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Abstract

Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction

that form an important and rapidly expanding disease category. Ciliopathies are complex conditions

to diagnose, being multisystem disorders characterised by extensive genetic heterogeneity and

clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct

ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, clinical

management, in addition to posing an ongoing task to develop the most appropriate family

counselling. The impact of next generation sequencing and high throughput technologies in the last

decade has significantly improved our understanding of the biological basis of ciliopathy disorders,

enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms

and genetic aetiologies. Here we review the diverse functions of cilia in human health and disease

and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a

more functional categorization. This approach arises from our improved understanding of this

unique organelle, revealed through new genetic and cell biological insights into the discrete

functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport,

motility). Mutations affecting these distinct ciliary protein modules can confer different genetic

diseases and new clinical classifications are possible to define, according to the nature and extent of

organ involvement.

Key words: cilia, ciliopathies, signaling, ciliogenesis, kidney cystic diseases, Joubert syndrome,

skeletal dysplasia, Meckel syndrome, Bardet-Biedl syndrome, oral-facial-digital syndrome
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Introduction

Cilia are highly conserved organelles projecting from the surface of virtually every cell type in the

vertebrate body that are found ubiquitously across species from nematodes to ancient protozoa.

These complex and dynamic structures are broadly divided into motile and non-motile subtypes

which share a 25µm micrometre diameter cytoskeletal scaffold, the axoneme, composed of

hundreds of proteins [1, 2]. The axoneme contains nine peripheral microtubule doublets, consisting

of A and B tubules, either surrounding a central pair of microtubules (9+2 pattern) or lacking the

central pair (9+0 pattern). Motile 9+2 cilia exist as multiple cilia (multicilia), whilst 9+0 motile and

non-motile cilia exist as single monocilia on the cell surface. Almost all human cells possess a

single non-motile (primary or sensory) cilium, while multicilia are generated by specialized cells

and sperm tail (flagella) motility also employs a highly conserved axonemal structure.

During cilia formation (ciliogenesis), the axoneme nucleates from a centriole-derived basal body

that docks at the plasma membrane, extending out a microtubule bundle contained within a

specialized extension of the plasma membrane that harbours selected signalling molecules and ion

channels [3]. Lacking machinery for protein synthesis, proteins of the ciliary compartment

synthesized in the Golgi apparatus are imported through a ciliary ‘gate’ located towards the cilia

base that consists of the basal body with transition fibres and a transition zone area above, that

directs entry of cargos for their subsequent transport along the length of the cilia [4]. Intraflagellar

transport of cargos, IFT, occurs in a bidirectional manner with the anterograde and retrograde

direction of traffic mediated respectively by kinesin-2 and cytoplasmic dynein-2 motors attached to

multisubunit protein complexes called IFT particles (Figure 1) [5, 6].

The functional importance of cilia has emerged in recent years with the recognition of their central

role in normal human development and also in disease. ‘Ciliopathies’ are complex multisystem
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human disorders of cilia with involvement of all the major organs including kidney, brain, eye,

airways and limbs; they contribute subtypes to many common diseases such as retinal dystrophy

and kidney disease [7-10]. This expanding disease category includes many syndromes such as

primary ciliary dyskinesia (PCD), autosomal dominant and recessive polycystic kidney diseases

(ADPKD, ARPKD), nephronophthisis (NPHP), Leber Congenital Amaurosis (LCA), Bardet-Biedl

(BBS), Senior-Løken (SLS), Joubert (JBTS), Jeune (or Asphyxiating Thoracic Dystrophy, JATD),

short rib polydactyly (SRPS), Meckel-Gruber (MKS) and Oral-facial-digital (OFD) syndromes.

These inherited disorders are individually rare, but collectively may affect up to 1 in 2,000 people

[11]. Ciliopathies share common clinical features and there is considerable genetic and phenotypic

overlap as well as genetic heterogeneity [12].

Many reviews are available on the structure and functioning of cilia. Here, we present a global

overview of the eclectic functions of cilia in different organs and tissues, referring to specialised

reviews for further details; moreover, we summarize the spectrum of cilia-related phenotypes in

relation to their genetic determinants, and discuss the increasing need to change the way of looking

at cilia-related diseases, shifting from the classical definition of ciliopathy syndromes (and related

acronyms) to a more descriptive approach based on the type and extent of organ involvement.
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Motile ciliopathies

Motile ciliopathies are characterized by dysfunction of tissues, organs and gametes that bear the

specialized ciliary and flagella machinery for generating fluid flow or movement within fluids.

Failure of these mechanisms compromises mucus clearance causing chronic airway diseases which

are associated with defects of laterality, fertility and brain development. The hallmark disease of

motile cilia is PCD [13]. About half of affected individuals have laterality defects, most commonly

situs inversus totalis (mirror image reversal of the internal organs, Kartagener syndrome). A

proportion of cases have more complex laterality defects dominated by left isomerism with

congenital heart disease [14, 15]. Oligocilia or Reduced Generation of Multiple Motile Cilia

(RGMC) is a subtype of PCD presenting the same disease spectrum but with a distinct aetiology:

PCD and Kartagener syndrome result from structural and assembly defects of ciliary components,

whilst RGMC arises from defects in the multiciliogenesis program and is not associated with

laterality defects [16].

