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Abstract—This letter aims to show the potential of using
polarimetric parameters to distinguish between large birds and
unmanned aerial vehicles (UAV) of comparable size in the
context of a modern long range air defence radar. Time is a
critical resource in such systems and techniques for robust non-
cooperative target recognition (NCTR) not relying on spatial
resolution or long dwell times are highly desired. Furthermore,
methods less dependent on target micro-motion are in many cases
required. Methods exploiting polarimetric features are shown to
have potential in both cases. An experiment in S-band shows that
a simple Nearest-neighbor classifier can achieve good separation
between UAVs and birds both with and without detectable micro-
motion based on a set of polarimetric parameters alone.

Index Terms—Radar, Radar target classification, Radar signa-
ture, Radar polarimetry, Radar measurements

I. INTRODUCTION

LOW price, high availability and low operational com-
plexity have the last years contributed to considerable

use of small UAVs or drones for a wide range of applications.
Practically controllable by anyone, these may cause problems
to both civilian and military authorities responsible for air
safety and national security. The demand for reliable detection
and classification of small airborne targets is rapidly emerging.

Long range air defence radars are key sensors for surveil-
lance of airborne platforms in vast volumes. However, low
altitude, velocity and radar cross section (RCS) are factors
complicating the detection of small targets compared to con-
ventional manned aircraft. Low frequency, limited bandwidth
and short dwell times traditionally found in such systems have
confined their ability in NCTR. Nevertheless, modern radars
of the class are sensitive sensors developed for detection of
physically small or potentially signature reduced targets at
considerable distances.

The demand for detection of low signature and slow moving
targets potentially introduce unwanted bird detections previ-
ously largely avoided by sensitivity time control (STC) and
wide clutter rejection filters. The similarity in RCS and motion
pattern between small UAVs and birds are key challenges
associated with separation between the classes. In [1] Moon
discussed the suitability for track based classification and con-
cluded that there is considerable overlap between bird tracks
and those of man-made targets. Although track and context
based information may give important input to classification,
the need for other discriminants seems unavoidable.

The problem of differentiation between birds and small
unmanned targets by radar is relatively new in the literature.
However, radar observations of birds have been reported in
the fields of ornithology [2], radar meteorology and aviation

security for decades. An overview of research up to 1985
is found in [3]. The proposed techniques can be divided
roughly into three categories depending on the target scattering
properties being exploited. These are target RCS modulation,
micro-Doppler and polarization techniques. RCS modulation
originating from repetitive wing beat pattern or rotor blade
flashes as well as micro-Doppler shifts from the same scat-
terers are believed to be robust features for class separation
as long as their RCS is large enough. Observations of these
two effects in bird data were first described in [4] and [5]
respectively. More recent reports on RCS modulations for
small target classification in X-band can be found in [6], [7],
and on micro-Doppler signatures in [8]–[11].

The major part of publications discussing utilization of po-
larimetric scattering effects for classification of small airborne
targets originates from the meteorological radar community.
Polarimetric features have been used to distinguish between
different kinds of precipitation, but also for separation between
precipitation, insects and birds [12]–[16]. In remote sensing
different target decomposition techniques are proposed for
classification of the surface in synthetic aperture radar (SAR)
images. A review of such techniques is found in [17].

This letter addresses the problem of differentiating between
birds and small UAVs in modern long range defence radar.
Time is a critical resource in these systems and focus has been
on finding time efficient methods. The main idea behind the
presented work is that polarimetric parameters contain useful
information about small targets, and that this is well preserved
when bandwidth, dwell time and carrier frequency are reduced.
This in contrast to classic NCTR methods relying on spatial
or velocity resolution.

