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We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon

scattering using a 3.35×104 kg-day exposure of the Large Underground Xenon (LUX) experiment. A
dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Un-
derground Research Facility under Lead, South Dakota (USA). With roughly four-fold improvement
in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence
of WIMP nuclear recoils. At a WIMP mass of 50 GeV c−2, WIMP-nucleon spin-independent cross
sections above 2.2×10−46 cm2 are excluded at the 90% confidence level. When combined with the
previously reported LUX exposure, this exclusion strengthens to 1.1×10−46 cm2 at 50 GeV c−2.
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The simulated 3-D electric-field maps in WS2014–16 are constructed by comparing the spatial distribution, in
observed coordinates, of a physically uniform calibration source (83mKr) to that predicted by the field model. The
observed coordinates measure the electron drift time and the x-y position of electrons as they leave the liquid surface.
Figure 1 shows one method of comparing model to data (see caption).
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FIG. 1. A comparison of the measured position of the detector wall and cathode to that predicted by the best-fit electrostatic
field model. As the electrons are drifted upwards, they are pushed radially inwards; they therefore exit the liquid surface (where
they are detected and their x-y position is measured) at a radius that is less than the radius at which they originated. As a
result, the measured shape of the detector wall, which is physically vertical, is warped in observed coordinates. Similarly, though
the cathode is physically horizontal, the field-dependent drift velocity of electrons in liquid xenon causes its shape to appear
as an inverted ‘U’ in measured coordinates. In each of the four axes, the blue contour is the measured shape of the detector
wall from calibration data, while the green contour indicates the prediction of the wall shape from the best-fit field model. The
width of each contour indicates the uncertainty in the wall position resulting from the histogram bin sizes used to construct the
contours. Note that the radius of the wall in observed coordinates (“rS2”) is not axially symmetric, and therefore the contours
here represent an average over azimuthal angle (this is not the fit space; the fits are instead performed in 3-D). The background
model for events from radon plate-out on the walls is constructed directly in measured coordinates entirely from side bands,
and does not use these field maps. Horizontal gray-dashed lines, at 40 and 300µs, indicate the drift-time extent of the fiducial
volume used in WS2014–16.
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