Structure and function of motile cilia

Motile cilia line the epithelial surfaces of the upper and lower respiratory tracts and middle ear, the

ventricles of the central nervous system and the fallopian tubes. They show variable length (e.g.

brain ependymal cilia are longer and beat faster than lung cilia [18]), and axonemal arrangement

(9+2 in respiratory and fallopian tube cilia and sperm flagella, 9+0 in nodal cilia) [19-21]. Many

microtubule-associated multisubunit structures attach with regular periodicity along the axoneme

creating a stable membrane-bound axoneme rod that supports and regulates dynein motor-based

motility and waveform (Figure 2). Notably, only motile cilia and sperm flagella contain dynein

motor proteins that power axonemal beating through ATP hydrolysis [22]. The outer and inner

dynein motors are at 96-nm periodicity along the peripheral A tubule, projecting between the
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peripheral doublets, and two ‘molecular ruler’ proteins are required to maintain this periodicity

[23]. Nexin-dynein regulatory complexes (N-DRC) link between adjacent peripheral doublets to

regulate dynein activity and facilitate inner dynein arm attachment, thereby governing axonemal

waveform [24, 25]. Radial spoke complexes in close proximity to the inner dynein arms project

inwards to the central microtubule apparatus, providing a radial scaffold between the central

apparatus and the peripheral microtubules for mechanochemical signal transduction that governs the

ciliary beat and waveform [26]. Axoneme structure can vary, for example the dynein arms differ in

composition at the cilia base and tip [27].

The motor and signalling functions of this complex superstructure maintain a uniquely coordinated

self-propagating beat [28]. Motile 9+0 monocilia of the embryonic Left-Right Organiser beat

unidirectionally [21], whilst motile 9+2 multicilia form a lawn of 200-300 cilia per cell creating a

coordinated metachronal wave moving at 1,000 beats per minute to move fluids. Sperm flagella,

though broadly similar in their 9+2 arrangement [29], differ in their detailed structure such as the

distribution of dynein arms along the axoneme [27, 30]. The sigmoidal, symmetric three-

dimensional movement of sperm flagella is also completely distinct from the cilia’s planar

asymmetric effective and recovery strokes [28, 30].

Motile and non-motile cilia in left-right axis determination

Both motile and non-motile primary cilia are essential for establishing correct left-right patterning

and the asymmetric positioning of internal organs, a physiological condition termed “situs solitus”.

Both motile and non-motile ciliopathies can manifest with left-right axis patterning defects. The

left-right organiser, part of the embryonic node, appearing early during embryonic development,

possesses two types of 9+0 cilia: centrally placed singleton motile cilia and peripherally placed

primary immotile cilia. Fluid flow across the embryonic node is a crucial first step in early
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embryogenesis marking the earliest point of breaking of bilateral embryo symmetry [21]. Motile

node cilia have dynein motors but their lack of a central pair creates a clockwise motion and they

rotate at an average 600 rpm to generate a leftward fluid flow in the extracellular space. The

peripheral immotile cilia sense the flow and respond, transmitting signals to the lateral plate

mesoderm that activates an asymmetric gene expression cascade; the most important downstream

effector gene is Nodal, a member of the TGFβ growth factor family that induces the asymmetric 

transcription of downstream genes, activating a self-propagating signaling cascade that establishes

LR laterality and the vertebrate bodyplan [21, 31, 32]. Left-right patterning is also governed by FGF

signaling, which controls Shh pathway and ciliary length during embryonic development [33, 34].

Pathogenesis of motile ciliopathies

Motile cilia have a prominent role in host defence against infection from inhaled microorganisms

and other particles. Airway mucociliary clearance forms an important ‘self-cleaning’ mechanism by

the mucociliary escalator whereby collaborating mucus-producing epithelial goblet cells and

multiciliated cells move mucus containing trapped pathogens and pollutants either up or down to

the throat, to be ingested or expelled [35, 36]. In the brain, ‘ependymal flow’ of cerebrospinal fluid

(CSF) is generated by multicilia lining the ventricles which move signaling molecules through the

central nervous system and maintain structure [37, 38]. In females, the multiciliated fallopian tube

epithelia assist in transport of eggs to the uterus, whilst the male gametes are propelled towards the

uterus by sperm flagella motility.

In motile cilia diseases, failure of mucociliary clearance is often evident from birth with neonatal

respiratory distress. Throughout life there is progressive accumulation of mucus and pathogens

causing obstruction and infections in the sinuses, ears and lungs [13]. Ultimately the recurring lung

infections associated with damage to the lungs can lead to irreversible bronchiectasis and permanent
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loss of lung function. In cases where laterality is affected, there may be cardiac disease associated

with situs ambiguous that can be associated with severe congenital heart defects requiring surgery

and transplant, and other features of isomerism such as polysplenia and asplenia [14, 15]. There is

also subfertility in affected males and females due to reduced and immotile sperm and poor

movement along the fallopian tubes of eggs towards the uterus with ectopic pregnancy reported.

The central nervous system can also be affected, as brain malformations and hydrocephalus can

arise from dysmotility of ependymal cilia. Whilst common in PCD mouse models, hydrocephalus is

rare in human PCD, likely due to species differences in size and structure of the ventricular system.

In DNAH5-mutant PCD mice, loss of ciliary ependymal CSF flow through the narrow cerebral

aqueduct connecting the 3rd and 4th ventricle is thought to contribute to aqueduct closure and

consequent triventricular hydrocephalus in the early postnatal brain development period, while the

larger aqueducts of the human brain may not be so susceptible to ventricule obstruction [37].

