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Abstract Mechanistic philosophy of science views a large part of scientific
activity as engaged in modelling mechanisms. While science textbooks tend to
offer qualitative models of mechanisms, there is increasing demand for models
from which one can draw quantitative predictions and explanations. Casini
et al. (2011) put forward the Recursive Bayesian Net (RBN) formalism as well
suited to this end. The RBN formalism is an extension of the standard Bayesian
net formalism, an extension that allows for modelling the hierarchical nature
of mechanisms. Like the standard Bayesian net formalism, it models causal
relationships using directed acyclic graphs. Given this appeal to acyclicity,
causal cycles pose a prima facie problem for the RBN approach. This paper
argues that the problem is a significant one given the ubiquity of causal cycles
in mechanisms, but that the problem can be solved by combining two sorts of
solution strategy in a judicious way.

1 Introduction

The concept of ‘complex-system mechanism’, which is commonly defined such
that a mechanism’s behaviour is realized by the organized behaviour of its
component parts, plays an increasingly important role in philosophy of sci-
ence. A natural question to ask is how mechanisms can or should be modelled.
Adequately modelling mechanisms is a precondition for succesful mechanis-
tic prediction, intervention and/or explanation. Non-formal models of mecha-
nisms have been discussed at length in philosophy of science; see for example
Glennan (2005), Bechtel and Abrahamsen (2005), and Craver (2006). Some au-
thors have posited the need, however, to develop formal models of mechanisms
that might be used to draw quantitative, as well as qualitative, inferences from
the model (Lazebnik, 2002; Bechtel, 2011). In this paper, we will elaborate one
possible formal approach: mechanisms can be modelled by means of Recursive
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Bayesian Networks (RBNs). The RBN formalism is an extension of the stan-
dard Bayesian net formalism. In contrast with standard Bayesian nets, RBNs
can be used to model the hierarchical nature of mechanisms. This approach
to modelling mechanisms was originally put forward by Casini et al. (2011).
One limitation of that work, however, was that it lacked a principled way of
handling mechanisms that involve causal cycles. The primary aim of this pa-
per is to provide such an account. Given the ubiquity of cycles in mechanisms
(see §3), this is an important step forward in the development of the RBN
approach to mechanistic modelling.

The structure of the paper is as follows. §2 and §3 together motivate our
project, in that they substantiate the need for an RBN account that can handle
cycles. As such, they make clear both why Casini et al. (2011) have provided
an interesting approach to mechanistic modelling, and in what ways their ac-
count should be modified to be useful when modelling cases from scientific
practice. In §2 we will highlight three important features of mechanisms as
they are discussed in recent philosophy of science. It will emerge that the
machinery of Recursive Bayesian Networks will be well suited to modelling
mechanisms—on the condition that the acyclicity assumption, inherited from
standard Bayesian networks, is dropped. In §3 we will argue that cycles are
everywhere in the sciences, in particular in the biomedical and the biological
sciences. We also offer a threefold classification of cycles. We then discuss three
mereologically nested examples of biomedical mechanisms with cycles, drawn
from recent sleep research, in some detail. In §4 we introduce the framework
of Recursive Bayesian Networks and the ordinary causal Bayesian networks
to which they are related. We also show how they may be used for inference
(e.g., prediction). Finally, we show that the cycles discussed in §3 pose a co-
nundrum for RBNs as defined in Casini et al. (2011), which are assumed to be
acyclic. In §5 we sketch two ways to handle causal cycles in ordinary causal
Bayesian nets. The first is a discussion of the extent to which well-known re-
sults (relating to d-separation and the Causal Markov Condition) carry over
from the acyclic to the cyclic case. The second makes use of Dynamic Bayesian
Nets (DBNs). Both these solutions are then incorporated in the RBN frame-
work in §6, thus allowing for Recursive Bayesian Networks that contain cycles.
Which solution to apply depends on the type of problem that is studied, as
well as on pragmatic considerations, such as the granularity of analysis that
is required. We distinguish between static and dynamic problems, relate them
to the three-fold classification of cycles offered in §3, and provide examples
of how they can be handled. Finally, in §7, we summarize our approach and
make some concluding remarks.

Before we start, we would like to make two terminological and two sub-
stantive remarks. The first remark concerns the notion ‘recursive’. In the older
literature on structural equation modelling and causal Bayesian nets, this was
often used in the sense of ‘acyclic’ (see, e.g., Spirtes, 1995). Hence one may
worry that ‘cyclic Recursive Bayesian Net’ is a contradiction in terms. As
RBNs use ‘recursive’ in a different sense—the more standard sense of a recur-
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sive or inductive definition, which can appeal to another instance of itself—this
worry should not arise.

The second remark concerns the notion of ‘cyclicity’ itself. The topic of
cyclic causality is studied in diverse domains, ranging from AI and computer
science, through philosophy of science, to a wide range of empirical sciences.
In these domains, several synonyms (or close proxies) for ‘cyclicity’ are used,
among which ‘bidirectionality’ and ‘feedback’ are the most common ones. Since
‘bidirectional arcs’ are often used in the literature on causal discovery to de-
note the existence of (unobserved) confounding factors instead of bidirectional
causal influences, and since ‘bidirectional causality’ often refers to ‘atomic’
cycles of the form A � B (where A is a direct cause of B and vice versa),
we will avoid using the word ‘bidirectionality’. In §3, we will touch on the
notion of ‘feedback’ in more detail, distinguishing three types of feedback and
elucidating their links with ‘cyclicity’.

The third remark relates to the precise goal of our paper, which is mod-
elling mechanisms. We do not intend to tackle issues of causal (or mechanism)
discovery, such as specifying algorithms for inferring RBNs from observational
and/or experimental data. We presuppose the mechanism is known (be it com-
pletely or incompletely, fallibly or infallibly) and ask how we can best model it
so as to draw quantitative inferences. This account may then serve as a basis
for further research on formal methods for mechanism discovery.1

The fourth remark concerns the interpretation of causality. In the mecha-
nistic literature, Woodward’s interventionist account of causality is relatively
widespread (see Woodward, 2003, for the interventionist account; see e.g.,
Glennan, 2002, Woodward, 20022, Craver, 2007 and Leuridan, 2010, for ap-
peals to the interventionist account of causality within a mechanistic frame-
work). As is well known, Woodward’s account nicely fits the causal Bayesian
nets literature.3 Another interpretation that has been proposed with an eye to
causal Bayesian nets is the epistemic account, according to which causation is
a feature of the way we represent the world rather than the world itself, yet it
is objective in the sense that if two agents with the same evidence disagree re-
garding a causal claim, one may be right and the other wrong; see Williamson
(2005, chapter 9). In this paper, we will not adopt a specific account of causal-
ity. Any account that suits the causal Bayesian nets framework, such as the
two just mentioned, can be chosen.

1 Note that, as with all models, a recursive Bayesian network model only models some
aspects of a mechanism. The main goal is to model the hierarchical structure of the mech-
anism together with the causal structure at each level of the hierarchy, in such a way that
the model can be used to draw quantitative inferences. See Casini et al. (2011) for a fuller
presentation of the motivation behind this sort of model, and §7 of this paper for pointers
to possible limitations of the RBN approach.

2 Woodward’s concept of ‘mechanism’, or more precisely: of ‘mechanistic model’, is not
explicitly multi-level or hierarchical, in contrast to those on which we focus in this paper.
In the next section, the hierarchical nature will serve as one of the main reasons to adopt
the RBN approach to mechanistic modelling.

3 As such, his account of causality also forms the starting point for causal Bayes net
accounts of the structure of scientific theories (see Leuridan, 2014).
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In the interest of readability, we aim to keep the paper as non-technical as
possible. Further technical details concerning the frameworks we use can be
found in the references.

2 Importance for philosophy of science

The concept of ‘complex-system mechanism’ plays an increasingly important
role in philosophy of science. In this paper, we will not survey the overwhelming
literature on mechanisms (see for example Machamer et al., 2000, Glennan,
1996, Glennan, 2002, Bechtel and Abrahamsen, 2005). Rather, we will focus
on two recent works in the mechanistic tradition, one by Carl Craver and
one by William Bechtel, and focus on three key features of mechanisms and
mechanistic models they discuss. These three features will set the agenda for
our paper.

