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The aim of this study was to assess the agreement between data on cerebral amyloidosis, derived using Pittsburgh compound B

positron emission tomography and (i) multi-laboratory INNOTEST enzyme linked immunosorbent assay derived cerebrospinal

fluid concentrations of amyloid-b42; (ii) centrally measured cerebrospinal fluid amyloid-b42 using a Meso Scale Discovery enzyme

linked immunosorbent assay; and (iii) cerebrospinal fluid amyloid-b42 centrally measured using an antibody-independent mass

spectrometry-based reference method. Moreover, we examined the hypothesis that discordance between amyloid biomarker

measurements may be due to interindividual differences in total amyloid-b production, by using the ratio of amyloid-b42 to

amyloid-b40. Our study population consisted of 243 subjects from seven centres belonging to the Biomarkers for Alzheimer’s and

Parkinson’s Disease Initiative, and included subjects with normal cognition and patients with mild cognitive impairment,

Alzheimer’s disease dementia, frontotemporal dementia, and vascular dementia. All had Pittsburgh compound B positron emis-

sion tomography data, cerebrospinal fluid INNOTEST amyloid-b42 values, and cerebrospinal fluid samples available for

reanalysis. Cerebrospinal fluid samples were reanalysed (amyloid-b42 and amyloid-b40) using Meso Scale Discovery electroche-

miluminescence enzyme linked immunosorbent assay technology, and a novel, antibody-independent, mass spectrometry refer-

ence method. Pittsburgh compound B standardized uptake value ratio results were scaled using the Centiloid method.

Concordance between Meso Scale Discovery/mass spectrometry reference measurement procedure findings and Pittsburgh com-

pound B was high in subjects with mild cognitive impairment and Alzheimer’s disease, while more variable results were observed

for cognitively normal and non-Alzheimer’s disease groups. Agreement between Pittsburgh compound B classification and Meso

Scale Discovery/mass spectrometry reference measurement procedure findings was further improved when using amyloid-b42/40.

Agreement between Pittsburgh compound B visual ratings and Centiloids was near complete. Despite improved agreement

between Pittsburgh compound B and centrally analysed cerebrospinal fluid, a minority of subjects showed discordant findings.

While future studies are needed, our results suggest that amyloid biomarker results may not be interchangeable in some

individuals.
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Introduction
Current thinking ascribes the pathogenesis of Alzheimer’s

disease to the aggregation of amyloid-b in the brain.

Specifically, the accumulation of various species of aggre-

gated amyloid-b is believed to set in motion tau pathology

and neurodegeneration, leading to cognitive impairment

and, ultimately, dementia (Jack et al., 2013). Brain amyl-

oid-b accumulation can be identified in vivo using CSF

levels of the 42-amino acid form of amyloid-b (amyloid-

b42), and PET with fibrillar amyloid-b specific radiotracers,

such as the carbon-11 labelled thioflavin-T derivative,

Pittsburgh compound B (PiB) (Blennow et al., 2015).

While brain retention of amyloid tracers such as PiB is

elevated in Alzheimer’s disease, CSF levels of amyloid-b42

are decreased, an observation hypothesized to reflect the

sequestration of brain soluble amyloid-b into insoluble pla-

ques, with a resultant reduction in the amount of amyloid-

b42 available for clearance into the CSF (Kawarabayashi

et al., 2001; DeMattos et al., 2002). This inverse relation-

ship has been confirmed by many groups across cognitively

normal, mild cognitive impairment (MCI) and Alzheimer’s

disease subjects, leading to the view that these biomarkers

are interchangeable in defining ‘amyloid-positivity’ (Fagan,

2015). Though this inverse relationship has generally been

observed between both measures, a subset of cases shows

discordant results, with either abnormal CSF amyloid-b42

but normal amyloid PET, or normal CSF amyloid-b42 but

abnormal amyloid PET (Forsberg et al., 2008; Jagust et al.,

2009; Degerman Gunnarsson et al., 2010; Landau et al.,

2013; Palmqvist et al., 2014; Zwan et al., 2014; Mattsson

et al., 2015). While discordance in most cases is due to

abnormal CSF amyloid-b42 in subjects with normal amyl-

oid PET, isolated PET positivity has been reported in both

MCI and Alzheimer’s disease (Koivunen et al., 2008;

Forsberg et al., 2010; Landau et al., 2013; Zwan et al.,

2014; Leuzy et al., 2015; Mattsson et al., 2015;

Palmqvist et al., 2016).

With the exception of a recent European multicentre

study (Zwan et al., 2016), however, large-scale studies ad-

dressing agreement between amyloid PET and CSF amyl-

oid-b42 have to date been conducted using cohorts

evaluated according to standardized clinical and biomarker

assessment protocols (Landau et al., 2013; Mattsson et al.,

2015; Palmqvist et al., 2016). In addition, there are no

studies comparing the agreement between amyloid PET

and CSF amyloid-b42 concentrations obtained by the

novel antibody-free mass spectrometry (MS)-based refer-

ence measurement procedure (RMP) (Leinenbach et al.,

2014). Moreover, there have as yet been no studies imple-

menting the Centiloid method, a recently proposed stand-

ardization approach that aims to facilitate cross-centre

comparison/combination of amyloid PET outcome data

using a scaling procedure (Klunk et al., 2015). The aim

of the present study was thus to assess agreement between

CSF amyloid-b42 and PiB PET in a mixed memory clinic

sample drawn from different academic European research

centres, with patients assessed according to local clinical

routines and imaged using differing acquisition protocols.

Given the established between-centre variability in enzyme-

linked immunosorbent assay (ELISA)-derived CSF amyloid-

b42 values (Wiltfang et al., 2007; Bjerke et al., 2010;

Andreasson et al., 2012; Mattsson et al., 2013), we like-

wise aimed to determine whether concordance rates would
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be affected by centralized reanalysis of CSF using

Meso Scale Discovery ELISA technology (MSD) and an

MS-based candidate RMP (Leinenbach et al., 2014).