Notably, hydrocephalus is significantly more frequent in human PCD caused by multiciliogenesis

defects where cilia numbers are reduced (RGMC), than in PCD where the multicilia, even if static,

are still present [16, 17, 39]. The reasons for this are not known, but could be connected to better

aqueduct structure maintenance if there are still cilia present, or because the cilia are not always

fully static in PCD depending on the underlying mutations. In addition to blocked CSF circulation,

hydrocephalus may in fact be initiated by ciliated epithelial cells of the choroid plexus (CPECs), the

secretory cell region within each ventricle that produces CSF [40]. CPEC cilia are poorly

characterised but are reported as transiently motile during the perinatal period; however, rather than

or additional to motility functions, it may be that defective sensory functions of nonmotile cilia also

present on CPECs contribute to hydrocephalus through defective ion transport, which is proposed to

govern CSF production [40, 41].
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Motile cilia diseases are genetically heterogeneous, caused by mutations in >30 genes affecting

dynein motors and other structural components or dynein arm assembly of the multicilia in PCD

[13, 42-44], whilst multiciliogenesis gene mutations cause RGMC [16, 17] (Figure 2). A biological

stratification of the motile ciliopathies is starting to emerge since certain features of PCD do not

manifest with selected gene mutations. For example loss of central microtubular pair function

caused by mutations in genes such as HYDIN and RSPH genes is associated with a lack of laterality

defects, since nodal monocilia do not require the central apparatus for motility [13, 45].

Interestingly, mutations affecting the radial spokes and nexin dynein regulatory complexes do not

cause laterality defects, even though radial spoke and N-DRC genes are expressed at the embryonic

node [46, 47]. The multiciliogenesis gene defects associated with RGMC affect respiratory and

brain cilia motility but apparently not sperm or nodal cilia, since their mutation does not cause male

infertility or laterality defects, though more severe cases of hydrocephalus are seen [16, 17, 39]. It is

also apparent that the function of a growing number of ciliary proteins present in the lungs may be

replaced by other proteins in the sperm, causing PCD without male infertility [48].

Non-motile ciliopathies

Non-motile or sensory ciliary disorders represent an expanding group of highly heterogeneous

inherited disorders caused by defects in assembly or functioning of the 9+0 primary cilium. A wide

phenotypic variability is notable amongst primary ciliopathies compared to motile ciliopathies, and

extensive genetic and clinical overlaps among distinct conditions reflects their underlying molecular

complexity. Indeed, nonmotile cilia are much more ubiquitous in the body, functioning as key

sensors of extracellular molecules that regulate numerous intracellular signal transduction cascades.

Through signalling, primary cilia activate a wide range of responses including modulation of key

developmental pathways, control of cell polarity in epithelial tissues, transduction of sensory stimuli

and regulation of stem cell proliferation and maintenance. Bioactive extracellular vesicles (EVs)

have also been identified at cilia tips [49, 50] and exosomes bearing ciliary membrane proteins have
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been isolated from the liver and urine [51, 52], so cilia have potential to release vesicles considered

to have signalling roles in addition to their capacity to receive sensory signals [52]. Here we present

an overview of the diverse functions of primary cilia as they relate to different organs of the body

and distinct ciliopathy phenotypes. A schematic of the primary cilium with the different

subcompartments referred to below is shown in Figure 1.

Functions of primary cilia in embryonic and adult life

Kidneys

Primary cilia protrude from the apical surface of epithelial cells lining the nephron tubule and

collecting ducts, in contact with urine flow. In the adult kidney, cilia act as sensory antennae that

respond to modifications of urine flow, composition and osmolality by modulating important

intracellular signaling pathways [10, 53, 54]. For instance, Polycystin-1 and -2, the two proteins

mutated in ADPKD, were found to regulate a urin-flow dependent, calcium-mediated intracellular

response able to influence several signaling pathways, such as G-protein signaling, mTOR, Wnt and

even Sonic hedgehog (Shh) [55]. Similarly, mutations in ciliary proteins such as Inversin or

Nephrocystin 3 that cause infantile and juvenile NPH, alter the balance between canonical and non-

canonical Wnt pathways that is essential to control the correct polarity of epithelial tubular cells,

thus explaining the pathogenesis of cyst formation [56].

Cilia defects in the kidneys typically lead to the development of cystic kidney diseases; cysts may

form at any age from prenatal to adult life, can vary widely in number, size and distribution, and in

some cases are associated with progressive interstitial fibrosis, defining a wide spectrum of renal

ciliopathies. While the pathomechanisms of cyst formation have largely been elucidated [57, 58],

how ciliary dysfunction leads to excessive interstitial fibrosis still remains a matter of debate.

Recently, several proteins mutated in NPH were found to be implicated in a highly conserved
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pathway, the so-called DNA damage response (DDR) that senses and signals the presence of DNA

damage due to replication stress and can arrest the cell cycle to promote DNA repair. An abnormal

DDR could lead to increased apoptosis and epithelial-to-mesenchymal transition of duct cells at the

kidney corticomedullary junction and profibrotic response of surrounding fibroblasts, explaining at

least in part the massive fibrosis that is more prevalent than cysts in patients with NPH [59, 60].