In his book Explaining the Brain, Craver (2007) gives a very detailed
account of mechanisms. A first feature that emerges from his work, is that
mechanisms are hierarchically organized. As we wrote above, mechanisms are
commonly defined such that their higher-level behaviour is realized by the
organized lower-level behaviours of their component parts. This hierarchical
structure need not be confined to two levels. The behaviours of a mechanism’s
components may themselves be mechanistically explicable as well. In fact,
there may be a whole series of nested mechanisms (see Craver, 2007, 188–195).
In a recent paper, “Mechanism and Biological Explanation,” William Bechtel
expresses a similar view: mechanistic explanations are always multilevel ac-
counts, focusing on the mechanism’s parts, operations and organisation, on
the phenomenon exhibited by the whole mechanism, and on the mechanism’s
environment (Bechtel, 2011, 538).

This hierarchical structure of mechanisms does not require, however, that
our descriptions of such hierarchies be open-ended in the downwards direction.
Models typically bottom-out in lowest-level mechanisms which are accepted as
relatively fundamental or unproblematic (in a given context); see Machamer
et al. (2000, 13) and Craver (2007, 193).

The hierarchical structure of mechanisms is illustrated in figure 1 (which
is adapted from Craver, 2007, 7). The X’s are components in the mechanism
for S’s ψ-ing. The φ’s are their respective behaviours. Solid arrows represent
intra-level causal relations. The dotted lines denote inter-level constitutive
relevance.

Figure 1 brings us to a second important feature of mechanisms: their pos-
sibly cyclic causal organization. X2 and X3 are cyclically causally connected:
X2 is a cause of X3, and vice versa (strictly speaking, X2’s φ2-ing is a cause
of X3’s φ3-ing and vice versa, but let us omit such circumlocutions). This is
not a mere coincidence or a slip of the pen on Craver’s behalf. Elsewhere, he
writes that symmetric causal relations exist, although he sometimes seems to
underrate their incidence (e.g. Craver, 2007, 153). He also mentions cases of
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Fig. 1 A phenomenon (top) and its mechanism (bottom)

causal feedback in the neurosciences (the discipline of interest in his book) on
several occasions.4

Bechtel attaches great importance to cyclicity. A crucial feature of bio-
logical organisms is ‘their autonomy—their ability to maintain themselves as
systems distinct from their environment by directing the flow of matter and
energy so as to build and repair themselves’ (Bechtel, 2011, 535). For this au-
tonomy, cyclic organization is pivotal: ‘Autonomous systems must employ a
nonsequential or cyclic organization such as negative feedback . . . ’ (Bechtel,
2011, 544). Mechanisms cannot be modelled merely sequentially without loss
of crucial information.

A third important feature, which is heavily stressed by Bechtel (2011, 536–
537), is that to adequately model a mechanism, one has to model not only its
qualitative aspects, but also its quantitative aspects. Bechtel proposes compu-
tational modeling and dynamic systems analysis as methods to account for the
non-qualitative aspects of mechanisms. We will propose a different approach
here: an approach based on causal Bayesian nets.

4 For mentions of causal feedback in Explaining the Brain, see e.g. pages 81 and 178-180.
Several of Craver’s figures also contain cycles: see figure 4.1 (p. 115) and figure 4.6 (p. 121)
and relatedly 5.7 (p. 189) and 5.8 (p. 194). Moreover, figure 3.2 (p. 71) and relatedly 4.1 (p.
166), leave open the possibility of causal feedback.
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As we shall see in §4, causal Bayesian nets can model both the qualitative
aspects of causal structures by means of a causal graph and their quantita-
tive aspects by means of the associated probability distribution. Hence this
approach would automatically meet Bechtel’s call for a quantitative account
of mechanisms. Following Casini et al. (2011), we use Recursive Bayesian Nets
(RBNs) instead of standard causal Bayesian nets so as to account for the
mechanisms’ hierarchical organization (§4). In order to account for the mech-
anisms’ possibly cyclic causal organisation, we will explore existing solutions
to the problem of cyclicity in causal Bayesian nets (§5) and incorporate these
in the RBN framework (§6). As a result, we provide a formal account of mech-
anisms that combines all three features discussed above.

But first we shall explore the abundance of cyclic mechanisms in the sci-
ences and distinguish between several types of causal cycles, as this will influ-
ence the choice of technical solution in each context (§3).

3 Importance for the sciences

Although not every causal relationship of interest to the sciences exhibits
cyclicity, very many causes of practical importance do. A bibliographic search
in the ISI Web of Science for “topic=(causal feedback)” on the 4th of November
2011 yielded 1,161 hits in disciplines as diverse as cell biology, biochemistry,
molecular biology, neuroscience, environmental studies, psychology and social
psychology, while a wider search in all of the ISI’s databases yielded a total of
1,603 hits. Cycles are everywhere in the sciences.

They are particularly prevalent in the biomedical and biological sciences.
Examples include metabolic cycles (such as Krebs’ cycle), organismal life cycles
(such as the malaria-causing organisms of the genus Plasmodium), homeostatic
pathways (such as blood glucose regulation) and pathological processes. A
survey of the 790 images contained in a recent medical textbook, Davidson’s
Principles & Practice of Medicine, 20th edition (Boon et al., 2006), revealed
a total of 154 images that contained some graphical representation of causal
processes. 51 of these figures (33%) were at least partially cyclic, conveying
knowledge about the regulation of the cell cycle, the life-cycles of various
pathogenic organisms, the homeostasis of fat, fluids and ions, the arrangement
of hormone systems and the development of disease.

A simple example of this kind of cycle is post-traumatic raised intracra-
nial pressure. Here, trauma to the head may cause swelling of the brain. This
swelling increases the pressure within the fixed volume of the skull. The con-
sequence of this increased intracranial pressure is to reduce cerebral perfusion,
which in turn causes cerebral hypoxia. This hypoxic insult causes damage to
the brain cells, which leads to further swelling.

One interesting feature of these causal cycles concerns the way that the
organisation of parts and operations governs the type of feedback seen in that
cycle. Three arrangements are possible. Negative-feedback cycles are those in
which the properties of the parts in the cycle tend to maintain the status quo
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by virtue of the organisation of their operations. Thus, the higher level phe-
nomena produced by negative-feedback cycles tend to be stable, as in the case
of many metabolic and homeostatic processes.5 With respect to medicine, this
means that negative-feedback cycles are typically physiological, rather than
disease-producing. Second are positive-feedback cycles. Here, the organisation
of parts and operations tends to produce divergence from equilibrium of one
or more parts over time. These kinds of cycles are typically associated with
the production of identifiable disease states, such as the head trauma example
given above.6 In this case, the degrees of swelling, intracranial pressure, and
cellular damage will tend to increase, while cerebral perfusion and oxygena-
tion will tend to decrease. The higher level phenomena produced by positive-
feedback cycles thus demonstrate exponential growth over time—at least until
restrained by external factors. Finally, a third kind of cycle exists in which the
organisation of the cycle neither tends to produce movement towards, or away
from, equilibrium. In these kinds of contingent-feedback cycles, the actual di-
rection of change is predominantly governed by factors extrinsic to the cycle.
For example, the parts of a parasitic life-cycle are largely governed by factors
external to that cycle, meaning that either positive or negative feedback may
occur in different instantiations.7

The type of feedback seen in a particular cycle partly depends on the man-
ner in which we investigate that cycle. For example, an oscillating system
studied over durations much shorter than its period may appear to demon-
strate positive feedback, yet will appear to show negative feedback if studied
at much longer durations. An example of this granularity in the description
of feedback can be seen in the pathway by which the concentration of thyroid
hormones is maintained (see figure 2). The secretion of thyrotropin-releasing
hormone (TRH) from the hypothalamus stimulates the pituitary gland to se-
crete thyroid-stimulating hormone (TSH). In turn, this causes the thyroid to
secrete the hormone thyroxine.8 The resultant increase in circulating thyrox-
ine levels inhibits the secretion of TRH by the hypothalamus, which has the
effect, via reduced TSH secretion, of reducing the concentration of thyrox-
ine. When viewed over the long-term, this is a negative-feedback cycle, as the
concentrations of each of the hormones involved tend towards equilibrium.

