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Feeling embodiment over our body or body part has a major role in the understanding of

the self and control of self-actions. Even though it is crucial in our daily life, embodiment

is not an homogenous phenotype across population, as quantified by implicit and

explicit measures (i.e., neuroimaging or self-reports). Studies have shown differences

in neuropathological conditions compared to healthy controls, but also across healthy

individuals. We discuss examples of self-perception differences, and the molecular origin

of embodiment, focusing on clinical cases, during the first and second section. We

then discuss two important questions in this molecular-to-embodiment relationship: (i)

which are the molecular levels (and their associated techniques) that can be relevant to

embodiment, and (ii) which are the most adequate experiments to correlate molecular

profiles and embodiment quantification across individuals. Potential answers for both

questions will be outlined during the third and fourth sections, respectively, in order to

design a framework to study the molecular profile of body embodiment.
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EMBODIMENT AND VARIABILITY

Sense of embodiment refers to the feeling of owning and controlling a body (Kilteni et al., 2012),
leading to the believe that it is the own body. This contributes to generate the representation of the
bodily-self in the brain. Self-representation has two distinct subcomponents, sense of ownership
(i.e., attributing a body or body part to the self) and sense of agency (i.e., having sense of control
over the action). The former arises from the combination of multiple information sources, such
as visual or tactile (Gallagher, 2000), the latter arises when the efferent copy of an intention of an
action and its actual sensory outcome match (Wolpert and Miall, 1996; Gallagher, 2000).

Since Botvinick and Cohen developed the Rubber Hand Illusion paradigm (Botvinick and
Cohen, 1998), the study of self-representation has grown interest in the field of cognitive sciences.
The way the bodily-self is represented becomes crucial for the interaction of the individual with
the environment and with other individuals. Moreover, this relationship is not unidirectional,
as this self-representation is updated with the information obtained from the interaction with
external sources. By means of the sensory organs, the brain receives multisensory information
that is used to update and change self- and other-representation constantly. Due to this plasticity
the process is malleable experimentally, thus generating embodiment over fake body parts or full
bodies (Botvinick and Cohen, 1998; Lenggenhager et al., 2007; Slater et al., 2008). The effect of
these changes has not only been reported behaviorally, but also through neuroimaging studies using
fMRI. It has been shown that changes in the representation of the self caused experimentally (i.e.,
rubber hand illusion, or full body swap illusion) cause changes in activity in multisensory brain
areas, when compared to conditions in which there is no reported illusion by the subjects (Ehrsson
et al., 2005; Petkova et al., 2011). The implication of these areas (i.e., premotor cortex, intraparietal
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cortex, and putamen) suggests the importance of the
multisensory integration on the feeling of ownership.

More importantly, embodiment has been shown to be
affected by neurodevelopmental disorders (e.g., autism spectrum
disorders) and in several psychiatric and neurological conditions
(see a summary in Table 1). Autism spectrum disorder patients
have been shown to be less susceptible to feel ownership of
a rubber hand (Palmer et al., 2015). Also, other experimental
paradigms reported an altered sense of embodiment over the
own body in the case of autistic patients (Conson et al., 2015),
as their findings suggest that these patients rely less on one’s
own information to infer states over another person or external
object. On the other hand, schizophrenic patients perceive other-
generated actions as their own in a bimanual interference task,
thus presenting an increased sense of agency (Garbarini et al.,
2016). This could be due to an alteration in the comparison
between estimation and actual sensory feedback of the action.
Another case is the one of hemiplegic patients that can feel
ownership over another person performing an action, even when
the arm is in the position of the limb over which they have
no control (Garbarini et al., 2015). Moreover, some dementias
(e.g., frontotemporal dementia) can also affect patient’s sense of
ownership (measured by the rubber hand illusion) and sense of
agency (using a test for the attribution of an action) (Downey
et al., 2014). Interestingly, Alzheimer’s patients seem to have
a similar self-perception than their healthy counterparts, but
with defects in the attribution of self- vs. non-self memories
(Bond et al., 2016). Finally, anorexia nervosa causes profound
alterations in body image perception (Keizer et al., 2011, 2012)
and patients with Medically Unexplained Symptoms (MUS) also
show defects in body representation (Miles et al., 2011).

Nonetheless, variability in phenotypes related to embodiment
can also be seen in healthy subjects, which, for example, have
different levels of reported sense of ownership and agency
when embodying a virtual limb. Moreover, the response to
modulations to the embodied virtual limb is also different
depending on the participant (Brugada-Ramentol et al., in
preparation). In addition, tactile discrimination is variable in
non-psychotic subjects, an effect related to schizotypic differences

TABLE 1 | Summary of the neuropathological conditions affecting self-perception and embodiment.