Brain

Primary cilia were first identified on neuronal cells during electron microscope examinations of

brain tissue sections [61, 62], but only decades later could the relevance of this observation be fully

appreciated. The functional characterization of ciliary genes in cellular and animal models and the

dissection of the interplay between the primary cilium and pathways essential for brain

development has greatly expanded our knowledge of the role of this organelle in regulating

neuronal cell fate, migration, differentiation and signaling.

In mammals, primary cilia are essential mediators of the Shh pathway, of which many components

are variably localized within the cilia at different steps of pathway activation [63]. Dysregulation of

Shh signaling due to mutations in genes encoding proteins of the pathway results in neural tube

closure defects, hydrocephalus and other midline defects such as occipital encephalocele, corpus

callosum defects and holoprosencephaly [64], that are also part of the ciliopathy spectrum.

Moreover, cilia-mediated Shh signaling represents the main proliferative driver for cerebellar

granule neuron precursors [65, 66], and mutations or conditional removal of distinct genes

implicated in this pathway results in cerebellar dysgenesis and hypoplasia, a condition that is often

observed in ciliopathies [67-73].
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Another key developmental pathway implicated in cerebellar development is the Wnt canonical

pathway that was found to be enhanced by Jouberin, a ciliary protein encoded by the AHI1 gene.

Jouberin knock-out mice display defective cerebellar vermian midline fusion [74, 75], and

similarly, AHI1 mutations in human patients lead to a notable constellation of mid-hindbrain

malformations with cerebellar vermis hypodysplasia, the so called “molar tooth sign” (MTS) [76].

On the other hand, other evidence suggests a negative ciliary regulation of the Wnt pathway [77], or

even no Wnt signaling defects [78], indicating that the interplay between primary cilia and Wnt may

be more complex than currently appreciated such that the influence on Wnt could vary according to

distinct settings. Besides these, other signaling pathways linked to ciliary function include

PDGFRα, involved in promoting directional cell migration [79] and Notch, that was found to 

enhance the ciliary-mediated activation of the Shh pathway [80].

Neuronal cilia of cortical progenitor cells have also been directly implicated in the modulation of

proliferation, directional migration, and differentiation of both excitatory and inhibitory neurons in

the developing cerebral cortex [81]. This is thought to be mediated partly by Shh signaling itself

and partly by receptors of guidance cues such as PDGFR and GPCR, localized on the ciliary

membrane of interneurons [82, 83]. A key ciliary component implicated in control of neuronal

migration is the cilia membrane-associated small GTPase ARL13B, whose ablation results in

impaired ciliary localization of specific guidance cue receptors and defective placement of

postmitotic interneurons that is also associated with mislocalised ciliary signaling machinery [84,

85]. Interestingly, mutations of ARL13B typically cause JBTS, a ciliopathy characterized by the

MTS and neurological features [86]. ARL13B is also implicated in regulation of membrane

biogenesis and cilia length control, a function disrupted in the context of JBTS causal mutations

[87]. Overt malformations of cortical development such as polymicrogyria, have been reported in a

minority of JBTS [88, 89], but it is possible that more subtle defects of cortical development due to

ciliary dysfunction may contribute to the cognitive defects that are nearly invariably seen in JBTS
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patients. The lack of decussation of the superior cerebellar peduncles and pyramidal tracts reported

in neuropathological as well as diffusion tensor imaging-tractography studies of patients with JBTS

[90, 91] has suggested that defective primary cilia could also impair the process of axonal guidance.

However, it is also possible that these crossing defects may be secondary to altered cell fate or

survival, and a specific role for cilia in axon guidance still remains to be demonstrated to date [92].

Primary cilia are also thought to play a role in the formation of adult neural stem cells, a pool of

neural progenitors within the hippocampal dentate gyrus able to generate neurons during postnatal

life [93]. Embryonic ablation of either ciliary genes or of components of the Shh pathway, such as

Smo, resulted in failed development of radial astrocytes in the dentate gyrus with subsequent failure

of postnatal neurogenesis [94].

Finally, primary cilia have been reported both in the orexigenic and anorexigenic neurons in the

arcuate nucleus of the hypothalamus, implicated in the metabolic regulation of food intake and

responses to the adipocyte hormone leptin and the pancreatic hormone insulin. Indeed, the

systematic ablation of some ciliary genes from adult mice resulted in hyperphagia and obesity with

increased levels of insulin, leptin and glucose [95]. On the other hand, the obesity phenotype

observed in some ciliopathies could also relate to defective leptin signalling or leptin resistance, and

to abnormal modulation of Shh and Wnt signalling, which both play a role in the regulation of

adipogenesis [96].

Retina

In the vertebrate neural retina, cone and rod photoreceptors rely on the outer segment, a highly

specialised ciliary organelle capable of detecting light through a complex structure of regularly

stacked, photopigment-filled membranous disks oriented along the axis of the incoming light, that
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are either fully internalized or in continuity with the plasma membrane. The outer segment is

connected to the cell body (also termed inner segment) through a thin connecting 9+0 cilium

anchored to a triplet microtubule basal body derived from the mother centriole between the outer

and inner segment [97]. The photoreceptor connecting cilium corresponds to the ciliary transition

zone of primary cilia, and is essential for regulating the flux of specific proteins in and out of the

outer segment. This involves mainly disk proteins such as rhodopsin, that are continuously

trafficked along the connecting cilium, as well as other proteins that shuttle between the two

compartments following changes in ambient lighting [98]. As in other non-specialized primary cilia,

anterograde and retrograde protein trafficking is mediated by IFT complexes associated with motor

proteins that move up and down the ciliary axoneme. Indeed, selective knock down of various IFT

proteins in mice photoreceptors results in accumulation of ectopic rhodopsin, impaired formation of

the outer segment and increased cellular death [99-101].

