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A search for a narrow baryonic state in the pK 0
S and pK 0

S system has been performed in ep collisions 
at HERA with the ZEUS detector using an integrated luminosity of 358 pb−1 taken in 2003–2007. The 
search was performed with deep inelastic scattering events at an ep centre-of-mass energy of 318 GeV
for exchanged photon virtuality, Q 2, between 20 and 100 GeV2. Contrary to evidence presented for such 
a state around 1.52 GeV in a previous ZEUS analysis using a sample of 121 pb−1 taken in 1996–2000, no 
resonance peak was found in the p(p)K 0

S invariant-mass distribution in the range 1.45–1.7 GeV. Upper 
limits on the production cross section are set.
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1. Introduction

The observation of a narrow baryon resonance with a mass of 
≈1.53 GeV, reported first by the LEPS experiment in 2003 [1,2] in 
the missing-mass distribution for γ A collisions, generated consid-
erable theoretical and experimental interest. Such a baryon would 
be manifestly exotic because of its decay into a K + and a neutron, 
which is impossible for a three-quark state but could be explained 
as a bound state of five quarks i.e. a pentaquark state. A nar-
row baryonic resonance close to the observed mass had previously 
been predicted in the chiral soliton model [3] and named �+ with 
quark configuration uudds. Many experimental groups have looked 
for this state via various production processes in the decay modes 
nK + or pK 0

S (pK 0
S ). Some experiments confirmed the signal while 

others refuted it. Several reviews [4–8] have been published on the 
subject.

The HERA accelerator collided electrons1 at Ee = 27.5 GeV with 
protons at E p = 820 or 920 GeV. The ZEUS experiment reported 
evidence for a peak structure in the pK 0

S mass distribution2 in 
deep inelastic scattering (DIS) data, consistent with a �+ . The data 
were taken between 1996 and 2000 (HERA I) and correspond to an 
integrated luminosity of 121 pb−1 [9]. The H1 Collaboration pre-
sented mass distributions in a similar kinematic region [10], but 
did not find any structure and presented an upper limit. However, 
this limit did not unambiguously exclude the ZEUS signal.

Recently, interest in pentaquark states has arisen again with the 
discovery of two pentaquark candidates by the LHCb experiment 
at 4.38 and 4.45 GeV. They have a valence quark content of uudcc
and were observed with high statistical significance [11].

32 Also supported by DESY and the Alexander von Humboldt Foundation.
33 Also at Łódź University, Poland.
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1 In this paper, the word “electron” refers to both electrons and positrons, unless 
otherwise stated.
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To clarify the production of strange pentaquarks in DIS, a search 
for the �+ resonance in the HERA II data (2003–2007) with an in-
tegrated luminosity of 358 pb−1 has been performed. The HERA II 
period not only provided larger statistics, but also the ZEUS track-
ing system was upgraded. In particular, a silicon-strip micro vertex 
detector (MVD) [12] located close to the beam line provided more 
information on the ionisation energy loss per unit length, dE/dx. 
This improves the selection of protons from a huge background of 
mainly pions.

This paper presents the result of a search at HERA II for a nar-
row resonance in the pK 0

S system in the central rapidity region 
of high-energy ep collisions in a similar kinematic region to the 
previous ZEUS analysis. The sample includes both e+ p and e− p
collisions at a centre-of-mass energy of 318 GeV. The analysis was 
done with DIS events, requiring a visible scattered electron in the 
detector, at a photon virtuality, Q 2, in the range 20–100 GeV2.

2. Experimental set-up

A detailed description of the ZEUS detector can be found else-
where [13]. A brief outline of the components that are most rele-
vant for this analysis is given below.

