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Abstract  

 

Forensic evidence has traditionally been used in the detection of crime. However, the potential for 

such evidence to be used for the prevention or disruption of crimes has not yet been fully realised.  

There is significant potential for measuring trace levels of explosives in the wastewater system to 

offer a viable form of forensic intelligence to inform on-going criminal and counter-terrorism 

investigations. 

This research addresses the need to provide an empirical evidence base for the monitoring of trace 

explosives, utilising the wastewater analysis approach to contribute to identifying the provenance of 

the illegal manufacture of homemade explosives (HMEs) for use in improvised explosive devices. 

Building upon the well-established approach of wastewater analysis for illicit drug consumption 

estimates and other important emerging pollutants in the environment, this work identifies the 

potential for trace explosives detection in situ in the sewerage network by identifying key field- and 

lab-based methods for this purpose.  

This research presents the development of solid phase extraction methods for the analysis of trace 

explosives in influent wastewater samples and the development of liquid-chromatography-mass 

spectrometry methods for the quantification of trace levels of hexamethylene triperoxide diamine 

(HMTD) and pentaerythritol tetranitrate (PETN).  In addition, the use of passive sampling devices for 

the collection, pre-concentration and extraction of trace explosives as an alternative to the frequently 

used grab sampling and solid phase extraction methods is explored.   

The implementation of these methodologies to achieve ‘forensic intelligence’ for the prevention and 

disruption of criminal activity is also explored with examples of how this data could be mapped in 

future work using electronic data and predictive modelling.  The implications for incorporating such 

findings with other forms of intelligence to determine attribution are addressed.  
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Abbreviations 

2-A-4,6-DNT 2-Amino-4,6-Dinitrotoluene 

2-NT 2-Nitrotoluene 
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Glossary 

Chromatography 

Chromatography is a technique used to separate components within a mixture by passing the mixture, 

usually a gas or a liquid, through a solid material. The components within the mixture interact with 

the solid material in different ways causing the components to pass through at different speeds thus 

causing separation.  

Elution 

Elution is a term used to refer to the extraction of one material from another by washing, often with a 

solvent such as methanol.  

Mass Spectrometry 

In analytical chemistry mass spectrometry is a technique that ionises chemical groups and sorts the 

resultant ions based upon their mass to charge ratio (m/z). 

Matrix Effects 

The matrix consists all of the components of a sample other than the analyte of interest. The effect 

that the matrix has on the analysis of the target analyte is termed the “matrix effect” that can cause 

either enhancement or suppression of the analyte signal.    

Solid Phase Extraction 

Solid phase extraction is an extraction method that uses a solid material and a liquid solution to isolate 

an analyte from a solution. Often it is used to clean up a sample before being analysed using 

chromatography. The four main stages of solid phase extraction are Conditioning the solid material 

prior to Loading the solution containing the target analyte, Washing the unwanted components of the 

solution away and Eluting the target analyte(s) from the solid material for analysis.   
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Chapter 1:  Introduction 

1.1 Background  

With a very real threat of terrorist activities using homemade explosives in large European cities such 

as London, the disruption of individuals manufacturing their own explosives in clandestine 

“laboratories” is both complex and hidden in nature. No single approach will provide the full picture 

as to where homemade explosives are being synthesised and so a multi-indicator approach by 

combining several information sources must be desirable. The addition of another tool, such as 

wastewater analysis, to the traditional intelligence sources cannot be over-estimated in the face of 

such a considerable challenge. It is essential that the information gained from wastewater analysis 

must be timely, technically robust and able to address the dynamic nature of the problem, without 

requiring unachievable investments in resources and time.  

There are several studies covering the detection of military explosives in natural waters (Ochsenbein, 

Zeh, and Berset 2008), the detection of peroxide explosive standards under laboratory conditions 

(Crowson and Beardah 2001; Widmer et al. 2002; Xu et al. 2014), and the detection of post-blast 

residues for analysis following detonation (Hutchinson et al. 2008; Calderara, Gardebas, and Martinez 

2003; Abdul-Karim et al. 2012). However, there is no record in the published literature of methods for 

the detection of peroxide explosives in the environment. The research that has been conducted on 

wastewater analysis concerns environmental contamination from various substances such as personal 

care products, polar organic pollutants, pesticides and their degradation products, perfluorinated acids 

and endocrine disruptors (Loos et al. 2009; Loos, Locoro, and Contini 2010; Postigo, de Alda, and 

Barceló 2010; Kolpin et al. 2002). Other further reaching studies have applied wastewater analysis to 

identify human behaviours concerning the use of pharmaceuticals and illegal drug consumption per 

population (van Nuijs et al. 2009; Lehto et al. 2006; Postigo, de Alda, and Barceló 2010). This 

approach offers dynamic and relevant information concerning geographical and temporal patterns 

with a multidisciplinary approach, which was proven central when developing the near real-time and 

non-invasive approach (EMCDDA 2016). However, the data generated from these studies into 

population trends has not been mapped, and traditionally, the majority of crime mapping has been 
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retrospectively looking for spatial patterns and clustering of volume crimes that have already 

occurred, although some have explored prospective crime mapping as a predictive tool (Bowers 2004; 

Mohler 2014; Chainey, Tompson, and Uhlig 2008) showing its great potential.  

1.1.1 The wastewater analysis approach 

Currently, there are no established methods for the detection of explosives related compounds in 

wastewater. However, the wastewater analysis approach is a well-studied and continually growing 

research field, which helps to identify estimates of total drug use across a range of different 

substances all around the world (Yargeau et al. 2013; van Nuijs et al. 2009; Baker and Kasprzyk-

Hordern 2011; Karolak et al. 2010; Metcalfe et al. 2020; Castiglioni et al. 2006; H. E. Jones et al. 

2014; Huerta-Fontela et al. 2008). The different stages that are involved in the wastewater analysis 

approach for illicit drug usage are illustrated in Figure 1.1 (SCORE 2016). Briefly, anonymous 

composite samples are collected daily from the wastewater treatment plant, often using the plant’s 

automatic samplers, usually over a 7-day period, and transported back to the laboratory for analysis. 

Once the average daily concentration has been calculated, further calculations are carried out in order 

to more accurately estimate the number of doses of each drug detected that have been consumed.   

Target analyte concentrations, usually determined by solid phase extraction and liquid 

chromatography-mass spectrometry (Baker and Kasprzyk-Hordern 2011; Gheorghe et al. 2007; K. V. 

Thomas et al. 2012), can be converted into amounts of target analyte loads entering the wastewater 

treatment plant in grams per day. This can be done by taking into account human metabolism 

correction factors, ratios between drug metabolites and the unchanged parent compound itself and 

other factors such as stability and sorption.  

The back-calculation of the amount of a substance that has been consumed is estimated in relation to 

the population served by the wastewater treatment plant, and of that population the estimated number 

of people who could contribute to the excretion of drugs into the wastewater. Normalisation of the 

data provides the amount of a substance consumed by a defined population per day per 1000 

inhabitants. Further calculations can provide the estimated number of doses consumed by dividing the 
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substance consumed per day per 1000 inhabitants by the average size of a typical dose (H. E. Jones et 

al. 2014; K. V. Thomas et al. 2012; EMCDDA 2016).  

Figure 1.1: The Sewage analysis CORe group Europe (SCORE) approach to wastewater analysis for 

illicit drug usage estimates. (SCORE 2016) 

 

The success of this approach and the wealth of information it can provide to monitor drug usage 

patterns by identifying what the actual problems are and how these can be best targeted is invaluable. 

The potential to make adaptations to this approach in order to cater for the detection of trace 

explosives for the application to information gathering and surveillance operations during criminal 

investigations is the focus of this thesis.     

1.2 Research challenges 

The author produced the analysis presented in this thesis in conjunction with several different 

laboratories. Having conducted preliminary experiments using liquid chromatography-mass 

spectrometry instruments at UCL facilities, unfortunately a viable laboratory setup could not be 

achieved. The first year of this project was focussed upon finding access to a suitable LC-MS 

instrument in order to develop methods for the detection of trace explosives. Subsequently, the data 
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generated in the analysis chapter (Chapter 3) was produced using a liquid chromatography-mass 

spectrometer at Natural Resources Wales in Llanelli, UK, whilst in a post as a visiting researcher for a 

total of four and a half months after having met Anthony Gravell from NRM at a LC-MS workshop in 

London in June 2014. The method development work took approximately 6 months in total, but 

unfortunately the methods developed could not be used in the rest of the thesis due to the cost of 

living in close proximity to the laboratory in south Wales on a long-term basis.   

The liquid chromatography-mass spectrometry analyses performed for the extraction (Chapters 4 and 

5), stability (Chapter 6) and sampling (Chapter 7) chapters were carried out at King’s College London 

at their Mass Spectrometry Facility. Access to this facility was arranged as part of an on-going 

collaboration with Dr Leon Baron and Dr Gillian McEneff at King’s College London, following a 

meeting at the Chartered Society of Forensic Sciences conference in Leicester in November 2014 

where similar research interests were identified. Preparation of the samples for the first extraction 

chapter (Chapter 4) was performed at King’s College London’s Forensic Science Laboratory, during a 

two month visiting researcher post in May-June 2015 with co-supervision of an MRes student. The 

remaining experiments were conducted at UCL’s Materials Chemistry Laboratory as part of a student-

led resource sharing initiative formed from our UCL Explosives Working Group. Samples generated 

were taken to the Mass Spectrometry Facility at King’s College for analysis.  

Fieldwork carried out for wastewater sampling was done in agreement with Thames Water Ltd. who 

were extremely supportive throughout the entire research project. Initial communication with Dr 

Thomas and Dr Cunningham from the Thames Water Innovation Centre and Emily Goren at Mogden 

Wastewater Treatment Plant led to being able to contact the ‘right’ people who would be able to 

provide access to wastewater samples from various treatment plants as well as directly from the 

sewers themselves. The Thames Water Technical Information Team were able to provide extensive 

maps, helping to more clearly understand the architecture of the sewerage network in London.  

