
LEO: Scheduling Sensor Inference Algorithms across
Heterogeneous Mobile Processors and Network Resources

Petko Georgiev

§

, Nicholas D. Lane

†⇤

, Kiran K. Rachuri

‡

, Cecilia Mascolo

§

§

University of Cambridge,

†

University College London,

⇤

Bell Labs,

‡

Samsung Research America

Abstract
Mobile apps that use sensors to monitor user behavior often em-
ploy resource heavy inference algorithms that make computational
offloading a common practice. However, existing schedulers/of-
floaders typically emphasize one primary offloading aspect without
fully exploring complementary goals (e.g., heterogeneous resource
management with only partial visibility into underlying algorithms,
or concurrent sensor app execution on a single resource) and as a
result, may overlook performance benefits pertinent to sensor pro-
cessing.

We bring together key ideas scattered in existing offloading solu-
tions to build LEO – a scheduler designed to maximize the perfor-
mance for the unique workload of continuous and intermittent mo-
bile sensor apps without changing their inference accuracy. LEO
makes use of domain specific signal processing knowledge to smart-
ly distribute the sensor processing tasks across the broader range of
heterogeneous computational resources of high-end phones (CPU,
co-processor, GPU and the cloud). To exploit short-lived, but sub-
stantial optimization opportunities, and remain responsive to the
needs of near real-time apps such as voice-based natural user in-
terfaces, LEO runs as a service on a low-power co-processor unit
(LPU) to perform both frequent and joint schedule optimization
for concurrent pipelines. Depending on the workload and network
conditions, LEO is between 1.6 and 3 times more energy efficient
than conventional cloud offloading with CPU-bound sensor sam-
pling. In addition, even if a general-purpose scheduler is optimized
directly to leverage an LPU, we find LEO still uses only a fraction
(< 1/7) of the energy overhead for scheduling and is up to 19%
more energy efficient for medium to heavy workloads.

CCS Concepts
•Computer systems organization ! Heterogeneous (hybrid) sys-
tems; Embedded software; •Information systems ! Mobile in-
formation processing systems;

Keywords
Mobile Sensing; Offloading; Scheduling; DSP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiCom’16, October 03-07, 2016, New York City, NY, USA
c� 2016 ACM. ISBN 978-1-4503-4226-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2973750.2973777

1. INTRODUCTION
Equipped with powerful processors, multiple radio interfaces,

and a variety of sensors, smartphones have revolutionized the mo-
bile application space. A rapidly growing trend among smartphone
apps is to enhance functionality and provide advanced features in
near real-time using inferences from the phone’s sensor data [46].
For instance, Shazam [24] uses the phone’s microphone to capture
audio and identify the music being played. Further, a plethora of
fitness applications [1, 16, 22] use the phone’s accelerometer sensor
for behavior monitoring, while Apple Siri [6] and Microsoft Cor-
tana [13] use the phone microphone to provide a voice-activated
digital assistant.

Fine grained data feeds from sensors are often needed for precise
activity inference but the sampling of sensors on phones comes at a
high energy cost. Hardware and operating systems have overcome
this in various ways; sensor access is often restricted through nar-
row APIs that sample at predefined rates, cloud offloading is used
for inference tasks, avoiding the power hungry CPU, and dedicated
hardware is introduced to handle specific sensor algorithms (e.g.,
the M8 co-processor in iPhones for activity detection through the
accelerometer). However, these solutions are often ad-hoc and do
not scale: as sensor-based apps become increasingly popular, it
is becoming acutely obvious that new mechanisms are required to
effectively manage the resources they consume.

Often the execution of these apps overlaps as they share a basic
set of similar trigger contexts; for example, accelerometer-based
apps perform computation under motion (transportation mode de-
tection, activity recognition) and speech processing is triggered by
detected voice (speech recognition, speaker/owner identification,
conversation analysis). Whereas some functionalities such as key-
word spotting are ingrained with the mobile hardware, others such
as voice commands become integrated with existing apps to stream-
line user access to the app’s services. Overall, an emerging trend
is the concurrent operation of sensor-based apps the execution of
which is conditioned on a common set of filters (motion, sound,
speech, etc.) applied to the sensor stream.

In this work we re-examine some key ideas scattered in exist-
ing computational offloading approaches to answer the question:
can we maximize resource utilization from multiple concurrent sen-
sor apps by a better placement of the underlying algorithms ac-
ross resources and without compromising application’s accuracy
and responsiveness? A variety of capable scheduling/offloading
approaches have been proposed [56, 32, 54, 42, 63] but they ei-
ther have different optimization goals or have not fully addressed
the above question in the emerging context of concurrent sensor
apps with diverse deadlines running on recent off-the-shelf hetero-
geneous mobile SoCs. On the one hand, a general purpose offloader
such as MAUI [32] does not specifically target the unique demands

of sensor app workloads and may overlook optimization opportuni-
ties enabled by the semantics of sensing algorithms not exposed by
program structure. SymPhoney [42], on the other hand, is a perfect
example of how domain-specific signal processing knowledge can
be exploited to efficiently manage resource contention of concur-
rent sensor apps running on the CPU, but does not take advantage
of the heterogeneous mobile hardware. Wishbone [56] provides
the skeleton for a sensor net cross-resource data flow partitioning
framework but its model is geared towards a different optimization
goal (i.e., maximizing throughput) and its solver is too heavy to
be invoked frequently in response to dynamically generated sensor
events from concurrent apps.

We introduce LEO – a purpose-built sensing algorithm scheduler
that targets specifically the workloads produced by sensor apps.
LEO builds upon the solid body of related work to demonstrate
that further increases in the efficiency of sensor processing without
reducing the app accuracy can be achieved by bringing together 4
key ideas scattered across existing systems: 1) full leverage of het-
erogeneous hardware, 2) joint sensor app optimization, 3) frequent
schedule re-evaluation, and 4) exposing algorithm semantics to the
optimization model. As a result, LEO is able to optimally offload
individual stages of sensor processing across the complete range
of heterogeneous computational units (viz. the co-processor, CPU,
cloud, and provisionally a GPU). A key innovation in LEO is that
all offloading decisions can be performed on the smartphone co-
processor, this enables scheduling to be low energy and frequently
performed. Consequently, LEO adjusts how sensor algorithms are
partitioned across each computational unit depending on fluctuat-
ing resources (e.g., network conditions, CPU load) in addition to
which sensor apps are executing concurrently. With LEO, the en-
ergy and responsiveness trade-offs of sensing algorithms of all apps
are jointly optimized, leading to more efficient use of scarce mobile
resources. The contributions of our work include:
• A scheduler designed to run frequently at a low cost on a low

power unit (LPU), with < 0.5% of the battery daily. The sched-
uler optimizes sensor inference algorithm offloading across mul-
tiple concurrently running apps with diverse timeliness require-
ments without sacrificing inference accuracy.

• A comprehensive proof-of-concept implementation built on a
smartphone development board [20]. Our prototype includes an
extensive library of sensing algorithms for feature extraction and
classification (including DNNs [40], GMMs [27] etc.) needed
for common forms of context inference. The library is rich enough
to support numerous apps from the literature – as a demonstra-
tion, we implement 7 recently proposed systems (e.g., stress de-
tection, activity recognition, spoken keyword spotting).

• A systematic evaluation of LEO’s overhead and schedule opti-
mality as well as a thorough analysis of the system energy sav-
ings under a variety of network conditions and workloads. Com-
pared to a principled general-purpose offloader that leverages an
LPU in addition to cloud, LEO requires about 7 to 10 times less
energy to build a schedule, and still reduces the energy consump-
tion by up to 19% for medium to heavy sensor workloads.

2. SENSOR APPS ON MOBILE DEVICES
LEO exclusively targets sensor apps that are characterized by

their need to sample and interpret sensors present in smartphones.
Here, we describe key varieties of sensor apps and overview typical
sensing operations. Table 1 details examples that are either research
prototypes or commercially available.
Anatomy of a Sensor App. Every sensor app includes special-
ized code responsible for sensor data sampling and processing, dis-

Applications Sensor Purpose
RunKeeper [22] Accel activity trackingAccupedo Pedometer [1]

Shake Gesture Library [23] Accel gesture commands
Hot Keyword Spotting [29] Mic voice activated services

Shazam [24] Mic song recognition
SocioPhone [47]

Mic conversation contextSpeakerSense [50]
Crowd++ [66], SocialWeaver [53]

EmotionSense [61] Mic emotion recognitionStressSense [51], MoodScope [48]
Siri [6], Cortana [13] Mic digital assistants

Waze [26], Moovit [15] GPS traffic monitoring

Table 1: Example Sensing Apps.

tinctly different from the app specific logic. LEO is designed to
efficiently execute this sequence of sensor processing stages. Irre-
spective of purpose, the dataflow of sensor processing within these
apps share many similarities. Processing begins with the sampling
of sensors (e.g., microphone, accelerometer). Feature extraction
algorithms are then used to summarize collected data (as a vector
of values), the aim is for these features to describe the differences
between targeted behavior (e.g., sleep, or running) or context. Iden-
tifying which activity or context is present (i.e., to make an infer-
ence) in the sensor data requires the use of a classification model.
Models are usually built offline prior to writing a sensor app based
on examples of different activities. Although inference is the most
fundamental sensor operation performed in sensor apps, consider-
able post-inference analysis is often needed (e.g., mining sleep or
commute patterns.)
Sensor App Workloads. Just like conventional apps, differ-
ent combinations of sensor apps are continuously executed. There
are two dominant usage models, continuous sensing and triggered
sensing, each with differing user expectations of responsiveness
and exerting differing types of energy strain.
Continuous Sensing. Most apps of this type are “life-logging” [36]
and are commonly used to quantify daily user routines. They aim to
capture data from the phone throughout the day: this demands their
sensing sampling and processing algorithms to be extremely energy
efficient. In contrast, because of the focus on long-run behavior
they can often tolerate large processing delays; for example, users
may review data at the end of the day and the analysis is indifferent
to events from the last few minutes.
Triggered Sensing. This category includes sensor apps that are
initiated either explicitly by the user or by an event. Examples are
apps started by the user to monitor a meeting (Social Weaver [53])
or a workout (Run Keeper [22]). Users often need sensing to be
completed during the event in near real-time (e.g., to gouge their
effort during an exercise routine to determine if more effort is re-
quired). Sensing apps can also be started in response to an event.
For instance, a smartphone may need to determine the current am-
bient context in response to an incoming call to decide if it should
be sent straight to voice mail as the user might be driving. These
types of sensing apps have a much higher need to be responsive
than continuous sensing ones; but as they are often comparatively
short lived, energy restrictions may be relaxed to achieve process-
ing deadlines. A known approach to reduce the high energy coming
from the continuous trigger logic evaluation is to instrument apps
to use a sensor hub where irrelevant readings are filtered automati-
cally [63].

