individuals have amyloid pathology.25–27 These data are cross-
sectional and longitudinal studies are scarce. However, one
longitudinal study indicates that around 20% of healthy elderly
with amyloid pathology remain cognitively healthy with a follow-
up of 8 years.28 In addition, other common dementias can overlap
with AD both in terms of symptoms and CSF profile, and mixed
pathologies are common.29 Genetic and in in vitro studies have
indicated that inflammation30 and synaptic function31,32 may be
linked to Aβ production, aggregation and clearance, as well as Aβ
toxicity. Previous biomarker studies support that CSF proteins may
reflect such mechanisms.33–36 The mechanistic and pathological
similarities across neurodegenerative disorders further highlight
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the need for both cross-sectional studies comparing individuals
with and without AD pathology and longitudinal studies starting
when individuals are in the preclinical stage.
Within the framework of the population-based H70-studies

in Gothenburg the aim of this study was to examine if
amyloid pathology, as determined by low CSF concentration
of Aβ42, is associated with biomarker evidence of other
pathological changes, such as neurodegeneration, inflammation
and lipid homeostasis, in cognitively healthy elderly. We have
analyzed several CSF biomarkers reflecting the core pathological
hallmarks of AD along with biomarkers reflecting the above-
suggested pathology. Healthy elderly individuals were classified
into those with (CSF Aβ42⩽ 530 pg ml− 1) and without (CSF
Aβ424530 pg ml− 1) amyloid plaque pathology.37

MATERIALS AND METHODS
Participants
This analysis originates from three epidemiologic studies in Gothenburg,
Sweden, the Prospective Population Study of Women (PPSW) and the
Gerontological and Geriatric Population Studies (H70), which have been
described previously,38–41 and the H85-study. The participants were
sampled from the Swedish Population Register on the basis of their birth
date and were born in 1914, 1918, 1922, 1923, 1924 and 1930. Both
persons living in private households and in residential care were included.
In the PPSW/H70 study, 1409 individuals were eligible in 2009–2010 and
857 agreed to participate (response rate 61%). Among these, 88 (10.3%)
consented to a lumbar puncture (LP). The H85 study is a population study
of 85-year olds born on specific dates in 1923–1924. There were 944
individuals eligible in 2008–2010, and 571 agreed to participate (response
rate 61%). Among these, 62 (10.9%) consented to an LP. Overall, among
the 150 with an LP, 16 were excluded due to dementia and 5 due to
incomplete biomarker information, leaving 129 for the present study.
These 129 participants are defined as cognitively healthy elderly as they do
not fulfill the criteria for dementia and they have no previous history of
memory complaints. Demographic data are shown in Table 1.
The studies were approved by the Regional Ethical Review Board in

Gothenburg, and informed consent was obtained from all participants
and/or their relatives in cases of dementia.

Study procedures
The clinical examination, performed at the inclusion of the population
study, was conducted at an outpatient department or in the participant’s
home and included comprehensive social, functional, physical, neuropsy-
chiatric and neuropsychological examinations, as well as close informant
interviews.

Neuropsychiatric examinations and interviews
Semistructured neuropsychiatric examinations were performed by trained
psychiatric research nurses. These examinations included ratings of
common symptoms and signs of dementia (for example, assessments of
memory, orientation, general knowledge, apraxia, visuospatial function,
understanding proverbs, following commands, naming ability and

language) and have been described in detail previously.42,43 Cognitive
function was also measured with the Mini Mental State Examination
(MMSE).44

The psychiatric nurses who performed the examinations were super-
vised and trained by psychiatrists. Inter-rater reliability between psychia-
trists and nurses was studied in 50 individuals who had dual ratings by
either psychiatric research nurses or psychiatrists. Inter-rater agreement for
the symptoms and signs used to diagnose dementia was between good
and excellent (kappa values between 0.74 and 1.00).45 Close informant
interviews were also performed. The interviews were semistructured and
comprised questions about changes in behavior and intellectual function,
psychiatric symptoms and activities of daily living, and, in cases of
dementia, age of onset and disease course.

Diagnoses
Dementia was diagnosed by geriatric psychiatrists according to the
Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R),46 based
on symptoms rated during the neuropsychiatric examinations and
information from the close informant interviews, as described
previously.42,43 Participants with dementia at baseline were excluded from
further analysis.