In some cases traditional single polarization data are suffi-
cient for classification, even for small targets. This is discussed
in Section IV. However, more information can often be
extracted from polarimetric data. The same section presents
spectrograms of selected polarimetric variables from data of
a flapping bird and how these may contribute to identification
of the underlying scattering mechanisms. The letter is rounded
off with a review of an experiment investigating classification
in S-band based on polarimetric parameters alone. Special
attention is given to the challenging problem of separating
between soaring birds and small drones with plastic rotor
blades, which are classes characterized by insignificant micro-
Doppler spectrum and non-periodic RCS modulations.

II. SCATTERING FROM SMALL TARGETS

Target signatures are inherent in echo amplitudes and phases
dependent on the scatterer’s physical size, shape, dielectric
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TABLE I
POLARIMETRIC PARAMETERS USED FOR CLASSIFICATION

Parameter Relation to S Explanation
δ 2〈|Shv |2〉/〈|Shh|2〉 Linear depolarization

ratio
γ 〈|Svv |2〉/〈|Shh|2〉 Differential polariza-

tion ratio

ρ 〈ShhS
∗
vv〉/

√
(〈|Shh|2〉〈|Svv |2〉 Co-polarized correla-

tion coefficient

β 〈ShhS
∗
hv〉/

√
〈|Shh|2〉〈|Shv |2〉 Cross-polarized cor-

relation coefficient

ε 〈ShvS
∗
vv〉/

√
〈|Shv |2〉〈|Svv |2〉 Cross-polarized cor-

relation coefficient
H See [19] Entropy
A See [18] Anisotropy
ᾱ See [19] Polarimetric

eigenvector parameter
β̄ See [19] Orientation angle es-

timate

properties as well as the wavelength and orientation relative
to the illuminating electrical field. In the monostatic case we
assume Shv = Svh and the backscattered field is described by
the scattering matrix S. On a horizontal-vertical basis this can
according to [18] be expressed as:

S =

[
|Shh| ejφhh |Shv| ejφhv

|Svh| ejφvh |Svv| ejφvv

]
(1)

The goal is to investigate if observations of S can reveal
information useful for classification of small targets. Although
these are both physically and electrically small there may
exist several scattering mechanisms contributing to the total
scattered field, each with individual polarimetric signatures.

Several polarimetric parameters extractable from S are can-
didates as features for classification. The ones used in this
study are found in Table I. The first group of variables is the
so-called polarimetric intercorrelation parameters (δ− ε) [18].
These are formed from average values of elements of S over
a time interval τavg.

The last four parameters (H − β̄) are outputs from a
polarimetric target decomposition technique with the benefit
of being independent of polarimetric basis. Such methods are
commonly used in remote sensing for classification of the
ground surface in SAR images. Here the dominating scattering
effect is expressed as a sum of independent elements, which in
turn are associated with physical scattering mechanisms. For
the experiments discussed in this paper the H/A/ᾱ method
suggested by Cloude and Pottier [19] was selected. Due to
required speckle filtering of SAR images the physical scatter-
ing mechanism is not interpreted from the scattering matrix
directly, but on the basis of an averaged coherency matrix
〈T 〉. We apply this method normally used in imaging radar
on one dimensional radar data. Although not being equally
susceptible to speckle in the small target classification case,
the backscattered signal is by no means stationary and the
method is applied directly with the ensemble average replaced
with a time average over an interval τavg .

TABLE II
TARGET CLASSES

Class Description Target type
A UAV with carbon fiber rotor blades DJI Phantom II
B Bird with flapping wings Large sea birds
C UAV with plastic rotor blades 3D solo
D Gliding birds Large sea birds

III. MEASUREMENTS

Large wild sea birds and two types of small drones were
measured with the BirdRAD system in S-band. This is a
ground based experimental quadrature polarization radar de-
signed to investigate the scattering properties of small targets
in both L- and S-band simultaneously. The measurements
covered in this letter were collected at 3.25 GHz with a
pulse repetition frequency (PRF) of 10 kHz. The resolution in
range was 3 m and 8◦ in both azimuth- and elevation-angle.
Single targets were manually tracked in angle by use of a
video camera aligned with the antenna and isolated by signal
processing in range and velocity for further micro-Doppler and
polarimetric analysis.