Condition Phenotype Genes altered References

Schizophrenia Increased sense of agency in a bimanual

interference task

More than 100, not specifically associated

to embodiment

Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014;

Sekar et al., 2016

Autism Spectrum Disorders Decreased sense of ownership in rubber

hand illusion

More than 100, not specifically associated

to embodiment

Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014

Hemiplegia Increased sense of ownership over an

external arm

ATP1A3 Heinzen et al., 2012

Frontotemporal dementia Increased sense of ownership in rubber

hand illusion and tactile discrimination

C9ORF72, MAPT Downey et al., 2014

Alzheimer Deficit for recognizing self voice APP, PSEN1 Bond et al., 2016

Anorexia Nervosa Altered tactile estimation ESRRA, HDAC4 Cui et al., 2013

Medically Unexplained

Symptom (MUS)

Reduced sense of ownership in rubber

hand illusion

NA

among subjects (Lenzenweger, 2000). The existence of these
basal differences in addition to the embodiment alterations
observed in pathological conditions suggest the presence of
genetic and molecular risk factors associated to embodiment
defects. In addition, the heterogeneity of phenotypes observed
in the different disorders points to specific components of
embodiment that can be impaired, and to different molecular and
neural pathways that can affect to these components.

POSSIBLE EMBODIMENT-RELATED
MOLECULAR MECHANISMS

The variability across population observed in embodiment
can be due to two specific sources: the genetic differences
among individuals and the unique environmental or external
factors that modulate the physiology of each subject. We have
not found any reports on possible genetic factors altering
the sense of embodiment in healthy individuals, but there
are specific mutations in patients affected by frontotemporal
dementia that correspond to self-perception alterations. For
example, the presence of C9ORF72 or MAPT mutations
correlate to different embodiment defects (Downey et al.,
2014). In addition, we have previously mentioned that
schizophrenic patients have an increased sense of agency
(Garbarini et al., 2016) and several genetic factors have been
associated to this condition using genome-wide association
studies (GWAS) (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014; Sekar et al., 2016).
Interestingly, autism spectrum disorders, which also affect
embodiment, share some of these genetic mutations in
the following genes: APH1A, CNOTC, CSMDC, CUL3,
CYPC7AC, CYP26BC, EPHX2, LRPC, MAPK3, MEF2C, MPP6,
MYOC5A, NISCH, PBRMC, PRKDC, RIMS1, TSNAREC,
WDR55, and ZNF80HA (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014). Other mutations
from neuropathological conditions (see Table 1 for a summary)
can also be obtained, and, therefore, future studies could
assess the overlapping mutations among these conditions
that can be linked to specific alterations in embodiment, and
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their relationship to self-perception differences in healthy
subjects.

From a physiological point of view, the diverse origins of
embodiment variability could converge into similar outputs.
For example, a genetic change or a pharmacological treatment
might target to different molecules, but at a downstream level
they might merge into a common pathway. As embodiment is
a complex phenotype requiring several cognitive components,
it is evident that multiple pathways might be involved.
The use of neuronal imaging techniques like fMRI will be
needed to assess how molecular differences can correlate
with brain activation patterns, as some of these pathways
will converge at the neural level, as shown for the oxytocin
receptor epigenetic changes (Puglia et al., 2015). Nevertheless,
in this article we only focus on the molecular pathways for
two reasons: (i) the efficiency of state-of-the-art molecular
techniques to obtain a complete picture of the physiological
state of the subject at different biological levels, and (ii) the
simplicity of these methods for scientists in fields other than
molecular biology. In summary, our key point is that we can
study the differences in embodiment looking for intermediate,
molecular outputs instead of genetic and environmental
differences, much more complex and uncontrollable. This
studies could be complementary to the analyses of neural
circuitry.

TECHNIQUES FOR MOLECULAR
PROFILING OF EMBODIMENT

Embodiment is a complex phenotype in which several molecular
pathways and neural circuits probably contribute to a proper
self-representation. We thus expect the implication of several
molecules and circuits at the same time in self-representation
variability. This argues for the use of -omic techniques to obtain
system-level results using a single sample from an individual.
The combination of several of these -omic techniques will also
increase the reliability of the markers obtained, reducing the
amount of false positives (Ge et al., 2003).

We will describe three different classes of -omic techniques,
depending on their functional level within the body. First,
genomic techniques try to assemble the complete set of DNA of
an organism. As every cell in the body has the same genome,
individual samples can be obtained from simple procedures
like either saliva or blood extraction. Massive DNA sequencing
would be usually performed in an external facility, with a
minimal sample preparation, and with a cost decreasing due to
technical advances. Its main problem is the distance between
DNA sequence and its actual cellular function, like neuronal
activation. Therefore, the effect observed in cognitive phenotypes
is usually very low, and thousands of subjects need to be studied
in order to find significant associations with genetic factors (Sekar
et al., 2016).

As a second level of -omic techniques, we include epigenomics
and transcriptomics. These normally use sequencing as in
genomics, so the complete set of chromatin (epigenetic) and
expression (transcriptional) states of a sample, respectively, can

be obtained. We can describe both results as regulatory profiles
of an individual, because epigenomic and transcriptomic changes
correspond to variations in the physiology of the subject. This
is their main difference respect to genomics, resulting in a more
functional level that can reflect significant correlations even in
cognitive phenotypes. Their cost and simplicity is similar to
genomics, but they also have a clear disadvantage: epigenetic and
transcriptional changes are tissue-specific, so you need to either
access brain samples or analyze the indirect changes produced in
other tissues like blood or saliva. Nevertheless, efforts are made
in order to assess neuroepigenetic changes using brain imaging
(Yeh et al., 2013; Wey et al., 2016).