What started out as ‘research challenges’ resulted in a multitude of great collaborations and successful 

multidisciplinary research.  
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1.3 Thesis structure 

This thesis sets out to address the potential of using wastewater analysis for the trace detection of 

explosives in the wastewater network, in an urban location such as London, and what implications 

this holds for use in the forensic intelligence domain. To have an additional approach, where physical 

evidence is generated, to locate where the illegal manufacture of homemade explosives is taking place 

would be very helpful. In order to do this, each stage of the wastewater analysis approach has several 

key questions that need to be answered, concerning how these trace explosives can be detected and 

the extent to which these methods will be accurate and repeatable. Furthermore, considerations are 

taken into how the results could be visualised and presented for correct interpretation whilst meeting 

the requirements for the use of wastewater analysis in an operational and forensic context.  

Not only is this application of wastewater analysis to a security problem a novel contribution, but also 

the methods developed in this thesis are novel contributions to the field of trace explosives detection. 

The figures below show the chronological order of events in the wastewater analysis approach (Figure 

1.2), and the order in which each stage was addressed in this thesis with the corresponding chapters 

(Figure 1.3).   

Figure 1.2: Diagram showing the chronological order of the wastewater analysis approach for trace 

explosives detection.  

 

 

 

 

 

 

Sampling Extraction Analysis Intelligence 

Figure 1.3: Diagram showing the thesis structure. 
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Although the wastewater analysis process starts with the sampling of the wastewater, followed by an 

extraction process and subsequent analysis in the laboratory, in order for the adaptation of the 

wastewater analysis method to be applied to trace explosives, the method for their analysis using LC-

MS first has to be established. Once a working method has been setup for the identification and 

quantification of the target analytes, an investigation into the optimum extraction conditions can be 

assessed as well as the stability of the compounds in wastewater and the use of passive sampling 

devices as an improved means of collecting the target analytes as opposed to grab sampling. 

Therefore, the order of the chapters in this thesis (shown in Figure 1.3) does not follow the 

chronological steps of the wastewater analysis process itself but rather the order in which the research 

project was conducted. For this reason, the thesis has been split into four sections following the 

literature review (Chapter 2), as detailed below. 

1.3.1 Section 1  

The first section in this thesis contains the Analysis chapter (Chapter 3), which develops an LC-MS 

method for the trace detection of two explosives (HMTD and PETN) through a systematic 

optimisation approach. This optimisation work not only helps to characterise the target compounds 

but also ensures the highest level of sensitivity for the detection method. Ultimately the sensitivity of 

the analytical method sets the capability level of the entire wastewater analysis approach, as the lower 

limits of detection of this method will be the limiting factor concerning how much of the target 

compounds can be detected once they have been collected and processed. Given that the level of 

explosives likely to be found in the wastewater system is unknown, the lower the limits of detection 

the greater the opportunity to identify them. This chapter illustrates that different parameters of the 

LC-MS process were responsible for the greatest increase in signal for the different compounds, 

highlighting the parameters that play a more important role in the optimisation of a method. Often 

optimum conditions are compromised when building a screening method for a large number of 

compounds, and so by knowing which parameters have the greatest effect upon the signal response 

for each compound perhaps the compromises will be easier to make. Lower limits of detection were 
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achieved for both analytes targeted in this chapter at the low picogram level on the column, the 

equivalent to detecting nanograms per litre.    

The LC-MS instrument used for the research presented in this chapter was located at Natural 

Resources Wales’s organic analysis laboratory, and is not same instrument used for analysis in the 

other chapters due to financial constraints relating to the location of the laboratory. While the main 

focus of this thesis concerns the organic peroxide explosives HMTD and TATP, at the time of 

conducting the Analysis chapter only HMTD and PETN could be sourced in the quantities required. 

Furthermore, a new collaboration with King’s College London meant that access to their LC-MS 

enabled analysis of the samples generated in the other thesis chapters.   

1.3.2 Section 2 

 The second section in this thesis comprises two chapters both investigating the extraction of trace 

explosives from wastewater. The first of the two chapters (Chapter 4) addresses how targeted organic 

peroxide explosives can be extracted from wastewater samples. This study develops an optimised 

extraction method for HMTD and TATP from wastewater for the first time. Recoveries of the 

analytes and matrix effects were measured, testing the performance of the developed methodology. 

There was significant suppression of the HMTD ion measured when extracting this compound from 

wastewater, raising the lower limits of detection. TATP however did not suffer any matrix effects and 

detection levels for the extraction and detection method developed were achieved at the low 

microgram per litre level. This is the first time that extraction methods for these two compounds have 

been presented. The importance of this novel contribution is that it answers another of the key 

questions as to whether the wastewater analysis approach could be possible for the trace detection of 

peroxide explosives, and the extent to which the process can be successful. Furthermore, the 

identification of the optimum sorbent material for the extraction of HMTD and TATP means that this 

sorbent could now be adapted into different formats (from a cartridge format to a disk format) for use 

in passive sampling devices which provide great benefits when conducting sampling of environmental 

waters for intermittent and low quantity substances.  
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The second chapter in this section (Chapter 5) takes the previously developed extraction method for 

HMTD and TATP and tests it on real wastewater samples collected from manholes in London. Due to 

the sensitive nature of this research, the real test of whether or not this extraction method could 

perform, could not be engineered. The area where the wastewater samples were collected from had 

previously been targeted in a police counter-terrorism operation in relation to the manufacture of 

peroxide explosives. However, there could not be any guarantees that this would mean that the 

samples collected in this study would show traces of either HMTD or TATP. In order to address the 

question of whether or not it could be possible to detect trace explosives in wastewater grab samples, 

an alternative method (also co-developed by the author) was employed in a proof of principle study. 

This provisionally identified traces of 2,4-DNT in the manhole wastewater samples as well as 

successfully identifying nitroaromatic and nitramine explosives in the waste pipes of a Metropolitan 

Police Service building. Importantly, this adds confidence to the notion that if there were traces of 

peroxide explosives present in the wastewater system, then the methods developed thus far would be 

capable of detecting them, since the limits of detection for the explosives that were detected are 

within the same magnitude of those determined for the peroxide compounds. The remaining questions 

concerning the technical capabilities of the proposed wastewater approach, such as compound 

stability and improved sampling methods, are addressed in the following section.         

1.3.3 Section 3  

This third section also contains two chapters; firstly, Chapter 6 addressing the question of the organic 

peroxide explosives’ stability in wastewater, which again, until now has not been investigated. 

Although the window of time from introducing any peroxide explosives into the wastewater system 

via a toilet, sink or bath, to the time it will take to reach the wastewater treatment plant (usually 

several miles away) is likely to be a matter of minutes rather than hours, it is still important to assess 

the fate of these substances in wastewater. Their persistence in wastewater was measured over a 7-day 

period and the results showed that TATP had a much slower rate of degradation than that of HMTD, 

which was no longer detectable after 24 hours. Again, this study helps to answer the overall question 

of whether or not a wastewater analysis approach could be useful for the detection of trace explosives. 



 33 

By knowing that both compounds will persist in the wastewater means that if they are present in a 

given location that is being sampled, then they will maintain their integrity long enough to be 

detected. Furthermore, by identifying the point at which the compounds can no longer be detected, 

this will help to assess a maximum length of time that they have been present in the wastewater.  

Following this chapter, Chapter 7 addresses the potential use of passive sampling devices for the 

collection of trace explosives in situ in the wastewater system. The use of these devices has been 

shown to be particularly beneficial when a pre-concentration step is required (when dealing with large 

volumes of water) and when intervallic behaviours impacting upon the presence of compounds in the 

environment could be missed. A collaboration with the University of Portsmouth and Natural 

Resources Wales provided the opportunity to test the capability of a passive sampling device called a 

Chemcatcher
® 

for its compatibility with trace explosives collection in wastewater. Due to the 

optimum sorbent material for peroxide explosives collection being commercially unavailable, the 

principle was tested using non-peroxide explosives and their environmental metabolites. The resulting 

setup, which is also used for monitoring pharmaceuticals in river water, showed great potential for the 

collection and pre-concentration of nitroaromatic and nitramine compounds in wastewater. This final 

experimental chapter concludes by presenting a platform from which further studies could build upon, 

leading to the use of passive sampling devices in situ in the urban wastewater network enabling short-

term (weeks) targeted sampling for trace explosives, in locations wishing to be surveyed.    

1.3.4 Section 4  

This final section comprising of two chapters concludes the thesis. Bringing together the key results 

of the experimental chapters and applying them to the forensic process, Chapter 8 evaluates the extent 

to which the wastewater analysis approach proposed in this thesis for the collection of forensic 

intelligence can address the requirements of a criminal investigation. Considerations are made in 

relation to the financial, ethical and operational limitations as well as each part of the forensic process 

and how the results and ideas generated in this thesis can be built upon in future studies. The approach 

that was taken in order to craft this thesis to be real world applicable and forensically relevant was 

very successful, gaining contributions from government and industry agencies as well as forging new 
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relationships within academia. This approach meant that the research was designed to answer the 

questions from the people who would potentially use and benefit from using wastewater analysis for 

trace explosives detection. And finally, Chapter 9 brings together the final conclusions that can be 

made from this thesis and potential impact of the work that has been undertaken, including both its 

merits and limitations. Overall, the methods of detection and extraction were successfully developed, 

with the exception of some significant matrix effects affecting the lower limits of detection for 

HMTD. It is still unclear as to the extent to which this would be a limiting factor, and it is hoped that 

with the implementation of passive sampling techniques, the pre-concentration of compounds on the 

receiving phase would help to counter this reduction in sensitivity. The stability of the compounds in 

wastewater means that if they are present and are above the method limits of detection then they will 

be successfully detected. With regards to the question of whether any actionable information can be 

gathered using the wastewater analysis technique, the only real test will be to trial them in the field in 

an operational context with law enforcement groups.  
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Chapter 2:  Literature Review 

This literature review addresses the five main areas of scientific study that make up this 

multidisciplinary research project: (1) explosives and their use in improvised explosive devices in 

recent terror attacks across the world, (2) wastewater analysis, (3) the instrumental techniques that 

have been employed in this research, (4) crime mapping and spatial analysis and (5) forensic 

intelligence and the pertinent philosophical concerns that need to be addressed when applying 

scientific findings to criminal investigations. Each of these domains is essential in determining the 

extent to which the use of wastewater analysis can obtain detected levels of homemade explosives in 

the wastewater system in London, in order to create maps to aid criminal and counter-terrorism 

investigations as a form of forensic intelligence.   