5 This property of negative feedback systems to tend toward equilibrium is the case when
there is no significant delay in the system. When delay is present, as it is in many biological
systems, oscillations will tend to arise. We would like to thank Mike Joffe for pressing us on
this issue.

6 However, this is not always the case. For instance, various positive feedback loops in
pregnancy serve to appropriately maintain hormone levels.

7 These kinds of contingent-feedback cycles are, in other words, more sensitive to back-
ground conditions than the other two kinds. This makes them unstable, in Mitchell’s sense of
stability as describing the sensitivity of relations to their background conditions (Mitchell,
2009, 56). This should be discriminated from robustness, which describes the degree to which
a function is maintained when one or more constitutive elements are disrupted (Mitchell,
2009, 69-73).

8 This cycle is more complicated than suggested above. For example, the thyroid secretes
two hormones—T3 and T4—which can be interconverted, and feedback occurs at various
intermediate points in the cycle. But this simple version is adequate for our discussion.
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Fig. 2 Thyroxine example. TRH: thyrotropin-releasing hormone; TSH: thyroid-stimulating
hormone.

However, at very short durations, individual parts of the mechanism may un-
dergo changes away from their equilibrium point. Thus, the type of feedback
modelled depends on the granularity with which we investigate a phenomenon
of interest. Modelling feedback, as with many other considerations in mecha-
nistic modelling, also depends on pragmatic factors such as the required level
of detail.

Given this brief introduction to cycles in practice, the remainder of this
section will discuss three mereologically nested examples of biomedical mech-
anisms with cycles, drawn from recent work in sleep research.

3.1 Public health example

Insufficient sleep is correlated with mortality (Grandner et al., 2010). How-
ever, the mechanism underlying this association is highly complex and poorly
understood. As figure 3 suggests, an extensive network of social, psycholog-
ical and pathological states causally interact with both sleep and mortality.
The duration and quality of sleep interact cyclically with a range of mortality-
associated physiological and social outcomes including obesity, cardiovascular
disease, stress and metabolic dysfunction (indicated by edges C and E, figure
3). To illustrate this, consider the relationship between insufficient sleep and
cardiovascular disease. Broadly, while cardiovascular disease causes impaired
sleep (perhaps by causing chest pain or shortness of breath while lying down),
impaired sleep may also cause cardiovascular disease (perhaps by increasing
blood pressure).
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Fig. 3 Figure showing cyclical interactions between sleep and health outcomes (Grandner
et al., 2010, 200). Reprinted from Sleep Medicine Reviews, 14(3), Michael A. Grandner,
Lauren Hale, Melisa Moore and Nirav P. Patel, Mortality associated with short sleep du-
ration: The evidence, the possible mechanisms, and the future, pages 191-203. Copyright
2010, with permission from Elsevier.

3.2 Clinical example

One way in which sleep and cardiovascular disease interact is by the clini-
cal syndrome known as Obstructive Sleep Apnoea (OSA). This is a condition
where excessive relaxation of the tissues of the throat leads to occlusion of the
upper airway, temporarily but completely interrupting breathing during sleep.
This transient suffocation then leads to an arousal event, where the individual
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Fig. 4 Diagram showing the cyclical relationship between sleep apnoea and heart failure.
NRFM: nocturnal rostral fluid movement; OSA: obstructive sleep apnoea (Gottlieb et al.,
2010; Yumino et al., 2010).

experiences a complex set of cardiorespiratory responses, terminated in wake-
fulness and the re-establishment of normal breathing. These stressful arousal
events may occur on dozens of occasions during each period of sleep.

Many diseases are correlated with OSA. One example is heart failure. Here,
the heart is unable to pump sufficient blood to keep pace with normal circu-
latory demands. While the aetiology of heart failure is complex, one known
cause of it is OSA (Gottlieb et al., 2010), which acts by a combination of short-
and long-term mechanisms. For instance, in the short term, arousal events
dramatically increase both blood pressure and cardiac oxygen demands. This
may produce gradual cardiac remodelling, and excessive sympathetic nervous
system activity, leading to an increased chance of developing heart failure
(McNicholas and Bonsignore, 2007, 161).

However, as figure 4 suggests, not only is OSA a cause of heart failure,
but it may also result from it. First, heart failure—in common with many
chronic diseases—often causes sufferers to be very tired, leading to the adop-
tion of a highly sedentary life-style. Fairly intuitively, being sedentary tends to
cause weight gain, which can predispose to OSA by increasing the size of the
neck. Second, heart failure can cause OSA via a pathological process known
as nocturnal rostral fluid movement (NRFM). The basic idea is this. One of
the consequences of heart failure is a condition known as dependent oedema,
which is characterised by the abnormal accumulation of extracellular fluid in
the lower parts of the body (the ankles, for instance). In NRFM, lying down
(while, for instance, sleeping) causes this fluid to migrate up from the lower
part of the body towards the head and neck. Here, the fluid accumulates in
the soft tissues of the throat, producing an enlargement of the soft tissues in
an analogous way to obesity, and similarly increasing the chances of airway
obstruction (Yumino et al., 2010). Heart failure, via both weight gain and
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NRFM, causes OSA, while OSA, via a series of complex processes associated
with arousal events, causes heart failure.

3.3 Neuroscience example

A neurologically important feature of normal NREM sleep is the slow wave-
like rhythm in which neurones across the cortex ‘beat’ at a frequency of about
1Hz.9 This slow wave sleep is thought to be causally significant in consol-
idating new memories (Marshall et al., 2006). This oscillation comes about
from a cycle that obtains between three populations of neurones (Crunelli and
Hughes, 2010), as described in figure 5. First, two populations of neocortical
neurones—‘a subset of pyramidal neurons in layers 2/3 and 5 and a group of
Martinotti cells that is exclusively located in layer 5’ (Crunelli and Hughes,
2010, 11)—and a group of thalamic cells, known as cortically projecting tha-
lamic (CT) neurones, act as intrinsic pacemakers, spontaneously generating
a slow oscillation. Together, the effect of these pacing cells is to stimulate
two populations of nerves in the thalamus—the CT and nucleus reticularis
thalami (NRT) neurones. In turn, these thalamic cells, once stimulated in
this way, evoke a strong oscillatory response from the thalamus more broadly.
This has the effect of stimulating ‘virtually all cortical neurones’ (Crunelli
and Hughes, 2010, 10) to produce the <1Hz oscillation seen on EEG. This
waveform therefore arises by virtue of the cyclical interactions between three
different populations of neurones, as Crunelli and Hughes suggest: ‘the full
EEG manifestation of the slow rhythm requires the essential dynamic tuning
provided by their complex synaptic interactions’ (Crunelli and Hughes, 2010,
14).

4 Recursive Bayesian networks

In this section we will introduce Recursive Bayesian networks and see that
causal cycles present a prima facie problem for this formalism.

4.1 Origins

Bayesian networks were developed in the 1980s in order to facilitate, among
other things, quantitative reasoning about causal relationships (Pearl, 1988).10

A causally-interpreted Bayesian net uses a directed acyclic graph (DAG) to

9 Similar examples of neurological oscillators are also discussed by Bechtel (2011, 548-549).
10 Structural equation modelling had previously been put forward for this purpose. But

structural equation models attempt to model deterministic relationships between cause and
effect (with error terms which are usually assumed to be independent and normally dis-
tributed), while Bayesian networks seek to represent the probability distribution of the
variables in question. In general it is harder to devise an accurate model of deterministic
relationships than it is to determine probabilistic relationships between cause and effect.