Finally, we sought to examine the hypothesis that discord-

ance between amyloid biomarker results may be due to

interindividual differences in total amyloid-b production

(Wiltfang et al., 2007; Lewczuk et al., 2015), by adjusting

MSD and MS-RMP determined amyloid-b42 levels, for

those of amyloid-b40.

Materials and methods

Study population

Our study population consisted of 243 subjects for whom PiB
PET data and CSF data and samples were available, collected
across seven European academic centres belonging to the
Biomarkers for Alzheimer’s and Parkinson’s Disease
(BIOMARKAPD) initiative. Participating sites included the
Hospital de Sant Pau, Barcelona, Spain (n = 24); Coimbra
University Hospital, Coimbra, Portugal (n = 22); Danish
Dementia Research Centre, Copenhagen, Denmark (n = 31);
University of Lisbon, Lisbon, Portugal (n = 23); Karolinska
Institutet, Stockholm, Sweden (n = 32); Turku University
Hospital, Turku, Finland (n = 87); and the Ulm University
Hospital, Ulm, Germany (n = 24). Patients had been referred
for cognitive complaints and assessed according to standard
local clinical routines. All diagnoses were made in a multidis-
ciplinary team setting using a consensus-based approach.

Patients with Alzheimer’s disease (n = 122) fulfilled the 1984
National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) criteria
for probable Alzheimer’s disease dementia (McKhann et al.,
2011), with MCI (n = 81) diagnosed according to the
Petersen criteria (Petersen et al., 1999). Other diagnoses were
made according to the Neary criteria for frontotemporal de-
mentia (FTD; n = 20), including behavioural, semantic, and
progressive non-fluent variants (Neary et al., 1998), and the
National Institute of Neurological Disorders and Stroke-
Association Internationale pour la Recherche et
l’Enseignement en Neurosciences (NINDS-AIREN) criteria for
vascular dementia (VaD; n = 7) (Román et al., 1993).

In addition, 13 with normal cognition were recruited from
relatives and carers of patients. Inclusion criteria were: the
absence of memory or other cognitive complaints; independ-
ence in basic and instrumental activities of daily living; and no
active neurological or psychiatric disease. All subjects provided
written informed consent to participate in the investigation,
which was conducted according to the Declaration of
Helsinki and subsequent revisions. Ethical approval was ob-
tained from local regional ethics committees.

Apolipoprotein E genotype

Apolipoprotein E (APOE) genotyping was performed in a
subset of subjects (n = 106; four cognitively normal, 44 MCI,
52 Alzheimer’s disease, six FTD) via polymerase chain reaction
(PCR) of genomic DNA extracted from EDTA-anticoagulated

blood. Subjects were classified as e4 allele carriers or non-
carriers.

Local CSF amyloid-b42 and tau
measurements

All centres used a similar protocol for CSF collection and pro-
cessing. CSF samples were collected by lumbar puncture, be-
tween 8 am and 3 pm. A total of 10 ml was drawn, and stored
in polypropylene tubes. After removal of the first 0.5 ml, sam-
ples were centrifuged at 1500g (3000–4000 rpm) for 10 min at
+ 4�C. Samples were then stored at �80�C in 1 ml portions
pending biochemical analysis, without being thawed or re-
frozen. Amyloid-b42, total tau, and phosphorylated tau were
measured using commercially available sandwich ELISAs
(INNOTEST, Fujirebio-Europe), according to kit inserts.

Centralized CSF reanalysis for
amyloid-b
All CSF samples were those remaining from the clinical routine
at participating centres. Samples were stored on dry ice and
sent via express mail to the Clinical Neurochemistry
Laboratory, Gothenburg University, Mölndal, Sweden. Given
the low volume of CSF available for reanalysis per centre
(�500 ml), MSD was selected over the INNOTEST platform,
given its lower sample volume requirement. MSD electroche-
miluminescence analyses (amyloid-b42 and amyloid-b40) were
performed according to the manufacturer’s protocol. For cali-
bration and sample preparation for MS-RMP, native (un-
labelled) and 15N uniformly labelled amyloid-b40 and
amyloid-b42 and 13C uniformly labelled amyloid-b42

(rPeptide) were dissolved in 20% acetonitrile and 1% ammo-
nium hydroxide (NH4OH) to a concentration of 50 mg/ml.
Aliquots were stored at �80�C. Artificial CSF was prepared
as described elsewhere (Dillen et al., 2011). Calibration sam-
ples for amyloid-b42 were prepared in human CSF as previ-
ously described (Leinenbach et al., 2014). For amyloid-b40,
artificial CSF was spiked to a final concentration of 1.5, 5,
10, 20, 30 and 40 ng/ml native amyloid-b40 and a constant
concentration of 15N-amyloid-b40 at 1600 pg/ml as internal
standard. Unknown samples (180 ml) were spiked with 20 ml
internal standard to a final concentration of 1600 pg/ml 13C-
amyloid-b42 and 15N-amyloid-b40. Solid phase extraction
(SPE), liquid chromatography, MS analysis and data process-
ing were conducted as previously described (Leinenbach et al.,
2014).

Determination of CSF amyloid-b
cut-offs

Local amyloid-b42 values (pooled) were classified as positive
(abnormal) or negative (normal) using an optimized cut-off of
557 pg/ml, established in a recent study using a large cohort of
BIOMARKAPD subjects (Zwan et al., 2016). Unbiased cut-
offs for MSD- and MS-RMP-derived amyloid-b42 and amyl-
oid-b42/40 ratios were determined by mixture modelling
(Benaglia et al., 2009), implemented in R (v.3.2.3, R
Foundation for Statistical Computing, Vienna, Austria, 2015).

2542 | BRAIN 2016: 139; 2540–2553 A. Leuzy et al.