2.1 Explosives and Improvised Explosive Devices (IEDs) 

There is a range of different groups of explosives that are commonly available.  The focus of this 

research is upon those particular groups of explosives that have been found in the make-up of 

improvised explosive devices used in terror attacks across the world in the last 20 years. More 

specifically the peroxide explosives hexamethylene triperoxide diamine (HMTD) and triacetone 

triperoxide (TATP) along with pentaerythritol tetranitrate (PETN) and other military explosives as 

well as their metabolites which are likely to be found in the environment. Chemical details of the 

explosives studied in this thesis are listed in Table 2.1, including their chemical structure, molecular 

formula and log Kow (octanol/water partition coefficient). This gives an indication of their likely 

dispersion and availability within the aqueous environment by evaluating how hydrophobic the 

analyte is (Machatha and Yalkowsky 2005; Tachon et al. 2008). Low log Kow values indicate 

hydrophilic substances, which will usually be distributed and made available in aqueous 

environments. This helps to identify how easily a compound might be taken up by groundwater and 

other waterways including rivers and wastewater, which could become polluted and toxic to the local 

aquatic life. Log Kow values are also often used to predict the migration of dissolved organic 

compounds through soil and groundwater (Cronin and Mark 2006; Heuel-Fabianek 2014).   
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Table 2.1: Chemical details of the explosives and their related compounds studied in this thesis.  

Class 

Name 

(Abbreviation) 

Structure Formula 

Molecular 

mass 

(g mol
-1

) 

Vapour  

pressure 

(atm Hg at 25°C) 

LogKow CAS No. Ref. 

Nitramines        

Hexahydro-1,3,5-

trinitroso-1,3,5-triazine 

(R-salt/TNX)  

C3H6N6O3 174.12 1.61 x 10
10

 -1.78 13980-04-6 

(Ewing, Clowers, and 

Atkinson 2013) 

1,3,5-trinitroperhydro-

1,3,5-triazine 

(RDX)  

C3H6N6O6 222.12 4.85 x 10
-12

 0.87 121-82-4 

(Tachon et al. 2008; 

Tachon et al. 2007; 

Babaee and Beiraghi 

2010; Jenkins et al. 2009) 

Octahydro-1,3,5,7-

tetranitro-1,3,5,7-

tetrazocine 

(HMX) 
 

C4H8N8O8 296.16 2.37 x 10
-17

 0.82 2691-41-0 

(Tachon et al. 2008; 

Tachon et al. 2007) 
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Nitrate esters 

Ethylene glycol dinitrate 

(EGDN) 
 

C2H4N2O6 152.06 1.02 x 10
-4

 1.16 628-96-6 

(Ewing, Clowers, and 

Atkinson 2013; Tachon et 

al. 2008) 

Nitroglycerin 

(NG)  

C3H5N3O9 227.09 6.45 x 10
-7

 1.62 55-63-0 

(Tachon et al. 2008; 

Tachon et al. 2007) 

Pentaerythritol tetranitrate 

(PETN) 

 

C5H8N4O12 316.14 1.07x10
-11

 2.38 78-11-5 

(Babaee and Beiraghi 

2010; Tachon et al. 2008; 

Tachon et al. 2007) 

Erythritol tetranitrate 

(ETN) 
 

C4H6N4O12 302.11 3.15 x 10
-8

 1.85 7297-25-8 (Oxley et al. 2012) 

Organic peroxides       

Triacetone triperoxide 

(TATP) 

 

C9H18O6 222.24 6.31 x 10
-5

 4.63 17088-37-8 

(Ewing, Clowers, and 

Atkinson 2013) 

Hexamethylene triperoxide  

Diamine (HMTD)  

C6H12N2O6 208.17 3.95 x 10
-7

 1.01 283-66-9 

(Damour, Freedman, and 

Wormhoudt 2010) 
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Nitroaromatics        

Nitrobenzene 

(NB) 
 

C6H5NO2 123.11 3.95x10
-4 

 1.80 98-95-3 (Jenkins et al. 2009) 

2-nitrotoluene 

(2-NT) 

 

C7H7NO2 137.14 1.89x10
-4

 2.30 88-72-2 

(Östmark, Wallin, and 

Ang 2012; Jenkins et al. 

2009) 

3-nitrotoluene 

(3-NT) 

 C7H7NO2 137.14 ~10
-5 

 2.80 99-08-1 (Jenkins et al. 2009) 

4-nitrotoluene 

(4-NT) 

 

C7H7NO2 137.14 6.43 x 10
-5

 2.37 99-99-0 

(Östmark, Wallin, and 

Ang 2012; Rodgers and 

Bunce 2001) 

2,4-dinitrotoluene 

(2,4-DNT) 

 

C7H6N2O4 182.13 4.11 x 10
-7

 1.98 121-14-2 

(Tachon et al. 2008; 

Tachon et al. 2007; 

Jenkins et al. 2009; 

Babaee and Beiraghi 

2010) 

NO2
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2,6-dinitrotoluene 

(2,6-DNT) 
 

C7H6N2O4 182.13 8.93 x 10
-7

 2.10 606-20-2 

(Nipper et al. 2004; 

Jenkins et al. 2009; 

Tachon et al. 2008; 

Tachon et al. 2007) 

3,4-dinitrotoluene 

(3,4-DNT) 
 

C7H6N2O4 182.13 ~10
-7 

 2.08 610-39-9 

(Tachon et al. 2007; 

Nakagawa et al. 1992) 

Trinitrotoluene 

(TNT) 

 

C7H5N3O6 227.13 9.15 x 10
-9

 1.60 118-96-7 

(Tachon et al. 2008; 

Tachon et al. 2007; 

Jenkins et al. 2009; 

Babaee and Beiraghi 

2010) 

 

2,4,6-

trinitrophenylmethylnitram

-ine 

(Tetryl)  

C7H5N5O8 287.14 7.41 x 10
-12

 -0.56 479-45-8 

(Tachon et al. 2008; 

Tachon et al. 2007; 

Jenkins et al. 2009) 
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2.1.1 Types of explosives  

Explosives are used in mining, the military, pyrotechnic compositions and illegally in terrorist attacks. 

An explosion is defined by Akhaven (Akhavan 2004) as a large amount of energy accumulated locally 

that is suddenly released. Explosions caused by the chemicals concerned by this research are the result 

of a chemical reaction or change of state, which occurs over an exceedingly short amount of time, 

generating a large amount of heat and usually a large quantity of gas (Akhavan 2004). Chemical 

explosives generally contain three components; oxygen, nitrogen and a fuel such as carbon and 

hydrogen. They are either classed as substances that are explosive, or as mixtures that are explosive. 

The explosive substances contain functional groups that have explosive properties; these can be 

divided into groups: nitro compounds, nitric esters, nitramines, chloric and perchloric acid derivatives, 

azides and other compounds capable of producing an explosion, for example, peroxides, fulminates 

and acetylides.  Primary explosives detonate very rapidly by heat or shock and are able to transmit 

detonation to less sensitive explosives, which is why they are used in initiating devices. Secondary 

explosives are detonated by the shock produced from the explosion of a primary explosive. 

Propellants are materials that contain the required amount of oxygen needed for their combustion, and 

are only capable of burning and do not usually explode. They do not contain nitroglycerine or other 

nitroaromatic compounds (Akhavan 2004). 

2.1.1.1 Commercial explosives  

Blackpowder, or gunpowder, is the earliest known explosive compound, reported in an accident in 

220 BC, and was the only explosive composition used in coal mining until 1870 (Akhavan 2004). Due 

to the increase in coal mining and a number of accidents involving the blasting explosives, 

blackpowder and other compounds such as dynamite were replaced with ammonium nitrate based 

compositions, for example, ammonium nitrate fuel oil (ANFO) and later emulsion explosives which 

are safer to use and cheaper to manufacture. 

2.1.1.2 Military explosives  

The other main use for explosives is in the military. Historically, blackpowder was also used for 

munitions prior to 1885 when it was replaced with the nitrophenol, picric acid. Other explosives that 
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were developed following the use of picric acid include tetryl, trinitrotoluene (TNT), pentaerythritol 

tetranitrate (PETN), research department explosive (RDX) and HMX, otherwise known as Octogen. 

Different compositions of TNT, RDX, PETN and tetryl were used in World War II under branded 

names such as Pentolites (50% PETN and 50% TNT) and PTX-1 (30% RDX, 50% tetryl and 20% 

TNT). More recently, polymer bonded explosives (PBXs) have been developed to reduce the 

sensitivity of the explosive material by embedding the newly manufactured crystals into a polymeric 

matrix (Akhavan 2004).    

2.1.1.3 Improvised explosive devices 

There is a very real threat from the reported increased use of homemade explosives (HMEs) for 

improvised explosive devices (IEDs) used for terrorist attacks such as the London 7/7 bombings 

(Widmer et al. 2002) and by the 2001 shoe bomber and in other examples shown in Table 2.1. 

Frequently, the homemade explosives used have been compositions made up from peroxide 

compounds and inorganic salts (Dicinoski, Shellie, and Haddad 2006). Both the peroxide and 

inorganic components can be targeted for detection purposes; common inorganic ions used to identify 

explosives include chlorates, perchlorates, nitrates and azides (Blanco et al. 2011).  