Charged particles were tracked in the central tracking detec-
tor (CTD) [14], the MVD [12] and the straw-tube tracking detec-
tor (STT) [15]. These components operated in a magnetic field 
of 1.43 T provided by a thin superconducting solenoid. The CTD 
consisted of 72 cylindrical drift-chamber layers, organised in nine 
superlayers covering the polar-angle3 region 15◦ < θ < 164◦ . The 
MVD silicon tracker consisted of a barrel (BMVD) and a forward 
(FMVD) section. The BMVD contained three layers with two de-
tectors in each layer and provided polar-angle coverage for tracks 
from 30◦ to 150◦ . The four-layer FMVD extended the polar-angle 
coverage in the forward region to 7◦ . The single-hit resolution of 
the MVD was 24 μm. The transverse distance of closest approach 
(DCA) of tracks to the nominal vertex in the X–Y plane was mea-
sured to have a resolution, averaged over the azimuthal angle, 
of (46 ⊕ 122/pT ) μm, with pT in GeV. For CTD–MVD tracks that 
pass through all nine CTD superlayers, the momentum resolution 
was σ(pT )/pT = 0.0029 pT ⊕ 0.0081 ⊕0.0012/pT , with pT in GeV. 
Both the CTD and MVD were equipped with analog read-out sys-
tems which provided dE/dx information for particle identification. 
The STT covered the polar-angle region 5◦ < θ < 25◦ .

The high-resolution uranium–scintillator calorimeter (CAL) [16]
consisted of three parts: the forward (FCAL), the barrel (BCAL) 
and the rear (RCAL) calorimeters. Each part was subdivided trans-
versely into towers and longitudinally into one electromagnetic 
section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) 
hadronic sections (HAC). The smallest subdivision of the calorime-
ter was called a cell. The CAL energy resolutions, as measured 
under test-beam conditions, were σ(E)/E = 0.18/

√
E for electrons 

and σ(E)/E = 0.35/
√

E for hadrons, with E in GeV.
The luminosity was measured using the Bethe–Heitler reaction 

ep → eγ p by a luminosity detector which consisted of indepen-
dent lead-scintillator calorimeter [17] and magnetic spectrometer 
[18] systems. The fractional systematic uncertainty on the mea-
sured luminosity was 2% [19].

3 The ZEUS coordinate system is a right-handed Cartesian system, with the Z
axis pointing in the nominal proton beam direction, referred to as the “forward 
direction”, and the X axis pointing towards the centre of HERA. The coordinate 
origin is at the centre of the CTD. The pseudorapidity is defined as η = − ln (

tan θ
2

)
, 

where the polar angle, θ , is measured with respect to the Z axis.
3. Monte Carlo simulation

Samples of Monte Carlo (MC) events were generated to deter-
mine the detector acceptance in order to estimate the production 
cross section of a resonance state in the pK 0

S system. The gener-
ated events were passed through the GEANT 3.21-based [20] ZEUS 
detector- and trigger-simulation programs [13]. They were recon-
structed and analysed by the same program chain as used for real 
data.

Signal events were generated with the MC package RAPGAP 
v.3.1030 [21]. Pentaquarks were simulated by replacing �+(1189)

in the particle table with a pentaquark with various masses (1.450, 
1.500, 1.522, 1.540, 1.560, 1.600 and 1.650 GeV), isotropically decay-
ing into pK 0. Events that satisfy Q 2 > 1 GeV2 and |ypK 0 | < 2.5, 
where ypK 0 is the rapidity of the pK 0 system, were kept and 
processed in the detector simulation. Thirty million events were 
produced with M = 1.522 and M = 1.540 GeV, which are the peak 
positions of the ZEUS HERA I analysis [9] and the PDG value of 
2006 [22], respectively. Fifteen million events were produced for 
each of the other mass points.

4. Event selection

4.1. Event sample

A three-level trigger [13,23,24] was used to select DIS events, 
requiring scattered electron candidates. In the offline reconstruc-
tion, the scattered electron candidates were identified from the 
pattern of energy deposits in the CAL [16]. The Bjorken scaling 
variable, x, as well as y and Q 2, were reconstructed using the 
double-angle method [25,26] which uses the angle of the scattered 
electron and the angle calculated from the remaining particles. 
Here, y = Q 2/(sx) denotes the fraction of the incoming electron 
energy transferred to the proton in the proton rest frame and s is 
the square of the centre-of-mass energy of the ep system.