Genotyping
Blood samples were collected and the single-nucleotide polymorphisms
(SNPs) rs7412 and rs429358, in APOE (gene map locus 19q13.2) were
genotyped with KASPar PCR SNP genotyping system (LGC Genomics,
Hoddesdon, Herts, UK). Genotype data for these two SNPs were used to
unambiguously define ε2, ε3 and ε4 alleles.

CSF sampling and biomarker analyses
All CSF samples were collected by LP in the L3/L4 or the L4/L5 interspace in
the morning. The first 12 ml of CSF were collected in a polypropylene tube
and immediately transported to the local laboratory for centrifugation at
1800 g in 20 °C for 10 min. The supernatant was gently mixed to avoid
possible gradient effects, aliquoted in polypropylene tubes and stored at
− 70 °C.
The CSF total tau and tau phosphorylated at threonine 181 (p-tau) were

determined using a sandwich enzyme-linked immunosorbent assay (ELISA;
INNOTEST, Fujirebio, Ghent, Belgium) htau Ag and PHOSPHO_TAU (181P);
Innogenetics, as previously described.47,48 CSF Aβ42 was measured using a
sandwich ELISA (INNOTEST β-amyloid1-42), specifically constructed to
measure Aβ starting at amino acid 1 and ending at amino acid 42.49

Neurogranin and Aβ40 were measured on the Meso Scale Discovery (MSD)
platform using an internally developed assay50 or the V-PLEX (Meso Scale
Diagnostics, Rockland, MD, USA) Aβ Peptide Panel 1 (4G8) Kit, respectively.
CSF levels of neurofilament light (NFL) were measured using the ELISA-kit
from UmanDiagnostics (NF-light Umeå, Sweden).51 CSF levels of YKL-40
were determined using a sandwich ELISA (R&D Systems, Minneapolis, MN,
USA)36 and levels of myelin basic protein (MBP) and brain-derived neuritic
factor (BDNF) were analyzed by ELISA (Active MBP; Diagnostic Systems
Laboratories, Webster, TX, USA;52 BDNF Emax Immunoassay System,
Promega, Madison, WI, USA53), while the CSF levels of vascular endothelial
growth factor (VEGF) and heart type fatty acid binding protein 3 (FABP3)
were analyzed on the MSD platform (PLEX Plus Human VEGF Kit and
Human FABP3 Kit, Meso Scale Diagnostics). CSF orexin A was analyzed by
an in-house RIA.54 Finally, visinin-like protein 1 (VILIP-1) was analyzed
using a commercially available ELISA (VILIP-1 Human ELISA, BioVendor
R&D, Kassel, Germany) according to manufacture's instructions but
with minor modifications, the calibration curve ranged from 1.25-
0.02 ng ml− 1 and samples were analyzed in a twofold dilution. All assays
have been validated using CSF samples following a detailed protocol
including precision and accuracy. CSF samples in the present study
underwent a single freeze thaw cycle prior to analyses and all samples
were analyzed in duplicate with a coefficient of variability (CV) acceptance
criteria of o20%. Values had to pass quality control criteria, internal
control samples for approval of individual plates, and kit quality controls
within the expected range as defined by the Clinical Neurochemistry lab or
the manufacturer.

Classification
The 129 cognitively healthy elderly individuals were classified as having
brain amyloid pathology, defined as CSF Aβ42 levels (⩽530 pg ml− 1), or

Table 1. Demographic characteristics of study sample by levels of β-
Amyloid(42)

Total
group

⩽ 530 pg ml− 1

Aβ42
4530 pg ml− 1

Aβ42

Number (%) 129 (100) 43 (33.3) 86 (66.6)
Gender (M/F) 56/73 20/23 36/53
MMSE (mean) 28.4 (1.6) 28.6 (1.5) 28.3 (1.6)
Age (mean) 81.9 (3.4) 82.5 (3.6) 81.6 (3.3)
APOE4
carriera

34 (26%) 22 (65%) 12 (35%)

Abbreviations: Aβ42, amyloid β 42; F, female; M, male; MMSE, Mini Mental
State Examinations. aP-value o0.05 using Fisher’s Exact Test comparing
those with high Aβ42 (4530 pg ml− 1) and low CSF Aβ42 (⩽530 pg ml− 1).
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not (4530 pg ml− 1) where CSF Aβ42 was measured using ELISA
(INNOTEST β-amyloid1-42). This cutoff was previously defined in a
longitudinal study at the Sahlgrenska University Hospital Laboratory, to
classify all subjects according to presence of biochemical evidence of AD
pathology.37