Peroxide explosives are organic compounds that contain at least one peroxide functional group (R-O-

O-R) and are usually cyclic in shape. Peroxide compounds are capable of producing an explosive 

reaction, similar to those of a high explosive, in magnitude. The peroxide explosives triacetone 

triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were both used in the initiation 

mechanisms of IEDs that were responsible for the London 7/7 terrorist bombings and the unsuccessful 

detonation of further coordinated attacks two weeks later. The increased use of peroxide explosives 

for terrorist activities means that there is a greater urgency to discover where and when the common 

household ingredients are being sourced and subsequently manufactured into explosive compounds 

for IEDs. Their relatively simple and affordable synthesis means that homemade explosives have been 

adopted for use in many different terror attacks around the world from the 1980s and 1990s (Tamiri et 

al. 2009). Legler first discovered HMTD in 1881 by reacting hydrogen peroxide and hexamine with 

citric acid or dilute sulphuric acid as a catalyst (Legler 1885). Since HMTD is less susceptible to heat, 
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impact and shock than TATP, it was initially used as a primary explosive for mining, but was soon 

superseded by more stable, commercial explosives. HMTD and TATP are cyclic peroxides. However, 

unlike TATP, HMTD contains nitrogen, C6H12N2O6. The characteristic tendency of these peroxides to 

detonate relatively easily is due to their cyclic structure making many of them primary explosives 

(Crowson and Beardah 2001). Given the dangerous and sensitive nature of studying such peroxides, 

there is very little published work documenting experimental data related to these compounds. 

2.1.2 Terror attacks 

Due to their unstable and volatile nature, the use of peroxide explosives in military and mining 

applications was not implemented, whereas their relatively simple and affordable synthesis means that 

they have been adopted for use in many different terrorist attacks around the world. Examples of 

attempted and successful terrorist attacks using improvised explosive devices containing peroxide and 

other homemade explosive materials are listed in Table 2.2. These include the London 7/7 bombings 

and the attempted repeat bomb attack two weeks later, the Los Angeles Airport Millennium bomb 

plot, the Paris to Miami flight shoe bomb attempted attack and the 2006 transatlantic bomb plot that 

was also halted.   

2.2 Wastewater analysis 

Wastewater analysis is the monitoring of physico-chemical and biological markers in wastewater 

samples, usually taken from the WWTP in influent or effluent form (van Nuijs et al. 2011). This 

concept of monitoring target compounds in wastewater samples has great potential to be applied to 

illegal HME manufacture surveillance. This multidisciplinary approach could use up-to-date chemical 

analyses to rapidly identify emerging hotspots of explosives manufacture and test the efficacy of 

different counter-measures, such as prevention through education, enforcement, and collaborative 

actions against illegal explosives manufacture and cross-validation of different types of counter-

terrorism intelligence with wastewater surveillance programs (van Nuijs et al. 2011). Understanding 

the components that make up wastewater, and the journey that it takes from source to treatment, to its 

return back into the environment will help to assess the potential for its analysis to aid in the tracing of 

homemade explosives back to their place of manufacture.   
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Table 2.2: List of recent attempted and successful terror attacks using IEDs (BBC News 2012a; BBC 

News 2012b; Chakraborty 2013; Bergen 2015; BBC News 2011b)  

*Casualties from the suicide vests containing TATP, not including the casualties from gun attack 

Date and Location IED details Casualties 

2015 – Paris, France Suicide vests/belts containing 

TATP 

1 + 6 suicide 

bombers* 

2013 – Boston, USA Explosive powders allegedly from 

fireworks in pressure cookers 

3 

2011 – Oslo, Norway Ammonium nitrate, nitromethane 8 

2006 – Various, UK Peroxide based liquid explosives Attempt failed 

21/7/2005 – London, UK Homemade organic peroxide 

explosives (HMTD) 

Attempt failed 

7/7/2005 – London, UK Homemade organic-peroxide 

explosives (HMTD, hydrogen 

peroxide and organic material)  

52 + 4 suicide 

bombers 

2004 – Jakarta, Indonesia Potassium chlorate, aluminium 

powder, silver carbon 

9 

2002 – Bali, Indonesia  Potassium chlorate, aluminium 

powder, sulphur, PETN, TNT 

202 

2001 – Paris, France Shoe bomb attempt using TATP 

primer & PETN main charge 

Attempt failed 

1999 – Los Angeles USA HMTD, hexamine, RDX, EGDN, Attempt failed 

1995 – Oklahoma City, USA  Ammonium nitrate, nitromethane, 

diesel fuel, acetylene  

168 
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2.2.1 Wastewater Characteristics 

Wastewater is made up of different biological and chemical constituents that are in turn affected by 

the physical characteristics of the wastewater, which will again vary depending upon its source, for 

example, domestic or industrial. The biological characteristics of wastewater that are commonly 

monitored include coliform organisms to assess the presence of pathogenic bacteria, toxicity and the 

presence of specific microorganisms such as other bacteria, protozoa and viruses. These particular 

characteristics of the wastewater are measured at the WWTP in order to ascertain if the processes are 

working effectively or not. The chemical components of wastewater that are regularly analysed are 

split into two main categories, i.e. organic and inorganic characteristics. The inorganic constituents 

include metals, ammonia, nitrites, nitrates, nitrogen and phosphorus, sulphate and chloride. The pH of 

the wastewater is also measured as well as the total alkalinity. The organic chemical characteristics 

that are monitored include the carbonaceous biochemical oxygen demand (or the chemical oxygen 

demand or the total organic carbon), the ultimate carbonaceous biochemical oxygen demand and the 

nitrogenous oxygen demand (Tchobanoglous, Burton, and Stensel 2004). The monitoring of physical 

characteristics include measuring the total volatile, fixed, dissolved and suspended solids in the 

wastewater, in addition to temperature, conductivity, turbidity and particle size distribution.  

2.2.2 The Wastewater Journey 

Wastewater is generated in both domestic and industrial settings. It is often accompanied by rainwater 

and is transported to the nearest designated wastewater treatment plant via a series of sewers. Once 

the wastewater has undergone several processes at the treatment plant it is released back into the 

environment where it will come into contact with surface waters such as rivers and their inhabitants, 

the land and its components, such as soils and plants, and the atmosphere where air effluent is also 

monitored. Figure 2.1 shows a general overview of the wastewater system and the journey that it takes 

from source through the sewerage network to the wastewater treatment plant and back into the 

environment. Different locations along the wastewater journey each have their own benefits and 

limitations regarding the optimum site for wastewater sampling. The closer the sampling points are to 

the source of the explosives manufacture the smaller the dilution effect and hence the higher the 
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likelihood for successful analysis and accurate tracing of the explosives’ origin. The stability of 

explosives in wastewater is also an unknown variable, particularly with any homemade explosives, 

which will vary in their composition depending on the precursor chemicals and synthesis method 

used. Some studies have monitored the degradation of military explosives (RDX and TNT) in soil 

(Pan et al. 2006; Dontsova et al. 2009; Yang, Yoo, and Park 2015), there have not been any published 

studies specifically concerning the transformations of trace explosives in wastewater but similar 

degradation mechanisms may be experienced. However, accessing individual properties in order to 

take samples from wastepipes would be extremely expensive, difficult to execute logistically and 

would raise several ethical concerns regarding privacy and discrimination.  

2.2.3 Applications of Wastewater Analysis 

Analysing communal wastewaters for an increasing range of chemicals is a very important technique, 

which not only helps to monitor the quality of water in the environment and the effectiveness of the 

wastewater treatment plant processes but also can provide an insight into the behaviours of the 

communities that generate the wastewater. Following a crime, the scientific and law enforcement 

teams will try to reconstruct the events that occurred in order to establish what happened, how it 

happened and who was responsible (A. R. W. Jackson and Jackson 2008). 

Knowledge regarding the nature of the water system and the forensic evidence that can be found 

within it, or relating to it, can help to reconstruct a crime more accurately. The composition of 

domestic and commercial wastewater can provide information pertaining to the behaviour that has 

occurred in particular properties. Spatial and temporal patterns of chemicals in the water system can 

help to assess what ‘normal’ conditions are (determining a “background”) so that these can be 

compared to certain conditions relating to a crime event. The quantity of specific substances found in 

waste and river water can also help to determine whether they have been dumped directly into a river 

or whether they have been on a journey through the wastewater treatment process (K. V. Thomas et 

al. 2012). Not only can this type of information provide evidence for a retrospective reconstruction of 

criminal events and for use in the prosecution of offenders, but could also be useful for a prospective 
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approach where actionable information is collected to report to law enforcement authorities prior to a 

crime being committed. 

2.2.3.1 Environmental Monitoring and Sewage Epidemiology 

Environmental monitoring refers to the characterisation and measurement of the quality of the 

components of the environment, including water quality. Several different kinds of contaminants have 

also been studied in the water system; from sewage leaving domestic and commercial properties to 

river water that treated effluent feeds into (Loos et al. 2009; Loos, Locoro, and Contini 2010; Boles 

and Wells 2010; Huerta-Fontela et al. 2008; Postigo, de Alda, and Barceló 2010).  

The most commonly studied areas include environmental contamination, concerning polar organic 

pollutants, pharmaceutical compounds, pesticides and their degradation products, perfluorinated acids 

and endocrine disruptors (Loos et al. 2009; Loos, Locoro, and Contini 2010) (Kolpin et al. 2002; 

Kasprzyk-Hordern, Dinsdale, and Guwy 2009; C.-E. Chen et al. 2013; Ferrando-Climent, Rodriguez-

Mozaz, and Barceló 2014; Gurke et al. 2015; Ort et al. 2010; Bartelt-Hunt et al. 2009; Varela et al. 

2014). Chemical pollution of natural waters is a major concern across the globe, mainly due to the 

unknown long-term effects on aquatic life and on human health (Schwarzenbach 2006; Kolpin et al. 

2002; Richardson 2007).  