Given the complexity of the retinal modified cilium, it is not surprising that mutations of multiple

photoreceptor proteins can impact at different levels on its development, maintenance and

functioning, resulting in the phenotype of retinal dystrophy that is a common feature in ciliopathies.

Photoreceptor proteins associated with ciliopathies include ALMS1, mutated in LCA and Alström

syndrome (a renal ciliopathy often presenting with retinopathy), which has been implicated in

transport of rhodopsin and other proteins along the photoreceptor axoneme [102]; CC2D2A,

mutated in retinitis pigmentosa, JBTS and MKS, which regulates the extension of the connecting

cilium and the outer segment [103]; and TMEM67, also causative of a spectrum of ciliopathies with

multiorgan involvement, that is involved in membrane disk assembly [104]. However, it is

interesting to note that isolated forms of retinal dystrophy or LCA are not invariably ciliopathies

and only a subset of the many causative genes of this phenotype are implicated in ciliary assembly

or function [105]. In parallel, cilia genes can be associated with both isolated or syndromic

(ciliopathy) forms of retinal dystrophy, for example C21ORF2 and IFT140 [8, 9].
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Liver

Primary cilia protrude from cholangiocytes, the epithelial cells lining the biliary ducts of the liver.

These form early during development starting from a transient structure, the ductal plate, which

appears around the 6th-7th week of gestation in the region between the branches of the portal vein.

Here, hepatoblasts start to differentiate into primitive cholangiocytes and form bile ducts, which are

separated by surrounding liver parenchyma by intense mesenchymal proliferation paralleled by

enhanced apoptotic processes [106]. Similarly to renal cilia, primary cilia on cholangiocytes

function as mechano-, chemo- and osmo-receptors, that sense biliary lumen flow, composition and

osmolality, and transduce these signals through modulation of intracellular calcium and cAMP

[107]. The impaired functioning of primary cilia due to mutations in a ciliary protein results in

aberrant remodeling of the ductal plate (so called “ductal plate malformation of the liver”), with

formation of abnormal bile ducts that are surrounded by excessive extracellular matrix and often

present cystic dilatation [108]. This congenital hepatic fibrosis can remain paucisymptomatic or

manifest with severe complications, mainly portal hypertension, cholangitis or cholestasis [109].

Many primary ciliopathies display liver fibrosis including PKD, NPHP, BBS, JBTS and MKS [45,

110].

Pancreas

Primary cilia are also involved in the development and functioning of the pancreas, an organ with

exocrine and endocrine functions that comprises distinct cell types, of which about 15% are ciliated.

In particular, primary cilia have been detected on ductal cells as well as α-, β- and δ-cells in the 

islets of Langerhans [111, 112]. Pancreas development is a complex process that involves several

key pathways (Shh, Wnt, TGF-β, Notch, FGF), all of which are modulated by the functioning of 

primary cilia. Moreover, primary cilia in adult pancreatic ductal cells have been proposed to sense

and transduce signals related to luminal flow similarly to their counterpart in the kidneys and liver

[113]. Correlating with this, ciliary impairment has been associated with pancreatic defects that, as
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in the liver, are mainly characterized by fibrosis, dysplasia and formation of ductal cysts. However,

pancreatic involvement in ciliopathies is less frequently documented, possibly because the exocrine

and endocrine functions are often preserved despite the underlying structural damage. An exception

is in Alström syndrome, in which dysfunction of the β-cells and diabetes mellitus are consistent and 

typical features [114].

Skeletal system

Cilia-related skeletal phenotypes mainly arise from IFT defects that cause deficiency of the

Hedgehog pathways, affecting the growth of the cartilage and bones [115]. Indian hedgehog (Ihh) is

a key signalling molecule in the endochondral bone formation responsible for most skeletal

components including the ribs and long bones, regulating chondrocyte maturation during this

ossification process; mice with disrupted Ihh signalling have shortened long bones and a short and

narrow thorax [116, 117]. Defective Shh in Ift88 mouse mutants is thought to underlie their

polydactyly and aberrant skull formation through incorrect expression of the downstream GLI

effectors that specify digit patterning [118, 119].

The IFT system has been well characterized by numerous methods including protein

crystallography [5, 6]. Ciliopathy associated mutations are found in selected subunits of the IFT

retrograde dynein motor and components of the IFT complexes A and B [120, 121], or proteins of

the basal body and centrosomes likely connected to IFT but with less defined functions [9, 120,

122, 123]. Components of IFT implicated in these diseases transport the transmembrane

smoothened (SMO) receptor, a key signal transducer in Hedgehog signalling, along the cilia. In

their absence, SMO accumulation to cilia is not sufficient to activate the pathway [124, 125].

Disturbed ciliary targeting of SMO is at least partially responsible for the premature differentiation

and reduced proliferation of chondrocytes in long bone growth plates that underlies SRPS

phenotypes [126].
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Links between motile and non-motile cilia functions

The links between motile and non-motile ciliopathies are unclear but increasing knowledge about

sensory receptors in motile cilia and the influence of mechanosensory signals on motile cilia in the

embryonic node and elsewhere has led to the question whether sensory functions (chemo- and

mechano sensitivity) can be attributed to motile as well as primary cilia. Clinical ciliopathy studies

have reported overlapping features of motile and primary ciliopathy disorders in relation to

laterality defects, infertility and hydrocephalus.