12 Brendan Clarke, Bert Leuridan & Jon Williamson

Fig. 5 Figure showing cyclical interactions between cortical and thalamic oscillators in the
production of the slow (<1 Hz) rhythm. (Crunelli and Hughes, 2010, 14). Reprinted by
permission from Macmillan Publishers Ltd: Nature Neuroscience, 13(1), Vincenzo Crunelli
and Stuart W. Hughes, copyright 2010.

represent qualitative causal relationships and the probability distribution of
each variable conditional on its parents to represent quantitative relationships
amongst the variables. The Recursive Bayesian Network (RBN) formalism
was developed to model nested causal relationships such as [smoking causing
cancer] causes tobacco advertising restrictions which prevent smoking which
is a cause of cancer (Williamson, 2005, Chapter 10). Standard Bayesian nets
cannot be applied to this task because they cannot model causal relationships
acting as causes, and they do not allow variables such as smoking to occur at
more than one place in the network. Casini et al. (2011) then went on to apply
the RBN formalism to the modelling of mechanisms, which are often thought
of as composed of nested levels of causal relationships.11

11 Note that RBNs are not the only hierarchical extension of Bayesian nets. See Williamson
(2005, §10.2) for a comparison between RBNs and other related formalisms.
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Fig. 6 A directed acyclic graph

4.2 Bayesian nets

A Bayesian net consists of a finite set V = {V1, . . . , Vn} of variables, each
of which takes finitely many possible values, together with a directed acyclic
graph (DAG) whose nodes are the variables in V , and the probability distri-
bution P (Vi|Par i) of each variable Vi conditional on its parents Par i in the
DAG.12 Fig. 6 gives an example of a directed acyclic graph; to form a Bayesian
net the probability distributions P (V1), P (V2|V1), P (V3|V2), P (V4|V2V3) and
P (V5|V3) need to be provided. The graph and the probability function are
linked by the Markov Condition which says that each variable is probabilis-
tically independent of its non-descendants, conditional on its parents, written
Vi ⊥⊥ ND i | Par i. Fig. 6 implies for instance that V4 is independent of V1 and
V5 conditional on V2 and V3. A Bayesian net determines a joint probability
distribution over its nodes via P (v1 · · · vn) =

∏n
i=1 P (vi|par i) where vi is an

assignment Vi = x of a value to Vi and par i is the assignment of values to
its parents induced by the assignment v = v1 · · · vn. In a causally-interpreted
Bayesian net or causal net , the arrows in the DAG are interpreted as direct
causal relations (Williamson, 2005) and the net can be used to infer the ef-
fects of interventions as well as to make probabilistic predictions (Pearl, 2000,
Spirtes et al., 2000); in this case the Markov Condition is called the Causal
Markov Condition.

4.3 Recursive Bayesian nets

A Recursive Bayesian Net is a Bayesian net defined over a finite set V of
variables whose values may themselves be RBNs. A variable is called a network
variable if one or more of its possible values is an RBN and a simple variable
otherwise. A standard Bayesian net is an RBN whose variables are all simple.

An RBN x that occurs as the value of a network variable in RBN y is
said to be at a lower level than y; the network variable in question is a direct
superior of the variables in x, which are called its direct inferiors. Variables
in the same net (i.e., at the same level) are peers. If an RBN contains no
infinite descending chains—i.e., if each descending chain of nets terminates in
a standard Bayesian net—then it is well-founded .13 We restrict our attention
to well-founded RBNs here.

12 Although Bayesian nets have been extended to handle certain continuous cases, we
restrict attention to discrete variables in this paper.
13 This corresponds to the notion of ‘bottoming-out’ in the mechanistic literature (see §2).
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For simplicity of exposition, we shall also restrict our attention to the case
in which each variable only occurs once in the RBN—in which case each vari-
able has at most one direct superior. This will allow us to state our main points
without having to digress by discussing questions to do with the consistency
of an RBN and other technicalities (Williamson, 2005, §§10.4–10.5). Although
this restriction is expedient, it is not essential: the theory of RBNs does admit
variables with multiple occurrences.

4.4 Example

To take a very simple example, consider an RBN on V = {M,S}, where M is
the DNA damage response mechanism which takes two possible values, 0 and
1, while S is survival after 5 years which takes two possible values yes and no.
The corresponding Bayesian net is:

����M -����S
P (M), P (S|M)

Suppose S is a simple variable but thatM is a network variable, with each of its
two values denoting a lower-level (standard) Bayesian network that represents
a state of the DNA damage response mechanism. When M is assigned value
1 we have a net m1 representing a functioning damage response mechanism,
with a probabilistic dependence (and a causal connection) between damage D
and response R:

����D -����R
Pm1

(D), Pm1
(R|D)

On the other hand, when M is assigned value 0 we have a net m0 repre-
senting a malfunction of the damage response mechanism, with no dependence
(and no causal connection) between damage D and response R:

����D ����R
Pm0(D), Pm0(R)

Since these two lower-level nets are standard Bayesian nets the RBN is
well-founded and fully described by the three nets.

Note that, as this example shows, an RBN can be used to represent mech-
anisms in various states—in this case, the RBN represents a malfunctioning
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damage response mechanism as well as a functioning damage response mecha-
nism.14 It is possible to build an RBN representing just one of these mechanism
states by taking the network variable to have a single possible value. Even if an
RBN represents just one of a mechanism’s states, it still models its hierarchical
architecture.

4.5 Recursive Causal Markov Condition

If an RBN is to be used to model a mechanism, it is natural to interpret
the arrows at the various levels of the RBN as signifying causal connections.
Just as standard causally-interpreted Bayesian nets are subject to the Causal
Markov Condition, a similar condition applies to causally-interpreted RBNs.
This is called the Recursive Causal Markov Condition.

Let V = {V1, . . . , Vm} (m ≥ n) be the set of variables of an RBN closed
under the inferiority relation: i.e., V contains the variables in V , their direct
inferiors, their direct inferiors, and so on. Then:

RCMC. Each variable in V is independent of those variables that are neither
its effects (i.e., descendants) nor its inferiors, conditional on its direct causes
(i.e., parents) and its direct superiors: Vi ⊥⊥ NID i | DSupi ∪ Par i for each
variable Vi, where NID i is the set of non-inferiors-or-descendants of Vi and
DSupi is the set of direct superiors of Vi.

Note that, while some authors treat the Causal Markov Condition as a nec-
essary truth, others argue against its universal validity (see, e.g., Williamson,
2005). We treat the Causal Markov Condition and RCMC as modelling as-
sumptions, in need of testing or justification, rather than necessary truths.

4.6 Inference

Inference in RBNs proceeds via a formal device called a flattening . Let N =
{Vj1 , . . . , Vjk} ⊆ V be the network variables in V. For each assignment n =
vj1 , . . . , vjk of values to the network variables we can construct a standard
Bayesian net, the flattening of the RBN with respect to n, denoted by n↓, by
taking as nodes the simple variables in V plus the assignments vj1 , . . . , vjk to
the network variables, and including an arrow from one variable to another if
the former is a parent or direct superior of the latter in the original RBN. The
conditional probability distributions are constrained by those in the original
RBN: P (Vi|Par i ∪DSupi) = Pvji

(Vi|Par i) given in the RBN, where Vji is the
direct superior of Vi. The Markov Condition holds in the flattening because
the Recursive Causal Markov Condition holds in the RBN. (In the flattening,
those arrows linking variables to their direct inferiors in the RBN would not

14 The malfunctioning of mechanisms is of particular interest to, e.g., neuroscience (Craver,
2007, 124-125) and medicine (Nervi, 2010).
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normally be interpretable causally, so the Causal Markov Condition is not
satisfied.)15

In our example, for assignment m1 of network variable M we have the
flattening m↓1:

����m1 -

?
H
HHHHj

����S
����D -����R

with probability distributions P (m1) = 1 and P (S|m1) determined by the top
level of the RBN, and with P (r1|d1m1) = Pm1

(r1|d1) determined by the lower
level (similarly for d0 and r0). The flattening with respect to assignment m0

is m↓0:

����m0 -

?
HHH

HHj

����S
����D ����R

Again P (r1|m0) = Pm0
(r1), etc. In each case the required conditional distri-

butions are determined by the distributions given in the original RBN.
The flattenings suffice to determine a joint probability distribution over the

variables in V via P (v1 · · · vm) =
∏m

i=1 P (vi|par idsupi) where the probabilities
on the right-hand side are determined by a flattening induced by v1 · · · vm.
Having determined a joint distribution, the causally-interpreted RBN can be
used to draw quantitative inferences in just the same way as can a standard
causal net (Casini et al., 2011, §2).

Note that RBNs are more expressive than standard Bayesian nets. What
can be encapsulated in a single RBN corresponds to the information in several
standard Bayesian nets (the flattenings). In many cases the flattenings are
mutually inconsistent, so cannot themselves be combined into a single standard
Bayesian net.