Finally, the third level of -omic techniques are proteomics and
metabolomics. The set of proteins and metabolites, respectively,
of a sample cannot be obtained by sequencing as in the former
cases. The cost is usually higher, the protocols needed to
prepare the samples are not as simple, and it is sometimes
difficult to find an external facility that can analyze the samples.
Nevertheless, proteomics and metabolomics have three strong
advantages. They are regulated like in the case of epigenomics
and transcriptomics, they are often secreted into fluids like
blood or saliva, so we can use a simple extraction, and, in
addition, proteins and metabolites are usually final outputs of the
organism, so they are very close to the real function that we want
to measure. In this case, some metabolomic approaches have
deciphered brain neurophysiology and connectomics (Piomelli
et al., 2007; Ivanisevic et al., 2014).

MOLECULAR-TO-EMBODIMENT
WORKFLOW

When studying the behavioral component of embodiment, there
is an increasing need to rely more on physiological and implicit
measures, and less on the use of explicit measures (e.g., self-
report statements). In this case, molecular assessment could be
used complementary to implicit behavioral measures of body
ownership and sense of agency (i.e., proprioceptive drift, threat
to virtual body or body-part, and intentional binding) and their
changes related to embodying over a fake body part. They can
also become complementary to the already existing imaging
studies.

Previous studies has shown that people feel ownership over a
virtual arm or body in experimental conditions that allow first-
person perspective (Slater et al., 2010), shape and texture of the
fake hand (Haans et al., 2008), congruent position of the hand
(Tsakiris and Haggard, 2005), among others. Moreover, recently
there has been an increasing use of virtual reality. For a potential
experiment to study embodiment usingmolecular techniques, we
would suggest taking advantage of virtual reality. This technique
allows to create environments with ecological characteristics that
resemble the real environment, while still being able to control
for experimental variables (Tarr and Warren, 2002; Parsons,
2015). We propose that tissue samples (saliva or blood) could
be extracted before exposure to the experiment of embodying
a virtual arm; this will allow to study possible correlations
with basal proteomic levels of each participant and the explicit
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self-report answers, implicit measures, and neuronal imaging
patterns. Moreover, samples should also be extracted after
exposure, allowing to compare changes in proteomic content
before and after exposure to the experiment. For this end, we
would suggest two experimental groups. The control group
would be exposed to a virtual reality environment, measuring
their basal capability to embody an external object as part of their
own representation, without any modulation to decrease this
embodiment. Moreover, a second group would be necessary, in
which the embodiment over the virtual arm would be diminished
using self-perception modulations. Finally, we would look for (i)
molecular markers for the basal differences in the embodiment
of the virtual arm in all participants; and (ii) molecular markers
for the embodiment differences between groups with and without
manipulation of self-perception, as a result of the manipulations
that were applied to the virtual arm with the intention to
reduce the embodiment over it. Furthermore, these embodiment
differences could be assessed by explicit measures like self-reports
or implicit techniques like brain activation pattern changes
(Ehrsson et al., 2005; Petkova et al., 2011). Indubitably, we are
aware that this kind of experiment would require a large number
of subjects to have a significant quantity of data for each of the
groups. Furthermore, we suggest that these studies could try to
manipulate the sensory input and feedback in neuropathological
conditions known to alter embodiment and to compare them to
healthy controls.

Moreover, self-perception in healthy subjects could be altered
in a way that resembles a specific neurological disorder. In this
context, the use of -omic techniques to study the molecular
profile of embodiment would benefit in understanding the effect
of manipulations on the bodily self-representation. Additionally,
it has been shown that the hormone oxytocin can modulate
judgment over self-owned vs. other-owned objects (Wu et al.,
2013). Therefore, we suggest to use the already proposed
experiment combined with its treatment to improve sense of
ownership and agency over the virtual arm. In this context,

considering the virtual arm could be felt as an external object that
is included into the self-representation. Therefore, the treatment

with hormones like oxytocin should improve embodiment over
these external objects. In addition, oxytocin treatments have been
shown to alter the activity of specific brain areas using fMRI
(Bethlehem et al., 2013). Finally, -omic techniques should help
to assess the specific molecular changes in ownership and agency
that are related to the neural changes after the administration of
the hormone.

CONCLUSION

In conclusion, the study of self-representation is a
growing field in both healthy and clinical populations,
due to the alterations that can be observed during
pathological or experimental conditions. To this day,
the use of imaging approaches is providing a greater
insight to the study of embodiment, adding relevant brain
activity information to behavioral assays. In addition to
these, we propose that molecular profiling of healthy
and clinical subjects could offer a new entry point to
study embodiment. The combination of state-of-the-art
techniques from different scientific fields, such as virtual
reality, neuroimaging and -omic methods, is a promising
approach to understand self-representation from a systems
perspective.
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