Statistical analyses
Statistical analyses were performed using PASW Statistics for Windows
(Version 18.0.; SPSS Chicago, IL, USA). Associations between each
biomarker with age, gender, MMSE and APOE ε4 carrier status were tested
using multivariate linear regression models. Differences in biomarker levels
between the two categories of CSF Aβ42 were tested with Mann–Whitney
U-tests, while differences in the distribution of APOE ε4 carriers between
the two CSF Aβ42 categories were tested with Fisher’s exact test.
Interaction effects between age group and categories of CSF Aβ42 were
examined with general linear models. All tests were two-sided and
statistical significance was defined as P-values o0.05.

RESULTS
The subgroup without dementia who underwent LP had a
tendency to more often be men (43.4% vs 33.8%, P= 0.039), had
higher MMSE (range in LP subgroup 23–30, mean 28.4 vs mean
27.6; P= 0.003) and lower Brief Scale of Anxiety (BSA) score (mean
6.4 vs mean 7.7; P= 0.025) compared with those who did not
agree to LP. There was no difference in education, age at
examination or Montgomery–Asberg Depression Scale.
In this population-based sample, 36% of cognitively healthy

individuals were biomarker positive for amyloid pathology. They
had increased CSF levels of total tau (Po0.001), P-tau (181)
(Po0.001), FABP3 (P= 0.044) and neurogranin (P= 0.009), com-
pared with those who were biomarker negative for amyloid
pathology (Figures 1a–d, Table 2). Levels of total tau, p-tau and
neurogranin were significantly associated with levels of Aβ42
(Po0.001, Po0.001 and P= 0.005, respectively) where lower
levels of Aβ42 are linked to increased levels of the biomarker.
There was no difference in the CSF levels of NFL, YKL-40, MBP,
VILIP-1, BDNF, Aβ40, VEGF or orexin A between the two groups.
There was no association between the CSF biomarker levels and
either age, gender or MMSE.
APOE4 status was significantly associated with amyloid

pathology (higher levels of AB42 were seen in those without
allele 4, (Po0.001, Figure 2)) but no significant associations were
seen with any other biomarker. After controlling for the effect of
Aβ42 by stratifying by the cutoff value of 530 pg ml− 1 there were
still no apparent associations between APOE ε4 allele and the CSF
biomarkers.
Sixty-five percent of APOE ε4 carriers had CSF

Aβ42⩽ 530 pg ml− 1, whereas only 20% of the non-carriers had
CSF Aβ42⩽ 530 pg ml− 1. Among APOE ε4 non-carriers, those
biomarker positive for amyloid pathology had higher CSF levels of
total tau (Po0.001), p-tau (Po0.001), neurogranin (P= 0.005),
YKL-40 (P= 0.042), FABP3 (P= 0.005) and VILIP-1 (P= 0.006) than
those biomarker negative for plaque pathology (Table 3). Compar-
ing those with and without biomarker positivity for plaque
pathology among the APOE ε4 carriers only, CSF levels of Aβ40
were significantly different, with lower levels in the group
biomarker positive for plaque pathology.

DISCUSSION
We found that 36% of cognitively healthy individuals with a mean
age of 81.9 years had pathological CSF Aβ42, and that these
individuals more often had two other ongoing neuropathological
processes; tangle pathology, indicated by significantly increased
CSF levels of p-tau, and neurodegeneration, indicated by
significantly increased CSF levels of total tau (Figures 1a and b).
Previous studies have demonstrated that increase in CSF p-tau is a

specific sign of AD progression that occurs downstream of the
deposition of Aβ.37 On the basis of this, our data suggest that
these cognitively healthy older individuals are at risk for
developing AD. Ongoing neurodegeneration is further supported
by the significantly increased levels of neurogranin (Figure 1d),
previously shown to be a specific and novel biomarker for synaptic
degeneration in AD and MCI.33,55

In further support for an ongoing neuronal degeneration
associated with amyloid pathology, is the finding of increased
CSF levels of the heart type FABP (FABP3; Figure 1c). FABP3 is a
cytoplasmic protein abundantly expressed in tissues with an
active fatty acid metabolism, such as heart, brain and liver.56