A key unanswered challenge today is how to maximize the re-
source efficiency for this diverse and dynamic sensing app work-
load, while maintaining other phone services, e.g., email, music
and games, functioning.

Application CPU DSP CPU DSP
Latency Latency Energy Energy

Activity Recognition [52] 0.002s 0.006s 3mJ 0.4mJ
Speaker Counting [66] 0.533s 1.279s 794mJ 86mJ

Emotion Rec. (14 GMMs) [61] 2.410s 8.941s 4073mJ 340 mJ
Speaker Id. (23 GMMs) [61] 3.673s 13.325s 6208mJ 506 mJ

Stress Detection [51] 1.623s 3.115s 2580mJ 174mJ
Keyword Spotting [29] 0.720s 2.249s 1152mJ 113mJ

Table 2: Application pipeline latency and energy compared on the
CPU and DSP (default clock frequency). Results are obtained with
a Monsoon Power Monitor [14] attached to a Snapdragon 800 Mo-
bile Development Platform for Smartphones [20].

3. LIMITS OF SENSOR APP SUPPORT
Developers of sensor apps today work with black-box APIs that

either return raw sensor data or the results of a limited selection of
sensing algorithms [4, 12]. The underlying resources (e.g., emerg-
ing low power co-processors or system services that regulate sensor
sampling rates) that feed these APIs are closed and inaccessible to
developers. Critically, because the mobile OS lacks the necessary
mechanisms to regulate the energy and responsiveness trade-offs
of sensing algorithms, how these apps share resources, remains un-
optimized. We now describe the limits of co-processors and cloud
offloading support of sensor apps.
Low Power Co-Processor – An Underutilized Resource. Prior
to the advent of co-processors, the CPU was used for both sensor
sampling and data computation. This resulted in unacceptable en-
ergy trade-offs that made many sensing scenarios impractical.
Potential Energy Savings. To illustrate potential implications for
sensing, we perform an experiment with a special development-
open version of the Qualcomm Snapdragon 800 System on Chip
(SoC) [21], shipping in phones (e.g., Nokia Lumia and Samsung
Galaxy) [25]). Table 2 compares the energy and latency of a range
of sensor processing algorithms (Section §6) for the accelerometer
and microphone on the DSP and the CPU of the Qualcomm SoC.
We observe an overall reduction of 8 to 15 times in energy con-
sumption to a level at which it becomes feasible for smartphones to
perform various sensing tasks continuously.
However today’s smartphone co-processors cannot fully address
the needs of sensor app workloads because of two critical limita-
tions: (1) APIs remain narrow and inflexible; and (2) the DSPs are
closed.
Limited APIs. Sensor engine APIs similar to the ones provided by
Apple [5] and Nokia [12] enable a variety of location and physical
activity related sensor apps. Yet, the algorithms needed for many
other sensors uses such as custom gesture recognition or fall de-
tection are absent. Unless the developer’s use case is already sup-
ported by the APIs, CPU-based sampling and processing must be
used. While APIs supporting more apps are likely to be offered in
future, the closed APIs also prevent stages of sensor processing to
be divided between the co-processor and other units like the CPU.
Without this ability only algorithms simple enough to be run solely
on the co-processor can be supported.
Closed to Developers. There are two main reasons behind why
co-processors are closed. First, embedded components such as co-
processors are easily overwhelmed if not carefully utilized. Open-
ing the co-processor requires complex new OS support providing,
for example, a multi-programming environment (i.e., concurrent
sensor apps) in addition to isolating apps so that excessive resource
consumption by one app would not compromise others. Second,
an open co-processor requires developers to engage in embedded
programming. This significantly increases development complex-
ity, requiring code for each computational unit (DSPs, CPU) and
forcing greater hardware awareness.

Is Cloud Offloading Alone the Solution? Although cloud of-
floading can enable significant reductions in latency [69, 30, 32,
60], just like existing use of co-processors it is unable to fully meet
the needs of sensor app workloads, for two primary reasons – sen-
sitivity to network conditions and CPU-bound offloading.
Network Conditions. Under good network conditions (e.g., low
RTTs, typical 3G/WiFi speeds) offloading sensor processing, like
face recognition, can result in energy and latency improvements of
2.5 times [32]. But such conditions are not always present. For
example, a survey of more than 12, 000 devices worldwide [65]
finds that a sizable 20% of the devices are not exposed to 3G, LTE
or WiFi connectivity at least 45% of the time.
CPU-bound Offloading. Conventional offloading applied to mo-
bile sensing (e.g., [57]) must rely on the CPU for local operations.
CPU-based sensing algorithms are highly energy inefficient. As
a result, cloud offloading is severely constrained in the variety of
sensor apps to which it can be applied. For example, apps that
require continuous sensing cannot be supported with offloading
alone. Even the emergence of co-processor support in smartphones
has not addressed this problem. Because current co-processors only
provide the end result of sensor processing (e.g., an inference), they
are unable to act as the front-end to a chain of operations that in-
cludes stages executed remotely.

As we have seen, neither co-processors nor cloud offloading fully
address the needs of a sensor app workload. What is needed are not
additional ad-hoc optimization approaches. Instead, a system ser-
vice is required that has visibility of the sensor algorithms being
executed in each app, along with access to the full range of compu-
tational units and other resource types available to the device.

4. LEO OVERVIEW
Towards addressing the shortcomings of general computational

offloading for sensor app workloads, LEO is a sensor algorithm
scheduling engine that maximizes the energy efficient execution of
a variety of sensor apps. LEO is used by developers via a set of
Java/C APIs with a unified interface (see §6 for details). Through
the Java API developers can specify the sequence of sensing algo-
rithms (e.g., feature extraction, classifier model) required by their
app to collect and process data. In turn, LEO leverages the in-
ternal structure of the sensing algorithms predefined in our library
of algorithmic components to partition the execution of each al-
gorithm across all available computational units (even convention-
ally closed DSPs found in smartphone SOCs, along with the CPU,
cloud, and a GPU). Because of the rich portable library of sens-
ing algorithms (ranging from DNNs to domain-specific features for
emotion recognition) LEO is able to support a wide range of sensor
processing (and thus apps).

LEO re-examines several concepts related to scheduling/offload-
ing from previous systems and re-evaluates them in the context of
concurrent sensor apps running on off-the-shelf heterogeneous mo-
bile SoCs. LEO shows that we do not need to compromise the utili-
ty/accuracy of applications or sacrifice their responsiveness in order
to gain substantial energy savings. Instead, maximizing resource
utilization can be performed by a smarter distribution of concur-
rent sensor algorithms with well known semantics across multiple
resources. To achieve this, LEO:
1) considers offloading decisions collectively for heterogeneous
mobile processors and cloud. LEO builds upon related work such
as Wishbone [56] and MAUI [32] to solve a Mixed Integer Linear
Programming (MILP) global resource optimization problem that
directly targets energy efficiency as its objective.
2) jointly optimizes resource use for multiple apps simultane-
ously. This promotes cooperation in using network bandwidth or

Sensor Apps

CPU

Sensor Job Buffer

Tasks

Sensing
Workload

Monitor

Accel

Gyro

Mic

GPS

WiFi

3G

CPU

LPU

Network
Profiler

 Resource
Monitor

LPU Sensing
Scheduler

WiFi

3G

LPU

Figure 1: LEO architectural components.

scarce co-processor memory/computation. As a result, maximizing
resource use is done across the full sensing ecosystem rather than
leaving individual apps do guesswork on when resources are busy.
3) exposes the internal structure of the pipeline stages to the
offloading engine for fine-grained energy control. LEO pro-
vides a rich set of reusable algorithmic components (feature extrac-
tion, classification) which are the building blocks of common sen-
sor pipelines. By leveraging sensor processing specific knowledge
LEO decomposes pipelines into more granular units, orchestrates
and interleaves their execution even under tight latency constraints
by working on multiple smaller tasks in parallel.
4) frequently re-evaluates the schedule to remain responsive to
sensor processing requests. Sensor apps generate mixed work-
loads with near real-time and delayed execution requirements. To
provide timeliness guarantees while coping with changes in net-
work conditions and bursts of generated sensor events such as de-
tected speech, noise, or motion, LEO computes fast, reactive sched-
ules that are frequently revised. A key enabler for this is the ability
of LEO to run as a service on one of the hardware threads of the
low power DSP where the scheduler solves heuristically the global
optimization problem mentioned above.

4.1 Architectural Overview
In Figure 1 we show a birds-eye view of the system architec-

ture and its operational worklfow. The system supports a mix-
ture of near real-time and delay-tolerant sensor processing apps.
The pipeline stages of these apps are typically triggered by sensing
events such as the detected presence of speech from the sensor data
streams, or by logic embedded in the sensor app. Example appli-
cations with their trigger contexts are recognizing emotions from
voice, or counting the number of steps when the user is walking.
Over time and as sensor events are encountered, the apps generate
job definitions which are buffered requests for obtaining an infer-
ence (e.g., detected emotion) from the sensor data. Periodically,
the sensor offloading scheduler, known as LPU Sensing Scheduler,
inspects the sensor job buffer for the generated workload of sensor
processing requests, and makes scheduling decisions that answer
the questions: 1) How should the pipelines be partitioned into sen-
sor tasks? and 2) How should these tasks be offloaded if needed?
Sensing Workload Monitor. A set of binary filters (e.g., “silence
vs. noise", “speech vs. ambient sounds", “stationary vs. mov-
ing") comprise the Sensing Workload Monitor which continuously
inspects the sampled sensor data on the Low Power Unit (DSP in
our case) for the presence of relevant events (for triggered sensing
apps). Once such events are detected or in response to the sensor
app, job requests are placed in a global queue that buffers them
together with the raw sensor data.
LPU Sensing Scheduler. This component represents the core sche-
duling algorithm that decides how the pipeline execution should be

partitioned into sensor tasks and where these tasks should be ex-
ecuted (LPU, CPU, cloud or potentially GPU). The scheduler in-
spects the sensor job buffer once every t seconds for processing re-
quests where t is a configurable system parameter currently set to
a short window of 1 second. Queued tasks are periodically sched-
uled and executed before the next period expires. Critically, LEO
defines a mathematical optimization problem that can be solved
frequently and maintains a short rescheduling interval in order to
systematically re-evaluate fleeting optimization opportunities and
remain responsive to apps such as voice activation services with
near real-time requirements. The high levels of responsiveness and
frequent on-demand optimizations are largely enabled by two key
design choices. First, the scheduler reorganizes the structure of sen-
sor pipelines to create more modular processing tasks via three key
techniques detailed in §5.1: Pipeline Partitioning, Pipeline Mod-
ularization, and Feature Sharing. Second, the scheduler employs
a fast heuristic optimization solver (based on metaheuristics) that
is executed with an ultra low overhead on the LPU to find a near
optimal assignment of tasks to resources.
Resource Monitor. A Resource Monitor provides feedback to
the LPU Sensing Scheduler with regard to changing CPU load or
network conditions such as connecting to or disconnecting from a
WiFi network.
Network Profiler. Similarly to MAUI [32], a Network Profiler
sends a fixed 10KB of data and measures the end-to-end time needed
for the upload. Fresh estimates are obtained every time the schedul-
ing engine ships data for processing to a remote server. To keep
measurements fresh, profiler data is sent every 15 mins in case no
offloading has been done.
Offline Profiling. Last, an offline app profiler obtains estimates
of the energy consumption and latency for each of the application
pipeline stages (feature extraction and classification) measured on
the CPU, LPU, and for some algorithms on the GPU. The mea-
surements serve as an input to the LPU Sensing Scheduler that dis-
tributes sensor pipeline tasks across offloading resources. The pro-
filing session is a one-time operation performed offline since the
mobile OSs have limited APIs for performing fine grained energy
measurements [32] and only report the percentage of the battery
left, largely insufficient to cover the profiling needs.