The targets covered are found in Table II. The birds, mainly
sea eagles and black-backed gulls, were measured both soaring
and flapping. The observations were done from a wide range
of aspect angles and at distances between 0.3-1.5 km. The
UAVs, a DJI Phantom II [20] with carbon rotor blades and a
3D solo [21] with plastic blades were measured performing
race track maneuvers at a range of 0.3-0.4 km.

This experiment was limited in that only two small UAVs
and only large birds are included. Nevertheless, a wide
variation of aspect angles and target behavior was covered
in all classes. Other potential weaknesses which could lead
to optimistic results may be connected to the birds being
measured at many distances, whereas data of the UAVs were
collected at ranges from 0.3-0.4 km only. This is still not
believed to have influenced the results significantly in any way.

IV. RESULTS AND DISCUSSION

In some cases satisfactory classification of small targets
can be expected based on single polarization data alone.
In other circumstances polarimetric parameters can improve
classification, whereas for some targets such a description is
believed to be required in order to distinguish between target
classes. All three situations are discussed in the following
paragraphs.

A. Single polarization classification

As mentioned, dielectric properties of certain target parts are
important. Whereas plastic rotors tend to be virtually invisible
to radar, carbon fiber blades of the same size and shape have
significantly larger RCS [22]. Rotor blades and bird wings
tend to be electrically small in long range radar frequency
bands and are assumed to be well modeled as dipole scatterers.
According to [18] the monostatic scattering matrix for a dipole
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Fig. 1. Periodogram of backscattered power from DJI. τ = 1s

is dependent on its orientation θ relative to the illuminating
E-field about the radar line of sight as:

Sdipole =

[
cos2(θ) 1

2sin(2θ)
1
2sin(2θ) sin2(θ)

]
(2)

Based on these assumptions, Equation (2) suggests that HH-
polarization is the best choice of polarization when the blade
rotation is in the horizontal plane. The periodogram of echoes
from the DJI drone with carbon fiber rotor blades in Fig.
1 confirms this. Here the translational velocity of the drone
is compensated for and the target body response is centered
at 0 Hz. The harmonics present in the HH-channel and
significantly attenuated in the HV-channel are results of many
periodic blade flash events during the processing interval of
one second. In contrast the VV-channel has no clear trace
of such flashes. This example gives a first glimpse of how
important polarization can be for classification.

Rotating carbon fiber blades and propellers are examples
of target parts constituting distinct signatures both in time
and frequency domain. In terms of RCS modulation effects,
cepstrum analysis is an effective tool in detecting the presence
of returns from such by utilizing harmonics in the data.
Although less efficient, the same method can be used to
estimate the wing beat frequency of flapping bird wings. In
this case variation with aspect angle tends to be larger, the
periodicity somewhat less and the required observation time
must be increased radically due to the long wing beat period.

Micro-Doppler signatures of targets in class A and B contain
information in the form of phase modulations from rotating
target parts. In order to utilize this for classification such
scatterers have to have sufficiently large RCS and relative
velocity in order to be resolved from the often much larger
target body. For a given target behavior and carrier frequency
this resolvability can be influenced by selection of the length
of the coherent processing interval τ and the shape of the
window function selected for spectral estimation.

As long as the rotating parts of targets in class A and
B can be resolved in velocity, micro-Doppler signatures are
generally prominent, recognizable and distinguishable between

Fig. 2. Linear depolarization ratio δ of flapping black-backed gull in S-band.
τ = 120 ms

Fig. 3. β̄ used as estimate for bird body and wing orientation around the
radar line of sight. Flapping black-backed gull in S-band. τ = 120 ms

the classes. However, there is reason to believe that additional
information can be extracted from polarimetric data that can
contribute to classification at a more detailed level.