The application of wastewater analysis to public health issues and human behaviour is often referred 

to as ‘sewage epidemiology’ (van Nuijs et al. 2011). The link between illicit drug consumption in 

humans and their presence in the wastewater treatment system, and thus surface water of populated 

areas, is well documented in the published literature (van Nuijs et al. 2011; K. V. Thomas et al. 2012; 

Boles and Wells 2010; Huerta-Fontela et al. 2008; Postigo, de Alda, and Barceló 2010; Metcalfe et al. 

2020; Zuccato et al. 2008; Bones, Thomas, and Paull 2007; Castiglioni et al. 2006; Irvine et al. 2011; 

Lai et al. 2013; Karolak et al. 2010). Van Nuijs et al. (van Nuijs et al. 2011) performed a critical 

review regarding sewage epidemiology for illicit drug usage in a population; i.e. wastewater analysis 

to determine drug usage via back-calculations for an accurate account of almost real-time abuse of 

illegal drugs within a community level population.  
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Within this field there are three main areas of concern: (i) calculating estimated usage of illicit drugs 

within a given population based upon the quantity of drugs and metabolites found in the water system, 

(ii) the performance of the WWTPs in eliminating drugs from the water system, and (iii) the unknown 

ecological effect that will result in these emerging pollutants accumulating in surface waters. 

2.3 Laboratory procedures and current capabilities 

In order to obtain detected levels of explosives from the wastewater system, robust techniques for the 

sampling, extraction, identification and quantification need to be developed so that they could be 

applied successfully for use in criminal investigations.   

2.3.1 Sampling techniques 

There is debate within the literature concerning the optimum method for collecting wastewater 

samples (Coes, Paretti, Foreman, Iverson, and Alvarez 2014b; Ort et al. 2010; Kuster et al. 2010), 

depending upon the circumstances of the sampling location, the type of analysis that will follow the 

sample collection, as well as the overall aim of the research being undertaken. The three main 

approaches to water sampling consist of either continuous active, continuous passive or discrete 

(grab) sampling methods. Discrete samples are often used, for example, when target compounds in the 

water are volatile or unstable; typically a 1-litre water sample collected at a given time in a given 

location (Environment Agency 2014). For use in studies monitoring spatio-temporal patterns such as 

drug usage, this kind of sampling would miss intervallic events when drug consumption may be 

significantly increased or decreased. The relatively small volume of water collected also limits the 

quantity of target analyte collected, which may be below the limit of detection of the analytical 

procedure.     

In a method comparison study for the sampling of trace organic compounds, Coes et al. (Coes, Paretti, 

Foreman, Iverson, and Alvarez 2014b) found that their target analytes were collected to varying 

degrees of success using all three of the above methods. The continuous methods were found to 

collect a larger number of trace organic compounds than the discrete samples, probably because of the 

volume of water collected and the length of time that the samplers were in contact with the water. The 

continuous active sampling method detected the most compounds overall, but at lower concentrations 
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than the passive sampler. The question of concentration is made more complex for continuous 

sampling methods by other factors that need to be considered, for example the fluctuating flow rate of 

the water in question, in-field calibration protocols and bio-fouling in the immediate environment.  

The successful collection of explosive residues from reconstituted seawater in a laboratory setup was 

achieved using Polar Organic Chemical Integrative Samplers (POCIS), which are frequently used in 

routine monitoring for pharmaceuticals, pesticides and other environmentally relevant compounds 

(Bailly, Levi, and Karolak 2013; Ibrahim, Togola, and Gonzalez 2013; MacLeod, McClure, and 

Wong 2007; Bayen et al. 2014; Alvarez 2013; Morin et al. 2012). The POCIS devices are composed 

of two disks of microporous polyethersulfone membrane encasing a solid phase sorbent disk that 

retains sampled chemicals from water samples that pass through it. These disks are clamped between 

two stainless steel rings ~10 cm diameter and can be deployed into the waterway in stainless steel 

baskets that house multiples of three POCIS.   

Developed in 2000 at the University of Portsmouth, Chemcatchers® are a similar alternative passive 

sampling device (see Chapter 7 for more details), which have many published applications in river 

water, seawater, raw and treated wastewater for a range of water contaminants including trace heavy 

metals, polycyclic aromatic hydrocarbons (PAHs), pesticides and pharmaceuticals (Aguilar-Martínez, 

Gómez-Gómez, and Palacios-Corvillo 2011; Allan et al. 2009; Tan et al. 2007; Charriau et al. 2016; 

Lissalde et al. 2016). Different compositions of the receiving material (usually solid phase sorbents) 

and outer membrane allow for this versatility and bring the opportunity to adapt the technology for 

new target compounds in the environment.  

Another approach to continuous passive in situ sampling has been described by Chen et al. (C.-E. 

Chen, Zhang, and Jones 2012; C.-E. Chen et al. 2013) who have deployed a novel sampling device 

using diffusive gradients for thin films (DGTs) to trace organic contaminants such as antibiotics in 

wastewater samples, independent of wastewater flow rate in the sewerage network. These disk shaped 

devices are slightly smaller in diameter than the POCIS and Chemcatchers® but have been used for 

similar applications for monitoring existing and emerging pollutants in the waterways. This in situ 

means of quantitatively measuring labile species in aquatic systems, without field calibration, has 
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already been successfully tested on non-organic components, for example heavy metals (P. Thomas 

2008), radionuclides (Stockdale and Bryan 2013) and nutrients (Lehto et al. 2006). Passive sampling 

has several benefits including efficiency in terms of cost and labour (C.-E. Chen et al. 2013), since 

active sampling methods struggle to accommodate varying flow rate (Söderström, Lindberg, and Fick 

2009; Zabiegała et al. 2009; Ort et al. 2010) and programmable active samplers are expensive, 

limiting their use. 

The fact that passive sampling has been useful when incorporated in the wastewater analysis 

approach, as demonstrated previously with the detection of a plethora of different target compounds, 

is extremely encouraging for the adaptation to trace explosives collection. The work done by Thomas 

(P. Thomas 2008) at Thames Water Ltd., successfully collected a range of heavy metals within the 

wastewater network aiding relative concentrations to be established and tracing the metal 

contamination from the point of collect back to the source. By adapting a passive sampling device for 

the collection of trace explosives, a similar approach can be taken to attributing their source and 

measuring relative concentrations across different sampling locations within the wastewater network. 

Particularly in the U.S there has been extensive geographical mapping of arsenic that has been 

detected in groundwater and drinking water samples (M. A. Thomas, Schumann, and Pletsch 2005; 

Fisher 2002). The concept of this work can be directly linked to the application of detecting trace 

explosives in the wastewater system since the target compounds have been detected in a discrete 

geographical location and then mapped according to concentration levels against different 

physiographic areas. This kind of visual display of the collected data enables spatial patterns to be 

identified and potential contamination sources to be discovered.   
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Figure 2.1: General Overview of the Wastewater System   
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Overall, the passive sampling method presents a powerful approach for the surveillance of 

trace organic compounds in the environment where maximum exposure to wastewater is 

essential for increased pre-concentration, and expensive auto-samplers are not accessible.      

2.3.2 Preparation and extraction   

The most common forensic investigation of trace explosives is from a post blast bomb scene, 

comprising a highly contaminated environment (Song-im, Benson, and Lennard 2012a). This 

means that the sample will require appropriate collection and clean-up processing before it 

will be compatible for analysis in highly sensitive and expensive instrumentation. Solid phase 

extraction (SPE) is commonly used to remove and pre-concentrate trace explosives, both 

organic and inorganic, from a variety of matrices (Ochsenbein, Zeh, and Berset 2008; Song-

im, Benson, and Lennard 2012b; Song-im, Benson, and Lennard 2012a). Depending upon the 

material from which the explosives need to be recovered, several collection techniques are 

available to the forensic scientists; assorted swabs (Song-im, Benson, and Lennard 2012b), 

electrostatic samplers (Beer, Müller, and Wöllenstein 2012) and various types of hand held 

vacuums (Shea and Morgan 2005). SPE is appropriate for the extraction of explosives from 

different water samples since this process is designed for the separation of target compounds 

that are dissolved or suspended in liquids from the other components contained in the sample 

matrix, depending upon their physical and chemical properties, for example the polarity of the 

target compound and whether it is in an organic or aqueous matrix. Different extraction 

techniques have been compared for the removal of explosives from lake water and tributaries 

(Ochsenbein, Zeh, and Berset 2008), from alcohol wipes (Song-im, Benson, and Lennard 

2012a) and from textiles (Brust et al. 2013) for post-blast residues. These published methods 

will be adapted and optimised for this specific research project, taking into account the 

method used to collect the water samples. Typically, wastewater samples are acidified and 

filtered prior to extraction in order to preserve the integrity of the sample by halting any 

further microbial activity and removing suspended particles (K. V. Thomas et al. 2012; van 

Nuijs et al. 2011; Irvine et al. 2011; Karolak et al. 2010; Lai et al. 2013).  
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2.3.3 Instrumental analysis 

Methods used to identify explosives vary largely upon the characteristics of the compound 

under scrutiny and the context in which they need to be identified. The required qualities for 

an explosives detection system in the field are considerably different to the requirements in a 

laboratory setting. A recent review by Caygill et al. (Caygill, Davis, and Higson 2012a) 

describes the advances in all areas of explosives detection, from developments in instrument 

portability and robustness for use in bombsites in unknown terrains to improvements in 

specificity and sensitivity for bench top analysers. The main approaches for explosives 

detection include spectroscopy (mass spectroscopy, infra-red spectroscopy, Raman 

spectroscopy), olfactory-type sensing by animals or electronic noses, chemical and 

electrochemical sensors, nanotechnology (nanotubes and nanoparticles), quartz crystal 

microbalances and thin film sensors (Caygill, Davis, and Higson 2012a).    