4.7 Causal cycles

We are now in a position to see why causal cycles pose a conundrum for
RBNs when used to model mechanisms. As we have seen, mechanisms with
causal cycles are ubiquitous. Now, an RBN models causality at each level using
directed acyclic graphs. It is important that the graph be acyclic because of
the connection between RBNs and standard Bayesian nets: an RBN with a
cyclic causal graph would lead to flattenings that themselves have cycles; these

15 While these arrows would not normally be interpreted causally, the question arises as to
whether they might be if Craver’s views of mutual manipulability and causality are endorsed.
See footnote 25.
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flattenings would fail to qualify as standard Bayesian nets and hence it would
not be possible to define a joint distribution in the way described; therefore
one would not be able to use the RBN for inference. Because causal cycles
cannot be modelled directly in RBNs, it seems that RBNs cannot be suitable
for modelling mechanisms after all.

Consider an example. Head injuries are often characterised by the following
causal cycle (see §3): trauma causes swelling (oedema) which causes increased
pressure on the brain (raised intracranial pressure) which causes oxygen de-
privation (hypoxia) which in turn causes further trauma, and so on. Medical
interventions to break this vicious circle include the use of the drug manni-
tol, which osmotically reduces swelling, and controlled hyperventilation, which
reduces the partial pressure of carbon dioxide in the blood, which in turn pro-
duces cerebral vasoconstriction, reducing oedema. The important thing to note
is that these interventions sever the connection between trauma and swelling.

One might want to use an RBN to model this as follows. At the top level of
the mechanism we might have two variables: action A taking possible values
a0 (no treatment), a1 (treatment); and survival after 1 day D taking values
d0 (no), d1 (yes). A is a cause of D at this level:

����A -����D
D might be considered a simple variable while A is modelled as a network
variable. Value a1 has causal graph:

����T
����H ��

��
�*

����S�
���������PHH

HH
HY

where binary variables T , S, P , H stand for trauma, swelling, increased pres-
sure and hypoxia respectively. a0 has causal graph:

����T HH
HHHj����H ��

��
�*

����S�
���������PHH

HH
HY

Clearly this last graph is not acyclic and hence the resulting hierarchical struc-
ture cannot be used as a basis for an RBN as standardly defined.

The question arises, then, whether the RBN formalism can be further de-
veloped in order to model mechanisms containing causal cycles.
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5 Current approaches

The best way to find an answer to this question is to look at past attempts to
handle causal cycles in ordinary, i.e. non-recursive, causal Bayesian nets. Two
main types of solution can be distinguished, each of which may be used within
the RBN framework, as we will show in §6.

5.1 d-separation in directed cyclic graphs

In the case of directed acyclic graphs (DAGs), there is an intuitive graphical
criterion, called d-separation, that can be used to check which conditional in-
dependence relations are satisfied by any probability distribution that satisfies
the Causal Markov Condition relative to a given graph G.

Definition 1 (d-separation) Let G be a DAG defined over the set of vari-
ables V . If Q ⊂ V and A,B ∈ V \Q, then A and B are d-separated given Q
in G, in short A ⊥⊥ GB | Q, iff there is no path U between A and B, such that

1. for every collider . . .→ C ← . . . on U , Descendants(C) ∩Q 6= ∅,16
2. and no other vertex on U is in Q.

If X 6= ∅, Y 6= ∅ and Z are three disjoint sets, then X is d-separated from Y
given Z iff every member of X is d-separated from every member of Y given
Z. (cf. Spirtes et al., 2000, 44)

In the acyclic case, d-separation is equivalent to the Causal Markov Con-
dition (Spirtes, 1995; Spirtes et al., 2000, 44): X ⊥⊥ GY | Z iff X ⊥⊥ PY | Z,
where X,Y, Z ⊂ V and where the latter expression stands for ‘X is proba-
bilistically independent of Y given Z’ for any probability distribution P that
satisfies the Causal Markov Condition with respect to G.

This equivalence fails in directed cyclic graphs (DCGs), yet the follow-
ing weaker implication holds as was shown by Pearl and Dechter (1996, 422,
theorem 2).17 Given a (possibly cyclic) graph and associated probability dis-
tribution, if X ⊥⊥ GY | Z, then X ⊥⊥ PY | Z, provided that (i) the variables in
V all have a discrete and finite domain, (ii) the values of the variables of the
system are uniquely determined by the disturbances, and (iii) the disturbances

16 In this definition, C ∈ Descendants(C) by convention.
17 The paper by Pearl and Dechter (1996) extends previous results by Spirtes (1995) and

Koster (1996) who have shown that the d-separation test is valid for cyclic graphs with linear
equations and normal distributions over the error terms. Given that we restrict attention to
discrete variables in this paper (see §4), we will only discuss Pearl and Dechter.



Modelling mechanisms with causal cycles 19

are uncorrelated.18 In other words, even in the cyclic case the independencies
induced by G can be read off directly by means of the d-separation criterion.19

Pearl and Dechter implicitly assume that the causal structure in question
‘is stable’ (1996, 421) and has reached ‘equilibrium’ (1996, 423)—cf. condition
(ii) above: once the values of the disturbances are given, the values of all vari-
ables are uniquely determined. Their approach to the problem of cyclicity in
ordinary Bayesian nets has a problem, however. As Neal (2000) has shown,
their theorem is not true in general. He gives an example of a graph and an
associated set of equations that satisfy the three conditions specified above,
yet in which there are two variables that are d-separated by a third variable
without being probabilistically independent conditional on that third variable.
One possible way to salvage Pearl and Dechter’s theorem is to require ‘not only
that [the disturbances] U1, . . . , Un uniquely determine [the endogenous vari-
ables] X1, . . . , Xn, but also that this unique solution for X1, . . . , Xn can be
obtained by a procedure in which the Xi are updated in accordance with the
causal structure of the network. In such a casual [sic] dynamical procedure,
each Xi is repeatedly replaced by the value computed for it from the corre-
sponding Ui and the current values of its parents, according to the equation
for that Xi, until a stable state is reached.’ (Neal, 2000, 90)

One way to do this, is by making use of Dynamic Causal Bayesian nets.

5.2 Dynamic Bayesian Nets

Dynamic Bayesian nets (DBNs) were developed in the late 1980s to model the
change in a probability distribution over time (Dean and Kanazawa, 1989, §5).
More recent developments can be found in Friedman et al. (1998), Ghahramani
(1998), Murphy (2002), Bouchaffra (2010) and Doshi-Velez et al. (2011) for
instance.

A DBN consists of two components. First, a prior network needs to be
specified. This is a Bayesian network that is used to represent the probability
distribution of the variables at the initial time 0. As an example, consider the
probability distributions P (A0), P (B0|A0), P (C0|B0) together with the follow-
ing graph:

18 Disturbances are not explicitly mentioned in §4, but they can easily be introduced.
Disturbances are variables that represent errors due to omitted factors (see Pearl, 2000, 27).
The assumption of uncorrelated disturbances is not a severe restriction. Given a graph G
and associated probability distribution P , such that not all disturbances are independent,
one may construct an augmented graph G′ in which all disturbances are independent. The
augmented graph G′ is obtained by adding, for each pair of dependent disturbances, a
dummy root node as a common cause of the disturbances (Pearl and Dechter, 1996, 422).
19 Unlike in the acyclic case, however, ‘the joint distribution of feedback systems cannot be

written as a product of the conditional distributions of each child variable, given its parents’
(Pearl and Dechter, 1996, 420). Hence factorization, on which we relied in §4, cannot be
applied to DCGs. This can be shown by means of a simple example by Spirtes et al. (2000,
§12.1.2). Applying the factorization to the graph X � Y , would lead to P (X,Y ) = P (X |
Y ) × P (Y | X), which would mean that X and Y are independent, contrary to what the
graph suggests.
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����A0
-����B0

-����C0

The second component of a DBN is a transition network , that can be used
to represent the distribution of the variables at time 1 conditional on that at
time 0. For example, we might have a transition network based on the following
graph:

����A0

?
����B0

?
����C0

?