Pittsburgh compound B-PET imaging

PiB was synthesized using a previously described method at the
individual centres according to good manufacturing practice
requirements (Mathis et al., 2003; Klunk et al., 2004). PiB-
PET acquisition protocols varied across sites, with late sum-
mation images created according to local clinical practice:
Barcelona, four 5-min frames, 50- to 70-min post-injection
(50- to 70-min summation); Coimbra, Lisbon, Stockholm,
60-min dynamic acquisition (40- to 60-min summation);
Copenhagen, 30-min dynamic acquisition, 40-min post-
injection (40- to 70-min summation); Turku, 30-min dynamic
acquisition 60 min post-injection (60- to 90-min summation),
and Ulm, four 5-min frames, 40- to 60-min post-injection (40-
to 60-min summation). PiB summation images were rated lo-
cally by nuclear medicine physicians as either positive (binding
in more than one cortical region; abnormal) or negative (pre-
dominantly white matter binding; normal), blinded to CSF
results.

Pittsburgh compound B-PET image
analysis

PiB summation images (40–60, 40–70, 50–70, and 60–90 min)
were first non-linearly spatially normalized to a population-
based PiB template (Nordberg et al., 2013), using the normal-
ize function in SPM8 (Functional Imaging Laboratory,
Wellcome Department of Imaging Neuroscience, UCL,
London, UK). Spatially normalized images were then
resampled using a 23-region grey matter atlas, created in par-
allel to the PiB template (Nordberg et al., 2013). Standardized
uptake value ratio (SUVr) images were then calculated by nor-
malizing PiB uptake within frontal, temporal, parietal, occipi-
tal, parahippocampal, anterior and posterior cingulate regions
to mean cerebellar grey matter uptake.

Owing to between-centre variability in PiB scanning win-
dows, SUVr data were standardized using a recent method
that allows for linear scaling of amyloid PET outcome data
to a 100-point scale (Klunk et al., 2015), the units of which
have been termed ‘Centiloids’. After downloading de-identified
PiB and MRI data from the Global Alzheimer’s Association
Information Network website (GAAIN; http://www.gaain.
org) for 34 amyloid-negative young controls (YC-0) and 45
amyloid-positive Alzheimer’s disease subjects (AD-100), we
confirmed the validity of our analysis pipeline via replication
of the Level 1 analysis (linear correlation between down-
loaded/recalculated PiB Centiloid values: slope of 0.99, inter-
cept of 1.03, and R2 of 0.99; Fig. 1) (Klunk et al., 2015). As a
result of having scanning intervals up to 90 min, we were re-
stricted to the subset of subjects with PET data over this time
interval (0–90 min; 16 YC-0 and 40 AD-100) in the Level 2
calibration of our non-standard approach. Following exclusion
of scans where there had been difficulty with subject position-
ing in the scan field, the final sample used to derive slope and
intercept parameters for calculation of ‘PiB calculated’ SUVr
values (PiB-CalcSUVr), were 11 for YC-0 and 35 for AD-100.
After comparing SUVr values obtained using both standard
(50–70 min, global cortical target region and whole cerebellum
reference volumes of interest) and non-standard approaches
via linear regression (PiBUNITIND: R2 between 0.96 and
0.97), PiB-CalcSUVr data for each of the four time windows

was converted into Centiloid values (PiBCentiloidstd YC-0: SD
between 6.62 and 25.4, relative variance between 0.26 and
5.17; PiBCentiloidstd AD-100: SD between 21.31 and 22.95,
relative variance between 1 and 1.08), using the mean SUVr
of the 34 YC-0 and 45 AD-100 subjects.

To set a threshold for PiB positivity using Centiloids, we
adopted a composite cortical SUVr cut-off of 1.41, represent-
ing the upper 95% confidence limit from a previously charac-
terized population of normally distributed healthy controls for
whom PiB data have been acquired 40–60 min after injection
(Nordberg et al., 2013). Using 40–60-min slope and intercept
parameters, this cut-off was converted to Centiloid units,
giving a cut-off of 34. This value was then used to subdivide
subjects into PiB + (434) and PiB� (434).

Statistical analysis

Statistical analyses were performed with R, v.3.2.3. Between-
group comparisons were done using Kruskal-Wallis ANOVA
for continuous values and chi-square (sex, education) or
Fisher’s exact tests (APOE) for categorical values. Post hoc
Mann Whitney U-tests were performed where appropriate.
These analyses were corrected for multiple comparisons using
false discovery rate (FDR). The ratio of amyloid-b42 to amyl-
oid-b40 (MSD and MS-RMP) was calculated according to a
previously published formula: [(amyloid-b42) / (amyloid-
b40) � 10] (Hansson et al., 2007). Linear regression analyses
were performed to assess the relationship between values from
the different CSF analytical platforms, as well as between pub-
lished Centiloid values and those calculated at our site.

Concordance between PiB PET (visual, Centiloid) and CSF
(amyloid-b42, amyloid-b42/40) was defined as the proportion of
subjects positive or negative for both biomarkers (i.e. concord-
ant positive, PiB + /CSF + , or concordant negative, PiB�/
CSF�). Discordance between PiB and CSF was defined as
the proportion of individuals with only one abnormal bio-
marker (i.e. discordant with PiB positivity, PiB + /CSF�, or

Figure 1 Linear correlation plot showing the relationship

between original/recalculated PiB Centiloids. Original

(Pittsburgh) and recalculated (Stockholm) PiB Centiloids are shown

on the ordinate and abscissa, respectively (YC-0, n = 34; AD-100,

n = 45).

Association between PiB PET and CSF Ab peptides BRAIN 2016: 139; 2540–2553 | 2543

http://www.gaain.org
http://www.gaain.org


discordant with CSF positivity, PiB�/CSF + ). Agreement be-
tween visual and Centiloid based classification was assessed
using percentage agreement and Fleiss k.