5. LEO DESIGN COMPONENTS
LEO is designed to manage the offloading needs of sensor apps

with both near real-time and delayed deadline requirements. In
this section we detail how LEO leverages algorithm semantics to
optimize resource use, and also formally define the optimization
problem that jointly decides for concurrent apps how to execute
their algorithms across resources.

5.1 Restructuring Sensor App Execution
Pipeline Partitioning. Sensing pipelines are decomposed into log-
ical chunks of computations to increase the granularity of the sen-
sor tasks and enable their more comprehensive exposure to the of-
floading components (cloud, LPU, and GPU). This can potentially
lead to more efficient local-remote splits and parallelize execution
across multiple resources to meet the tighter deadlines of near real-
time applications.

Pipelines are divided into two types of sensor tasks: 1) feature
extraction, typically represented by a single task per application;
and 2) classification, which may be further decomposed into mul-
tiple identical tasks the output of which is combined by a simple
aggregation operation (e.g., max, sum). For instance, the inference
stage of a typical Speaker Identification application [61] is usually
organized around multiple class models (Gaussian Mixture Models

Feature
Matrix

Speaker 3 GMM

Speaker 2 GMM

Speaker 1 GMM

Arg
Max

Feature
Extraction

Classification

(a) Pipeline Partitioning

10ms 25ms

FE

Buffered raw data (1 sec)
FE FE FE FE

DNN

Consolidated sensor tasks

FE

DNNDNN

FE FE

DNNDNN

DNN DNN DNN

(b) Pipeline Modularization

Figure 2: Sensor pipeline restructuring techniques.

[27]) as shown in Figure 2a, one for each speaker. During the clas-
sification process, the extracted audio features that summarize the
acoustic observations are matched against each model in turn. The
speaker, the model of which with highest probability corresponds
to the features, is the end output of the pipeline.

The ways in which signal processing algorithms can be parti-
tioned is predefined in our library. At runtime LEO decides whether
and how to leverage the partition points by solving a global re-
source allocation problem and managing cross-resource commu-
nication with custom implemented message passing. As a result,
applications that use the algorithms we offer automatically benefit
from efficient task distribution without them knowing the details of
the pipeline execution plan. Further, the decomposition into shorter
duration tasks enables the pipeline stages of concurrent apps to be
interleaved – the result being higher utilization of the energy effi-
cient but memory-constrained LPU.
Pipeline Modularization. Partitioning the pipelines into their nat-
ural processing stages increases the granularity at which sensor
apps operate. However, depending on the application subject to
partitioning, the technique may sometimes produce a large number
of sensor tasks that unnecessarily pollute the resource optimiza-
tion space with a forbiddingly high number of offloading configu-
rations. The goal of the Pipeline Modularization is to consolidate
multiple sensor tasks generated at a high frequency into a single
modular computational unit processed at a reduced frequency.

A Keyword Spotting application based on Deep Neural Nets
(DNNs) [29], for example, as shown in Figure 2b extracts fea-
tures from 25ms frames, and performs classification (neural net-
work propagation and smoothing) on a sliding window of 40 frames
every 10ms. In other words, every second the sensor app generates
100 classification and feature extraction tasks. This high frequency
of computations enables the app to maintain almost instantaneous
responsiveness to detected hot phrases. However, at a small latency
price we can reduce the amount of tasks a hundredfold if we group
all feature extractions or classifications in a second into a modular
unit by buffering the sensor data and performing them together on
the accumulated speech samples. Thus, processing is performed
at a reduced frequency once every second, greatly simplifying the

search for the optimal task allocation, while at the same time still
maintaining near real-time responsiveness of the app to up to 2 sec-
onds after the detection of a hot phrase.
Feature Sharing. The pipeline decomposition allows us to regis-
ter modular identifiable tasks into the queue of sensor processing
requests. Each feature extraction task is identified by a reference
to a position in the sensor stream and the type of features to be ex-
tracted from the raw data. This allows LEO to detect overlapping
computations and eliminate redundancies when multiple applica-
tions require the same set of features for their stages deeper into
the pipeline. One example of shared features are the Perceptual
Linear Predictive Coefficients (PLP) needed by both Speaker Iden-
tification and Emotion Recognition applications [61].

5.2 LEO Optimization Solver
The LEO solver uses the restructured pipeline components as

well as data collected by the Sensor Workload Monitor and Net-
work Profiler as an input to a global joint optimization problem
(similarly to MAUI[32] and Wishbone [56]) that determines which
and where sensor app tasks should be offloaded. Unlike Wishbone,
the original formulation of which targets throughput and minimiz-
ing node-to-server communication overhead, LEO solver’s goal is
to find a multi-app partitioning strategy that minimizes the mobile
device energy consumption subject to latency constraints.

The solver takes advantage of the pipeline reorganization tech-
niques introduced in the previous subsection to generate modu-
lar sensor task definitions with loose data dependencies: feature
extraction output serves as input to classification and tasks from
the same pipeline stage can be computed in parallel across units.
Formally, the LPU Sensing Scheduler solves a mixed integer lin-
ear programming problem (MILP) with relaxed data dependencies
constraints. The objective is to minimize the total energy consump-
tion for processing all sensor tasks generated in a time window ⌧

by all actively running sensor apps:

Min
X

i,q,u

xiqueiqu +
X

i

Fmem(i, xiq⇠)wuplinkp⇠ (1)

where
• xiqu denotes the total number of computations from applica-

tion’s i pipeline stage q that will be processed on computational
unit u 2 {CPU, LPU, GPU } (or networked resource ⇠ when
u = ⇠ 2 {3G, WiFi, Bluetooth}).

• eiqu indicates the energy consumed for performing these com-
putations on the resource u (eiq⇠ = 0).

• Fmem() is a linear function mapping the number of remotely
executed sensor tasks to the size of the application data needed
for network transfer.

• wuplink – most recently estimated uplink speed (Kbps).
• p⇠ is the estimated average power in mW for performing the net-

work transfer.
The objective expresses the estimated total energy expenditure from
performing computations on the assigned offloading resources plus
the energy needed to transfer data for remote execution. The of-
floading schedule is subject to the following constraints:
• The total execution time for processing tasks locally (Equation 2)

and remotely (Equation 3) must not exceed the time window ⌧ :

s.t. 8u
X

i,q

xiqutiqu ⌧ku (2)

s.t.
X

i

Fmem(i, xiq⇠)wuplink +
X

i,q

xiq⇠tiq⇠ ⌧ (3)

Here tiqu is the time in seconds required by computation of type
q to be performed on computational unit u, and ku is the number
of concurrent threads on resource u.

• The total number of sensor tasks offloaded across resources must
be equal to the number of tasks niq(⌧) generated by the buffered
processing requests in time window ⌧ .

s.t.
X

u

xiqu = niq(⌧) (4)

We note that the typical restructured pipeline computations from
our representative examples can be easily executed with subsecond
latencies which enables us to shrink the offloading window ⌧ to 1
second. This also helps with fast reactive dispatching of computa-
tions that require tight timeliness guarantees (e.g., Keyword Spot-
ting). In our implementation, although the tasks from apps that
do not need near real-time requirements are scheduled in a batch
with other tasks under tight 1-second constraints, their actual ex-
ecution is postponed and rescheduled at a later stage if executing
them before the next rescheduling interval expires means that the
power-hungry CPU will be used.

5.3 Running the Solver on the LPU
The optimization problem defined in the previous section would

typically be solved with standard optimization tools such as GLPK
[7] or lp_solve [11]. However, we observe that the underlying algo-
rithm that systematically explores the scheduling configurations to
find the optimal solution is too heavy to be performed frequently.
In fact, when we set the time window for buffering processing re-
quests to 30 seconds, and increase the number of scheduled appli-
cations to 9, the algorithm takes seconds to minutes to complete
even on the quad-core Snapdragon CPU. For our aims the general-
purpose solver scales poorly with the increase in number of ap-
plications and processing requests. Instead, we adopt a heuristic
algorithm that can be run efficiently on the LPU to constantly re-
evaluate a near optimal offloading schedule. We sacrifice the ab-
solute optimality for substantial reductions in the scheduling over-
head both in terms of energy and latency.
Heuristic Algorithm. The concrete framework we use is based
on memetic algorithms (MAs) [55, 31] which are population-based
metaheuristics that are highly scalable, are able to incorporate do-
main-specific knowledge, and are less prone to local optima. How-
ever, the scheduling algorithm is not restricted to a concrete choice
as long as it conforms to several criteria: it is fast (preferably with
polynomial complexity to the number of sensor apps and resources),
it finds solutions that are close to optimal, and it is deployable on
the LPU. We experimentally find that the memetic algorithm is one
that satisfies all these requirements.

The algorithm takes as input sensor pipeline tasks, available of-
floading resources, and the constraints listed in §5.2 that define the
feasible solutions. Algorithm 1 outlines the pseudo code of our
heuristic. The basic structure of the algorithm is an iterative proce-
dure that maintains a population of candidate schedules the quality
of which improves over time and is measured through a utility func-
tion (our objective defined in Equation 1). Each offloading configu-
ration is represented as shown in Figure 3 and each cell in the table
corresponds to the value of the decision variable xiqu defined in
our problem statement 5.2.