2.3.3.1 Identification of military explosives 

Military explosives such as nitroaromatics, nitramines and nitrate esters (see Table 2.1) are 

generally analysed using gas chromatography with mass spectrometry (GC-MS) and liquid 

chromatography (LC) with ultra violet-visible (UV-Vis) or mass spectrometry (MS) detection 

(ISO 2006). For detection using UV-Vis, the target compounds must contain a chromophore. 

Otherwise mass spectrometry can be used as it is extremely sensitive but sample matrices can 

cause interferences resulting in ion suppression or enhancement, known as matrix effects. 

These approaches, however, can be limited by the size and cost of the instrumentation.  

Recommended techniques for explosives detection, including the method provided by the 

International Organisation for Standardisation (ISO) (ISO 2006), comprise solid phase 

extraction to remove and concentrate the analytes, followed by chromatography for 

separation, and mass spectrometry or ultra violet (UV) detection for identification ((Babaee 

and Beiraghi 2010; Ochsenbein, Zeh, and Berset 2008; Schramm et al. 2015; Schramm, 

Vailhen, and Bridoux 2016; Larki, Nasrabadi, and Pourreza 2015; Jönsson, Gustavsson, and 

van Bavel 2007; Belden et al. 2015; Sisco et al. 2015). Gas chromatography (GC) is useful 
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for volatile substances that are not thermally labile, however, this limits its use for the 

detection of peroxide explosives that are highly unstable and were found to “activate” the GC 

column resulting in extremely broad asymmetrical chromatographic peaks (Widmer et al. 

2002). Nevertheless, both techniques are capable of detecting low nanogram levels of 

different kinds of explosives; this high resolution at low levels of analyte increases the 

discrimination power between forensically relevant amounts of explosives and background 

levels in the environment.  

2.3.3.2 Identification of peroxide explosives  

The detection of ultra-low levels of quantities of peroxide explosives on a routine basis is 

becoming increasingly important in the role that forensic science plays not only in the 

identification of an explosive used following an event, but also in the monitoring of the 

environment in order to provide forensic intelligence for surveillance and counter-terrorism 

measures (Ochsenbein, Zeh, and Berset 2008). Whereas gas chromatography is popular for 

the detection of military explosives, due to the increased instability of peroxides, the preferred 

methods are based upon liquid chromatography coupled to a mass spectrometer, tandem mass 

spectrometer or UV and fluorescence detector. However, other methods have also been 

successfully applied. Lubczyk et al. (Lubczyk et al. 2010) employed a series of specially 

coated, high frequency, quartz microbalances to create a novel sensor system to detect TATP 

at as low levels as 1 mg/L in a laboratory setting. The advantage of this system is the 

comparatively low price and availability that does not come with the training and assignment 

of a detection dog.   More recently, Rowell et al. (Rowell et al. 2012) investigated the 

detection of both nitro-organic and peroxide explosives in latent fingermarks. A system using 

direct analysis in real time (DART-) and surface-assisted laser desorption/ionisation time of 

flight-mass spectrometry (SALDI-TOF-MS) was able to detect the presence of six nitro-

organic explosives and one peroxide-type explosive down to nanogram level sensitivity. The 

explosives were detected both directly from surfaces including glass and stainless steel, and in 

fingermarks lifted from six different common surfaces. The investigation of explosives 
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detection is of clear importance to forensic and security domains for crime reconstruction and 

detection. Six key studies (Crowson and Beardah 2001; Widmer et al. 2002; Xu et al. 2014; 

Marsh, Mothershead, and Miller 2015; DeTata, Collins, and McKinley 2013; Jiang 2010) 

outline the use of LC-MS for the detection of organic peroxide explosives; the parameters 

used in each of these publications are listed in Table 2.3 and 2.4, and Table 2.5 lists the 

proposed identifying ions and retentions times for the analytes studied. Since different 

instruments were used from different manufacturers, some of the instrument parameters 

cannot be directly compared. 

These analytical methods by Crowson and Beardah (Crowson and Beardah 2001), Widmer et 

al. (Widmer et al. 2002) and Xu et al. (Xu et al. 2014) all concluded that LC-MS is a suitable 

technique for the analysis of trace levels of TATP and HMTD. Due to the fragile nature of the 

peroxide explosives and their thermal lability, a lower oven temperature and slower flow rate 

is favoured. Optimisation of such techniques, in particular to reduce the run time, will allow a 

higher throughput of samples and a faster overall result. Once the levels of forensically 

relevant explosives have been successfully detected, these measured amounts can be 

interrogated further to capture their spatial distribution throughout the wastewater journey 

using mapping techniques.       

2.3.4 Explosives in the Environment  

Europe has only recently proposed a method for determining explosives in water samples 

such as drinking water, ground water and surface water. It suggests the use of solid phase 

extraction (SPE) as a pre-concentration method and high performance liquid chromatography 

(HPLC) with ultra-violet (UV) detection as analysis (ISO 2006) . The presence of military 

explosives in the environment is attributed to historical military action, unexploded ordnance 

and discarded military munitions from underwater locations (Belden et al. 2015). The trace 

analysis of military explosives such as nitroaromatic compounds like TNT, nitramines such as 

RDX (hexahydro-1,3,5-trinitro- 1,3,5-triazine) and HMX (octrahydro-1,3,5,7-tetranitro-

1,3,5,7-tetrazocine), and nitrate esters such as PETN (pentaerythritol tetranitrate) have been 
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documented in wastewater, river water, lakes, soils and marine waters (Monteil-Rivera et al. 

2004; Ochsenbein, Zeh, and Berset 2008; Babaee and Beiraghi 2010; Barreto-Rodrigues, 

Silva, and Paiva 2009; Sisco et al. 2015; Walker C 2014; Ahmad et al. 2008) (Walsh 2001; 

Gaurav, Malik, and Rai 2009).  

Babaee and Beiraghi (Babaee and Beiraghi 2010) used micellular extraction and HPLC-UV 

for the extraction, separation and determination of four types of explosives (RDX, HMX, 

PETN and CTAB) in river and well-water samples. Detection limits were achieved at the 

nanogram level and attributed to environmental pollution from former ammunition plants and 

unexploded ordinances from military exercises in oceans and seas. Environmental 

contamination in groundwater due to emissions from explosives-manufacturing plants was 

also assessed by Yinon (Yinon 1996). In contrast, Yinon was able to detect picogram levels 

of explosives including RDX, TNT and HMX, and isomers of DNT (dinitrotoluene) using gas 

chromatography-mass spectrometry (GC-MS) with a temperature-programmed injector. The 

rate of decomposition of these thermolabile explosives during analysis was limited by the 

cooled temperature-programmable injector used. 

Another approach that has been investigated is solid phase microextraction (SPME) coupled 

to high performance liquid chromatography (HPLC) to detect and monitor different groups of 

military explosives in ground and drinking water, and soil samples (Gaurav, Malik, and Rai 

2009; Gaurav et al. 2007). More recently, further research into the accumulation of harmful 

explosives in natural waters from their testing, storage, transportation, usage and disposal has 

been carried out using both solid phase extraction liquid chromatography-electrospray-

tandem mass spectrometry and sole mass spectrometry (Ochsenbein, Zeh, and Berset 2008; 

Badjagbo and Sauvé 2012). Improvements in selectivity and specificity as well as run time 

are compared for the optimal mass spectrometry parameters enabling fast and effective 

analyses of trace explosives in a laboratory setting. 
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Table 2.3: Liquid chromatography conditions used for the detection of organic peroxide explosives HMTD and TATP.  

  

Reference Liquid 

Chromatography 

System 

Mobile Phase Injection 

volume (µL) 

Column  Column oven 

temp. °C 

Flow rate 

(mL/minute) 

Crowson & 

Beardah 2001 

HP 1100 95:5 water:methanol 0.5 - 1 ProC18 150 x 2.0 mm,  

3 μm with Pro C18 guard 

column 10 mm x 2.0 mm 

20 0.2 

Widmer et al. 

2002 

HP1100 65:35 methanol: water +  

5 mM ammonium acetate 

or formate 

1 - 2 ProC18 150 x 2.0mm,  

3 μm with Pro C18 guard 

column 10 mm x 2.0 mm 

20 0.1 – 0.2 

Xu et al. 2004 Waters 600- MS pump  

Waters 717 Plus 

autosampler 

75:25 methanol:water + 

2.5 mM ammonium 

acetate 

10 C18 4 μm, 150 x 3.9 mm Not stated 0.4 

DeTata et al. 

2013 

Agilent 1200 55:45 methanol:water 

gradient program + 10 

mM ammonium formate, 

pH 3 

10 C18 2.6 μm, 150 x 4.6 mm 40 1.0 

Marsh et al. 

2015 

Waters Alliance 2695 

Separations Module  

90:10 water:methanol 

+1.25 mM ammonium 

nitrate 

gradient program 

25 C18 5 μm, 150 x 2.1 mm Ambient 

temperature 

0.4 

Jiang 2010 Thermo Accela Pump 

and autosampler  

80:20 water:methanol  

+ 1 mM ammonium 

formate 

gradient program 

2  Hypersil GOLD PFP, 1.9 

μm, 100 x 2.1 mm  

Not stated 0.5 
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Table 2.4: Mass spectrometry conditions used for the detection of organic peroxide explosives HMTD and TATP.   

 

 

  

Reference Mass Spectrometer Ionisation 

source 

Corona 

Current 

(µA)  

Nebulizer 

temp. °C 

Capillary 

temp. °C 

Drying gas 

flow rate 

L/hour  

Cone 

voltage (V) 

Nebuliser gas 

pressure (psi) 

Crowson & 

Beardah 2001 

Thermo Finnigan 

‘Navigator’ Quadrupole  

APCI + 3.0 kV 

corona pin 

potential 

240 110 350 5 - 

Widmer et al. 

2002 

Thermo Finnigan 

‘Navigator’ Quadrupole 

APCI + Not stated 330 120 200 10 - 

Xu et al. 2004 Finnigan MAT Triple Stage 

Quadrupole 700 

APCI + - 360 150 - - 80 

DeTata et al. 

