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ABSTRACT 

Tubular aggregates and cylindrical spirals are two distinct ultrastructural abnormalities, observed on 

muscle biopsy, with similar histochemical staining characteristics on light microscopy. Both are found 

in a wide range of disorders. Recently a number of genetic mutations have been reported in conditions 

with tubular aggregates in skeletal muscle. It is widely accepted that TA arise from the sarcoplasmic 

reticulum, but the origin of cylindrical spirals has been less clearly defined. We describe the 

histopathological features of myopathies with tubular aggregates, including a detailed 

immunohistochemical analysis of congenital myasthenic syndromes with tubular aggregates due to 

mutations in GFPT1 and DPAGT1 and myopathies with cylindrical spirals. Our findings support the 

notion that cylindrical spirals, like tubular aggregates, derive primarily from the sarcoplasmic 



3 

 

reticulum, however, immunohistochemistry indicates that different molecular components of the 

sarcoplasmic reticulum may be involved and can be used to distinguish between these different 

inclusions. The immunohistochemical differences may also help to guide genetic testing. 

   

INTRODUCTION 

Tubular aggregates (TA) and cylindrical spirals (CS) are histopathological findings on muscle biopsy. 

(1–3) They are of unknown aetiology and have been observed in patients with varied clinical 

disorders. Despite marked ultrastructural differences between TA and CS, they are indistinguishable 

with routine histochemical stains. It is widely accepted that TA arise from the sarcoplasmic reticulum 

(SR) but there have been few detailed studies of CS and their sub-cellular origin is unknown.  

 

On ultrastructural examination, TA consist of tightly packed parallel arrays of single or double walled 

cylinders in the sarcoplasm. These typically stain bright red with modified Gömöri trichrome, strongly 

positive with nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) and myoadenylate 

deaminase (MAD) and are negative with succinate dehydrogenase (SDH) and cytochrome c oxidase 

(COX). Evidence supporting the SR origin of TA comes from immunohistochemical (IHC) studies of 

genetically unclassified cases. (3–5) Nuclear, mitochondrial and sarcolemmal proteins have been 

described in TA, (6–8) suggesting that other organelles may play a role in their formation. 

 

Although TA have been observed in inflammatory, metabolic and toxic myopathies, their presence 

defines a clinically heterogeneous group of disorders termed ‘tubular aggregate myopathies’ (TAM) 

which includes clinical phenotypes of exertional myalgia, limb girdle myopathy, periodic paralysis 

and congenital myasthenic syndromes (CMS). Recently, mutations in a number of genes have been 

described in some TAM. These include autosomal recessive (AR) mutations in GFPT1 and DPAGT1 

which encode enzymes in the protein glycosylation pathway and cause CMS (9,10) and mutations in 

genes encoding proteins involved in calcium homeostasis, STIM1 and ORAI1 in TAM with miosis. 
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(11,12) Although the staining characteristics of TA are relatively uniform, differences have been 

reported. This variation could be accounted for by different genetic mutations.  

 

Triggers resulting in the formation of TA are unknown. Their presence in a variety of clinical 

conditions may indicate that they are a non-specific response to metabolic derangements or toxic 

insults. It is suggested that they, like the SR, act as a calcium sink and are formed as a mitigating 

response to intracellular hypercalcaemia. (4) Others have proposed that they are a unique form of 

protein aggregation. (13)  

 

Cylindrical spirals (CS) are a rare finding on muscle biopsy. Ultrastructurally, they appear as groups 

of electron dense whorled cylinders in cross section. They have been reported in a number of 

unrelated conditions but are most frequently described in adults with myalgia and cramps.  Despite 

their distinctive ultrastructural appearances, CS have similar staining characteristics to TA, appearing 

bright red with the modified Gömöri trichrome stain and negative with SDH. Like TA, the staining 

characteristics of CS are not invariable and they have been described as staining weakly, or brown 

rather than blue in colour with NADH-TR. (14) TA and CS have been observed within the same 

muscle biopsy, (14,15) and in direct continuity at the ultrastructural level, (16–18) suggesting that 

they may have a common origin. However, detailed studies to validate these observations are lacking 

and the organelles from which CS are derived are undetermined. A recently published study of two 

Chinese siblings with myopathy and CS on muscle biopsy reported that CS may derive exclusively 

from the longitudinal SR (LSR). (19) 

 

We report a comprehensive study of the histochemical, IHC and ultrastructural features of these 

structural inclusions in myopathies with TA, including recently described CMS cases with mutations 

in GFPT1 and DPAGT1, non-CMS TAM cases, and myopathies with CS. 