The memetic algorithm defines a series of schedule transforma-
tion (mutation and local search) and recombination (crossover) op-
erations that are applied systematically to the population of sched-

Algorithm 1 LPU Sensing Offloader Approx. Algorithm
Require: Number of generations n, mutation probability ↵
1: function HEURISTICSEARCH(n,↵)
2: P InitialSchedulePopulation()
3: x SelectBestSchedule(P)
4: for i 1 to n do
5: O GenerateOffspringSchedules(P)
6: for c 2 O do
7: c Mutate(c, ↵)
8: if i%2 = 0 then
9: c LocalImprovement(c)

10: P SelectNextGenerationSchedules(P [O)
11: x SelectBestSchedule({x} [P)
12: return x

F

C

C

F

C

F

C

2 4

0

0

6

7

0 10

20

0

0 7

14

40

132

0

Emotion
Recognition

Speaker
Identification

Activity
Recognition

CPU LPU Cloud

Figure 3: Sched. representation

Parents

Children

Figure 4: Two-point crossover

ules updated each iteration. The iteration consists of creating can-
didate offspring schedules (line 5) from selected parents and subse-
quently choosing the surviving set of schedules (line 10) that will
constitute the next generation. Parent schedules are selected for
reproduction with a probability proportional to their utility. Repro-
duction is performed through a standard two-point crossover opera-
tion illustrated in Figure 4. Once offspring schedules are generated,
two key transformations are applied to each child (lines 6�9): mu-
tation to promote diversity, and local search to increase utility. The
local search step improves the utility of a newly produced offspring
schedule by searching for better neighbor solutions and replacing
the original schedule with the neighbor the fitness of which is high-
est. Finally, the best s schedules survive through the next iteration.
To reduce the runtime of the algorithm we limit the number of gen-
erations n to 100 and perform the local improvement step every
other generation. We resort to standard textbook parameters of the
algorithm [31]: population size of 10, 5 parents, 20 child schedules,
and a mutation probability set to 0.1.

6. SYSTEM IMPLEMENTATION
Here we discuss the implementation details of the system proto-

type and example sensing algorithms used in the evaluation. The
development is performed on a Snapdragon 800 Mobile Develop-
ment Platform for Smartphones (MDP/S) [20] with an Android
Jelly Bean OS. As an example LPU we use the Qualcomm Hexagon
DSP which is accessible through the C-based Qualcomm Hexagon
SDK [19] (of which we use version 1.0.0). Provisional GPU sup-
port is added for a subset of the sensor processing algorithms where
we use the Adreno 330 GPU which we program with OpenCL
1.1e [17] via the Adreno SDK [2].
Application Model. Similarly to ORBIT [54] we adopt a compo-
nent-based programming model where we provide an extensive li-
brary of reusable signal processing algorithms which developers
can use to build and integrate their sensing pipelines into applica-
tion code. We implement 7 domain-specific categories of feature
extraction algorithms and 5 popular machine learning models cov-
ering the narrow waist of computations for multiple apps from the
mobile sensing literature. With this library we have prototyped the

Application Sensor Description Main Features Inference Model Frame Window
Activity Rec. [52] Accel walking, running, etc. Freq. and Time Domain J48 Decision Tree 4s 4s
Step Counting [28] Accel step counting Time Domain Windowed Peak Thresholding 4s 4s
Speaker Count [66] Mic speaker counting MFCC [35], pitch [33] Unsupervised Clustering 32ms 3s
Emotion Rec. [61] Mic emotion recognition PLP [39] 14 Gaussian Mixture Models [27] 30ms 5s
Speaker Id. [61] Mic speaker identification PLP 22 Gaussian Mixture Models 30ms 5s

Stress Detection [51] Mic stress from voice MFCC, TEO-CB-AutoEnv [70] 2 Gaussian Mixture Models 32ms 1.28s
Keyword Spotting [29] Mic hotphrase recognition Filterbank Energies Deep Neural Network [40] 25ms 1s

Table 3: Implemented example sensing applications. The window shows the amount of time features are accumulated from frames before an
the classification/inference stage is triggered. Frame lengths shown are the default used in the original works.The used sensor sampling rates
are 50Hz for the accelerometer and 8kHz for the microphone.

/⇤ J av a p i p e l i n e s p e c i f i c a t i o n :
s e q u e n c e o f t r a n s f o r m s
a p p l i e d t o t h e s e n s o r s t r e a m ⇤ /
P i p e l i n e p = new A u d i o P i p e l i n e () ;
p . t r i g g e r (new F r a m e T r i g g e r (" S p e e c h _ t r i g g e r ")) ;
p . a p p l y (new WindowTransform (" PLP_windowFeatures ")

. f r a m e S i z e (2 4 0) . f r ameRa te (8 0) . window (5 0 0))
. a p p l y (new P a r a l l e l T r a n s f o r m (new Trans fo rm [] {

new GMMTransform (" s p e a k e r 1 .gmm") ,
new GMMTransform (" s p e a k e r 2 .gmm")
} , Aggrega to rType . Argmax)) ;

/⇤ DSP c o m p a t i b l e C s i g n a t u r e c o n v e n t i o n s ⇤ /
/ / i n i t i a l i z e s a s t r u c t from t h e memory
/ / r e f e r e n c e d by p t r
vo id⇤ X _ i n i t (i n t 8 _ t ⇤ p t r , vo id⇤ params) ;
/ / amount o f memory i n b y t e s (s i z e o f s t a t e s t r u c t)
u i n t 3 2 _ t X_ge tS i ze (vo id⇤ params) ;
/ / t r i g g e r f u n c t i o n (e . g . , s p e ec h d e t e c t i o n)
i n t X _ t r i g g e r (i n t 1 6 _ t ⇤ b u f f e r , i n t s i z e) ;
/ / f e a t u r e e x t r a c t i o n
vo id X_windowFeatures (vo id⇤ me , i n t 1 6 _ t ⇤ b u f f e r ,

i n t s i z e , f l o a t ⇤⇤ outData ,
i n t nRows , i n t nCols) ;

/ / i n f e r e n c e / c l a s s i f i c a t i o n
f l o a t X_windowInference (vo id⇤ me , f l o a t ⇤⇤ i nDa ta ,

i n t nRows , i n t nCols) ;

Figure 5: Example code snippets showcasing the APIs supported
by LEO. The Java API can be used to define the structure of a
pipeline. The C API conforms to the set of conventions given by
the Qualcomm Elite SDK for audio processing on the DSP. The
Java pipeline definition is mapped to a set of DSP compatible C
routines.

2 accelerometer and 5 microphone sensing applications listed in
Table 3. One of the major advantages of resorting to a library-
based approach is that we have full control over how the various
signal processing tasks can be decomposed, i.e. we can expose the
sensing algorithms to our pipeline restructuring techniques (§5.1)
without involving the developer in the process. Instead, LEO fully
automates the partitioning decisions at runtime.

The algorithms are subject to our pipeline reorganization tech-
niques so that all application pipelines are partitioned as discussed
in §5.1, and the Keyword Spotting app is restructured by the Pipeline
Modularization technique. Feature Sharing is enabled for the Emo-
tion Recognition and Speaker Identification applications. Further
details on the algorithm implementations can be found in the orig-
inal publications cited in Table 3.
APIs and Accessibility. To enable app components to run on
heterogeneous computational resources (CPU, DSP, cloud), all ac-
celerometer and audio processing algorithms are implemented in
C with a unified interface following the guidelines of the Hexagon
SDK. In Figure 5 we provide a subset of the C signature conven-
tions the various audio processing methods must comply to in or-

der to take advantage of LEO’s partitioning capabilities. We main-
tain the same copies of the C code on the DSP, CPU and on the
server. To facilitate the integration of the signal processing com-
ponents with Java application code we have built a Java Native In-
terface (JNI) bridge library that interfaces between the CPU and
DSP. Further, we have defined a high-level Java API with some no-
tions borrowed from Google Cloud Dataflow programming model
[8] (applying a sequence of transforms to the input stream) that can
help developers specify custom pipelines built from the reusable
components we provide. Sample code defining a speaker identifi-
cation pipeline with 2 speaker models and a voice-activation trigger
is given in Figure 5. The high level components ultimately map to
the C functions with conventionalized signatures – e.g., the Win-
dowTransform class accepts as an argument to its constructor the
name of the C method (PLP_windowFeatures) that will be in-
voked to process accumulated raw audio data. Developers can ad-
ditionally define their custom algorithm components by providing
a C implementation that conforms to the conventions we follow.

The wrapper functionality defines the structure of a sensor pipe-
line which consists of two primary computation types: 1) context
triggers, added by the trigger method and executed as an optional
first processing step; and 2) a series of transforms (feature extrac-
tion, classification) chained through the apply method so that the
output from one transform serves as the input to another. Trans-
forms are of two primary subtypes: primitive and composite. Prim-
itive transforms are executed on a single computational unit as an
atomic non-preempted operation. Composite transforms consist
of multiple primitive transforms: currently we support a parallel
transform operation that allows multiple transforms to work con-
currently with the same input on different computational units. The
pipeline specification is a one-time operation needed to register the
type and sequence of C methods that will be scheduled for execu-
tion on the various computational units.
Offloading Service. The DSP has three hardware threads acrhi-
tected to look like a multi-core system. LEO runs continuously on
the DSP as a service where we reserve one thread for the offloading
decision logic. The pipeline stages of the sensing algorithms (ad-
ditionally extracted features and classification) are executed in the
other two threads. The CPU-DSP interactions (loading model pa-
rameters, sharing data) are facilitated through the FastRPC mecha-
nism supported by the Hexagon SDK. Data is transferred via con-
tiguous ION/RPCMem memory buffers carved out into Android
OS memory and mapped to DSP memory. Threading is orches-
trated via POSIX-style APIs provided by the DSP RTOS (real-time
OS) knows as QuRT [18]. An Android background service task
that is running on the CPU waits for the DSP to return a list of sen-
sor tasks with assigned resources. If the CPU is in sleep mode, it
is woken up by the DSP through a return from a FastRPC call to
manage the assignment of tasks to other resources (cloud or GPU).