With the unique features of nodal cilia that can move despite sharing the typical 9+0 arrangement of

non-motile cilia, and the mix of motile and non-motile cilia at the Left-Right Organiser, it is

perhaps not surprising that laterality defects, in the form of partial or complete situs inversus, are

part of the phenotypic spectrum of both motile and non-motile ciliopathies such as JBTS, NPH and

skeletal ciliopathies [127-131]. Interestingly, homozygous mutations in the NPHP2 gene, that

usually cause infantile NPH with situs inversus, were found in a foetus displaying these features as

well as signs of motile cilia dyskinesia, expanding the phenotypic spectrum of this gene to include

motile and non-motile ciliopathies [132].

Lung and airway defects have been reported in BBS, MKS, NPH and retinal dystrophy patients, but

whether these are organ development rather than cilia motility related problems and whether there is

any common aetiology has yet to be proven [133]. Indeed, respiratory motile cilia dysfunction has

been excluded in BBS [134]. Syndromic forms of motile cilia disease have been associated with

mutations in RPGR and OFD1 (Simpson-Golabi-Behmel Syndrome, Type 2) but the underlying

basis for impaired cilia motility is less clear in these rarer cases where the syndromic features reflect

more common phenotypes [135, 136].
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Phenotypic spectrum of non-motile ciliopathies: more a continuum rather than distinct

syndromes

Since the first descriptions of human ciliopathies nearly two decades ago [137, 138], the number of

disorders falling under the umbrella of primary ciliopathies has significantly increased. Currently,

this term includes several syndromes that are clinically diagnosed based on the major organ(s)

involved, spanning a spectrum of severity from relatively mild to lethal (Figure 3).

The first group of disorders identified as primary ciliopathies were the cystic kidney disorders,

including the two main groups of PKD and NPH. Both ADPKD and ARPKD are characterized by

enlarged multicystic kidneys, but they differ by the age at onset (in adult and prenatal life,

respectively) and the extent of multiorgan involvement. In fact, ADPKD features multiple cysts in

the liver, pancreas, seminal vesicles and arachnoid membrane, frequently associated with

cardiovascular defects (e.g arterial dilatations/aneurysms and cardiac valve abnormalities), while

ARPKD typically presents congenital liver fibrosis [55, 139]. While PKD are extremely rare

conditions, juvenile NPH represents the commonest genetic cause of end stage renal failure (ESRF)

in children. Distinct from PKD, it is characterized by tubular atrophy, irregular tubular membranes,

progressive tubulo-interstitial fibrosis and inflammation, leading to the formation of small,

hyperechogenic kidneys and occasional cysts restricted to the cortico-medullary border, which

appears poorly differentiated. Infantile NPHP, with onset of ESRF in early childhood, is much rarer,

and combines the tubular atrophy and fibrosis typical of NPH with widespread cysts and kidney

enlargement as seen in PKD. SLS is defined by the association of NPH with retinal dystrophy, often

in the severe form of LCA [140].

Among the non-lethal ciliopathies, two relevant conditions are BBS and JBTS. BBS is among the

mildest ciliopathies, diagnosed by the primary features of cone-rod retinal dystrophy, post-axial
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polydactyly, obesity (with hypogonadism in males), genital and renal malformations, and

intellectual impairment [141]. JBTS is uniquely characterized by the MTS, a pathognomonic

constellation of mid-hindbrain defects clearly appreciable on brain imaging. The MTS derives from

the association of cerebellar vermis hypodysplasia, thickened and horizontalized superior cerebellar

peduncles and deepened interpeduncular fossa, giving the appearance of a “tooth” on MRI axial

sections at the ponto-mesencephalic level. This typical pattern can variably associate with defects in

other organs, including the kidneys, retina, liver and skeleton, giving rise to an extremely large

spectrum of phenotypes, from relatively mild to severe [142]. At the end of this spectrum is MKS, a

lethal ciliopathy characterized by enlarged cystic kidneys, polydactyly, occipital encephalocele and

frequently congenital liver fibrosis [143].

Two other groups of ciliopathies displaying a wide range of severity are skeletal ciliopathies and

OFD syndromes. Skeletal ciliopathies comprise at least 16 different subtypes including the lethal

SRPS type I-V and syndromes more compatible with life, Jeune syndrome or asphyxiating thoracic

dystrophy (ATD), Mainzer-Saldino syndrome (MZSDS) and Ellis-van Creveld syndrome (EVC or

chondroectodermal dysplasia). These recessive disorders of skeletal bone growth manifest with

short ribs giving rise to a constricted thorax, shortened long bones and a characteristic trident aspect

to the acetabular roof, with or without polydactyly. Cleft lip/palate and defects of the eye, heart,

kidneys, liver, pancreas, intestines, and genitalia can also be variably present. Cranioectodermal

dysplasia (CED, Sensenbrenner syndrome) is an overlapping ciliopathy with similar genetic origins

and skeletal abnormalities that feature craniosynostosis, narrow rib cage, short limbs, and

brachydactyly [144]. EVC and CED in addition manifest with variable ectodermal defects affecting

the teeth, hair, nails and skin. Finally, OFD are a heterogeneous group of ciliopathies (more than 15

forms have been described to date), that share the association of oral, facial and digital defects, and

are clinically differentiated by the occurrence of additional involvement of other organs such as the

brain and kidneys [145].
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While this classification of ciliopathy diseases into distinct subtypes is widely adopted in clinical

practice, it is important to bear in mind that the overlap of clinical features among ciliopathies is

striking (see Table 2 in [144]) often making it difficult to assign a specific diagnosis to a patient.