The following requirements, similar to those in the HERA I anal-
ysis, were imposed to select the events for the DIS sample:

• 20 < Q 2 < 100 GeV2;
• Ee′ > 10 GeV, where Ee′ is the corrected energy of the scat-

tered electron measured in the CAL;
• 38 < δ < 60 GeV, where δ = �Ei(1 − cos θi), Ei is the energy 

of the ith calorimeter cell, θi is its polar angle and the sum 
runs over all cells;

• ye < 0.95, and yJB > 0.04, where ye and yJB are the y values 
calculated by the electron and Jacquet–Blondel (JB) method 
[27], respectively;

• | Zvertex |< 30 cm, where Zvertex is the vertex position along 
the Z -axis determined from the tracks.

The requirement Q 2 > 20 GeV2 was motivated by the HERA I anal-
ysis; the requirement Q 2 < 100 GeV2 allows a direct comparison 
to the H1 limit [10].

In order to check the sensitivity of the HERA II data to reso-
nance searches, the well-known 	c(2286) baryon was searched for 
in the pK 0

S mass spectrum in DIS and also in a photoproduction 
event sample, Q 2 ≈ 0 GeV2. The photoproduction events were col-
lected from various trigger streams [28] by requiring offline that 
no identified electron with energy Ee′ > 4 GeV and ye < 0.85 was 
found in the CAL and by imposing a cut 0.2 < δ/Ee < 0.85, where 
Ee is the electron beam energy. The same Zvertex cut was imposed 
as in the DIS sample.
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4.2. K 0
S selection

Neutral strange K 0
S mesons were reconstructed from two 

charged tracks in the decay K 0
S → π+π− . The tracks were required 

to pass through at least three inner superlayers of the CTD, to have 
at least three BMVD hits out of the nominal six hits, and to have 
transverse momentum pT > 0.15 GeV and |η| < 1.75, restricting 
the study to a region where the track acceptance and momentum 
resolution were high. In view of the huge combinatorial back-
ground, only oppositely charged pairs whose three-dimensional 
distance of closest approach to each other was less than 1.5 cm
were considered for a vertex constraint fit. The invariant mass, 
M(π+π−), was calculated assigning the π mass to both tracks. 
The candidate pairs were required to satisfy the following condi-
tions:

• χ2 < 5.0, where χ2 refers to the re-fit of K 0
S vertex position;

• L XY > 0.5 cm, where L XY is the K 0
S decay length in the XY

plane, to eliminate a background of misidentified decays close 
to the primary vertex;

• α2D < 0.06 radian and α3D < 0.15 radian, where α2D and 
α3D are XY -projected and three-dimensional collinearity an-
gles, respectively, defined as the angle between the direction 
from the primary vertex to the decay vertex and the momen-
tum direction of the ππ system;

• pT (K 0
S ) > 0.25 GeV, | η(K 0

S ) |< 1.6.

In addition, the following requirements were imposed to elimi-
nate contamination from other sources:

• M(e+e−) > 0.07 GeV, where the electron mass was assigned 
to each track, to eliminate track pairs from photon conver-
sions;

• M(pπ) > 1.121 GeV, where the proton mass was assigned to 
the track with the higher momentum, to eliminate 	 contam-
ination of the K 0

S signal.

Fig. 1 shows the invariant-mass distribution for K 0
S candidates. 

A fit with two Gaussian functions plus a constant was used. The 
peak position was M(K 0

S ) = 0.4972 GeV, which is consistent with 
the PDG value of 0.4976 GeV [29] within the uncertainty on the 
momentum scale of the tracks (0.3%). The candidates with 0.482 <
M(π+π−) < 0.512 GeV were selected. A sample of 0.31 million 
events was selected with at least one K 0

S candidate.

4.3. Proton selection and particle identification

The selection of proton or anti-proton tracks makes use of kine-
matic requirements and particle identification (PID). In the follow-
ing, the term “proton” denotes generically both the proton (p) and 
the anti-proton (p). The kinematic selections on the proton track 
were as follows:

• it passes through at least three inner superlayers of the CTD 
and has at least two MVD hits;

• its momentum, ptrack, satisfies 0.2 < ptrack < 1.5 GeV;
• it is associated with the primary vertex;
• it is not one of the tracks from the selected K 0

S candidate.