The schedule evaluation is timed periodically every t seconds
(currently t = 1), with the primary unit of time being the length of
audio frames. LEO accumulates raw sensor data in circular buffers,

filters the type of data based on the registered triggers (motion,
speech) and runs the scheduling algorithm every n-th frame (e.g.,
every 34-the frame when its length is 30ms). The raw data buffers
accumulate sensor samples over the largest registered window of
processing for the corresponding sensor (e.g, 5 seconds for the
microphone). The registered context triggers are typically short-
duration routines (less than 5ms per 30ms audio frame, and less
than 1ms per 4s accelerometer frame) and we interleave their exe-
cution with the schedule evaluation in the same thread.
Offline Training. We expect developers to train their machine
learning models offline and provide the model parameters required
by our library of classification algorithms in the form of text files
which we parse when an application is started/accessed for the first
time. For instance, the Gaussian Mixture Models are encoded in the
format defined by the widely used in speech analysis HTK toolkit
[10]. Our parsing utility is written in C++ so that it can supply the
model parameters directly in the JNI bridge.
Provisional GPU Support. We have implemented parallel ver-
sions of the two heaviest sensor processing algorithms (the GMM
inference of the Speaker/Emotion Recognition and DNN propaga-
tion of the Keyword Spotting) in OpenCL [17] with the help of
the Qualcomm Adreno SDK [2]. Enabling GPU support requires
incorporating additional energy into the scheduling objective func-
tion that captures the overhead of approaching the GPU (setting up
computation and transferring buffers from the CPU host to GPU de-
vice memory). Further, custom algorithms not included in LEO’s
library would require additional programmer effort to provide an
OpenCL implementation in addition to the DSP-compliant C ver-
sion used by default. Interfacing with the GPU is mediated through
the background CPU service which flattens the matrix of features
required by the heavy classification stages into contiguous blocks
of memory that can be copied with OpenCL commands to GPU
device memory.

7. EVALUATION
In this section we evaluate LEO’s overhead, the energy improve-

ment over baseline offloading and the energy consumption when
running example sensing applications under common smartphone
usage and varying network conditions. By default, we use the
base version of LEO that handles the heterogeneous processing
units with full algorithm support and unified C programming model
(CPU, LPU and cloud). We discuss the implications of incorporat-
ing the GPU as an extra resource in a separate subsection. The main
findings are:
• The cross-app scheduling decisions made by LEO are on average

5% worse than those made by an “oracle” knowing the optimal
offloading of tasks to resources.

• LEO is between 1.6 and 3 times more energy efficient than off-
the-shelf CPU-based APIs enhanced with conventional cloud of-
floading of classification tasks. Compared to a general-purpose
MAUI-style [32] offloader enhanced to use the DSP, LEO re-
quires only a fraction of the energy (< 1

7) to build a schedule and
is still up to 19% more energy efficient for medium and heavy
workloads.

• The overhead of the LPU Sensing Scheduler is low (< 0.5% of
the battery daily), allowing frequent rescheduling.

• Considering the smartphone daily usage patterns of 1320 An-
droid users, in more than 90% of the cases LEO is able to operate
for a full day with a single battery charge with other applications
running on the phone, while providing advanced services such
as keyword spotting, activity and emotion recognition.

4 6 8 10 12 14 16
Number of sensor apps

0.0
0.5
1.0
1.5
2.0
2.5

R
un

tim
e

(s
)

1sec
5sec
15sec
30sec

Figure 6: Runtime of the scheduling algorithm as a function of the
number of apps and the length of the rescheduling interval.

7.1 Baselines Definition
Here we introduce commonly found scheduling/offloading alter-

natives that we are used to compare the performance of LEO.
• DSP+Cloud. This strategy uses the DSP for feature extraction

and then ships the features to a remote server for processing.
• CPU+Cloud. This is an alternative that follows a conventional

cloud offloading strategy where features are extracted locally on
the CPU and then sent to the cloud for classification.

• Greedy Local Heuristic. A greedy strategy offloads sensing tasks
locally on the mobile device by first pushing to the DSP the
CPU expensive computations. The tasks are sorted in descend-
ing order of their CPU-to-DSP energy ratio so that those with
the largest energy gain factors are prioritized for execution on
the DSP.

• Delay-Tolerant. To demonstrate the huge performance boosts
from delayed sensor inference execution, we provide a delay-
tolerant version of LEO that runs the optimization solver with
relaxed deadline constraints once every minute (⌧ = 60 sec-
onds).

• MAUI-DSP. We implement the MAUI [32] optimization model
with lp_solve [11] as an enhanced baseline capable of leveraging
the DSP locally in the following manner. All pipeline methods
that can be executed remotely are flagged as remote-able, and the
solver runs its local-remote binary partitioning logic with respect
to the DSP, i.e. it will always prefer the low-power DSP over the
CPU to compute sensor tasks locally. The solver logic is writ-
ten in the AMPL modeling language [3] and runs as a service
in cloud, while the mobile device is intended to communicate
schedules by sending input parameters (sensing tasks identifiers,
resource availability) as a JSON string. MAUI annotations are
not explicitly implemented, and neither is runtime profiling of
the methods. Instead, the solver leverages domain-specific in-
formation such as the type of pipeline methods, their expected
runtime and energy characteristics from the offline profiling.

7.2 LEO’s Overhead
Runtime. The runtime of the scheduling algorithm solving the op-
timization problem on the DSP is largely determined by the number
of sensing apps to be managed. In Figure 6 we plot the runtime of
the scheduler as a function of two parameters: the number of man-
aged sensor apps and the rescheduling interval. The runtime for
scheduling the execution of 5 apps every second is 107 millisec-
onds which allows frequently revising the offloading decisions at
the expense of a relatively small added latency. In addition, if the
algorithm runs once every second when there are generated sensor
tasks (triggered by the presence of relevant events such as speech or
motion), the daily energy budget for the scheduling on a 2300mAh
battery would amount to < 0.5%. We can attribute the success of
this relatively low overhead to two factors. First, although the opti-
mization search space grows exponentially in the number of apps,

LEO
MAUI-DSP
DSP+Cloud
CPU+Cloud
Greedy

0 1 2 3 4 5 6 7 8 9
Number of apps

M
ea

n
er

ro
r (

%
)

Figure 7: Deviation from the energy of the optimal solution when
the offloading variants generate a schedule.

the low latency is enabled by the heuristic algorithm scaling poly-
nomially instead of exponentially with the number of apps. Second,
the low energy is maintained by running the scheduler entirely on
the DSP and independently from the energy-hungry CPU.
Scheduling Capacity. The total response time of LEO is 2x the
rescheduling interval plus the time needed to produce a schedule
(which amounts to ⇡ 2.1 seconds). In other words, the scheduler
provides soft real-time guarantees which are sufficient for notifica-
tion-style sensing applications (e.g., mute the device when enter-
ing a conversation, or trigger services based on voice commands).
Whereas the scheduling algorithm can solve optimization problems
within 500ms for 15 apps on the DSP, typically only a small propor-
tion of the apps will be executed on the DSP as it becomes easily
overwhelmed. With 2 hardware threads reserved for application-
specific logic, the DSP is able to process with real-time guarantees
the feature extraction stages of several apps of the complexity of
our examples. Longer-running classification stages need to be bro-
ken down into subcomputations, in which case the DSP could typ-
ically process a subset of these additional tasks from this stage for
one to two more apps. This break-down is achieved through the
Pipeline Partitioning discussed in §5.1.
DSP Memory. The runtime memory limit on the DSP of the Qual-
comm Snapdragon 800 MDP [20] is currently 8MB of which we
use 2MB for system parameters and application models (includ-
ing 1 DNN and 5 emotion or speaker GMMs). If the LPU Sens-
ing Scheduler revises the joint app schedule every 30 seconds, we
would also need approximately 480KB of memory to buffer raw
microphone data sampled at a rate of 8KHz. We recall that we
use the buffering to monitor the exact workload generated by the
currently activated sensor applications. The rest of the memory is
reserved to useful application data such as accumulated inferences.

7.3 Optimality of Offloading Schedules
Here we investigate how close our scheduling heuristics as well

as straw-man offloading variants are to an optimal schedule. We
generate example sensing tasks to be offloaded and compare the
generated solutions to the optimal ones produced by an optimiza-
tion solver. We create sensing traces with a workload that matches
30 seconds of relevant sensing context (detected motion and speech)
and vary the number of applications to be scheduled in each trace.
For each number of applications we create 10 different traces (where
applicable) by changing the underlying set of sensor apps. Applica-
tion sets are sampled with repeats from the family of implemented
example apps shown in Table 3. The generated example configu-
rations are expressed as mixed integer linear programming (MILP)
problems via the AMPL modeling language [3] and fed to the op-
timization solver GLPK [7]. We observe significant, on the order
of minutes or more, delays in the termination of the solver when
the number of scheduled applications exceeds 8, which is why we
limit this number when presenting the results.

In Figure 7 we plot how far off percentage-wise the offloading
solutions are from the global optimum found by the GLPK solver.

The results show that LEO produces generally good solutions that
are on average within 5% away from the optimal ones. In contrast,
the closest among the alternatives, DSP+Cloud and MAUI-DSP,
are on average 19% and 10% away from the optimum respectively.
As expected, LEO’s (and the alternative’s) error increases with the
rise in number of scheduled apps to reach 19% when 8 apps are
scheduled. Nevertheless, we believe that the LPU Sensing Sched-
uler provides a much needed optimality trade-off to make the of-
floading decisions practical and executable on the DSP.

7.4 LEO vs Alternatives
In this subseciton we compare the performance of LEO in terms

of energy consumption against the commonly found offloading base-
lines defined in §7.1.
Experimental Setup. We introduce three example scenarios cover-
ing the spectrum from light to heavy sensing application usage. De-
pending on the scenario, the user has subscribed for the services of
a different subset of the applications shown in Table 5. To maintain
a mixture of applications with a variety of deadlines, we coarsely
split the apps into two groups in the following way. We impose
near real-time requirements for the accelerometer-based inference
algorithms as well as the Keyword Spotting, Speaker Counting and
Stress Detection applications by setting their inference deadlines
to be equal to their processing period, and set the heavier Emotion
Recognition and Speaker Identification pipelines to be tolerant to
larger 10-second delays in obtaining an inference (double their pe-
riod). The delay tolerance for these sensor apps is set as an example
to diversify the timeliness requirements.

We generate 100 1-minute long sensor traces per scenario with
relevant events sampled from a uniform random distribution. Such
events are detected speech and motion that trigger the generation
of sensor jobs. We note that even though the length of the sens-
ing trace appears relatively short, it is sufficiently long to enable
the sensor apps to generate a large amount of jobs. An Emotion
Recognition app, for instance, will create 12 jobs per minute given
continuous speech and features are extracted for classification ev-
ery 5 seconds (Table 3), whereas the Keyword Spotting app would
produce 60 jobs per minute. The saturation of sensing context
(speech, motion) that generates pipeline tasks varies from 5% to
100% in the artificial traces. For instance, a trace that is 1 minute
long might contain 20 seconds of speech (33%) spread throughout
the whole interval and grouped into several patches of continuous
speech. We replay the traces for each offloading strategy and evalu-
ate the energy consumption depending on the produced distribution
of computations among offloading resources and CPU.
System Load and Energy Profiling. Power measurements are ob-
tained with a Monsoon Power Monitor [14] attached to the MDP.
The average base power of maintaining a wake lock on the CPU
with a screen and WiFi off is 295mW for the MDP. Each appli-
cation is profiled separately for energy consumption by averaging
power over 10 runs on the CPU, DSP and GPU where applica-
ble. To obtain the power contributed by the sensor processing al-
gorithms only, we subtract the base power from the total power of
running the applications in background mode with a screen off. No
other background services are running during the profiling apart
from the system processes. We confirm that the total sensing sys-
tem energy consumption is additive as long as the normalized CPU
load on the MDP remains below ⇡ 80%. Thus, the total energy
for a sensing trace is an additive function of the energy expenditure
of individual tasks under moderate CPU utilization. As reported
by DSP.Ear [37] we confirm that popular mobile apps from various
categories that follow a processing pattern different from the sense-
transform-classify one rarely push CPU utilization beyond 25%.