For instance, the MTS may occur in association with short ribs and other skeletal defects, fulfilling

both the diagnoses of JBTS and JATD [146-148], or in association with typical features of OFD,

defining the so called OFD VI syndrome, that is classified both within the JBTS and the OFD

subgroups [145, 149]. Adding further complexity, some patients present anomalies that are typical

of multiple ciliopathies: one such example is OFD IV, a condition sharing features of SRPS

(shortened long bones, trident appearance of the acetabulum), OFD (lobulated tongue, polydactyly),

and MKS (occipital encephalocele, enlarged cystic kidneys and ductal plate proliferation of the

liver) [150].

Genetic basis of non-motile ciliopathies

The clinical heterogeneity of non-motile ciliopathies is mirrored by their genetic heterogeneity, and

the recent advent of whole exome and whole genome sequencing strategies has impressively

accelerated the identification of novel ciliopathy genes even in families underpowered for linkage

studies [151]. To date, we know over 50 genes causative of non-motile ciliopathies, and functional

studies have disclosed interesting correlates between the function and ciliary domain of the mutated

protein and the underlying clinical phenotype. Many proteins were found to cluster in discrete

complexes (‘modules’) bearing specific functions within the cilium. Indeed, most skeletal

ciliopathies are caused by mutations in IFT components [152], while the majority of BBS-related

proteins form the BBSome that modulates the correct assembly of the IFT complexes at the ciliary

base and regulates the turnaround from anterograde to retrograde transport at the ciliary tip [153].

Conversely, most proteins mutated in JBTS, MKS and NPH reside in the transition zone, where

they form distinct functional modules (such as JBTS/MKS and NPH complexes), that essentially
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regulate cilia-related signaling cascades and protein trafficking in and out of the cilium [154]

(Figure 1). Protein redundancy and functional interaction between complexes have been

demonstrated in distinct in vivo models, possibly explaining why mutations in so many genes can

result in similar multiorgan pathologies [155, 156]. Interestingly, CEP290 was found to regulate the

activity of distinct complexes, which could justify the pleiotropic phenotypes associated to its

mutations (see below) [157].

Besides gene discovery, next-generation-sequencing technologies have also revolutioned genetic

diagnosis, allowing to simultaneously, rapidly and cost-effectively sequence hundreds of ciliary

genes in large cohorts of patients [158]. This has resulted in a more accurate estimate of the

mutation frequency, as well as in an unexpected expansion of the phenotypic spectrum of ciliary

genes (Figure 4). Interestingly, some genes appear to be very organ-specific, for instance, mutations

in ARL13B have been identified only in JBTS patients with purely neurological manifestations [86],

while to date IFT80 and DYNC2H1 are found mutated only in isolated SRP phenotypes [84, 85].

Other genes are not so selective but still show a preferential involvement of specific organs and

tissues. Some examples are TMEM67, nearly invariably associated with congenital liver fibrosis

[159-161], C5Orf42, whose mutations cause OFD as well as JBTS with high prevalence of

polydactyly [162, 163], and IFT40, mutated in SRPS with high prevalence of severe kidney disease

[7]. On the other hand, genes such as CEP290 are extremely pleiotropic, being mutated in a wide

spectrum of ciliopathies with defects in the retina, kidneys, liver and CNS [164]. Similarly,

KIAA0586 mutations are known to cause a relatively mild form of pure JBTS as well as more

complex ciliopathy phenotypes, with features of JBTS, OFD and SRPS [123, 147, 165-167].

Some genotype-phenotype correlates have been established, as the occurrence of at least one

hypomorphic mutation is usually associated to milder phenotypes while biallelic loss of function
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mutations often lead to severe and often lethal disorders [128, 160, 168, 169]. However, such

correlates are only in part able to explain this variability, as they are challenged by several pieces of

evidence. For instance, the homozygous deletion of the NPHP1 gene is a recurrent mutation that is

known to cause distinct phenotypes, from isolated NPH to oculo-renal and cerebello-oculo-renal

ciliopathies [170-172]. Moreover, significant clinical variability has been reported among siblings

carrying the same genetic mutations [173], suggesting the existence of genetic, epigenetic or even

environmental modifiers able to modulate their phenotypic manifestation. Some BBS families were

found to show “oligogenic inheritance”, as autosomal recessive mutations in a BBS gene had to be

associated to a third heterozygous mutation in a distinct gene in order to become penetrant [174,

175]. While true oligogenic inheritance has not been confirmed in other ciliopathies, the existence

of genetic phenotypic modifiers has been suggested by some sporadic observations, showing a

positive correlation between the presence of certain heterozygous variants (e.g. AHI1 p.R830W or

RPGRIP1L p.A229T) and the occurrence of neurological, retinal or renal manifestations [76, 176,

177]. Yet, these findings require additional confirmation in larger, independent cohorts.