2013 

Agilent 6540 Ultra High 

Definition Accurate Mass 

Quadrupole Time of Flight  

APCI + 4.00 325 - 300 55 40 

Marsh et al. 

2015 

Thermo LCQ DECA XP 

MAX 

APCI+ 6.25 360 150 - - 56 

Jiang 2010 Thermo MSQ Plus APCI+ 30.00 350 - - 60 - 
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Table 2.5: Analyte details resulting from the LC-MS methods detailed in Tables 2.3 and 2.4.    

 

Reference Analyte Preparation 

solvent 

Observed spectral 

ion(s) (m/z) 

Proposed molecular species [M] Retention time 

(minutes) 

Total run time 

(minutes) 

LOD (ng) 

Crowson & 

Beardah 

2001 

HMTD Acetone 209 [M + H]
+ 

 

15.500 30 0.02 

Widmer et al. 

2002 

TATP Acetonitrile 240 

89 

[M+NH4]
+ 

Not identified 

12.000 13 0.10 

Xu et al. 2004 HMTD 

TATP 

Acetone/ 

Methanol 

207 

240 

[M-H]
- 

[M+NH4]
+
 

3.000 

7.600 

10 0.08 

0.80 

DeTata et al. 

2013 

HMTD  

TATP  

Acetonitrile 207.0615 

348.1869 

[M-H]
- 

[M+NH4+H(OOC(CH3)2)OOH]
+
 

1.679 

4.467 

13 0.50 

0.10 

Marsh et al. 

2015 

HMTD Acetone 207  

209 

224 

177 

[C7H15O5N2]
+
 

[M + H]
+ 

? 

[M+H-O2]
+ 

4.900 

 

20 20000 

Jiang 2010 HMTD 

 

TATP 

Acetonitrile & 

water 

Acetonitrile & 

water 

209.04 

 

348.08 

[M + H]
+ 

 

[M+NH4+H(OOC(CH3)2)OOH]
+
 

1.420 

 

9.370 

14 

 

 

0.682 

 

0.016 
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2.4 Crime Mapping and Spatial Analysis  

Crime mapping and spatial analysis uses geographical analytical tools that are applicable to 

the crime science discipline. Based upon the Scanning-Analysis-Response-Assessment 

(SARA) framework, each part of the problem-solving process can be explored using different 

computer packages such as ArcGIS, CrimeStat III and GeoDa. These can be used to explore 

the different types of spatial analytical methods on the basis of the hypothesis to be tested and 

the kind of data available. These techniques take into account the manner in which the 

available data could be imported and manipulated statistically as well as the presentation and 

interpretation of maps and the assumptions made during their production. Understanding the 

following key areas within crime mapping improves the insight that can be gained from using 

such analytical techniques: (i) geographical information and boundaries, (ii) what makes a 

good map visually, (iii) generating and displaying dual kernel density estimation (KDE) 

hotspot maps and analysing the ‘journey to crime’, (iv) understanding statistical associations, 

and (v) introducing statistical significance into hotspots and finally, (vi) illustrating change 

over time with spatio-temporal pattern mapping (Kent, Leitner, and Curtis 2006; Spencer 

2014; Chainey and Ratcliffe 2005).  

2.4.1 Visualising Crime Hotspots  

Crime is not uniformly or randomly distributed through time and space (Ratcliffe 2010). 

Therefore, in order to identify crime prevention activities and measures it is important to be 

able to visualise spatial patterns of crime in order to gain a better understanding of how a 

location and the level of guardianship can offer opportunities for criminal acts. As seen in the 

crime triangle (Cohen and Felson 1979), understanding a crime location is an important 

variable that needs to be considered when seeking to identify crime prevention measures. The 

technique of mapping crime to indicate where and when a particular crime type has taken 

place offers the potential to identify crime “hotspots”, or “an area that has a greater than 

average number of criminal or disorder events, or an area where people have a higher than 

average risk of victimization” (Eck et al. 2005). The boundaries used to define a crime 
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hotspot will depend on the size of the geographical area being examined; meaning that many 

definitions of hotspots will differ. Corcoran et al. (Corcoran, Wilson, and Ware 2003) 

emphasise the need for intelligent and up to date systems for producing crime maps 

displaying crime density data in an easily visualised and understandable way. This enables 

indicators of where crime is most likely to occur to be identified, and used for effective real-

time police resource allocation for crime prevention measures. Furthermore, accurate models 

of spatial crime patterns could be used for the prediction of future crime events in given areas 

(Brunsdon, Corcoran, and Higgs 2007).       

Many different types of crime map have been created and applied to different aspects of 

crime science. The simplest concept of visualising crime events in a certain location is by 

using point mapping as seen in McEwen and Taxman (McEwen and Taxman 1995) who used 

this method to describe localities of crime and arrests. The drawback with this technique is 

that whether a single crime event or several crime events take place, in the same location, a 

single point will represent both. This under representation of the data prevents the 

identification of the true crime problem. Variable symbol maps have also been used to 

visualise locations of shoplifting and how this relates to opportunity for crime (Nelson, 

Bromley, and Thomas 1996). The main difficulty with this type of map is that the use of 

many different symbols within a small area can occlude the true distribution of crime events.  

Brimicombe et al. (Brimicombe et al. 2001) used choropleth, or thematic mapping to analyse 

the geographical patterns within racially motivated crimes per spatial units defined by 

administrative boundaries. The problem with this method was that the incidence rate was 

reduced where locations of high crime rate were across two or more boundaries. Standard 

deviation ellipses were used to map the spatio-temporal relationship between burglaries and 

school hours in New York (Langworthy and Jefferis 1999). Combining both spatial and 

temporal data became complex and caused ambiguity where the data was multimodal 

(Brunsdon, Corcoran, and Higgs 2007). In order to measure the geographical displacement of 

crime, Bowers and Johnson (Bowers and Johnson 2003) used crime data to create buffer 
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zones to determine whether areas of high crime incidence had physically moved in reaction to 

crime prevention methods. One concern with this technique was the determination of the 

buffer zone size and how this would affect the overall analysis. Kernel density estimation 

(KDE) maps have also been demonstrated to be very useful tools for visualising crime density 

in areas where there is a large volume of crime, in large cities for example (McLafferty, 

Williamson, and McGuire 1999). In sparsely populated and countryside locations, however, 

kernel density maps can mistakenly identify crime hotspots over areas such as lakes due the 

surface based nature of the mapping technique. Brunsdon (Brunsdon, Corcoran, and Higgs 

2007)  also challenged the interpretation of kernel density maps for visualising crime 

distribution in comparison to point and aggregate mapping for crime. Harada and Shimada 

(Harada and Shimada 2006) describe the kernel density crime map as a way of analysing the 

spatial clustering of reported crime events by producing a smooth surface of density 

distribution based on histogram data. Kernel density estimates produce a smooth surface map 

related to a given area so that the higher the crime event density, the darker the shading on the 

map (Levine 2004). The data generated by this research project will provide measured levels 

of explosives, rather than numbers of reported crime events, with associated geographical 

location information that can be used to analyse the spatial distribution of homemade 

explosives throughout sections of the wastewater system. Similar to kernel density maps, 

areas with relatively higher levels of detected explosives can be shaded accordingly on the 

hotspot map in order to identify any spatial clustering of areas where there are explosives 

present.    

Crime mapping to date has generally been retrospective and used for volume crimes such as 

burglary (Spencer 2014; Langworthy and Jefferis 1999), shoplifting (Nelson, Bromley, and 

Thomas 1996) and vehicle theft (Ratcliffe and McCullagh 1999). Chainey (Chainey 2008) 

and Bowers (2004) discuss the use of hotspot mapping for the prediction of where future 

crime events will occur, as a crime prevention-disruption tool, but there is very little research 

proposing to harness the capabilities of such mapping techniques as an intelligence tool. This 
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suggested novel approach to mapping has the potential to visualise near real-time surveillance 

through wastewater analyses.  

The effect that different types of crime map, and formats within the same type of crime map, 

can have on interpretation has not yet been fully addressed, and when looking at a map of this 

sort it is essential that all assumptions made during its production and related limitations are 

taken into account.  

2.4.2 IED Mapping 

Several pieces of research have been conducted into the use of IEDs in Iraq and the counter 

insurgency operations employed by coalition forces, and how these two events interact with 

each other in space and time (Townsley, Johnson, and Ratcliffe 2008; Braithwaite and 

Johnson 2011; Braithwaite and Johnson 2014). The use of IEDs was found to be spatio-

temporally clustered and the decay of the observed trends was found to be similar to that of 

the spread of crime or disease (Townsley, Johnson, and Ratcliffe 2008). The identification of 

IED hotspot areas through clustering, and the modelling of these observed patterns evolving 

through time and space could bring important information for wastewater analysis regarding 

sampling locations and the detection of a background level of explosives and their 

environmental metabolites detected in wastewater. If there are clustering patterns of IED use 

there could possibly be clustering patterns of IED manufacture, adding another implication to 

the use of wastewater analysis for the identification of hotspots of criminal behaviour that 

could be linked to other illegal activities such as illicit drug manufacture and organised crime.  

The research on IED mapping provides an example of successful spatial analysis for counter-

terrorism purposes. If hotspots can be identified from data generated through the wastewater 

analysis approach then this would be a powerful tool for intelligence gathering operations.       

2.5 Forensic science 

Forensic science is the application of science to the law. In this particular research project the 

forensic detection methods used for environmental monitoring are applied to the generation of 
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data providing forensic intelligence to aid the prevention of crimes using homemade 

explosives.    