Results

Participant characteristics and CSF
mixture modelling cut-offs

Subject characteristics according to diagnostic group are

presented in Table 1. Groups did not differ in terms of

age, sex, education, or in the period between CSF and

PiB PET assessments. As expected, MMSE scores were

lower in patient groups, relative to cognitively normal sub-

jects (MCI, Alzheimer’s disease, FTD, P5 0.001; VaD,

P = 0.01), and differed between patient groups

(MCI4Alzheimer’s disease and FTD, P5 0.001). No sig-

nificant differences in the prevalence of the APOE e4 allele

were found between groups. Levels of total tau were higher

in Alzheimer’s disease with respect to cognitively normal

subjects (P5 0.001), FTD and VaD (P50.01). Compared

to cognitively normal subjects, phosphorylated tau levels

were higher in MCI and Alzheimer’s disease (P5 0.01

and 0.001, respectively) and, relative to MCI, higher in

Alzheimer’s disease (P50.001). Phosphorylated tau was

also found to be higher in Alzheimer’s disease, compared

to FTD and VaD (P5 0.001). The unbiased cut points to

identify an abnormal concentration of amyloid-b in CSF

were 5515 pg/ml and 0.72 (MSD amyloid-b42 and amyl-

oid-b42/40, respectively) and 5896 pg/ml and 0.76 (MS-

RMP amyloid-b42 and amyloid-b42/40, respectively).

Pittsburgh compound B PET findings

The proportion of PiB scans visually rated as positive was

greatest in Alzheimer’s disease (93%), followed by MCI

(62%), FTD (15%), cognitively normal (8%), and VaD

(0%). Global Centiloid was higher in patient groups in

comparison to cognitively normal (MCI, Alzheimer’s dis-

ease, P5 0.001), in Alzheimer’s disease, FTD, and VaD,

in comparison to MCI (P5 0.001, 0.001, 0.01, respect-

ively) and in Alzheimer’s disease, relative to FTD and

VaD (P5 0.001). No difference was found between FTD

and VaD.

CSF amyloid-b findings

Locally measured INNOTEST and reanalysed CSF levels

(Table 2) were lower in patients, relative to controls

(P5 0.05), with levels in Alzheimer’s disease lower than

those in MCI (P5 0.001). Using MSD and MS-RMP,

amyloid-b42 concentrations were lower in MCI (P5 0.05)

and Alzheimer’s disease (P5 0.001), with respect to cogni-

tively normal subjects. Further, amyloid-b42 values were

lower in Alzheimer’s disease CSF, compared to MCI

(P5 0.001), FTD, and VaD (P5 0.01). Findings using

the ratio of amyloid-b42 to amyloid-b40 were in agreement

with those for amyloid-b42: cognitively normal versus MCI

(P5 0.001), MCI versus Alzheimer’s disease (P5 0.001),

Alzheimer’s disease versus FTD (P5 0.001) and VaD

(P5 0.01). No between-group differences were found for

amyloid-b40.

Relative to INNOTEST, amyloid-b42 concentrations were

lower using MSD, and higher using MS-RMP; this pattern

Table 1 Demographic, clinical and biomarker characteristics according to diagnostic group

CN MCI AD FTD VaD

(n = 13) (n = 81) (n = 122) (n = 20) (n = 7)

Age, years 67 (69, 60) 64 (70, 58) 65 (72, 59) 64 (70, 60) 61 (74, 57)

Sex, M: F (% F) 6: 7 (54%) 37: 44 (54%) 50: 72 (59%) 9: 11 (55%) 3: 4 (57%)

Education, 1–4 3 (4, 2.8) 3 (4, 2) 3 (3, 2) 2 (3, 2) 2 (3, 1.5)

MMSE, points 29 (30, 28) 27 (28, 26) 23 (26, 20) 23 (27, 20) 26 (27.5, 22.5)

APOE "4, 5 1 allele† 4 (0%) 25 (57%) 29 (56%) 2 (33%) N/A

INNOTEST Ab42, pg/ml 843 (900, 732) 535 (698, 409) 413 (530, 308) 641 (726, 433) 491 (675.5, 386.5)

INNOTEST Ab42 positive 1 (8%) 46 (57%) 96 (79%) 10 (50%) 5 (71%)

INNOTEST T-tau, pg/mla 252 (318, 204) 313 (520, 210) 488 (772, 326) 307 (409, 193) 261 (306, 219)

INNOTEST P-tau, pg/mlb 43 (58, 33) 59 (77, 43) 74 (107, 57) 43 (64, 31) 41 (48, 28)

CSF-PiB, months 2.63 (7.05, 1.55) 3.93 (8.30, 1.77) 2.43 (5.14, 0.74) 2.03 (3.87, 1.09) 3.47 (5.20, 2.93)

PiB positive (Visual) 1 (8%) 50 (62%) 114 (93%) 3 (15%) 0 (0%)

PiB, SUVr 1.26 (1.32, 1.21) 1.54 (1.87, 1.24) 1.83 (2.05, 1.67) 1.18 (1.25, 1.09) 1.25 (1.27, 1.11)

PiB, Centiloid 15.1 (20.8, 8.3) 47.5 (87.6, 10.9) 84.1 (110.8, 63.1) 4.6 (13.8, �5.9) 12.8 (14.7, -3.9)

PiB positive (Centiloid) 1 (8%) 47 (58%) 112 (92%) 3 (15%) 0 (0%)

Values are reported as median (quartile3, quartile 1), or as n (%). PiB SUVr and Centiloid refer to global cortical composite.

Ab42 = amyloid-b42; AD = Alzheimer’s disease; APOE "4 = "4 allele of apolipoprotein E; CN = cognitively normal older individuals; MMSE = Mini-Mental State Examination;

N/A = not applicable; P-tau = tau hyperphosphorylated at threonine 181: T-tau = total tau.

Owing to between country differences, a 4-point scale was used for educational level: 1 = basic schooling, 2 = professional training, 3 = college education, 4 = university degree.
aData missing for nine cognitively normal, 37 MCI, 70 Alzheimer’s disease, 14 FTD, and seven VaD subjects.
bData missing for three MCI, three Alzheimer’s disease, one FTD, and one VaD subject.
cData missing for eight MCI, 16 Alzheimer’s disease, and three FTD subjects.