Despite the progresses in gene discovery made in the past decade, a proportion of patients remain

without a genetic diagnosis, indicating that a subset of genes still has to be identified. Of note, this

proportion varies among different ciliopathies and, most intriguingly, when considering the organs

involved. From recent NGS-based screenings and our own personal experience, we consider that

BBS appears to be the most solved condition, a genetic diagnosis being reached in about 70-80%

cases [178, 179]. Skeletal ciliopathies and MKS have a success rate above 70% [180-182], while

this is up to 60% for JBTS [89]. Yet, this proportion lowers to about 40% when considering the

subgroup of JBTS with kidney involvement, in line with distinct studies reporting a mutation rate

only up to 20% in NPH-related ciliopathies [183, 184]. From these observations, it seems that genes

with major kidney expression have been less characterized than genes involved, for instance, in

skeletal or brain development.
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Conclusions and future perspectives

The mutation spectrum for motile ciliopathies (PCD, RGMC) has been greatly expanded, allowing

an extensive biology-defined stratification of patients into distinct gene and mutation categories.

Moreover, new insights into the regulation of multiciliogenesis have arisen and clinically

meaningful correlations are emerging to connect the underlying genotype of affected individuals

with clinical outcomes across the lifespan of these chronic diseases [48, 185, 186]. This assists

diagnosis which is complicated by clinical heterogeneity with motile ciliopathies acknowledged to

be greatly underdiagnosed [13]. The hope is to move this field more rapidly towards clinical

translation, using novel pharmocogenomic approaches to target therapy in a biologically appropriate

manner.

For the primary ciliopathies, the impressive clinical and genetic heterogeneity and marked overlap

among distinct syndromes presents a major challenge for the physicians dealing with these

disorders, and it is not unusual that a patient receives different diagnoses from clinicians with

expertise in different pathologies. The complex scenario of ciliopathies recalls the ancient anecdote

of “the elephant and the blind men” [187]: six blind men encountered an elephant for the first time

and each touched a different part of its body, reaching different conclusions about its nature (a

pillar, a rope, a tree branch, a fan, a wall, a pipe) according to the part they had touched (the leg, the

tail, the trunk, the ear, the belly, the tusk). Of course, despite each having made an accurate

analysis, all had reached false conclusions as they missed the “big picture”. Similarly, when

approaching a patient with a ciliopathy, a common mistake is that of sticking to a specific

syndromic diagnosis based on the presence of certain features. This is not a trivial issue, as it bears

consequences in terms of management and counselling of patients and their families. While in some

cases a syndromic diagnosis is straightforward, clinicians should be aware that, for other patients,

the attempt to classify the phenotype within one or other ciliopathy syndrome may be inaccurate,
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and it would be better to provide a more descriptive diagnosis based on the extent of multiorgan

involvement. The increasing availability of large scale genetic testing including unbiased

approaches such as whole exome or whole genome sequencing also provides a useful diagnostic

tool, as it allows a reclassification of complex ciliopathy phenotypes based primarily upon their

genetic defect, and can suggest a potential spectrum of organ involvement according to the gene

that is found mutated.

Current “omic” technologies are also leading ciliary research into novel, intriguing avenues. For

instance, an unbiased approach combining affinity proteomics, genetics and cell biology allowed

definition of the “ciliary landscape”, highlighting interactions and protein complexes that could not

be revealed otherwise, and which can possibly expand the spectrum of ciliopathies to include other,

apparently unrelated disorders [188]. Similarly, unbiased siRNA-based functional genomic screens

matched with whole exome sequencing data led to the identification of novel ciliopathy genes and

regulators of ciliogenesis [9, 166]. Yet, despite the major progress made in recent years, the

pathobiological mechanisms underlying the striking variable expressivity of ciliary gene mutations

remains largely unknown, greatly hampering the appropriate counselling of families, especially

those needing to make reproductive choices. In our opinion, a deeper understanding of these

mechanisms represents the greatest challenge ahead in the field of ciliopathy research.
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Figure legends

Figure 1. Schematic structure of the primary cilium depicting the main subciliary

compartments: the transition zone (pink), containing proteins of the JBTS/MKS complex and the

NPH complex, IFT subcomplexes IFT-A and IFT-B (mediating retrograde and anterograde

transport, respectively), the BBSome and the PKD1/PKD2 membrane complex. The relation of the

main developmental pathways Shh and Wnt with the primary cilium is also indicated. Figure

adapted from [142].

Figure 2. Structure of motile cilia and role of mutant proteins.

Motile ciliopathies are caused by mutations in (top panel) components of the ciliogenesis pathway;

or (bottom panel) structural and attachment proteins of the axoneme dynein ‘arm’ motors (green),

the dynein arm docking complex, the nexin-dynein regulatory complex (dotted lines), the central

apparatus (brown), the radial spokes (blue), as well as molecular ruler proteins and cytoplasmic

dynein arm assembly factors. Reported syndromes are: PCD associated with retinitis pigmentosa

(RP) and Simpson-Golabi-Behmel Syndrome, Type 2 (SGBS2).

Figure 3. Spectrum of severity of primary ciliopathies

Distribution of known ciliopathy syndromes across a spectrum of severity.

Figure 4. Clinical and genetic variability of primary ciliopathies

Venn diagram summarizing the genetic overlap among distinct ciliopathies. *Also found mutated in

a single family with BBS [189, 190]; **also proposed as a novel candidate gene for MKS [180];

#also found mutated in a single family with skeletal dysplasia [191]; ##also found mutated in a

fetus resembling MKS [192]. Figure extended from [193].