B. Polarimetric signatures of rotating scatterers

Extraction of polarimetric parameters can either be done in
time domain or in time-frequency domain. The latter give the
advantage of potentially resolving scatterers rotating around
reflectors constituting the target body, and thereby isolate their
polarimetric signature. This is beneficial when the RCSs of
the rotating parts are small compared to that of the main body
and their contribution to the time-domain signature are easily
drowned.

In the small airborne target classification problem, polari-
metric data may provide information both on the scattering
mechanisms as well as the orientation of resolved parts. All
variables in Table I were analyzed in the time-frequency
domain the same way as shown for the linear depolarization
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ratio δ in Fig. 2 and an orientation angle estimate β̄ in Fig.
3. The translational velocity of the bird is in both figures
compensated for, and the rotational movement of the bird
wings can be seen in intervals where these are resolvable from
bird body. High values of δ in the first figure indicate areas
where cross-polarization ratio is high and is seen to form a
pattern with the wing beat frequency of 3-4 Hz observed in
video. In the latter figure, the value β̄ from the H/A/ᾱ method
indicates the preferred orientation of the scatterer around the
radar line of sight. Interesting signatures are found for many
of the other polarimetric variables as well and together these
are believed to provide valuable information allowing for
more detailed classification as well as target behavior analysis.
However, in the remainder of this paper we focus on the more
challenging classification problems involving short dwell times
and targets with no detectable rotating parts.

C. Classification based on polarimetric data alone

Gliding birds and UAVs with plastic rotors are classes
characterized by insignificant micro-Doppler shifts and lack
of interpretable periodic RCS modulations, even for long
τ . Separation between such classes with similar RCS and
movement pattern is for these reasons difficult by traditional
NCTR techniques utilizing one single polarization alone.

The polarimetric parameters in Table I extracted from time-
domain data were fed to a simple Nearest-neighbor classifier
in two different tests. The first one with data from classes C
and D only, for evaluation of the separability of classes with no
detectable micro-motion. The second test included targets from
all four classes, however, the classifier was trained to separate
between birds and man-made targets only. A five fold cross
validation was applied in the process of estimating the accu-
racy of the classifier in both cases. This means that the data
were randomly divided into five equally large portions, and one
subset at a time was incrementally used to validate the model
trained by the remaining four data subsets. Different values
of τavg were tested and a sequential feature selection method
was used to evaluate the contribution of each parameter to
the overall classification. The evaluation was not done for all
2N combinations of the N features. Instead, the performance
was estimated by sequentially adding the best feature until the
improvement of misclassification rate was insignificant. This
means that for each round of evaluation the feature providing
the best improvement was identified and excluded from the
next round of evaluation. The fitness measure used for ranking
the parameters was the misclassification rate here defined as
the portion of all measurements wrongly classified.

Figure 4 shows the result of this ranking of parameters
when the classifier was trained to separate between class C
and D only. The evaluation of parameters were done for
τavg ranging from 2 to 150 ms. The parameters are seen to
contribute differently for different averaging times. For small
values the anisotropy A is good feature for separation between
the classes and a misclassification rate of 5.4% is reached
by classification on this parameter alone. For larger values of
τavg, A is a much poorer discriminant. However, now other
parameters contribute more. For τavg =20 and 150 ms, ᾱ is

Fig. 4. Results of automatic feature selection for separation of soaring birds
and 3D solo drone with undetectable plastic rotor blades

the best discriminant. This parameter holds information on odd
or even bounce scattering effects. This can be interpreted as
the classes are dominated by different scattering mechanisms.
Interestingly, there is a range of values of τavg where A has
lost much its discriminating power and four more features are
need to reach comparable misclassification level, see red line
with τavg = 20 ms. However, for τavg = 150 ms the other
parameters contribute more and the correct classification level
reaches 100% by use of 6 parameters. It is worth emphasizing
that the τavg was chosen to both define the averaging time
for both H, A, ᾱ, β̄ and the intercorrelation parameters.
Individually customization of τavg may improve classification.