����A1
-����B1

-����C1

Here each variable at time 1 is directly influenced by its prior state as well
as by its causes.

Note that the Markov Condition is an assumption underlying both these
networks. It is also normally assumed that the process is Markovian, i.e., the
variables at time t + 1 are probabilistically independent of those at times
0, . . . , t − 1 conditional on those at times t, and that the process is station-
ary , i.e., the distribution of variables at one time conditional on those at the
previous time does not vary over time, so that the transition network remains
valid for the transition from any time n to n + 1, not just for the transition
from time 0 to time 1. (These assumptions can be relaxed, but obviously at a
penalty of added computational complexity.)

For any particular time of interest, the DBN is unrolled by combining
the prior network with sufficiently many copies of the transition network. For
instance at time t = 4 we would need a network based on the following graph:
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This unrolled network then determines a joint distribution over the variables
from times 0 to 4.

The use of DBNs has been put forward as a way to handle causal cycles
(see, e.g., Bernard and Hartemink, 2005). When there is a cycle linking two
variables X and Y , that tends to be because X initially changes Y which later
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changes X, which in turn later changes Y and so on.20 By time-indexing the
variables in the cycle, one can unwind the cycle into a potentially infinite chain
of the form X0 −→ Y0 −→ X1 −→ Y1 −→ · · ·. In general, a causal cycle can
be unwound by time-indexing the variables and generating an acyclic DBN.
This DBN can then be unrolled in the way described above.

6 Proposed solution

In this section we shall put forward a strategy for extending the RBN formal-
ism to cope with causal cycles. This is a mixed strategy: some situations are
handled one way, while other situations are handled another way. We distin-
guish between static problems and dynamic problems. A static problem is a
situation in which a specific cycle reaches equilibrium—either due to negative
feedback in the cycle or due to external factors—and where the equilibrium it-
self is of interest, rather than the process of reaching equilibrium. On the other
hand a dynamic problem is a situation in which it is the change in the values
of variables over time that is of interest: perhaps there is positive feedback,
leading to a drift in the probability distribution of the variables in the cycle
over time; perhaps there is negative feedback towards an equilibrium solution,
but it is the progress of the cycle towards equilibrium that is of interest; per-
haps the cycle variables oscillate between two or more distributions. Note that
as to whether a problem is static or dynamic depends not only on the cycle
in question but also on the interests of the modeller, as we suggested in §3.
Our mixed strategy is then this: each static problem is tackled by appealing
to the d-separation discussion of §5.1, while each dynamic problem is tackled
by invoking the Dynamic Bayesian Net machinery introduced in §5.2.

6.1 Static problems

In this case it is the equilibrium distribution itself that is of interest, rather
than the values the variables take while reaching equilibrium. For each static
problem within an RBN, we can attempt to model the probability distribution
of the equilibrium solution. Our approach here will appeal to the use of d-
separation in cyclic graphs, described in §5.1, to transform the cycle in question
in the RBN into a Bayesian net that represents the corresponding equilibrium
distribution, which we will call an equilibrium network .

Let us return to an earlier example of a stable cycle: the homeostatic
thyroid cycle introduced in §3. This cycle, depicted in Figure 2, might well
appear as a graph at some level in an RBN, perhaps with various malfunc-
tioning variants appearing as other values of its direct superior. (Subclinical
hypothyroidism, for example, involves an increase in TSH but normal levels of
thyroxine, while primary hypothyroidism involves high levels of TSH and low

20 Simultaneous causation and backwards causation do not fit this picture. However, such
cases rarely if ever occur in models of mechanisms, so we set them aside in this paper.
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levels of thyroxine.) We will consider a slightly augmented example, consisting
of the thyroid cycle together with the following process. Amiodarone is a drug,
commonly used to treat cardiac arrhythmias, that contains lots of iodine (37%
by weight). One common adverse effect of this drug is hypothyroidism, which
is an abnormal reduction in the concentration of thyroxine in the blood. This
occurs because the iodine contained in amiodarone causes a reduction in the
rate of iodide oxidation by the thyroid by a mechanism known as the Wolff-
Chaikoff effect. The following should be interpreted as a directed cyclic graph
with Amiodarone, Iodide, etc. as vertices representing random variables, and
not just as a schematic picture as was the case in section §3):

The procedure is first to transform this graph into an undirected moral
graph, which is formed by ‘marrying’ the parents of each variable in the pre-
vious cyclic graph by adding an edge between them, and then adding an edge
between each pair of variables that are connected by an arrow in the cyclic
graph:21

21 This procedure is outlined by Lauritzen et al. (1990). Their alternative test for d-
separation is equivalent to the one specified in §5.1 and is used by Pearl and Dechter (1996)
in their discussion of d-separation for directed cyclic graphs.
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The key point here is that separation in the moral graph is equivalent to
d-separation in the directed cyclic graph, which, as we saw in §5.1, implies
conditional probabilistic dependence.22 Thus for example amiodarone is prob-
abilistically independent of thyroxine conditional on iodide level.

This undirected graph can then be transformed into a directed acyclic
graph that satisfies the Markov Condition with respect to the underlying prob-
ability distribution (see the Appendix for an algorithm):

Note that the arrows in this graph are not to be interpreted causally.
This equilibrium network is merely a formal device for representing a joint
distribution.

Finally, the resulting graph can be substituted for the corresponding cyclic
graph in the original RBN, and, by specifying the probability distribution of

22 Separation in undirected graphs (such as moral graphs) is defined as follows: let G be
an undirected graph with vertex set V , then two sets of vertices X,Y ⊆ V are separated by
Z ⊆ V if and only if every path (sequence of undirected edges) from each vertex in X to
each vertex in Y contains some vertex in Z.



24 Brendan Clarke, Bert Leuridan & Jon Williamson

each variable conditional on its parents, the network can be used for inference
as detailed in §4.

6.2 Dynamic problems

In this situation it is the change in the values of variables over time that is of
interest. The approach we take in this dynamic case is to unwind the cycles
by time-indexing the variables, and apply the DBN formalism to represent the
probability distribution of the variables in the cycle as it evolves over time.23

Let us return to our head trauma example. We gave an RBN representation
of the relevant mechanisms including a0 which has the causal graph depicted
in figure 7:

����T HHH
HHj����H ��

�
��*

����S��
��������PH

HH
HHY

Fig. 7 Cyclic graph

This is a cyclic graph and needs to be transformed into a directed acyclic
graph if we are to apply the RBN inference machinery. The key point to
note is that the causal cycle is not instantaneous. A change in H changes T
slightly later, which changes S slightly later, changing P later still, followed
by a subsequent change in H, and so on. The point is that it is not the initial
change in H that leads via a causal cycle to a change in itself, but rather that
the initial change in H leads via a causal cycle to a change in a later value of
H. Indexing the variables by time makes this temporal aspect explicit.

Recall that a DBN consists of two components. First, a prior network
needs to be specified. This is a Bayesian network that is used to represent the
probability distribution of the variables at time 0. The following graph, for
instance, can be used in the prior network (though computationally it may
not be the most convenient one, see below):

23 Prima facie, this approach runs counter to Bechtel’s appeal not to model mechanisms
sequentially (see §2). By means of the transition network, however, the cyclic organization
is captured as well. We would like to thank Michael Wilde for pointing out this seeming
incongruity.
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Fig. 8 Complete graph for prior network

This is a complete graph (there is an arrow between each pair of nodes)
so the Markov Condition is trivially satisfied. But a complete graph can be
computationally demanding: as the number of nodes in a complete graph in-
creases, there is an exponential increase in both the number of probabilities
that need to be specified in the corresponding Bayesian net and in the time it
takes to perform inferences using the Bayesian net. Thus it is desirable to use
a sparser graph if possible. In the static case, a sparser graph was obtained by
generating a DAG via the moral graph. This method is not recommended in
the dynamic case because, as we saw in §5.1, it only appears to be guaranteed
to work in equilibrium situations. Instead we recommend a hypothesise and
test methodology for obtaining a sparser graph. First, a DAG can be hypothe-
sised by unwinding the cycle in figure 7 and considering the causal connections
between the variables at the initial time 0 (see figure 9):
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Fig. 9 Sparse graph for prior network