The proton PID was performed with the combination of the 
CTD and MVD dE/dx information. The dE/dx in the CTD was es-
timated with the truncated-mean method used in previous ZEUS 
analyses [30,31]. The dE/dx in the MVD was estimated by a likeli-
hood method [28]. The measured dE/dx resolution was ≈10% for 
each detector.
Fig. 1. The π+π− invariant-mass distribution for 20 < Q 2 < 100 GeV2. The dashed 
lines show the mass range used for the K 0

S selection. For illustration, the result of a 
fit with two Gaussian functions and constant background is shown.

The first step in selecting well measured protons required the 
measured dE/dx values to be within bands centred at the expec-
tation of the respective parameterised Bethe–Bloch function [29], 
and to be greater than 1.15 in units of minimum-ionising particles 
(mips). These cut positions are indicated in Fig. 2, which shows 
CTD and MVD dE/dx measurements as a function of ptrack.

The CTD and MVD dE/dx measurements for the tracks selected 
as protons by the other detector are shown in Figs. 2 (a) and (b), 
respectively. In addition to the clear proton bands, contaminations 
from kaons and pions are visible. In some cases, the CTD dE/dx for 
tracks with large energy loss is not measured due to saturation of 
the signal; therefore there are fewer entries at high dE/dx in the 
CTD plot (Fig. 2(a)).

In the second step, a likelihood-like estimator was used to se-
lect protons based on distances to the predicted Bethe–Bloch lines 
for proton, kaon and pion hypotheses. In cases when the CTD 
dE/dx was not determined because of a saturated signal, protons 
were selected using only the MVD dE/dx. Figs. 2 (c) and (d) show 
the CTD and MVD dE/dx distributions for tracks after the final se-
lection.

The proton identification efficiency of the dE/dx selection was 
measured with a 	 sample, selected using the pπ invariant mass 
without dE/dx selection, from an extended DIS4 sample and the 
photoproduction sample. The efficiency is about 80% for pro-
tons with momentum ptrack < 0.8 GeV, almost linearly decreas-
ing to 20% at ptrack = 1.5 GeV, mainly due to the likelihood-like 
cut used to reduce the pion contamination. The identification effi-
ciency for the protons from 	 decays integrated over ptrack from 
0.1 to 1.5 GeV is 54%. The pion-rejection factor was examined using 
pion tracks from K 0

S decays. The factor is above 1000 for momenta 
below 1.2 GeV and decreases to 100 at 1.5 GeV.

For a direct comparison with the HERA I analysis, another event 
sample was prepared with protons selected using only the CTD 
dE/dx using the first step of logic as described above. This re-
sults in a higher integrated proton identification efficiency of 82% 
for protons in the 	-decay sample, but the pion rejection fac-
tor above 0.6 GeV, where the increase in efficiency originates, is 
10–100 times worse.

4 In the extended DIS sample, no explicit Q 2 cut was imposed in order to keep 
as many 	 candidates as possible.
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Fig. 2. The dE/dx distributions as a function of ptrack for (a) the CTD and (b) the MVD for the tracks identified as protons by the dE/dx of the other detector; the distributions 
for (c) the CTD and (d) the MVD for the tracks finally selected as protons including tracks for which dE/dx information was only available from the MVD. The solid lines 
show the Bethe–Bloch values for the proton. The dashed lines indicate the limits used for the proton selection. The dotted line is drawn at 1.15 mips, the value used for the 
proton selection.
5. Results

5.1. The pK 0
S invariant-mass distribution

The pK 0
S invariant mass was obtained by combining proton 

and K 0
S candidates selected as described above and with their 

masses adjusted to the PDG value [29]. The pK 0
S candidates were 

selected in the kinematic region 0.5 < pT (pK 0
S ) < 3.0 GeV and 

|η(pK 0
S )| < 1.5.

The pK 0
S invariant-mass distribution in the range from 1.4 to 

2.4 GeV is shown in Figs. 3 (a) and (b) for the DIS sample with 
20 < Q 2 < 100 GeV2 and for the photoproduction sample. To 
suppress the combinatorial background for the 	c(2286) produc-
tion in the photoproduction sample, a requirement of pT (pK 0

S ) >
0.15 Eθ>10◦

T was imposed, where Eθ>10◦
T is the sum of the trans-

verse energy of the CAL cells outside a 10 degree cone from the 
proton-beam direction. This cut was motivated by the hard charac-
ter of charm fragmentation.