FABPs are considered as markers for neuronal damage as levels
are increased after traumatic brain injury and Creutzfeldt–Jakob
disease.57 Previous studies report that CSF levels of FABP3 have
a diagnostic and prognostic value for AD.58–61 In agreement
with the present study, a recent study also found that CSF FABP3
levels (reflecting neurodegeneration) are influenced by amyloid
pathology.62

We further showed a strong association between APOE ε4 and
amyloid pathology (Figure 2). Thus, almost 70% of APOE ε4 carriers
displayed amyloid pathology. This is in agreement with previous
reports on the role of APOE ε4 in aggregation and clearance of
Aβ,63,64 as well as with previous biomarker studies in healthy
elderly.65 Several previous studies65,66 found a clear, allele-
dependent, association between APOE ε4 and levels of CSF Aβ42
in older people. A recent study showed that amyloid PET-positive
individuals, regardless of APOE ε4 status, have equally low CSF
Aβ42, and PET-negative cases equally high CSF Aβ42, indicating
that the lowering of CSF Aβ42 in APOE ε4 carriers is due to cortical
Aβ deposition.67 No association between APOE ε4 and CSF total
tau was found in agreement with previous studies.68 Further, no
relationship between APOE ε4 status and any of the other CSF
biomarkers could be demonstrated.
There was no difference in any CSF biomarkers between those

with and without plaque pathology within the APOE ε4 carrier
group, whereas CSF levels of total tau, p-tau, neurogranin, FABP3,
VILIP-1 and YKL-40 were increased in those with plaque pathology
in the APOE ε4 non-carrier group. These data indicate that amyloid
pathology alone is driving concomitant pathology represented by
neurodegeneration (VILIP-1, total tau and FABP3), synaptic
degeneration (neurogranin), tangle pathology (p-tau) and inflam-
mation (YKL-40), independently of the APOE ε4 carrier status.
Longitudinal data are needed to elucidate whether these
individuals have an even higher risk of developing AD, and
whether the potential disease progression rate is different.
Individuals with no amyloid pathology and no APOE ε4 allele

seem to present few signs of ongoing pathological processes
indicating that they are at very low risk of developing AD or other
neurodegenerative disorders. Long-term follow-up studies are of
great importance to confirm this hypothesis. A recent study with
longitudinal follow-up69 indicates that AD biomarker patterns are
detected already during early middle age and that these are
associated with amyloid PET positivity and cognitive decline,
supporting that there is a long preclinical period where
concomitant pathology is present. Although the present study is
cross-sectional, our data support this conclusion.
The cutoff for classification into amyloid-positive and -negative

has previously been defined in a longitudinal study at the
Sahlgrenska hospital.37 Several studies have confirmed that there
is a direct correlation between CSF Aβ42 levels and amyloid
plaque load measured by PET in patients with AD and MCI.
However, less is known about the correlation between these two
readouts in healthy elderly and absence of amyloid PET in the
present study is a potential weakness. However, a recent study by
Sutphen et al.69 found an association between CSF Aβ42 and
amyloid PET in middle-aged individuals. It is likely that this is true
also in healthy older persons. It has also been suggested that CSF
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Figure 1. Box plots of CSF biomarkers (a) total tau (Po0.001), (b) p-tau (Po0.001), (c) FABP3 (p0 0.044) and (d) neurogranin (P= 0.009)
Neurogranin, comparing those with low (o 530 pg ml− 1) and high (4 530 pg ml− 1) CSF Aβ42 (42 amino acid form of β-amyloid).
Aβ42, amyloid β 42; CSF, cerebrospinal fluid; FABP3, fatty acid binding protein-3; p-tau, tau phosphorylated at 181.

Table 2. Mean biomarker values in CSF by levels of Amyloid β (42)

CSF biomarker
(pg ml− 1)

Aβ42⩽ 530 pg ml− 1

(n= 43)
Aβ424530 pg ml− 1

(n= 86)

p-Tau 83.6 (25.5) 65.2 (19.7)*
Total tau 609.1(230.4) 428.2 (163.6)*
NFL 1 847. (987.2) 1940 (1353)
Neurogranin 889.3 (414.5) 686.1 (322.8)*
VILIP-1 0.13 (0.06) 0.12 (0.05)
YKL-40 303.3 (92.2) 274.4 (89.2)
FABP3 7.9 (2.8) 7.2 (2.7)*
BDNF 12 593 (3876) 12 824 (4175 )
VEGF 1.8 (0.5) 1.9 (0.5)
MBP 1.8 (0.5) 1.7 (0.5)
Orexin A 691.1 (159.4) 724.1 (189.4)