In general, the Markov condition may fail in a causal graph that has been
constructed in this way from a cyclic causal graph.24 Second, therefore, one
needs to test whether the Markov Condition is satisfied to within some spec-
ified tolerance level. If not, one should add further arrows until the Markov
Condition is satisfied. See Williamson (2005, §3.6) for an algorithm for pri-
oritising which arrows to add in order to more closely satisfy the Markov

24 To take a concrete example, suppose that variables A and B directly cause C which
directly causes D which in turn directly causes each of A and B. A causal DAG at time
0 obtained by unwinding this cycle might have arrows from A0 and B0 to C0 and an
arrow from C0 to D0. The Markov condition requires that A0 and B0 be probabilistically
independent. But these two variables have a common cause not represented in the graph—
the previous instance of D—which can render them probabilistically dependent. Thus the
Markov condition can fail in this causal graph.
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Condition. As in the static case, the resulting DAG is not to be causally inter-
preted: it is merely a formal device for representing a probability distribution.
The form of the resulting DAG depends on the underlying probability dis-
tribution, but it will contain the initial causal DAG as a subgraph. We shall
suppose for simplicity of exposition that in our example the prior network is
based on the causal DAG depicted in figure 9—i.e., that no further arrows
need to be added to satisfy the Markov condition.

Having specified a prior network, we need to specify a transition network
that can be used to represent the distribution of the variables at time 1 con-
ditional on that at time 0, such as that based on the following graph:

����H0

?

����T0

?

����S0

?

����P0�����������������)
?

����H1
-����T1

-����S1
-����P1

Fig. 10 Graph for transition network

This graph is produced by taking as nodes the variables at times 0 and
1, and adding arrows to each variable at time 1 from its prior state and its
causes.

One can then unroll the network by combining the prior network (figure 9)
with sufficiently many copies of the transition network (figure 10). For instance
at time t = 4 we would need a network based on the following graph:
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Fig. 11 Graph for unrolled network

This network can then be substituted for the corresponding causal cycle
in an RBN. The joint distribution over all the variables in the RBN can be
calculated by forming the flattenings as usual.

Thus in the dynamic case we have a two-step process: the cycle is first un-
wound (and, if necessary, further arrows are added to ensure that the Markov
condition holds) to form a DBN, which in turn is unrolled into a standard
Bayesian net representing the distribution of the variables up to a certain
time.

6.3 Specifying the probability distribution of an RBN with cycles

To sum up, our approach involves replacing causal cycles by directed acyclic
graphs in the RBN. The kind of replacement depends on whether or not the
temporal dimension is of interest or is required: if so, we apply the DBN
formalism, if not, we apply the extension of d-separation methods to cyclic
graphs.

In §4 an RBN was characterised as a Bayesian net defined over a finite
set V of variables whose values may themselves be RBNs. We saw that this
characterisation is inadequate, given the use of RBNs to model mechanisms,
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because causal cycles are pervasive in mechanisms, while the graph of a Bayes-
ian net must be acyclic. We therefore need to generalise the notion of an RBN
so that the RBN itself is permitted to contain cycles. This allows one to retain
a causal interpretation of an RBN: in a causally interpreted RBN, each arrow
in the RBN is interpreted as a direct causal connection. For each cycle in the
RBN we also need to provide further information, in order that the RBN can
determine a joint probability distribution and thereby be used for quantitative
inference. If there is no equilibrium state of the variables in the cycle then we
have a dynamic problem, so we must specify a prior Bayesian network and
transition network involving the peers of the variables in the cycle. If there is
an equilibrium state, then the particular application will determine whether a
dynamic approach or a static approach is required. In this case one may need
to specify an equilibrium network, i.e., a Bayesian network representing the
equilibrium state of the variables in and around the cycle, instead of, or as
well as, a prior network and a transition network.

In Williamson (2005, Chapter 10) it was suggested that, in cases where a
probability distribution is constrained—rather than uniquely determined—by
available quantitative information, one should use maximum entropy meth-
ods to determine a particular probability distribution that satisfies those con-
straints. Of course there is some controversy concerning maximum entropy
methods (see, e.g., Seidenfeld, 1987; Williamson, 2010). But if this route is
accepted, then the prior, transition and equilibrium networks can be gener-
ated as needed, on the fly, from the constraints imposed by the probability
distribution of each variable conditional on its parents given in the (possibly
cyclic) RBN: the graphs in the networks can be constructed as outlined above,
while the probability distribution of each variable conditional on its parents
in the graph can be chosen to be the distribution, from all those that satisfy
constraints specified in the RBN, that has maximum entropy.

We should note that it is common to distinguish single-case models from
generic models. The former kind of model represents a particular case while the
latter is repeatedly instantiatable. An RBN is a generic model of a mechanism:
it can be instantiated in a variety of single cases. But often it is only in the
context of a particular instantiation that one can determine whether one is
tackling a static or a dynamic problem. This is because, at least in contingent
cycles, as to whether there is an equilibrium state or not can depend on the
particular case. Moreover, the particular problem can influence whether one
is concerned with the progress towards equilibrium or the equilibrium itself.
Hence an RBN can be viewed as a schematic representation of a mechanism,
with the details to be filled in according to the application in question.

Note too that arrows in the RBN model of a mechanism are all causally
interpreted, but when the above strategy for handling cycles is executed, ar-
rows in the resulting network may no longer all be causal. Thus when using
a cyclic RBN to predict the effects of an intervention, for instance, one must
first perform the intervention on the cyclic RBN (deleting arrows into the node
which is set by the intervention; Pearl, 2000, pp. 22–23), and only then apply
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the strategy for handling cycles. Finally, the inference methods of §4.6 may be
applied, requiring further transformations in order to produce the flattenings.

These two points reinforce the claim that it is the (possibly cyclic) RBN
that is the fundamental model of the mechanism, with transformations of this
section and §4.6 to be applied only when required for inference in particular
applications.

6.4 Related work

As far as we are aware, there is only one other attempt to use hierarchical
versions of Bayesian nets to model mechanisms for the purpose of quantitative
inference. Gebharter and Kaiser (2012) do not adopt the RBN framework but
rather represent mechanisms by a hierarchy of disjoint causal Bayesian net-
works. This has its advantages and its disadvantages over our RBN approach.
On the one hand they do not need a modelling assumption such as RCMC to
tie the levels of the mechanism together, so their assumptions are weaker. On
the other hand, it is not possible under their approach to represent the joint
distribution over all the variables in the hierarchy; this results in a narrower
range of inferences that can be drawn from their representation. For instance,
one cannot use the value of a variable at one level of the hierarchy to help pre-
dict the value of a variable at another level, in the absence of a single causal
network that includes both variables. The authors recognise the importance
of handling cycles appropriately in order to model mechanisms, and they rec-
ommend a time-indexing approach similar to that which we advocate in the
case of dynamic problems. We would argue that this is not the appropriate
strategy in the case of static problems, because it introduces irrelevant details
into the representation and because it can lead to unnecessary computational
cost.

7 Summary and concluding remarks

In this paper, we have presented one possible quantitative approach to mod-
elling mechanisms, which makes use of Recursive Bayesian nets. Causal cycles,
if present in the RBN, are replaced by directed acyclic graphs in order to per-
form inference using inference techniques for standard Bayesian nets. The kind
of replacement depends on whether or not the temporal dimension is of in-
terest or is required: if so, we apply the DBN formalism, if not, we apply the
extension of d-separation methods to cyclic graphs.

To end this paper, we would like to suggest some questions for further re-
search. First, it would be interesting to further explore the consequences of our
approach for philosophy of science. For instance, we hypothesise that the RBN
framework may shed further light on Craver’s mutual manipulability account
of constitutive relevance (and vice versa). Interventions on causal Bayesian
nets have been discussed extensively (see Pearl, 2000 and Spirtes et al., 2000).
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These notions carry over, mutatis mutandis, to RBNs, and may help to analyse
Craver’s notion of ‘interlevel intervention’ and the interlevel experiments on
which it is based.25

Second, the merits and disadvantages of our approach as compared to other
quantitative accounts of mechanistic modelling should be further explored.
In §6.4 we briefly discussed the work of Gebharter and Kaiser (2012). Yet
the precise relation between our account and, for example, Bechtel’s dynamic
systems analysis (mentioned in §2) remains an open question.