 

MATERIALS AND METHODS 
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From the Neuropathology archives at the University College London Institute of Neurology, ten cases 

with TA or CS were identified: non-CMS TAM (n=4), CMS with TA (CMS with mutations in 

DPAGT1 n=2 and GFPT1 n=2) and CS (n=2). Demographic and clinical details are presented in table 

1. All patients were evaluated and followed up by specialist neuromuscular services. The presence of 

TA and CS was confirmed by electron microscopy (EM). Serial frozen muscle sections were stained 

with haematoxylin and eosin (H&E), modified Gömöri trichrome, NADH-TR, SDH, COX, combined 

COX/SDH, Periodic acid Schiff (PAS), PAS with diastase, Sudan black and MAD. IHC was 

performed for T-tubule (TT) and SR proteins: dihydropyridine receptor (DHPR), ryanodine receptor 

(RyR1), sarco/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) and 2 (SERCA2), and the 

endoplasmic reticulum membrane trafficking protein SAR1; nuclear membrane protein: lamin A/C; 

mitochondrial membrane protein: COX IV; and Golgi complex membrane protein: GM130. 

Additional IHC was performed for p62, myotilin, desmin, fast and slow myosins, caveolin-3 and 

dysferlin. Primary antibody binding was visualised using the Dako REAL EnVision Detection System 

which contains horse-radish peroxidase labelled goat anti-rabbit/mouse secondary and 3,3′-

diaminobenzidine. Details of commercial antibodies and conditions are provided in supplementary 

table 1. IHC for each antibody was performed simultaneously on all cases with positive and negative 

controls, therefore, the absence and presence of staining reported reflects the true pattern. Biopsies 

were assessed by three independent observers (SB, EGH, JLH) blinded to the clinical details and 

diagnosis in each case. To identify mutations known to cause TA and new mutations, whole exome 

sequencing was performed on all non-CMS TAM and myopathies with CS. This did not reveal 

mutations in genes associated with periodic paralyses or DPAGT1, GFPT1, ORAI1, STIM1 and 

PGAM2, and no additional candidate mutations were identified.  

 

The study was registered with UCL/UCLH/RF Joint Research Office and granted local R&D approval 

(ref. no. 11/0194). 

 

RESULTS 

https://en.wikipedia.org/wiki/Sarcoplasmic_reticulum


6 

 

The histopathological, IHC and EM findings are summarised in tables 2 and 3 and figures 1 and 2.  

 

DPAGT1 and GFPT1 CMS with TA 

Four CMS cases with DPAGT1 (n=2) and GFPT1 (n=2) mutations were analysed. At least two 

muscle biopsies were performed in all four cases. The mean time between biopsies was 11.2 years 

(range 5-16 years). Histopathological findings appeared to be more pronounced in later biopsies. 

Vacuolated and necrotic fibres were increased in later biopsies in cases 2 and 3, while PAS staining 

was prominent in more recent biopsies in cases 2, 3 and 4. In cases 2 and 4 TA were universally small 

in the initial biopsies whereas in later biopsies small, medium and large TA were observed. However, 

the percentage of muscle fibres containing TA was no greater.  

 

Myopathic changes, including variation in fibre size, increased numbers of internal nuclei, fibre 

atrophy and split fibres were present in all biopsies. Infrequent fibre necrosis and regeneration was 

observed in three of the four cases. There was an excess of COX negative fibres and ragged red fibres 

in case 2. Cytoplasmic bodies and eosinophilic nuclear inclusions were seen in cases 1 and 2 

respectively. PAS staining revealed increased glycogen staining in all four cases with diastase 

resistant areas. Rimmed vacuoles were observed in all cases with H&E, modified Gömöri trichrome 

and PAS stains and contained diastase resistant material. Rimmed vacuoles were not present in the 

initial biopsy in two of the four cases. Modified Gömöri trichrome staining revealed large red 

subsarcolemmal aggregates in all four cases. These areas stained dark blue with NADH-TR but were 

unstained with SDH and COX. MAD staining was not available for cases 1, 3 and 4, but aggregates in 

case 2 were unstained. Aggregates in the GFPT1 CMS cases 3 and 4 stained with PAS, and in the 