2544 | BRAIN 2016: 139; 2540–2553 A. Leuzy et al.



held across all groups, save for VaD subjects, where the

inverse was found. For all subjects, however, MS-RMP

amyloid-b40 levels were higher than those for MSD. Only

minor differences were seen between platforms when using

the ratio of amyloid-b42 to amyloid-b40. The correlation

between local and centralized CSF measurements was mod-

erate (INNOTEST amyloid-b42 and amyloid-b42 from MSD

and MS-RMP: Spearman’s r = 0.74, P5 0.001; Spearman’s

r = 0.74, P5 0.001, Fig. 2A and B, respectively), but

high between the new, centralized measurements (MSD

and MS-RMP): (amyloid-b42, Spearman’s r = 0.93,

P50.001, Fig. 2C; amyloid-b42/40, Spearman’s r = 0.91,

P50.001, Fig. 2D).

Agreement between visual and
Centiloid-based Pittsburgh com-
pound B classification

Across groups, agreement between visual and Centiloid

based PiB ratings was 97% (235 of 243; Cohen

k = 0.92). Of the eight instances of disagreement, six

(75%) were rated as visually positive, Centiloid negative

(four MCI, two Alzheimer’s disease), and two as visually

negative, Centiloid positive (one cognitively normal, one

MCI). While discordance rates in FTD and VaD between

visual assessment and Centiloid did not differ, rates in MCI

were consistently higher when using Centiloid, with mixed

findings in cognitively normal and Alzheimer’s disease sub-

jects (Table 3).

Concordance between PiB Centiloid
and CSF amyloid-b
Using the total sample set, the concordance between PiB and

CSF amyloid-b42 concentrations measured by INNOTEST,

MSD and MS-RMP were 73%, 77% and 76%, respectively

(Figs 3, 4A and B). Using the ratio of amyloid-b42 to amyl-

oid-b40 further improved the concordance (MSD, 90%; MS-

RMP 88%, see Fig. 4C and D).

Using reanalysed amyloid-b42, concordance was highest

in Alzheimer’s disease and MCI, with findings for cogni-

tively normal, FTD, and VaD varying between MSD and

MS-RMP techniques. In VaD subjects, discordance was the

same as INNOTEST using MS-RMP, but lower using

MSD; while across FTD, MCI, and cognitively normal sub-

jects, discordance was higher using MSD and MS-RMP.

Across all groups, however, the ratio of amyloid-b42 to

amyloid-b40 was better than when using amyloid-b42

alone, with the greatest change seen in the VaD group.

When looking at discordance with local amyloid-b42, PET

was overall more often abnormal than CSF, with isolated

CSF positivity predominant when using the reanalysed data

(Fig. 5).

Comparison of concordant and
discordant subjects

Comparison of subjects showing concordant and discord-

ant amyloid biomarker results are shown in Supplementary

Tables 1–5. Using INNOTEST amyloid-b42, total and

phosphorylated tau were found to be higher in concordant

positive subjects, relative to those concordant negative and

those discordant with abnormal CSF. Tau levels were like-

wise found to higher the discordant PET positive group,

relative to both discordant with isolated abnormal CSF

and discordant negative subgroups (Supplementary Table

1). When using reanalysed CSF values, the prevalence of

the APOE e4 allele was found to be higher in those con-

cordant positive, relative to those concordant negative. Age

differences were noted between groups defined using MSD

and MS-RMP amyloid-b42, though findings were not

Table 2 Results for INNOTEST and reanalysed CSF according to diagnostic group

CN MCI AD FTD VaD

(n = 13) (n = 81) (n = 122) (n = 20) (n = 7)

INNOTEST Ab42, pg/ml 843 (900, 732) 535 (698, 409) 413 (530, 309) 641 (726, 433) 491 (675.5, 386.5)

Ab42 positive 1 (8%) 46 (57%) 96 (79%) 10 (50%) 5 (71%)

MSD Ab40, pg/ml 5363 (7369, 4425) 5607 (7188, 4536) 5476 (6556, 4333) 5213 (6149, 4225) 5187 (6180, 4499)

Ab42, pg/ml 524 (719, 428) 352 (510, 249) 258 (374, 193) 448 (556, 300) 529 (630, 369)

Ab42, positive 6 (46%) 60 (74%) 115 (94%) 12 (60%) 3 (43%)

Ab42/Ab40 0.97 (1.17, 0.85) 0.60 (0.89, 0.48) 0.51 (0.57, 0.42) 0.93 (1.05, 0.78) 1.03 (1.05, 0.79)

Ab42/Ab40 positive 3 (23%) 52 (64%) 113 (93%) 7 (35%) 2 (29%)

MS-RMP Ab40, pg/ml 9305 (12647, 7301) 8619 (11493, 6324) 8160 (10903, 6353) 7788 (9715, 6590) 7510 (9982, 5762)

Ab42, pg/ml 956 (1286, 654) 568 (863, 396) 441 (617, 318) 704 (968, 484) 760 (1060, 498)

Ab42 positive 6 (46%) 63 (78%) 115 (94%) 14 (70%) 5 (71%)

Ab42/Ab40 0.96 (1.01, 0.76) 0.61 (0.92,0.47) 0.5 (0.6, 0.38) 0.91 (1.06, 0.38) 1.02 (1.10, 0.81)

Ab42/Ab40 positive 3 (23%) 58 (72%) 117 (96%) 10 (50%) 2 (29%)

Values are reported as median (quartile3, quartile 1), or as n (%).

Ab = amyloid-b; AD = Alzheimer’s disease; CN = cognitively normal older individuals; MMSE = Mini-Mental State Examination.

Cut-offs used to determine positivity were as follows: INNOTEST amyloid-b42, 5557 pg/ml; MSD amyloid-b42, 5515 pg/ml; MSD amyloid-b42/40, 50.72; MS amyloid-b42, 5896 pg/

ml; MS amyloid-b42/40, 5 0.76.
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consistent. Similarly, a greater percentage of females was

found in the concordant positive group for MSD amyloid-

b42/40, relative to PiB�/CSF�, though for MS-RMP amyl-

oid-b42, a greater percentage of females was noted in the

PiB�/CSF + group, relative to those concordant positive.