Third, RBNs open up the possibility of algorithms for mechanism discov-
ery. The advent of causal Bayesian nets led to a range of algorithms for causal
discovery (see, e.g., Spirtes et al., 2000, 2010). Because of the close relation
between RBNs and Bayesian nets, it is plausible that algorithms for learn-
ing causal structure might be extended to algorithms for learning causal and
mechanistic structure simultaneously. The main task would be to distinguish
between causal and superiority (i.e., mechanistic hierarchy) relations. The dif-
ference between causal manipulation and mutual manipulability might offer a
starting point in this respect. If progress can be made here, it could have enor-
mous payoffs for those—such as bioinformatics researchers and pharmaceuti-
cal companies—who are engaged in ‘closing the inductive loop’ by automating
both scientific experimentation and scientific discovery.

Finally, the limits of our approach should be further explored. On the
non-formal side, we fully acknowledge that our framework leaves out some
interesting features of mechanisms that are captured by alternative ways of
representing them. For example, a large part of the functioning of a mecha-
nism depends on the spatial organization of its lower-level components, yet
neither causal Bayesian nets nor Recursive Bayesian Nets offer a natural way
of representing this spatial organization. Likewise, mechanistic diagrams such
as those presented in §3 are often easier to grasp and to (humanly) reason with
than ordinary or Recursive Bayesian Nets. (See Perini, 2005a,b,c for interest-
ing discussions of the role of diagrams and visual representations in scientific
reasoning; see also, among many others, Craver, 2006 and Bechtel and Abra-
hamsen, 2005 for a discussion of diagrams in mechanistic contexts.)

On the formal side, we treat the Causal Markov Condition and the Recur-
sive Causal Markov Condition as modelling assumptions rather than necessary
truths. Whereas the limits of the former have been discussed extensively in
the literature,26 those of the latter remain to be inspected in detail.

Also on the formal side, the question arises as to how the framework pre-
sented here can be extended to handle certain continuous cases. Modelling
continuous cases with cyclic causality by means of discrete variables may lead
to problems; for example, spurious instabilities may arise in the model even

25 For a detailed account of mutual manipulability, see Craver (2007, 152–160). For a recent
critical discussion of Craver’s claim that interlevel constitutive relations cannot be causal,
and whether this claim is compatible with his mutual manipulability account of constitutive
relevance, see Leuridan (2012).
26 See, among others, Hausman and Woodward (1999, 2004a,b), Cartwright (2001, 2002),

Williamson (2005) and Steel (2006).
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when the original system itself is stable (see Pearl and Dechter, 1996, 425).
Yet we do not expect any major difficulties here. Causal Bayesian nets can
easily be defined over continuous variables (see footnote 12) and in fact, the
problem of automated causal discovery is often easier in the continuous case
(e.g., assuming normally distributed variables) than in the discrete case. Like-
wise, RBNs can easily be defined over continuous variables as well. Our choice
to restrict ourselves to the discrete case was motivated by our endeavour to
limit technicalities as far as possible.

Appendix: Transforming a moral graph into a directed acyclic graph

Here we present the algorithm of Williamson (2005, §5.7) for transforming
an undirected graph G into a directed acyclic graph H which preserves the
required independencies (Williamson, 2005, Theorem 5.3): if Z d-separates
X from Y in the directed acyclic graph H then X and Y are separated by
Z in the undirected graph G; this separation in G implies that X and Y
are probabilistically independent conditional on Z; hence, d-separation in H
implies that X and Y are probabilistically independent conditional on Z. Thus
H can be used as the graph of a Bayesian network.

An undirected graph is triangulated if for every cycle involving four or
more vertices there is an edge in the graph between two vertices that are
non-adjacent in the cycle. The first step of the procedure is to construct a tri-
angulated graph GT from the undirected graph G. One of a number of standard
triangulation algorithms can be applied to construct GT (see, e.g., Neapolitan,
1990, §3.2.3; Cowell et al., 1999, §4.4.1).

Next, re-order the variables in V according to maximum cardinality search
with respect to GT : choose an arbitrary vertex as V1; at each step select the
vertex which is adjacent to the largest number of previously numbered vertices,
breaking ties arbitrarily. Let D1, . . . , Dl be the cliques (i.e., maximal complete
subgraphs) of GT , ordered according to highest labelled vertex. Let Ej =

Dj ∩ (
⋃j−1

i=1 Di) and Fj = Dj\Ej , for j = 1, . . . , l.
Finally, construct a directed acyclic graph H as follows. Take variables in

V as vertices. Step 1: add an arrow from each vertex in Ej to each vertex in
Fj , for j = 1, . . . , l. Step 2: add further arrows to ensure that there is an arrow
between each pair of vertices in Dj , j = 1, . . . , l, taking care that no cycles are
introduced (there is always some orientation of an added arrow which will not
yield a cycle).
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Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting slow
oscilllations during sleep potentiates memory. Nature, 444(7119):610–613.

McNicholas, W. and Bonsignore, M. (2007). Sleep apnoea as an independent
risk factor for cardiovascular disease: current evidence, basic mechanisms
and research priorities. European Respiratory Journal, 29(1):156–178.

Mitchell, S. (2009). Unsimple Truths: Science, Complexity, and Policy. Uni-
versity of Chicago Press, Chicago, IL.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Infer-
ence and Learning. PhD thesis, Computer Science, University of California,
Berkeley.

Neal, R. (2000). On deducing conditional independence from d-separation
in causal graphs with feedback: The uniqueness condition is not suffient.
Journal of Artificial Intelligence Research, 12:87–91.

Neapolitan, R. E. (1990). Probabilistic reasoning in expert systems: theory and
algorithms. Wiley, New York.

Nervi, M. (2010). Mechanisms, malfunctions and explanation in medicine.
Biology and Philosophy, 25(2):215–228.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Mateo, CA.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge
University Press, Cambridge.

Pearl, J. and Dechter, R. (1996). Identifying independencies in causal graphs
with feedback. In In Uncertainty in Artificial Intelligence: Proceedings of
the Twelfth Conference, pages 420–426, San Mateo, CA. Morgan Kaufmann.

Perini, L. (2005a). Explanation in two dimensions: Diagrams and biological
explanation. Biology and Philosophy, 20(2-3):257–269.

Perini, L. (2005b). The truth in pictures. Philosophy of Science, 72(1):262–285.
Perini, L. (2005c). Visual representations and confirmation. Philosophy of

Science, 72(5):913–926.
Seidenfeld, T. (1987). Entropy and uncertainty. In MacNeill, I. B. and

Umphrey, G. J., editors, Foundations of Statistical Inference, pages 259–
287. D. Reidel, Dordrecht.

Spirtes, P. (1995). Directed cyclic graphical representation of feedback models.
In Besnard, P. and Hanks, S., editors, Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, pages 491–498. Morgan Kaufmann,
San Mateo, CA.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and
Search. MIT Press, Cambridge, MA.

Spirtes, P., Glymour, C., Scheines, R., and Tillman, R. (2010). Automated
search for causal relations—theory and practice. In Dechter, R., Geffner, H.,
and Halpern, J. Y., editors, Heuristics, probability and causality: a tribute
to Judea Pearl, pages 467–506. College Publications, London.

Steel, D. (2006). Comment on Hausman & Woodward on the causal Markov
condition. British Journal for the Philosophy of Science, 57(1):219–231.

Williamson, J. (2005). Bayesian nets and causality: philosophical and compu-
tational foundations. Oxford University Press, Oxford.



Modelling mechanisms with causal cycles 35

Williamson, J. (2010). In defence of objective Bayesianism. Oxford University
Press, Oxford.

Woodward, J. (2002). What is a mechanism? A counterfactual account. Phi-
losophy of Science, 69(3):S366–S377.

Woodward, J. (2003). Making Things Happen. A Theory of Causal Explana-
tion. Oxford University Press, New York.

Yumino, D., Redolfi, S., Ruttanaumpawan, P., Su, M., Smith, S., Newton,
G. E., Mak, S., and Bradley, T. D. (2010). Nocturnal rostral fluid shift.
Circulation, 121(14):1598 –1605.