WiFi 5Mbps WiFi 1Mbps 3G 0.8Mbps 3G 0.4Mbps No connectivity
H M L H M L H M L H M L H M L

LEO Delay-Tolerant 0.87 0.86 1.00 0.89 0.70 1.00 0.57 0.50 0.58 0.37 0.33 0.32 0.23 0.21 0.30
Greedy 5.30 4.36 4.74 3.97 3.60 3.19 2.64 2.54 1.90 1.64 1.69 1.02 1.04 1.08 1.00

CPU+Cloud 2.86 2.67 2.91 2.49 2.40 3.02 2.07 2.13 1.77 1.75 1.90 1.67 n/a n/a n/a
DSP+Cloud 1.17 1.24 1.00 1.20 1.24 1.00 1.23 1.30 1.00 1.21 1.34 1.00 n/a n/a n/a
MAUI-DSP 1.13 1.19 1.00 1.11 1.15 1.00 1.08 1.16 1.00 1.04 1.17 1.00 n/a n/a n/a

Table 4: Mean factors showing the amount of energy expended by the baselines relative to LEO. A factor of x means that the offloading
alternative expends x times the amount of energy for the same workload-connectivity scenario.

Heavy (H) Medium (M) Light (L)
Activity Recognition X X X

Step Counting X X
Speaker Counting X X

Emotion Recognition X X
Speaker Identification X X

Stress Detection X X
Keyword Spotting X X

Table 5: Applications used in the workload scenarios.

0 20 40 60 80 100
Sensing workload (%)

0
20
40
60
80

100
120
140

En
er

gy
 (J

)

LEO
Greedy
CPU+Cloud
DSP+Cloud
MAUI-DSP
Delay-Tolerant

(a) WiFi 5Mbps

0 20 40 60 80 100
Sensing workload (%)

0
20
40
60
80

100
120
140

En
er

gy
 (J

)

LEO
Greedy
Delay-Tolerant

(b) No connectivity

Figure 8: Energy consumption of the offloading strategies com-
pared against the delay-tolerant LEO as a function of the sensing
workload saturation for the medium load scenario (M).

To mitigate any potential interference, we limit the amount of con-
current CPU threads working on sensing tasks to two which keeps
the extra CPU load incurred by sensor processing below 40%. If
the scheduler decides to use the CPU for computation under high
system loads, interference with other services is inevitable unless
sensor processing is canceled. In such extreme conditions, delays
in the response time of services is expected (e.g., video playback,
game play) as well as an increase in the total energy consumption.
Baseline Comparison Results. In Table 4 we display the rela-
tive amount of energy incurred by the offloading strategies when
compared to LEO. The numbers show how many times the total
energy of LEO an offloading alternative consumes. In all of the
resource availability and workload scenarios LEO succeeds in de-
livering better energy profiles than the alternatives. The cloud-
based baselines, for example, that always perform the classifica-
tions remotely and do not perform cross-app resource optimiza-
tion, fail to spot optimization opportunities where processing the
classification stages (deeper into the pipeline) on the DSP may be
cheaper than remote computations. As a result, the CPU+Cloud
strategy consistently consumes 1.6x to 3x more energy than LEO,
whereas the DSP+Cloud alternative introduces significant 17% to
34% overheads under heavy and medium workloads. Compared to
CPU+Cloud, the DSP+Cloud baseline reduces energy consumption
by ⇡ 2x times on average across the workloads, which is a signif-
icant improvement. This energy reduction can be thought of as
the gains of simply leveraging an LPU without benefiting from any
cross-resource optimization. With principled scheduling of sen-
sor tasks, as we have already shown, energy gains can be up to
34% higher with LEO than with DSP+Cloud for medium to heavy
workloads.

In Figure 8 we plot the mean energy expended by the sens-

(a) Medium (b) Light

Figure 9: Percentage of the battery capacity needed for processing
4.5 hours of sensing context under varying network availability.

ing pipelines when following the various offloading schedules as
a function of the sensing workload (e.g. proportion of speech cap-
tured by the microphone) for the sensing traces. Under relatively
good WiFi throughput (5Mbps) LEO consumes 30J for perform-
ing all sensor tasks when there is 100% saturation of the sensing
context (continuous speech/walking) in the trace. To put this num-
ber into perspective and assuming 4.5 hours of talking on average
during the day [47], LEO would drain 26% of the capacity of a
standard 2300mAh battery (such as the one of a Nexus 5 [9] based
on the Snapdragon 800 SoC) to fully process the sensor data for
the above mentioned set of accelerometer and microphone appli-
cations while importantly maintaining timeliness guarantees. The
best among alternatives MAUI-DSP scheduler with its ⇡ 20% en-
ergy overhead would drain the notably higher 31% of the battery to
process the same amount of sensor data.
Why not MAUI? A general-purpose offloader such as MAUI-DSP
significantly outperforms naïve cloud offloading alternatives, yet
there are multiple workload scenarios where LEO can maximize
the energy gains even further. For example, under medium and
heavy loads LEO can be up to 19% more efficient compared to the
version of MAUI enhanced with DSP processing capabilities. This
improvement can be attributed to two factors: 1) MAUI’s local-
remote binary partitioning model does not explicitly model the het-
erogeneity of local resources and may miss more optimal schedul-
ing configurations that involve multiple local processing units; 2)
MAUI applies its offloading decisions structurally for the program
at the method level, whereas LEO exploits algorithm semantics to
allow copies of the same method with different data (e.g., speaker
GMM probability estimation) to be run in parallel on different pro-
cessing units and cloud. In addition, the original MAUI uses the
network to communicate schedules with a remote server to save
energy, but still network transfers are mediated through the CPU in
a high-power active state (hundreds of mW). Compared to our LPU
Sensing Scheduler running on the DSP, MAUI would require about
7 to 10 times more energy for the schedule computation given a
rescheduling frequency of 1 second.
Why not Wishbone? Wishbone’s [56] original problem formu-
lation targets a slightly different goal: increase data rate and re-
duce network bandwidth. Minimizing network bandwidth is not a
good proxy for energy because recent mobile devices boast pow-
erful multi-core CPUs that can easily cope with complex process-

ing locally – this will incur a high energy cost but will minimize
the amount of transferred data. To target on-device energy con-
sumption, the objective needs to be redefined as we have done
and latency constraints need to be added to ensure apps remain re-
sponsive. Further, frequently using an optimization solver such as
GLPK [7] incurs a large energy and computation overhead. We find
that scheduling the tasks of no more than 7 or 8 sensor apps such
as the examples we have implemented requires on average 100ms
on the Snapdragon CPU which is fast enough but the energy cost
of running the scheduler there is high – more than 30 times higher
than what LEO requires. Given this overhead the only alternative
is to run Wishbone less frequently: the solver would need to sched-
ule defensively the execution across resources for multiple apps.
In our experiments this leads to missed opportunities of using re-
sources and energy consumption that is more than 3 times higher
than what LEO can deliver.

7.5 Practicality Considerations
Varying Network Availability. In Figure 9 we plot the percent-
age of the battery needed by the system to fully process the sensor
data for a sensing workload of 4.5 hours spent in conversations
[47] under the medium and light application scenarios (Table 5)
and as a function of the network availability. The consumed en-
ergy is mindful of the sampling of the sensors and the overhead of
waking up the CPU. We vary the amount of time when the system
would be able to offload part of the classifications via WiFi or 3G.
The network throughput is set to 5Mbps for WiFi and 0.4Mbps for
3G (median uplink throughput for 3G is dependent on carrier but
remains around 0.3-0.4Mbps [41]). According to a recent study
of smartphone usage patterns of more than 15K mobile users [65],
50% of them are connected to WiFi, LTE or 3G for at least 80% of
the time. Being able to offload processing assuming such cumula-
tive wireless coverage in Figure 9 corresponds to draining around
67% of a 2300mAh battery for medium workloads and barely 27%
for light scenarios. The figures for the medium workload are high
but we stress we maintain near real-time responsiveness for most
of the applications. Should we relax the deadline constraints to use
Delay-Tolerant LEO, we can drop these numbers to merely 25%
and 12% for the medium and light scenarios respectively.
Smartphone Usage. To understand how the workloads in Table 5
affect the user experience we analyze a dataset of 1320 smartphone
users, provided to us by the authors of AppJoy [68], where inter-
active mobile application usage is logged on an hourly basis. We
replay the user daily traces with LEO running in the background
and add to all traces the workload of typical background services (a
mail client, Facebook, Twitter, music playback) in a manner similar
to [37]. Assuming the previously mentioned 80% wireless network
coverage and 4.5 hours of speech on average in a day (as found by
SocioPhone [47]), we find that with the Delay-Tolerant version of
LEO for more than 80% or 93% of the daily usage instances the
users would be able to sustain a full 24-hour day of operation with-
out recharging a 2300mAh battery when the sensing applications
from the medium and light scenarios are active respectively.

7.6 GPU Acceleration
In this subsection we investigate the implications of scheduling

computations when an additional massively parallel heterogeneous
processor such as the Qualcomm Adreno 330 GPU [2] is added
to the pool of resources available to LEO. We build two scheduling
alternatives to streamline our analysis: 1) LEO-GPU which follows
LEO’s scheduling logic and brings the GPU as an optional resource
for the two heaviest classification algorithms (GMMs and DNNs
discussed in §6); 2) DSP+GPU which always uses the GPU for the

WiFi 3G
5Mbps 1Mbps 0.8Mbps 0.4Mbps local

LEO-GPU 1.00 1.00 0.74 0.53 0.38
DSP+GPU 2.08 1.55 1.03 0.64 0.46

LEO-GPU (5s) 1.00 0.76 0.49 0.29 0.22
DSP+GPU (5s) 1.13 0.80 0.51 0.31 0.25

Table 6: Mean factors showing the amount of energy expended by
the alternatives relative to LEO. The bracketed names refer to the
same scheduling strategies when the rescheduling interval is set to
5 seconds which relaxes the deadline constraints for real-time apps
and promotes batched GPU execution.

algorithms that can be executed there, extracts features on the DSP
and any routines that cannot meet the deadlines on either of these
processors are run on the CPU.