DPAGT1 cases 1 and 2, aggregates were PAS negative.  Aggregates were present in type I and II 

fibres in each of the four cases. On IHC staining, the aggregates were immunoreactive with antibodies 

to RyR1, DHPR, SERCA1 and SERCA2 in all cases. Dysferlin staining was positive in aggregates in 

each case except case 3. Ultrastructural analysis revealed typical TA in longitudinal and transverse 

sections, containing flocculent material and located in the vicinity of glycogen granules, neutral lipid 
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droplets and dilated mitochondria. In cases 2 and 3 only doubled walled TA (DWTA) were observed, 

in case 4 only single walled TA (SWTA) and both SWTA and DWTA were present in case 1. 

Accumulation of whorled membranous debris was seen in cases 2 and 3. 

 

Non-CMS TAM 

Five biopsies from four cases of non-CMS TAM were evaluated. Fibre size variation was observed in 

each case. Fibre atrophy and increased numbers of internal nuclei were seen in cases 7 and 8 

respectively. Large and medium sized subsarcolemmal and centrally located aggregates were 

observed with H&E and modified Gömöri trichrome and stained strongly with NADH-TR and MAD 

but not with SDH and COX. In case 8 aggregates were stained with PAS. In all cases the aggregates 

were mainly present in type II fibres. Aggregates were immunoreactive with antibodies to RyR1, 

DHPR, SAR1 and SERCA1 in all four cases. Dysferlin staining was positive in aggregates in cases 5, 

7 and 8 and positive dysferlin staining was limited to the periphery of the aggregates in case 6. 

Ultrastructural analysis revealed DWTA in cases 5, 6 and 7 and a mixture of DWTA, SWTA and 

vesicular membrane collections in case 8. TA were accompanied by small groups of large neutral 

lipid droplet and, increased sarcoplasmic glycogen and thickening of the capillary basal lamina was 

observed. 

 

Myopathies with CS 

Biopsies revealed mild variation in fibre size in each of the two cases. Increased numbers of internal 

nuclei, fibre atrophy and two abnormal fibres, one containing rimmed vacuoles and a single ring fibre, 

were noted in case 9. There was a mild excess of COX negative fibres in case 10. Large basophilic 

subsarcolemmal aggregates were observed on H&E staining in both cases. These areas stained red 

with modified Gömöri trichrome and were positive with MAD staining but were unstained with SDH 

and COX. In case 9 aggregates were stained with PAS, but were unstained in case 10. On NADH-TR 

stained sections, aggregates appeared light blue in case 9 and dark blue in case 10. The morphology 

and distribution of aggregates differed between the two cases. In case 9 they were circular and 
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appeared in type II fibres and in case 10 they were linear and present in type I and II fibres. 

Aggregates were immunoreactive with antibodies to SERCA1 and SAR1. Ultrastructurally, 

subsarcolemmal clusters of CS were associated and interspersed with accumulated glycogen. 

 

TA and CS in every case did not stain with antibodies for lamin A/C, COX IV, GM130, p62, 

myotilin, desmin, fast and slow myosins and Caveolin-3. 

 

DISCUSSION 

We describe the histopathological findings of inclusions in non-CMS TAM, CMS with TA associated 

with mutations in DPAGT1 and GFPT1 and myopathies with CS. Our results confirm that TA have 

characteristics suggesting they arise from the SR as reported in previous studies. We also describe the 

IHC characteristics of genetically confirmed cases of CMS with TA. TA and CS could not be clearly 

differentiated on routine tinctoral stains and enzyme histochemistry, and TA in non-CMS TAM and 

CMS cases could not be distinguished at the ultrastructural level. Our IHC findings support the 

hypothesis that CS, like TA, originate from the SR. IHC results were characteristic for each of the 

three groups we studied. The differences observed may permit the use of a panel of IHC to distinguish 

these three categories of inclusion without the need for ultrastructural examination. 