A clear 	c(2286) peak is observed in the photoproduction sam-
ple. It is also seen in the DIS sample with less significance. The 
width of the 	c peak is 10 MeV and is consistent with the MC 
simulation.

In Fig. 3(c), the pK 0
S invariant-mass distribution is shown in the 

mass range from 1.4 to 1.9 GeV for the same DIS sample with finer 
bins. The distribution contains 3107 pK 0

S candidates and 2833 pK 0
S

candidates. The pion contamination in the proton candidates was 
estimated to be less than 10%. The dashed line represents the �+
signal as would be observed if it had the same strength as reported 
in the ZEUS HERA I result. The HERA I signal is not confirmed in 
this analysis.

For a more direct comparison of the present to the previous 
ZEUS result, an analysis with CTD-only dE/dx selection and with 
similar cuts as in the HERA I analysis was performed. For this, no 
MVD information was used for the track selection. At least 40 
CTD hits were required for the proton track. The result is shown 
in Fig. 3(d). The increase of the number of pK 0

S candidates in 
Fig. 3(d), of an order of magnitude with respect to Fig. 3(c), is 
mainly due to the looser PID selection for the proton candidates. It 
is consistent with the number of candidates observed in the HERA I 
analysis. For this looser selection, the pion contamination in the 
proton candidates was estimated to be more than 50%. No peak is 
seen in Fig. 3(d).

5.2. Upper limits on the production cross section

Since there is no significant structure in the invariant-mass dis-
tribution, upper limits on the production cross section of a narrow 
pK 0 resonance were derived.

A fit was performed to the mass plot shown in Fig. 3(c) for a 
mass range between 1.435 and 1.9 GeV with a Gaussian function 
for a postulated signal and an empirical function for background of 
the form

α(M − M0)
β(1 + γ (M − M0)),

where α, β and γ are parameters determined in the fit, M is 
the pK 0

S mass, and M0 is the sum of the nominal proton and K 0

masses [29].
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Fig. 3. The pK 0
S invariant-mass distribution for (a) the DIS sample with 20 < Q 2 < 100 GeV2 and (b) the photoproduction sample. (c) The pK 0

S distribution for the DIS sample 
with smaller bins. The solid line is the result of a fit using the background function. The dashed line represents the signal corresponding to the ZEUS HERA I result. (d) The 
pK 0

S distribution as in (c) with proton PID according to the HERA I analysis.
Three options were used for the width of the Gaussian. One op-
tion was to fix it to 6.1 MeV, which is the measured value from 
the ZEUS HERA I analysis. In the other two options, the width was 
set to 1× and 2× the detector resolution. The resolution of the 
pK 0

S invariant mass was estimated using the MC events and was 
3.5 MeV in the region near 1.52 GeV and 11 MeV near 2.3 GeV. For 
the mass range shown in Fig. 3(c), the resolution R was parame-
terised with the following formula;

R = 0.00959 M − 0.01111 (GeV). (1)

The upper limit on the cross section at 95% confidence level 
(CL) was determined at the value which increases the χ2 of the fit 
by 2.71 [29] with respect to the best fit.5 At M = 1.52 GeV, where 
the peak was found in the HERA I analysis [9], the obtained upper 
limit is 25.8 events for a width of 6.1 MeV. For the HERA I analysis, 
ZEUS reported 221 ± 48 events above the background. Correcting 
this number of events for the luminosity and for differences in the 
event selection and detector efficiencies, dominated by the pro-
ton identification, the predicted number of events for this analysis 
is 286. In Fig. 3(c), a peak of this magnitude with resolution 6.1 
MeV is shown as the dashed line above a solid curve which rep-
resents the background-only fit. Since no peak is observed at 1.52 
GeV, the structure in the HERA I data is assumed to be a back-
ground fluctuation.

The cross sections were defined in the following kinematic 
range reflecting the region of large acceptance:

5 The best fit is obtained in the non-negative region of the signal amplitude. 
When the best-fit amplitude is zero, this gives a more conservative limit than at 
95% CL.
• 20 < Q 2 < 100 GeV2;
• |η(pK 0)| < 1.5;
• 0.5 < pT (pK 0) < 3.0 GeV.