Abbreviations: Aβ42, amyloid β (42); BDNF, brain-derived neurotrophic factor;
CSF, cerebrospinal fluid; FABP3, fatty acid binding protein-3; MBP, myelin basic
protein; NFL, neurofilament light; p-tau, tau phosphorylated at 181;
VEGF, vascular endothelial growth factor; VILIP-1, visinin-like protein 1; YKL-40,
also called chitinase 3-like 1. Values are provided as mean (s.d.) in pg ml−1 for
all CSF protein biomarkers except for VILIP-1 where levels are presented as
ng ml−1. *P-value o0.05 using Mann Whitney U-Test comparing those with
high Aβ42 (4530 pg/ml) and low CSF Aβ42 (⩽ 530 pg ml−1).

Figure 2. Box plots of CSF Aβ42 comparing APOE ε4 carriers and
APOE ε4 non-carriers. There was a clear association between APOE
ε4 status and CSF Aβ42 (Po0.001). CSF, cerebrospinal fluid.
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Aβ42 is an earlier indicator of Aβ aggregation compared with
PET.2,69 Our finding that 36% of healthy older persons in the
population had amyloid pathology is consistent with previous
findings. It is even slightly lower compared with a study where
65% of healthy elderly above 80 years were amyloid PET
positive.70 The latter study support a gradual increase in number
of PET-positive healthy elderly with age, 10% in the age between
50–59 years and 18% in the age between 60–69 years.
There was no increase in CSF levels of NFL, a suggested marker

for subcortical pathology, among those with amyloid pathology.
Previous studies indicate a positive correlation between CSF NFL
and total tau in AD as well as an association between subcortical
axonal degeneration and the three core biomarkers.71 However,
these individuals were under clinical investigation for AD in a
memory clinic, indicating that cognitive symptoms were present,
which is not the case in the present study. One may speculate that
changes in NFL may be a later event; however, this needs to be
confirmed in a longitudinal follow-up study.
Among the strengths of this study are the representative

population-based sample, the comprehensive examinations con-
ducted by trained psychiatric nurses and the exclusion of
participants with dementia. However, some limitations need to
be addressed. First, the overall number of participants is relatively
low. We therefore did not have the statistical power to carry out a
stratified analysis regarding heterozygous and homozygous APOE
ε4 status. Second, only ~ 15% consented to LP. This group had
higher global cognitive function and is probably healthier than the
general population of the same age. Finally, this is a population
study focusing on Scandinavian participants aged 79–95 years at
baseline, and results cannot be generalized to clinical samples to
younger populations or to other ethnic groups.
Our study indicates that there is a subpopulation among

healthy older individuals that have amyloid pathology have
abnormal levels of the CSF biomarkers tau, p-tau, FABP3 and
neurogranin. We also confirm the association between APOE ε4
and amyloid pathology in healthy elderly individuals. These
findings support the notion that preclinical amyloid pathology is
associated with biomarker evidence of neurodegeneration, tau
pathology and synaptic dysfunction already in cognitively normal
elderly.
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YKL-40 309.1 (65.2) 272.9 (92.9) 299.9 (109.1) 283.7 (64.1)
VILIP-1 0.15 (0.06) 0.12 (0.05) 0.12 (0.06) 0.14 (0.05)
neurogranin 954.1 (349.3) 688.6 (331.1) 830.1 (480) 670.9 (280.3)

Abbreviations: CSF, cerebrospinal fluid; FABP3, fatty acid binding protein-3; p-tau, tau phosphorylated at 181; VILIP-1, visinin-like protein 1; YKL-40, also called
chitinase 3-like 1. Values are provided as mean (s.d.) in pg ml− 1 for all CSF protein biomarkers except for YKL-40, VILIP-1 and FABP3, which are presented as
ng ml−1. Among APOE ε4 non-carriers, significantly higher CSF levels of total tau (Po0.001), p-tau (Po0.001), neurogranin (P= 0.005), YKL-40 (P= 0.042),
FABP3 (P= 0.005) and VILIP-1 (P= 0.006) were found in those biomarker positive for amyloid pathology.
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