 

We found that routine stains and histochemistry did not distinguish between TA in TAM and CS but 

there were differences between the TA observed in CMS cases and TAM. In the CMS cases, TA were 

unstained with H&E. In contrast, TA were strongly basophilic with H&E staining in non-CMS TAM 

cases. A similar finding has been reported in other cases with TA on muscle biopsy. (20) This 

observation has not been reported in previously published descriptions of patients with either GFPT1 

or DPAGT1 CMS. (9,10,21–23) Only one of these publications, describing a single case, indicates 

that TA stained with H&E. (21) However, these reports do not focus on the histopathological 

findings. Consequently, at this time, it is difficult to know whether this absence of H&E staining is a 

consistent finding, and therefore of diagnostic use.  GFPT1 and DPAGT1 encode enzymes involved in 
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cellular glycosylation. The resulting deficient or defective protein glycosylation caused could account 

for the altered uptake of oxidised haematein by TA in CMS cases and explain the absent or reduced 

basophilic staining observed. Reports of variations in the tinctorial staining characteristics of TA by 

ourselves and others, may result from the combined analysis of cases with different clinical features, 

based solely on the unifying feature of TA on muscle biopsy. The presence of rimmed vacuoles and 

TA is suggestive of CMS with TA. However, in our four CMS cases, rimmed vacuoles were not 

always present in the initial biopsy, limiting the diagnostic utility of this observation.  

 

The main role of the SR is regulation of muscle contraction through calcium uptake, storage and 

release. It accomplishes this through interaction with sarcolemmal T-tubules (TT). The TT interface 

with enlargements of the SR network called terminal cisternae (TC). A TT and two associated TC are 

defined as a triad. The membrane of the TC facing the TT is known as the junctional SR (JSR) and is 

dedicated to calcium release. The TC are continuous with the LSR which is specialised for calcium 

uptake. (24,25) The locations of different proteins in the T-tubule and SR are summarised in table 4. 

In each of the three groups we studied there was IHC expression of SR proteins, confirming the 

composition of TA and CS. In addition, the combination of proteins present was characteristic for 

each group. TA in CMS cases were immunoreactive for TT, TC/JSR and LSR proteins: DHPR, RyR1 

and SERCA1 and SERCA2 respectively. TA in non-CMS TAM were immunoreactive for T-tubule, 

TC/JSR, LSR and ER exit sites proteins: DHPR, RYR1, SERCA1 and SAR1 respectively. CS were 

immunoreactive for LSR and ER exit sites proteins SERCA1 and SAR1, but not for proteins present 

in the triad, namely DHPR and RyR1. The plasma membrane protein dysferlin showed negative 

staining of CS, but was positive in TA in three out of four CMS TAM cases and all of the TAM cases. 

In the latter group, one case showed peripheral staining of the aggregates only.  It has been 

demonstrated that dysferlin associates with TT. (26–28) TA in our study have shown consistent 

positive staining for the TT protein DHPR, with associated variable dysferlin staining, which may 

indicate partial incorporation of sarcolemmal components into their structure. No cases showed 

positive staining for the dysferlin binding partner Caveolin-3. Distinct from TA, CS were exclusively 
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positive for other SR components related to calcium uptake and ER exit sites (SERCA1 and SAR1) 

and negative for triad and sarcolemmal proteins. This may indicate that CS incorporate different 

proteins from distinct subcellular locations of the SR. Finally, a pattern of peripheral IHC staining in 

TA was reported previously by Bohm et al. with antibodies to RyR1 and STIM1 in TAM with 

mutations in the ER calcium sensing protein STIM1. (11) In our cases, aggregates stained 

homogenously with RyR1 IHC and no mutations in STIM1 were identified. Overall, our findings are 

largely in agreement with other IHC studies of TAM, however, it is difficult to directly compare 

studies of TAM as the diagnoses are often unknown. (3,5) The consistent and individual pattern of TA 

and CS staining found in each group of cases we analysed strongly suggests that aetiology influences 

the pathological findings. In addition, we believe that the IHC differences observed implies that these 

structures arise from different parts of the SR. Alternatively, it is possible that differences may be due 

to alterations in the protein composition of SR through protein misfolding or excess protein 

production.  