Mini-Mental State Examination scores were lower in

those with concordant positive findings, relative to those

concordant negative; findings, however, varied across plat-

forms in comparison to the other biomarker pairings. With

respect to the interval between CSF and PET, only for MS-

RMP amyloid-b42 was a difference found (PiB + /CSF� 4
PiB + /CSF + and PiB�/CSF + , P5 0.05). Supplementary

Fig. 1 shows the relationship between concordance

(INNOTEST amyloid-b42 and PiB Centiloids) and CSF

tau findings.

Discussion
Here, we report concordance levels between PiB PET and

CSF amyloid-b (amyloid-b42 and amyloid-b42/40) using

subjects from the European BIOMARKAPD initiative.

Despite good agreement between these measures, discord-

ance was observed in a subset of patients across all groups,

using both local and centrally analysed measurements.

Given the well-described intra- and intercentre variability

in CSF amyloid-b42 concentrations using INNOTEST

ELISA (Mattsson et al., 2011), it was expected that con-

cordance with PiB would be increased using reanalysed

measurements. Comparison of discordance using local

and reanalysed CSF, however, yielded variable results,

with improved agreement with PiB classification seen only

in the Alzheimer’s disease patients using reanalysed amyl-

oid-b42—and VaD, when using MSD amyloid-b42—and

across patient groups when using amyloid-b42/40. This pat-

tern may suggest that the reanalysed results are a more

faithful approximation of amyloid-b42 levels across

groups, the centralized analysis component having removed

the variance imposed by differences in INNOTEST meas-

urements between laboratories. While it is thus tempting

to speculate that MSD and MS-RMP providing more ac-

curate estimates of amyloid-b42 concentration levels, this

Figure 2 Linear correlation plots showing the relationship between locally and centrally measured CSF amyloid-b. (A)

INNOTEST and MSD amyloid-b42; (B) INNOTEST and MS-RMP amyloid-b42; (C) MSD and MS-RMP amyloid-b42; and (D) MSD and MS-RMP

amyloid-b42/40.
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explanation seems unlikely since these analytical techniques

have been shown to correlate tightly—both with one an-

other, and with INNOTEST—when samples are analysed

in a single run under standardized conditions (Bjerke et al.,

2016).

As expected, concordance rates matched closely across

groups using MSD and MS-RMP. Relative to MSD, MS-

RMP classified an additional four patients (one in both the

MCI and FTD groups, two in VaD group) as CSF positive

using amyloid-b42, and one cognitively normal subject

using amyloid-b42/40. Concordance findings using the

ratio of amyloid-b42 to amyloid-b40—a measure which

adjusts for ‘high’ and ‘low’ amyloid-b production levels,

and thus for false negative (just above the cut-off) and

false positive amyloid-b42 results, respectively (Wiltfang

et al., 2007; Lewczuk et al., 2015)—were, as expected,

greater than when using amyloid-b42 alone. This effect

was greatest in the FTD and VaD groups. Though based

on a relatively small sample size, this finding ties into recent

work showing that subcortical changes non-specific to

Alzheimer’s disease may alter global levels of amyloid-b
isoforms (Janelidze et al., 2016; van Westen et al., 2016).

This raises the possibility that the amyloid-b42/40 ratio may

allow for differentiating conditions in which amyloid-b40

and amyloid-b42 can be reduced in parallel, from true amy-

loid-positive cases. Future studies, however, will be needed

to better understand the relationship between Alzheimer’s

disease pathology and vascular changes, as well as matrix

effects on amyloid-b42 measurements.

PiB-PET scans in the present study ranged from 40- to

90-min post-injection, with 20- or 30-min time windows

used to normalize global cortical uptake to that within

Table 3 Discordance findings between PiB and CSF across the various platforms investigated and using both visual

and Centiloid

CN MCI AD FTD VaD

(n = 13) (n = 81) (n = 122) (n = 20) (n = 7)

Visual Centiloid Visual Centiloid Visual Centiloid Visual Centiloid Visual Centiloid

INNOTEST Ab42, PiB 2 (15%) 3 (23%) 18 (22%) 20 (25%) 29 (24%) 30 (25%) 9 (45%) 9 (45%) 5 (71%) 5 (71%)

PiB + /CSF� 1 2 11 10 23 23 2 2 0 0

PiB�/CSF + 1 1 7 10 6 7 7 7 5 5

MSD Ab42, PiB 7 (54%) 6 (46%) 18 (22%) 21 (26%) 12 (10%) 13 (11%) 9 (45%) 9 (45%) 3 (43%) 3 (43%)

PiB + /CSF� 1 1 4 4 5 5 0 0 0 0

PiB�/CSF + 6 5 14 17 7 8 9 9 3 3

Ab42/Ab40, PiB 2 (15%) 3 (23%) 6 (7%) 12 (15%) 6 (5%) 6 (5%) 4 (20%) 4 (20%) 2 (29%) 2 (29%)

PiB + /CSF� 0 1 2 3 3 3 0 0 0 0

PiB�/CSF + 2 2 4 9 3 3 4 4 2 2

MS-RMP Ab42, PiB 7 (54%) 6 (46%) 21 (26%) 25 (31%) 12 (10%) 13 (11%) 11 (55%) 11 (55%) 5 (71%) 5 (71%)

PiB + /CSF� 1 1 4 4 5 5 0 0 0 0

PiB�/CSF + 6 5 17 21 7 8 11 11 5 5

Ab42/Ab40, PiB 3 (23%) 4 (31%) 10 (12%) 14 (17%) 8 (7%) 9 (7%) 7 (35%) 7 (35%) 2 (29%) 2 (29%)

PiB + /CSF� 0 1 1 1 2 2 0 0 0 0

PiB�/CSF + 3 3 9 13 6 7 7 7 2 2

Values are reported as n or n (%).

AD = Alzheimer’s dementia; Ab42 = amyloid-b42; Ab42/40 = amyloid-b42/40; CN = cognitively normal older individuals; MMSE = Mini-Mental State Examination.