Inspired by these first encouraging results, classes A and
B were included in a similar test. However, the classifier was
now to distinguish between UAV and bird only. It is worth
emphasizing that better separation between the two classes
can be expected by inclusion of non-polarimetric variables,
at least for long τavg . However, the research question of this
test was to investigate how the set of polarimetric parameters
performed when dwell time was limited. The results presented
in Fig. 5 are rather similar to those found in the two class
problem. The classification score is acceptable even for short
values of τavg .

The confusion matrix in Table III shows the classification
score in number of observations and percentage per true class
for the classifier trained for separation of classes A-D and for
τavg = 150 ms. Values close to 100% on the diagonal indicate
that the selected polarimetric time domain parameters contain
information useful for separation between all four classes.

V. CONCLUSION

This letter has shown that polarimetric data may contribute
to separation between small unmanned aerial targets and birds
in the context of modern long range air defence radar. The
fundamental assumption, that polarimetric information is well
preserved as carrier frequency, bandwidth and dwell time is
reduced, is supported by experimental results. This may lead
to new NCTR techniques capable of distinguishing between
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Fig. 5. Automatically selected features for separation between birds and
UAVs among four targets: gliding bird, flapping bird, 3D solo with plastic
rotor blades and DJI Phantom II with carbon fiber rotor blades

TABLE III
CONFUSION MATRIX FOR FOUR CLASS PROBLEM. τavg = 150ms

Predicted class
Class A B C D

Tr
ue

cl
as

s A 335 / 100% 0 / 0% 0 / 0% 0 / 0%
B 6 / 0.1% 5078 / 98.8% 4 / 0.1% 51 / 1.0%
C 0 / 0% 3 / 0.8% 383 / 99.2% 0 / 0.0%
D 1 / 0.0% 23 / 1.1% 0 / 0% 2147 / 98.9%

small man-made targets and birds without relying on spatial
resolution or long dwell times for velocity resolution. Even
in cases where targets are not associated with any detectable
micro-motion, separation between the classes is shown to be
possible with promising classification levels.

Analysis of a set of polarimetric parameters was done in
the time-frequency domain, such that scatterers with different
micro-motion were resolved in time and velocity. This enables
the possibility of investigating the polarimetric signature and
orientation of scatterers often dominated by others in the time
domain. Many of these give valuable information that may
be used for more detailed target classification and motion
analysis. Despite these scatterers are often drowned by target
body reflections, classification results in time domain are
promising. The physical mechanisms forming the foundation
for classification are not investigated in detail, however, there
is reason to believe that dominating scattering mechanisms
of birds and UAVs are somewhat different. The fact that the
observed targets and its parts are found in the resonance and
Rayleigh scattering regions, leads to the idea of a polarimetric
signature dominated by the overall target shape. In this con-
text the signature of a roughly ellipsoidal shaped bird with
dipole like wings is believed to differ from the more random
scattering mechanisms originating mainly from the inside
of UAVs. The ranking of polarimetric parameters presented
can shed light on which physical mechanisms contribute to
classification. Indications of systematically different values
of ᾱ and the co-polarized phase difference φvv − φhh is

found, which is believed to be caused by less multi bounce
scattering and more creeping wave effects observed in bird
data respectively.

The presented experiment has provided a first proof-of-
concept and forms a valuable basis for further work. Future
research will include more targets in all classes, investigation
of more polarimetric parameters as well as increased focus on
understanding the physical scattering mechanisms separating
the classes.

REFERENCES

[1] J. R. Moon, “Effects of birds on radar tracking systems,” in RADAR
2002, Edinburgh, 2002, pp. 300–304.

[2] E. Eastwood, Radar Ornithology. Methuen & Co, Ltd., 1967.
[3] C. R. Vaughn, “Birds and insects as radar targets: A review,” Proceedings

of the IEEE, vol. 73, no. 2, pp. 205–227, Feb 1985.
[4] A. H. LaGrone, A. P. Deam, and G. B. Walker, “Angels, insects and

weather,” Journal of research, Radio science, vol. 68D, pp. 865–901,
1964.