 

TA were initially proposed to be of mitochondrial origin. (29) The close relationship between the SR 

and other organelles, and studies in humans and animals has led to the suggestion that other 

intracellular structures such as the nucleus and Golgi complex play a role in TA formation. (6,7)  

Other proteins found in TA include the sarcolemmal protein dysferlin and heat-shock proteins. (8) We 

found no evidence of nuclear, mitochondrial or Golgi complex proteins to support the involvement of 

these organelles in the formation of TA or CS. This is in agreement with Cheveisser et al. who found 

no evidence of mitochondrial involvement in TA and the presence of the nuclear protein emerin 

staining in only one of six cases they examined. (5) They suggested that its presence may have 

occurred accidentally as TA are formed from the ER or through pathological mislocalisation. 

Recently a pathogenic mutation in SERAC1, a mitochondrial gene involved with lipid remodelling at 

mitochondrial associated ER membranes, has been reported in an encephalopathic patient with TA on 

muscle biopsy. (30) The authors hypothesised that TA were caused by abnormal aggregation of ER 

constituents as a result of inefficient lipid remodelling. 
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Our findings support those of previous studies, confirming that TA arise from the SR and substantiate 

the hypothesis that CS originate from the SR. We did not find evidence to support the involvement of 

other organelles in the formation of TA or CS. Routine stains and histochemistry did not differentiate 

between CS and TA, however, the presence of TA in a muscle biopsy which are not apparent on H&E 

stained sections may, like rimmed vacuoles, be indicative of CMS. IHC results for TT, SR and ER 

exit site proteins were consistent and unique in each group of cases we studied. If this is confirmed in 

further studies, IHC could be used to distinguish between these three categories and may have a role 

to guiding genetic testing. The main limitation of our study is the small number of cases analysed, 

however, the rarity of TA and CS means that this is a major obstacle faced by all researchers in this 

area.  A recent report of immunohistochemical studies in two siblings with CS, compared with two 

TAM cases, is in agreement with our findings, showing similar staining signatures for these different 

aggregates. (19) We conclude that these findings may indicate distinct mechanisms of formation for 

TA and CS, resulting in the incorporation of different elements of the SR.  
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Figure 1. Serial biopsy sections (A,B) showing subsarcolemmal tubular aggregates (TA) in tubular 

aggregate myopathy (case 8). TA staining is basophilic with H&E (arrow in A) and red with modified 
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Gömöri trichrome (arrow in B) and TA are confirmed with electron microscopy (C). Serial sections 

(D,E) from case 9 showing subsarcolemmal and internal cylindrical spirals have similar staining 

characteristics to TA with H&E (arrow in D) and modified Gömöri trichrome  (arrow in E) and are 

confirmed by electron microscopy (F). Serial sections from GFPT1 congenital myasthenic syndrome 

with TA (case 3) reveal that TA do not show basophilic staining with H&E (arrow in G). Their 

presence is observed with red modified Gömöri trichrome staining (arrow in H) and confirmed by 

electron microscopy (I). 

Scale bar represents 100 µm in (A), (B), (D), (E), (G), and (H) and 500nm in (C), (F) and (I). 

 

Figure 2. Subsarcolemmal tubular aggregates (TA) are unstained with H&E (arrow in A) and are 

negative with SAR1 immunohistochemistry (arrow in J) but show positive staining, indicated by 

arrows, for RyR1 (D), DHPR (G), SERCA1 (M) and SERCA2 (P) in DPAGT1-congenital myasthenic 

syndrome (CMS) (case 1). TA in non-CMS tubular aggregate myopathy (case 7) are readily observed 

with H&E (arrow in B) and are immunoreactive, shown by arrows, for RyR1 (E), DHPR (H), SAR1 

(K) and SERCA1 (N) but not SERCA2 (Q). Myopathy with cylindrical spirals (CS) (case 10) shows 

the presence of CS on H&E (arrow in C). CS do not stain with RyR1 (arrows in F) and DHPR (arrows 

in I) and SERCA2 (R) but strong staining is observed with SAR1 (arrows in L) and SERCA1 (arrows 

in O). 

Scale bar in represents 200 µm in (B), (E), (H), (K), and (N), and 100 µm in (A), (C), (D), (F), (G), 

(I), (J), (L), (M), (O), (P), (Q), and (R). 