In Table 6 we show the proportion of LEO’s energy the GPU-
enhanced alternatives would spend in order to process the work-
loads from Table 5 under varying network connectivity. For each
connectivity use case, the numbers are averaged across the heavy,
medium, and light scenarios. With slower connections, the GPU-
enhanced strategies spend a fraction (< 0.75x) of vanilla LEO’s
energy to process the same workloads which suggests that the GPU
is a viable offloading option cheaper than CPU and cloud offload-
ing. With faster connections under tight deadline constraints (re-
scheduling every second by default), LEO-GPU spends the same
amount of energy as LEO which means that the GPU is not used
in these faster connectivity scenarios. In our experiments the GPU
can deliver results faster than 5Mbps cloud (⇡ 6x for the Keyword
Spotting and ⇡ 3x for the Speaker/Emotion Recognition) but con-
sumes more power which is dominated by the GPU initialization
stage repeated every second. Interestingly, if we pay the setup costs
once and batch multiple computations for GPU execution, LEO-
GPU (5s) begins to find opportunities where the total GPU energy
is lower than 1Mbps cloud offloading. In other words, LEO-GPU
automatically discovers we can compensate for the initially con-
sumed high power with sheer GPU speed.

8. DISCUSSION
We now examine key issues related to LEO’s design.
Beyond the DSP. LEO is extensible beyond the three computation
classes in our prototype to n�units by profiling each supported
sensor algorithm under each new processor. As we have shown in
§7.6, support for a GPU processor can be easily incorporated into
LEO’s resource pool modeling but may require extra programmer
effort. We anticipate future LEO versions will provide a more com-
prehensive GPU support and fan-out feature extraction to multiple
DSP varieties.
Extending Sensor Support. We largely focus on the accelerome-
ter and microphone sensors as examples of a low and a high-data
rate sensors, respectively. As these sensors provide a large variabil-
ity in their requirements, they are an effective combination to un-
derstand the performance of LEO. However, our design is generic
enough to support other phone sensors.
Device Fragmentation. Despite interacting with a co-processor,
LEO remains portable to various phone models: LEO’s compo-
nents are OS-specific rather than device-specific, with two excep-
tions. First, each DSP variety needs a runtime and sensor algo-
rithm library. Scaling LEO to use multiple DSPs would require
adding support in the scheduling service for communication across
different computational units and providing compatible implemen-
tations for the sensor algorithms. However, units such as the DSP
in the Qualcomm 800 SoC is in dozens of smartphones, and recent
DSP programmability trends revolve around adopting standard em-

bedded programming tools such as C. Second, kernel drivers are
needed to interface non-CPU components to the OS. But drivers
are required only for each {OS, component} combination.
Programmability. We have provided Java wrapper functionality
which allows developers to specify custom chains of sensor pro-
cessing with a few lines of code when the library of pre-built algo-
rithmic components are used. We acknowledge this may not always
be possible, in which case the developers can integrate custom al-
gorithms by providing DSP compatible C routines that conform to
a set of conventions (briefly outlined in §6) most of which are set
by the Qualcomm Hexagon SDK we used in our prototype.

Custom algorithms that do not conform with LEO’s partitioning
conventions will not benefit as much from the scheduler as struc-
tured algorithms. As long as the runtime of these custom algo-
rithms is within the rescheduling interval, LEO will be able to find
energy reduction opportunities for concurrent sensing apps without
compromising the performance of the introduced new algorithms.
This is because the algorithm execution can be treated as a single
computational unit that involves the full pipeline (without expos-
ing finer implementation details). When the custom algorithms are
long running (severely exceeding the rescheduling interval), and
given that the scheduler is not pre-emptive, there might be sub-
optimal resource utilization choices in light of unforeseen future
resource availability. However, such cases are expected to be rare
since mobile sensor processing [51, 61, 50, 53, 66, 52] is typically
periodic over the sensor stream with short repeated tasks to main-
tain tight mobile resource consumption and timeliness guarantees.
Proprietary Sensor Processing. Exposing an app’s sequence of
sensor processing steps to LEO entails intellectual property risks,
but this is a problem relevant to a class of emerging orchestrators
that operate with domain-specific signal processing knowledge [42,
44, 54]. As these solutions mature, new approaches will be devel-
oped to handle security risks. If developers trust the OS, sandbox-
ing techniques [67] can be applied to prevent LEO from leaking
sensitive information such as parameters for the classification mod-
els. If customized sensor processing C or OpenCL routines need to
be added, code obfuscation techniques can be taken advantage of.

9. RELATED WORK
SpeakerSense [50], Little Rock [58], DSP.Ear [37] and Audio-

DAQ [64] utilize low-power co-processors or purpose-built periph-
eral devices to achieve energy savings while supporting a fixed set
of constantly running sensing applications. However, none of the
above mentioned are designed to dynamically balance the workload
when the set of actively running sensor apps changes. DSP.Ear’s
optimizations, for example, alleviate the burden on the memory-
constraint DSP by sacrificing inference accuracy. While these tech-
niques are applicable to our set of applications and may comple-
ment our system, we focus on handling sensor workloads without
modifying the app accuracy.
Why not general-purpose offloaders? General-purpose offload-
ers [32, 59, 62, 69, 30, 60, 38], do not target the diverse sensor
processing workloads explicitly and, as a result, may miss substan-
tial optimization opportunities. For example, MAUI [32] defines an
offloading optimization problem that performs binary local-remote
split decisions (CPU vs. cloud) and inspects the general program
structure but does not take advantage of domain-specific signal pro-
cessing knowledge. As we have shown in §7, such knowledge can
be leveraged for even greater energy benefits. Odessa [59] instru-
ments individual apps to make offloading decisions for improving
makespan and throughput but performs only per-app performance
tuning instead of cross-app optimizations when apps share scarce
mobile computing resources. Code in the Air [62] assumes that

wireless connectivity is plentiful and that cloud offloading is the ul-
timate solution to reduce energy and improve throughput. With the
advent of low-power co-processors these assumptions are seriously
challenged: we have demonstrated that optimal offloading config-
urations for sensor processing workloads are the ones that utilize
a combination of all available computational resources. Last, VM
migration mechanisms [30, 38] offer performance benefits but are
difficult to deploy across architecturally different platforms.
Why not other sensor orchestrators? Existing sensor orchestra-
tor frameworks [44, 42, 43, 49, 52, 45] approach the optimization
space from different angles in order to improve sensor processing
on resource-constraint mobile devices, and often provide comple-
mentary functionality that can be executed side by side with LEO.
Reflex [49], for example, eases programmability for LPUs [49] but
does not explicitly optimize for energy efficiency. MobileHub [63]
automatically rewrites app binaries to provide a sensor data noti-
fication filter that buffers data on the LPU unlikely to result in an
application notification and thus trigger pipeline processing. How-
ever, when the later stages of sensor processing pipelines are trig-
gered and execution cannot be bypassed, applications will benefit
from LEO automatically distributing chunks of these later-phase
computations across resources. CAreDroid [34], on the other hand,
presents a framework for automatically choosing among different
implementations of the same sensor processing logic that leads to
highest performance gains given the current device and user con-
text. Again, we argue that once the relevant processing for an appli-
cation is determined, sensor computations can be further optimized
by jointly deciding for the currently active sensor apps on which
resource their execution logic should be run. ORBIT [54] similarly
to LEO uses profile-based partitioning of application logic to de-
termine the most appropriate resource to use for a processing task
issued by a data-intensive embedded app, but does not focus its
optimization on multiple simultaneously running apps.

Orchestrator [44] does not scale well with the increase in num-
ber of offloading configurations as it systematically explores sub-
sets of offloading plans the number of which grows exponentially
with offloading components and sensor apps. Wishbone [56] is
very closely related to our work and we build upon some of its
fundamentals (linear programming formal model, exploiting data
flow semantics for the partitioning). As we have demonstrated in
§7, it was originally designed to maximize a different optimization
objective and in the case of frequent rescheduling incurs a high
energy overhead. SymPhoney [42] introduces a powerful utility-
based model to deal with resource contention of sensor apps locally,
whereas we attempt to maximize the efficiency of multiple apps
with their original maximum utility across the various resources
(LPU, CPU, GPU and cloud).

10. CONCLUSION
We have presented LEO, a mobile sensor inference algorithm

scheduler enabling concurrent execution of complex sensor apps
while maintaining near real-time responsiveness and maximizing
energy efficiency. LEO makes this possible by restructuring and
optimally partitioning sensor algorithms (from simultaneously run-
ning applications) across heterogeneous computational units, and
revising this allocation dynamically at runtime based on fluctua-
tions in device and network resources.

11. ACKNOWLEDGMENTS
This work was supported by Microsoft Research through its PhD

Scholarship Program. We thank the anonymous reviewers and our
shepherd for their valuable comments and suggestions.

12. REFERENCES
[1] Accupedo Pedometer. http://www.accupedo.com/.
[2] Adreno GPU SDK.
[3] AMPL modeling language. http://ampl.com/.
[4] Android Sensor APIs. http://developer.android.com/guide/

topics/sensors/index.html.
[5] Apple Motion Core API. https://developer.apple.com/library/

iOs/documentation/CoreMotion/Reference/CoreMotion_
Reference/index.html.

[6] Apple Siri. https://www.apple.com/uk/ios/siri/.
[7] (GLPK) GNU Linear Programming Kit. https://www.gnu.

org/software/glpk/.
[8] Google Cloud Dataflow. https://cloud.google.com/dataflow/

model/programming-model.
[9] Google Nexus 5. https://www.qualcomm.com/products/

snapdragon/smartphones/nexus-5-google.
[10] HTK Speech Recognition Toolkit. http://htk.eng.cam.ac.uk/.
[11] lpsolve MILP Solver. http://lpsolve.sourceforge.net/5.5/.
[12] Lumia SensorCore SDK. https://www.nuget.org/packages/

LumiaSensorCoreSDK/.
[13] Microsoft Cortana. http://www.windowsphone.com/en-gb/

how-to/wp8/cortana/meet-cortana.
[14] Monsoon Power Monitor. http://www.msoon.com/

LabEquipment/PowerMonitor/.
[15] Moovit. http://www.moovitapp.com/.
[16] Moves Activity Diary. https://www.moves-app.com/.
[17] OpenCL.
[18] Qualcomm Hexagon DSP. https://developer.qualcomm.com/

software/hexagon-dsp-sdk/dsp-processor.
[19] Qualcomm Hexagon SDK. https://developer.qualcomm.

com/mobile-development/maximize-hardware/
multimedia-optimization-hexagon-sdk.