Figure 3 Scatterplot showing concordance between

INNOTEST amyloid-b42 and PiB Centiloids. Circles indicate

cognitively normal subjects, triangles MCI, squares Alzheimer’s dis-

ease, crosses FTD, and crossed squares VaD. The vertical line re-

flects the Centiloid cut-off of 34; the horizontal line the cut-off of

557 pg/ml for INNOTESTamyloid-b42. Blue indicates PiB scans were

visually rated as negative, red as positive. The grey quadrants indi-

cate concordance between amyloid-b biomarkers (top left, con-

cordant negative: PiB�/CSF�; bottom right, concordant positive:

PiB + /CSF +). The white quadrants indicate discordance between

amyloid-b biomarkers (bottom left, discordant with isolated CSF

positivity: PiB�/CSF + ; top right, discordant with isolated PiB posi-

tivity: a PiB + /CSF�).
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the cerebellar grey matter. Given that the range of PiB

SUVr values using this reference tissue have been shown

to vary dynamically over time (Lopresti et al., 2005;

McNamee et al., 2009), the Centiloid approach was imple-

mented to ensure appropriate comparability of imaging re-

sults. In line with previous studies using visual and

quantitative-based reads (Rabinovici et al., 2011; Mountz

et al., 2015), high agreement was observed between both

classification methods, with all cases rated as visually posi-

tive, Centiloid negative, exhibiting values close to the cut-

off. Though few in number, these cases highlight that sub-

jects with borderline positive values can prove visually chal-

lenging and contribute to discrepant interpretations across

assessment approaches. In the two subjects classified as

amyloid-positive using Centiloids and negative using

visual assessment, the pattern of cortical uptake was

unclear owing to atrophy, high white matter signal, and

poor image quality. Though the clinical use of amyloid-

PET in routine clinical practice will likely depend on

visual assessment alone, our findings suggest that

Centiloid ratings can be used independently, or as a valu-

able adjunct to visual reads in multicentre studies.

The global composite PiB SUVr cut-off of 1.41 was se-

lected for use in the present study owing to it having been

previously established using our processing pipeline, and

due to the fact that we were restricted to the use of a

PiB-PET template owing to limited availability of structural

imaging in our study population. Though somewhat more

conservative than the only other Centiloid cut-off of 27.78

available in the literature (Ayakta et al., 2016), our

higher cut-off reflects differences in populations, method

for cut-off selection, and processing pipelines, including

Figure 4 Scatterplots reflecting concordance between PiB Centiloids and reanalysed CSF. (A) MSD amyloid-b42 (cut-off5 515 pg/

ml). (B) MSD amyloid-b42/40 (cut-off5 0.72); (C) MS-RMP amyloid-b42 (cut-off5 896 pg/ml), and (D) MS-RMP amyloid-b42/amyloid-b40 (cut-

off5 0.76). Grey circles indicate cognitively normal healthy control subjects, triangles indicate MCI, squares indicate Alzheimer’s disease, crosses

FTD, and crossed squares VaD. The vertical lines reflects the Centiloid cut-off of 34; the horizontal lines the cut-offs of5 515 pg/ml,50.72,

5896 pg/ml, and 50.76 for MSD (amyloid-b42, amyloid-b42/40) and MS-RMP (amyloid-b42, amyloid-b42/40), respectively. Blue indicates PiB scans

visually rated as negative, red as positive. The grey quadrants indicate concordance between amyloid-b biomarkers (top left, concordant negative:

PiB�/CSF�; bottom right, concordant positive: PiB + /CSF +). The white quadrants indicate discordance between amyloid-b biomarkers (bottom

left, discordant with isolated CSF positivity: PiB�/CSF + ; top right, discordant with isolated PiB positivity: a PiB + /CSF�). Ab = amyloid-b.
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the choice of scanning window and volumes of interest. For

instance, our approach used slope and intercept parameters

from a 40–60 min post-injection interval to determine

Centiloid equivalence to our SUVr cut-off (in contrast to

50–70 min), itself established using the 95th percentile ap-

proach in healthy older subjects [versus receiver operating

characteristic (ROC) curve in a mixed patient population,

with CERAD score as standard of truth]. Indeed, back cal-

culation of the 27.78 Centiloid cut-off to SUVr using our

pipeline yielded an SUVr close to ours (1.38), highlighting

the effects of varying analysis methods, the resulting limited

comparability of SUVr data across centres, and the attend-

ant importance of Centiloid standardization.

Classification mismatch using PiB and amyloid-b42 may

be due a number of factors. Most mismatched subjects in

our study had isolated low CSF amyloid-b. In some indi-

viduals, this was due PiB retention being only somewhat

elevated, and thus falling below the cut point for positivity.

In addition, since PiB binds only weakly to amorphous

amyloid-b plaques (Bacskai et al., 2007; Ikonomovic

et al., 2008), PiB prove unable to detect variants of

Alzheimer’s disease characterized by the predominance of

diffuse (non-fibrillar) plaques (Cairns et al., 2009; Schöll

et al., 2012). Of course low amyloid-b42 in CSF is also

known to occur in isolation in non-Alzheimer’s disease con-

ditions (Ewers et al., 2015; Skillbäck et al., 2015) and may

also be related to entrapment in interstitial drainage path-

ways (Weller et al., 2001), epitope masking due to binding

of amyloid-b42 to carrier proteins (Otto et al., 2000;

Wiltfang et al., 2003), or the presence of amyloid as a

secondary pathology. In cognitively normal subjects, abnor-

mal CSF amyloid-b42 can also be seen, and is thought to

possibly represent preclinical Alzheimer’s disease (Fagan

et al., 2009a; Sperling et al., 2011; Palmqvist et al.,

2016). Isolated increased PiB uptake using INNOTEST

data likely reflected between-centre variability in

INNOTEST results; using reanalysed data, however, this

pattern was infrequent and was seen mainly in MCI and

Alzheimer’s disease. This finding may in some cases be due

to cut-off levels but may also reflect the possibility that

fibrillar amyloid-b can be detected first in some individuals,

as has been reported previously (Koivunen et al., 2008;

Forsberg et al., 2010; Landau et al., 2013).