The final results are shown as upper limits to the production 
cross section for either �+ or �+ , multiplied by the branching 
ratio of �+ → pK 0, i.e.

σ(�) = (σ (ep → e�+ X) + σ(ep → e�+ X)) × B R(�+ → pK 0).

The branching ratios of the K 0 to K 0
S transition and of the K 0

S to 
π+π− decay used in the cross-section calculation were 0.5 and 
0.6895 [29] respectively.

The acceptance for the event selection was estimated using 
cross-section calculations from the MC samples except for the pro-
ton PID efficiency, which was determined from the 	 sample. It 
was assumed that the pT and η distributions of the resonance are 
similar to the �±(1189) as generated in RAPGAP v.3.1030 [21] and 
that the resonance decays isotropically to pK 0

S . Since the detection 
efficiency depends strongly on the (pT , η) values of the pK 0

S sys-
tem, some variations on the pT distribution were tested as a study 
of the systematic uncertainty.

Systematic uncertainties on the cross section were evaluated for 
the following 4 components:

• uncertainty in the event selection: the acceptance correc-
tions were recalculated by shifting selection cuts [28] and re-
evaluating the upper limit on the cross section. The variance 
was about 10%;

• the proton PID efficiency was modified by ±1σ of the mea-
surement uncertainty. The effect was about 3% with little mass 
dependence;
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Fig. 4. The 95% CL upper limits on σ(�) for different hypotheses on the width of the observed peak; (a) 6.1 MeV and (b) the mass resolution and twice the mass resolution. 
In (a), the limit set by the statistical uncertainty only is also shown. In (b), the limit from the H1 result is also shown.
• uncertainty in the mass-dependent selection efficiency: the ac-
ceptance for a pK 0

S resonance was determined using the seven 
MC samples for different masses as defined in Section 3. The 
mass dependence of the efficiency was fitted with a linear or 
a quadratic function to obtain the value for any given mass. 
The difference between the two fit functions gave a negligible 
contribution to the systematic uncertainty;

• model uncertainty on the pT distribution of a pK 0
S resonance: 

in this analysis, the MC samples were generated using RAP-
GAP by replacing �±(1189) with resonant states at various 
masses (see Section 3). In the model, the pT distribution was 
less steep with increasing mass. As a test, the distribution was 
re-scaled in order to keep the same pT spectra for all masses. 
At high masses, this gave about 20% difference.

In addition, there was a 2% uncertainty on the luminosity mea-
surement [19]. All resulting variations on the upper limit of the 
cross sections were added in quadrature and the upper limit was 
increased accordingly.

The upper limits6 obtained on σ(�) at 95% CL are shown in 
Fig. 4(a) for a width of the �+ of 6.1 MeV. As a reference, the limit 
considering only the statistical uncertainty is also shown. The limit 
in the region of the �+ mass is below 10 pb.

In Fig. 4(b), the cross-section limits for a �+ with an intrin-
sic width much smaller than the detector resolution (see Eq. (1)) 
is shown. Also shown are the limits for a �+ with a width re-
constructed as twice the detector resolution, which approximately 
corresponds to the width used for the published H1 limit. The 
ZEUS limit is more stringent than that obtained by H1.

6. Summary

A resonance in the pK 0
S (pK 0

S ) system consistent with a �+-like 
state has been searched for in the HERA II data collected with 
the ZEUS detector, exploiting the improved proton identification 
capability made possible by the use of the micro vertex detec-
tor. A peak at 1.52 GeV for which evidence had been observed 
in a previous ZEUS analysis, based on HERA I data, was not con-
firmed. Upper limits on the production cross section of such a 
resonance have been set as a function of the pK 0 mass in the 

6 Since in the present analysis the origin of K 0
S from K 0 or K 0 cannot be distin-

guished, all limits are equally valid for a hypothetical narrow pK 0 resonance.
kinematic region: 0.5 < pT (pK 0) < 3.0 GeV, |η(pK 0)| < 1.5 and 
20 < Q 2 < 100 GeV2.
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