[20] Qualcomm Snapdragon 800 MDP. https://www.qualcomm.
com/documents/snapdragon-800-processor-product-brief.

[21] Qualcomm Snapdragon 800 Processors. http://www.
qualcomm.com/snapdragon/processors/800.

[22] RunKeeper. http://runkeeper.com/.
[23] Shake Gesture Library Windows Phone 8.

http://code.msdn.microsoft.com/windowsapps/
Shake-Gesture-Library-04c82d5f.

[24] Shazam. http://www.shazam.com/.
[25] Snapdragon 800 Smartphones. http://www.qualcomm.com/

snapdragon/smartphones/finder.
[26] Waze Social GPS Maps and Traffic. https://www.waze.com/.
[27] C. M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[28] A. Brajdic and R. Harle. Walk detection and step counting on
unconstrained smartphones. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’13, pages 225–234, New York, NY,
USA, 2013. ACM.

[29] G. Chen, C. Parada, and G. Heigold. Small-footprint key-
word spotting using deep neural networks. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, ICASSP’14, 2014.

[30] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: Elastic execution between mobile device and
cloud. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, pages 301–314, New York, NY, USA,
2011. ACM.

[31] C. Cotta and A. J. FernÃąndez. Memetic algorithms in plan-
ning, scheduling, and timetabling. In K. P. Dahal, K. C.
Tan, and P. I. Cowling, editors, Evolutionary Scheduling, vol-
ume 49 of Studies in Computational Intelligence, pages 1–30.
Springer, 2007.

[32] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: Making smart-
phones last longer with code offload. In Proceedings of the 8th
International Conference on Mobile Systems, Applications,
and Services, MobiSys ’10, pages 49–62. ACM, 2010.

[33] A. de Cheveigné and H. Kawahara. YIN, a fundamental fre-
quency estimator for speech and music. The Journal of the
Acoustical Society of America, 111(4):1917–1930, 2002.

[34] S. Elmalaki, L. Wanner, and M. Srivastava. Caredroid: Adap-
tation framework for android context-aware applications. In
Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, MobiCom ’15, pages
386–399, New York, NY, USA, 2015. ACM.

[35] Z. Fang, Z. Guoliang, and S. Zhanjiang. Comparison of dif-
ferent implementations of mfcc. J. Comput. Sci. Technol.,
16(6):582–589, Nov. 2001.

[36] J. Gemmell, G. Bell, and R. Lueder. Mylifebits: a per-
sonal database for everything. Communications of the ACM
(CACM), 49(1):88–95, January 2006. also as MSR-TR-2006-
23.

[37] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo.
DSP.Ear: leveraging co-processor support for continuous au-
dio sensing on smartphones. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, SenSys
’14, New York, NY, USA, 2014. ACM.

[38] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan.
Just-in-time provisioning for cyber foraging. In Proceeding
of the 11th Annual International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys ’13, pages 153–
166, New York, NY, USA, 2013. ACM.

[39] H. Hermansky. Perceptual linear predictive (PLP) analysis of
speech. J. Acoust. Soc. Am., 57(4):1738–52, Apr. 1990.

[40] G. Hinton, L. Deng, D. Yu, A. rahman Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. S. G. Dahl, and
B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition. IEEE Signal Processing Magazine,
29(6):82–97, November 2012.

[41] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl. Anatomizing application performance differences on
smartphones. In Proceedings of the 8th International Confer-
ence on Mobile Systems, Applications, and Services, MobiSys
’10, pages 165–178, New York, NY, USA, 2010. ACM.

[42] Y. Ju, Y. Lee, J. Yu, C. Min, I. Shin, and J. Song. Symphoney:
A coordinated sensing flow execution engine for concurrent
mobile sensing applications. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems, SenSys
’12, pages 211–224, New York, NY, USA, 2012. ACM.

[43] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park,
and J. Song. Seemon: Scalable and energy-efficient context
monitoring framework for sensor-rich mobile environments.
In Proceedings of the 6th International Conference on Mo-
bile Systems, Applications, and Services, MobiSys ’08, pages
267–280, New York, NY, USA, 2008. ACM.

[44] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and
J. Song. Orchestrator: An active resource orchestration frame-
work for mobile context monitoring in sensor-rich mobile en-
vironments. In Eigth Annual IEEE International Conference
on Pervasive Computing and Communications, PerCom 2010,
March 29 - April 2, 2010, Mannheim, Germany, pages 135–
144, 2010.

[45] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In Pro-
ceedings of the 15th International Conference on Information
Processing in Sensor Networks, IPSN ’16, pages 23:1–23:12,
Piscataway, NJ, USA, 2016. IEEE Press.

[46] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell. A survey of mobile phone sensing. Comm.
Mag., 48(9):140–150, Sept. 2010.

[47] Y. Lee, C. Min, C. Hwang, J. L. 0001, I. Hwang, Y. Ju, C. Yoo,
M. Moon, U. Lee, and J. Song. Sociophone: everyday face-to-
face interaction monitoring platform using multi-phone sen-
sor fusion. In H.-H. Chu, P. Huang, R. R. Choudhury, and
F. Zhao, editors, MobiSys, pages 499–500. ACM, 2013.

[48] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. Moodscope:
Building a mood sensor from smartphone usage patterns. In
Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’13,
pages 389–402, New York, NY, USA, 2013. ACM.

[49] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex: Us-
ing low-power processors in smartphones without knowing
them. In Proceedings of the Seventeenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 13–24, New
York, NY, USA, 2012. ACM.

[50] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu.
Speakersense: Energy efficient unobtrusive speaker identifi-
cation on mobile phones. In Proceedings of the 9th Inter-
national Conference on Pervasive Computing, Pervasive’11,
pages 188–205, Berlin, Heidelberg, 2011. Springer-Verlag.

[51] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chit-
taranjan, A. T. Campbell, D. Gatica-Perez, and T. Choudhury.
Stresssense: Detecting stress in unconstrained acoustic en-
vironments using smartphones. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing, UbiComp ’12,
pages 351–360, New York, NY, USA, 2012. ACM.

[52] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell. The jigsaw continuous sensing engine for mobile
phone applications. In Proceedings of the 8th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys ’10,
pages 71–84, New York, NY, USA, 2010. ACM.

[53] C. Luo and M. C. Chan. Socialweaver: Collaborative infer-
ence of human conversation networks using smartphones. In
Proceedings of the 11th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys ’13, pages 20:1–20:14, New
York, NY, USA, 2013. ACM.

[54] M.-M. Moazzami, D. E. Phillips, R. Tan, and G. Xing. Or-
bit: A smartphone-based platform for data-intensive embed-
ded sensing applications. In Proceedings of the 14th Interna-
tional Conference on Information Processing in Sensor Net-
works, IPSN ’15, pages 83–94, New York, NY, USA, 2015.
ACM.

[55] P. Moscato. On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Tech-
nical Report C3P Report 826, California Institute of Technol-
ogy, 1989.

[56] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Mad-
den. Wishbone: ProïňĄle-based Partitioning for Sensornet
Applications. In NSDI 2009, Boston, MA, April 2009.

[57] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong, J. A.
Stankovic, P. Hu, G. Shen, and X. Jiang. Auditeur: A mobile-
cloud service platform for acoustic event detection on smart-
phones. In Proceeding of the 11th Annual International Con-
ference on Mobile Systems, Applications, and Services, Mo-
biSys ’13, pages 403–416, New York, NY, USA, 2013. ACM.

[58] B. Priyantha, D. Lymberopoulos, and J. Liu. Littlerock: En-
abling energy-efficient continuous sensing on mobile phones.
IEEE Pervasive Computing, 10(2):12–15, 2011.

[59] M. Ra, A. Sheth, L. B. Mummert, P. Pillai, D. Wetherall, and
R. Govindan. Odessa: enabling interactive perception appli-
cations on mobile devices. In Proceedings of the 9th Interna-
tional Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys 2011), Bethesda, MD, USA, June 28 - July 01,
2011, pages 43–56, 2011.

[60] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow.
Sociablesense: Exploring the trade-offs of adaptive sampling
and computation offloading for social sensing. In Proceedings
of the 17th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’11, pages 73–84, New
York, NY, USA, 2011. ACM.

[61] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow,
C. Longworth, and A. Aucinas. Emotionsense: A mobile
phones based adaptive platform for experimental social psy-
chology research. In Proceedings of the 12th ACM Interna-
tional Conference on Ubiquitous Computing, Ubicomp ’10,
pages 281–290, New York, NY, USA, 2010. ACM.

[62] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and
S. Madden. Code in the air: Simplifying sensing and coor-
dination tasks on smartphones. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications,
HotMobile ’12, pages 4:1–4:6, New York, NY, USA, 2012.
ACM.

[63] H. Shen, A. Balasubramanian, A. LaMarca, and D. Wetherall.
Enhancing mobile apps to use sensor hubs without program-
mer effort. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, pages 227–238, New York, NY, USA, 2015.
ACM.

[64] S. Verma, A. Robinson, and P. Dutta. Audiodaq: Turning the
mobile phone’s ubiquitous headset port into a universal data
acquisition interface. In Proceedings of the 10th ACM Con-
ference on Embedded Network Sensor Systems, SenSys ’12,
pages 197–210, New York, NY, USA, 2012. ACM.

[65] D. Wagner, A. Rice, and A. Beresford. Device analyzer: Un-
derstanding smartphone usage. In 10th International Confer-
ence on Mobile and Ubiquitous Systems: Computing, Net-
working and Services, 2013.

[66] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen,
J. Li, and B. Firner. Crowd++: Unsupervised speaker count
with smartphones. In Proceedings of the 2013 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Com-
puting, UbiComp ’13, pages 43–52, New York, NY, USA,
2013. ACM.

[67] R. Xu, H. Saïdi, and R. Anderson. Aurasium: Practical policy
enforcement for android applications. In Presented as part of
the 21st USENIX Security Symposium (USENIX Security 12),
pages 539–552, Bellevue, WA, 2012. USENIX.

[68] B. Yan and G. Chen. Appjoy: Personalized mobile application
discovery. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services.

[69] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Grib-
ble, A. Krishnamurthy, and H. M. Levy. Customizable and
extensible deployment for mobile/cloud applications. In 11th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 97–112, Broomfield, CO, Oct.
2014. USENIX Association.

[70] G. Zhou, J. H. L. Hansen, and J. F. Kaiser. Nonlinear feature
based classification of speech under stress. IEEE Transactions
on Speech and Audio Processing, 9(3):201–216, 2001.