Among the studies that have thus far examined the asso-

ciation between amyloid PET and CSF amyloid-b42 (Fagan

et al., 2006, 2007, 2009b; Forsberg et al., 2008, 2010;

Jagust et al., 2009; Tolboom et al., 2009; Degerman

Gunnarsson et al., 2010; Weigand et al., 2011; Landau

et al., 2013; Zwan et al., 2014, 2016; Palmqvist et al.,

2014, 2016; Mattsson et al., 2015), few have directly com-

pared tau levels in those with concordant and discordant

biomarker results. In the studies that have, tau was found

to be higher in PET + /CSF + subjects, relative to those

PET�/CSF + (Palmqvist et al., 2016; Zwan et al., 2016),

in PET + /CSF + subjects, relative to those PET�/CSF +

(Mattsson et al., 2015; Zwan et al., 2016), and in subjects

discordant with PET positivity, relative to both those con-

cordant negative and discordant with abnormal CSF (Zwan

et al., 2016). Using INNOTEST amyloid-b42, our findings

match those reported up to now. Comparison of tau levels

between biomarker subgroups defined using reanalysed

CSF, however, was not performed, due to differences in

CSF methodology (INNOTEST versus xMAP Luminex

multiplexing). Though group differences were noted for

gender and APOE in the present study, in the aggregate

with findings from other studies (Mattsson et al., 2015;

Toledo et al., 2015), the precise modulatory role exerted

by these variables is not yet clear. Lastly, concordance find-

ings here reported are unlikely to have been much altered

by inclusion of CSF tau data, with the majority of abnor-

mal tau values clustered in the concordant positive quad-

rant. Future studies incorporating new approaches for CSF

tau quantification and multivariate modelling are required

to further clarify differences between biomarker subgroups.

Though discordance between CSF and amyloid-b PET

has thus far been discussed primarily in the context of

the increasing use of these two techniques in the diagnosis

Figure 5 Frequency plots showing different agreement

profiles between PiB PET and CSF. Values of 5557 pg/ml

(INNOTEST amyloid-b42), 5515 pg/ml (MSD amyloid-b42), 50.72

(MSD amyloid-b42/40), 5896 pg/ml (MS-RMP amyloid-b42), 50.76

(MS-RMP amyloid-b42/40), and global Centiloid value4 34 were

used to classify subjects as concordant positive (PiB + /CSF +),

concordant negative (PiB�/CSF�), discordant with CSF positivity

(PiB�/CSF + ), and discordant with PiB positivity (PiB + /CSF�).

Ab = amyloid-b.
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of cognitively impaired individuals, an additional area of

importance is that of future clinical trials. In one of the

largest studies conducted so far on the relationship between

amyloid-b biomarkers, it was shown that concordance

increased significantly as a function of disease stage

(Mattsson et al., 2015), with the highest levels of discord-

ance noted in cognitively normal and subjective memory

complaint subjects. In a related study focusing on non-de-

mented subjects diagnosed as cognitively healthy controls

or MCI, evidence was shown in support of the hypothesis

that CSF may detect amyloid-b accumulation in preclinical

Alzheimer’s disease earlier than amyloid PET (Palmqvist

et al., 2016). There is thus increasing evidence to suggest

that discussions surrounding the interchangeability of amyl-

oid-b biomarkers may be less applicable with respect to the

detection of cerebral amyloidosis in the preclinical phase of

Alzheimer’s disease. Specifically, isolated CSF positivity

may represent a profile suitable for inclusion in clinical

trials of amyloidocentric agents (Hardy et al., 2014), or

related interventions targeting modifiable risk factors

(Ngandu et al., 2015). Given unresolved differences be-

tween current classification schemes (Sperling et al., 2011;

Dubois et al., 2014, 2016), further follow-up studies to

verify progression to amyloid PET positivity, neurodegen-

erative changes and cognitive decline, are required.

A possible limitation of this study was the lack of gold

standard autopsy confirmation. In addition to confirming

or refuting clinical diagnoses for included subjects, post-

mortem data would possibly have allowed for an improved

understanding of PiB negative discordant cases, including

the potential effects of coincident pathologies. Autopsy data

would, moreover, have helped clarify the seven cases show-

ing discrepant classifications using visual and Centiloid

based methods; at least five of the six visually positive

cases, however, would likely have crossed the SUVr/

Centiloid threshold for positivity had partial volume cor-

rection (PVC) been applied. Though the lack of PVC stands

as a potential caveat, its application would likely only have

resulted in the relocation of a subset of isolated CSF + cases

to the concordant positive quadrant. Future studies on

amyloid biomarkers, however, should examine the effect

of this type of correction. As a further caveat, the

INNOTEST amyloid-b42 ELISA would ideally have been

used instead of MSD, though the effect of this is likely to

have been minimal (Bjerke et al., 2016). Other possible

limitations include the relatively low number of cognitively

normal subjects and patients with FTD and VaD, as well as

the fact that APOE genotype data was not available for all

subjects. Lastly, CSF classification cut-offs were established

with mixture modelling; while a robust approach for estab-

lishing unbiased thresholds, and used in several studies

(Buchhave et al., 2012; Palmqvist et al., 2014), these cut-

offs cannot be viewed as generalizable beyond the present

work.

Overall, the agreement levels between amyloid PET and

CSF amyloid-b42 here reported are in line with previous

studies, and support the strong agreement of these two

metrics in MCI and Alzheimer’s disease, with mainly iso-

lated low CSF amyloid-b42 in FTD, VaD and cognitively

normal subjects. While technical factors cannot be excluded

outright as contributing to measured amyloid-b42 and

amyloid-b40 levels in CSF assays, even when run in the

same time and place, continued discordance using centrally

reanalysed samples suggests that biological factors are also

at play. While further studies are required, in particular

longitudinal studies on amyloid biomarker trajectories,

with a focus on intraindividual change, our findings suggest

that, at least in a minority of subjects, these measures may

not be interchangeable, reflecting instead distinct but inter-

related processes. Future work using standardized amyloid

PET and CSF amyloid-b42, as well as post-mortem path-

ology data, will be critical to gaining an improved under-

standing of amyloid biomarker discordance.
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