[5] L. C. Ireland and T. C. Williams, “Radar observations of bird migration
over Bermuda,” in A conference on the biological aspects of the
bird/aircraft collision problem, S. G. Jr., Ed., Clemson, South Carolina,
May 1974, pp. 383–408.

[6] B. Torvik, A. Knapskog, O. Lie-Svendsen, K. E. Olsen, and H. D.
Griffiths, “Amplitude modulation on echoes from large birds,” in Pro-
ceedings of the 11th European Radar Conference (EuRAD), 2014, Rome,
Italy, Oct 2014, pp. 177–180.

[7] R. I. A. Harmanny, J. J. M. de Wit, and G. P. Cabic, “Radar micro-
doppler feature extraction using the spectrogram and the cepstrogram,”
in Proceedings of the 11th European Radar Conference (EuRAD), Rome,
2014, pp. 165–168.

[8] C. M. Alabaster, E. J. Hughes, and D. W. Forman, “Is it a bird or is
it a plane?” in Proc. IEEE 6th International Conference on Waveform
Diversity and Design, Lihue, HI, 2012.

[9] B. Torvik, K. E. Olsen, and H. D. Griffiths, “K-band radar signature
analysis of a flying mallard duck,” in Proc. 14 th International Radar
Symposium (IRS), 2013, vol. 2, Dresden, Germany, 2013, pp. 584–591.

[10] ——, “X-band measurements of radar signatures of large sea birds,” in
International Radar Conference, 2014, Lille, France, Oct 2014, pp. 1–6.

[11] J. J. M. de Wit, R. I. A. Harmanny, and G. Prmel-Cabic, “Micro-doppler
analysis of small UAVs,” in 9th European Radar Conference (EuRAD),
2012, Rome, Italy, 2012, pp. 210–213.

[12] J. W. Wilson, T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and
R. W. Russell, “Boundary layer clear-air radar echoes: Origin of echoes
and accuracy of derived winds,” Journal of Atmospheric and Oceanic
Technology, vol. 11, no. 5, pp. 1184–1206, 1994.

[13] D. S. Zrnic and A. V. Ryzhkov, “Polarimetry for weather surveillance
radars,” Bulletin of the American Meteorological Society, vol. 80, no. 3,
pp. 389–406, 1999.

[14] V. M. Melnikov, R. R. Lee, and N. J. Langlieb, “Resonance effects
within s-band in echoes from birds,” Geoscience and Remote Sensing
Letters, IEEE, vol. 9, no. 3, pp. 413–416, 2012.

[15] P. Zhang, A. V. Ryzhkov, and D. S. Zrnic, “Detection of
birds and insects using polarimetric radar observation,” in
Preprints, 11th Conference on Aviation, Range, and Aerospace
Meteorology, vol. 5, Hyannis, MA, 2004. [Online]. Available:
https://ams.confex.com/ams/11aram22sls/techprogram/paper 81616.htm

[16] D. S. Zrnic and A. V. Ryzhkov, “Observations of insects and birds with
a polarimetric radar,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 36, no. 2, pp. 661–668, 1998.

[17] S. R. Cloude and E. Pottier, “A review of target decomposition theorems
in radar polarimetry,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 34, no. 2, pp. 498–518, Mar 1996.

[18] J. S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to
Applications. CRC Press, 2009.

[19] S. R. Cloude and E. Pottier, “An entropy based classification scheme for
land applications of polarimetric sar,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 35, no. 1, pp. 68–78, Jan 1997.

[20] “http://www.dji.com/.”
[21] “https://store.3dr.com/.”
[22] M. Ritchie, F. Fioranelli, H. D. Griffiths, and B. Torvik, “Micro-drone

RCS analysis,” in IEEE Radar Conference, Johannesburgh, South Africa,
2015, pp. 452–456.