2.5.1 Environmental forensics 

Combining analytical and environmental chemistry, environmental forensics covers both field 

and laboratory based analyses that can be used in the courtroom to attribute liability when 

regulations have been broken, often relating to the cause of a pollution event. The increased 

formalisation of the scientific processes and the approaches to reporting environmental 

evidence in court is essential to the success of this particular area of forensic science. New 

techniques and methodologies must stand up to rigorous scientific scrutiny, particularly with 

the introduction of new policies and stricter legislation with the emphasis on protecting the 

environment and having the power to hold responsible those who breach the regulatory limits 

of pollutants released into the local environment (Mudge 2008). For public health and safety, 

as well as the protection of biota, it is essential to monitor water quality in surface and ground 

waters as well as for drinking water, the air quality, particularly in urban environments and 

key characteristics of the land to indicate any changing trends in soil health. Geographical 

variations of environmental characteristics are often the tools used for source identification 

and comparison of forensic samples in the effort to trace the origin of a component or to 

exclude samples as being from the same source.   

Loos et al. (Loos et al. 2009; Loos, Locoro, and Contini 2010) investigated the presence of 

polar organic pollutants in European river waters. Chemical pollution of natural waters is a 

major concern across the globe, mainly due to the unknown long-term effects on aquatic life 

and on human health (Schwarzenbach 2006; Kolpin et al. 2002; Richardson 2007). Loos et al. 

(Loos et al. 2009)  were able to identify which rivers were responsible for the major aqueous 

emissions of key chemicals in Europe. They proposed ‘‘indicative warning levels’’ for such 

pollutants in surface waters. The surveillance of pollutants in the water system is tackled by 

the European Water Framework Directive (WFD), which has set up environmental objectives 

to identify specific river basin pollutants, for ‘‘good water status’’ in all European waters by 
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2015. A set of important substances to be monitored by EU member states has been provided 

by the WFD and the Environmental Quality Standards (EQS) (Lettieri 2015). However, for 

new pollutants, a rigorous investigation into their occurrence and concentration is critical, 

(Loos et al. 2009). Targeted contaminants included pharmaceutical compounds, pesticides 

and their degradation products, perfluorinated acids and endocrine disruptors. High levels of 

previously undetected contamination and insufficiently treated wastewater were highlighted 

as major concerns from the findings. There is also a necessity to undertake investigative 

monitoring in order to identify unknown pollutants in water bodies of poor ecology or which 

have been identified through specific risk assessments (Allan et al. 2006).  

2.5.2 Value of experimental studies in forensic science 

The aim of forensic science is to provide robust empirical evidence from any discipline that 

can be applied to the law, in order to allow appropriate investigations and prosecutions of 

criminal behaviour and to achieve justice for those who are victims of crime (National 

Academy of Science 2009). However, assigning the weight of expert evidence in court is 

often problematic (Broeders 2006). Forensic practitioners should be skilled in critically 

reviewing results, data, circumstantial information, legal propositions and cases as a whole 

(Houck and Siegel 2015a). Furthermore, the context sensitive nature of each different forensic 

investigation means that it is difficult to set generalised protocols and methodologies that can 

be applied when analysing forensic evidence in different cases. Standard operating procedures 

are not implementable in the same manner for each case as the context and impinging 

variables change, and the interpretation of the applicable procedures to each new case is 

essential (Houck and Siegel 2015b). Development of an evidence base that informs the 

collection, analysis, interpretation and presentation of evidence is essential (Saks and Koehler 

2008; Saks 2010), but it does not stop there. Secondary level studies can build on this 

knowledge base by mimicking the forensic context of a specific case, greatly increasing the 

evidential importance presented from these studies (R. M. Morgan et al. 2009). 
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In recent years, forensic science has been strongly criticised on the basis of the validity of the 

science utilised in forensic practice (National Academy of Science 2009; Saks 2005; 

Commission 2011) following numerous high profile cases experiencing erroneous forensic 

identification of both ‘traditional’ (hair, semen, fingerprints) and ‘modern’ (DNA) analysis 

evidence types (Broeders 2006). These cases brought into question the interpretation of 

forensic evidence, admissibility criteria for forensic evidence in court and biases in forensic 

science. Forensic evidence is probabilistic by nature (Taroni et al. 2004) and the evaluation 

and interpretation of probabilistic evidence is widely debated across and within each forensic 

discipline (Biedermann, Garbolino, and Taroni 2013; Rudram 1996), including forensic 

genetics (Haned 2011), forensic glass evidence (Curran et al. 1998), forensic ink analysis 

(Neumann and Margot 2009), and fingerprint comparisons (Dror et al. 2011; Langenburg, 

Champod, and Genessay 2012). Currently there are no criteria for England and Wales that 

determine the reliability or admissibility of evidence in court, there is particular concern about 

expert opinion evidence, which can be presented as unequivocal facts rather than a 

probabilistic judgment (Commission 2011). This arguably leads to flawed interpretations and 

potentially erroneous convictions as the jury could be misled as to the weight and/or 

significance of the evidence. Furthermore, there is often disagreement among peers from the 

same forensic discipline as to how a given piece of evidence should be interpreted (Dror and 

Rosenthal 2008). 

Misjudged interpretations by ‘expert’ scientists of forensic evidence leading to wrongful 

convictions prompted an investigation by the US National Academy of Science (NAS) into 

such failings in the application of forensic science in the courtroom (National Academy of 

Science 2009). This report describes the lack of standardisation, certification and 

accreditation as well as problems relating to the interpretation of forensic evidence; in 

particular the individualisation fallacy and admissibility of forensic evidence in court (see 

also (Saks and Koehler 2008; Page, Taylor, and Blenkin 2011; Cole 2013; Kaye 2010; Kaye 

2003). The NAS report argued that forensic evidence should be based upon scientific studies, 
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but that there is “a notable dearth of peer-reviewed, published studies establishing the 

scientific bases and validity of many forensic methods” (National Academy of Science 2009). 

Following the Daubert Ruling in the USA in 1993, which led to the concept of admissibility 

criteria, there is a burden upon forensic science for all evidence to be relevant and reliable in 

the states where Daubert is implemented; this means that evidential reliability must be judged 

upon scientific validity. This is a matter for the courts and the law surrounding the use of 

expert evidence to review so that the presentation of science in the courtroom is reliable. 

Aside from the court, the forensic practitioners who undertake this science also need to 

consider the way their analyses are carried out. A clear and thorough philosophical 

framework for forensic analysis in the field of forensic geoscience was presented by Morgan 

and Bull (R. Morgan and Bull 2007) in which they addressed the problems of matching 

comparison samples rather than seeking to exclude, the nature of analytical techniques 

employed and their inter-dependence, and balance between rare and ubiquitous sample 

components. Whilst specifically aimed at forensic geoscience, these principles can be more 

widely applied to forensic science, and particularly to trace materials.  If the key areas of 

difficulty within forensic analysis outlined by Morgan and Bull (R. Morgan and Bull 2007) 

can be avoided, forensic evidence presented in court will be arguably more robust and 

meaningful given the probabilistic framework within which forensic science operates, and the 

necessity of forensic science to engage with inherent uncertainty when making inferences and 

reaching conclusions concerning evidence. Furthermore, the potential for trace evidence to 

have a high evidential value is dependent upon empirical studies that mimic the forensic 

context for a given case (R. M. Morgan et al. 2009) as an empirical evidence base is critical 

for transparent and robust inferences to be made. Forensic evidence requires rigorous 

scientific content, collaborations between casework and academic experience, and primary 

academic theories, which are built from specific forensic casework experimentation. These 

requirements all highlight the necessity for evidence-based scientific methods and a 

systematic approach to holistic crime reconstruction, which is not always achieved within the 

forensic science domain but will be the chosen, innovative approach to this research project.  
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2.5.3 Trace Evidence  

The foundation for the utilisation of trace evidence in forensic investigations is built upon 

Locard's Exchange Principle that ‘every contact leaves a trace’. It may not be that it is 

possible to see the trace, recognise the trace, or even know that trace evidence is present. But 

disturbances of an environment such as contact and movement will be documented by the 

dispersion of biological, chemical and physical traces. It is the skill of investigators in crime 

reconstruction that enables the identification and interpretation of the trace evidence correctly 

to bring meaning to a crime scene (Thornton and Kimmel-Lake 2011). 

Evidence gathering is essential to the investigative practice (Osterburg and Ward 2010); it 

involves the recognition of evidence and its subsequent preservation, documentation, 

collection and transportation (Chisum and Turvey 2011). Types of trace evidence include, but 

are not limited to, hairs, fibres, glass, fingerprints, DNA and explosives. Trace evidence 

quantities are amounts that cannot be seen by eye, in quantitative terms. For the example of 

trace explosives, this may be considered as less than a milligram (Crowson and Beardah 

2001). This broad category of evidence and its inconspicuous nature helps trace evidence to 

establish the circumstances of a crime without being easily detected. 

The importance of trace evidence was recognised by Kirk who asserted that “physical 

evidence cannot be wrong; it cannot perjure itself; it cannot be wholly absent” (Kirk 1953). 

Understanding that trace evidence, for example a fingerprint, is transferred as a result of 

physical contact and movement, can help to establish if a selection of suspects can be 

eliminated from being at a certain crime scene, or not. However, the capacity of trace 

evidence, for example the recovery of DNA from a crime scene, is highly variable and case 

dependent. Factors affecting the type of intelligence, or evidence, that a particular trace 

sample can provide depends upon the nature of the evidence type, the characteristics of the 

individuals and environments involved and also the length of time that has passed before, 

during and after a crime (Raymond et al. 2009). Figure 2.2 details the evidence dynamics 

throughout the course of an investigation – pre-, syn- and post- a forensic event, taken from 
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French et al. (French, 2013.). By having empirically generated information concerning pre-, 

syn- and post- event behaviours of the trace evidence in question, a more informed 

reconstruction of what was likely to have happened can be built up.  Evidence dynamics, a 

term introduced by Chisum and Turvey (Chisum and Turvey 2011), explore the effects that 

events before, during, or after a crime can have on possible interpretations of physical 

evidence. Factors such as the weather cause the movement or transfer of physical particulates 

that could be used as evidence to reconstruct a crime following its occurrence. The target 

explosives in this study are themselves a type of trace evidence; the possible explanations for 

finding such compounds in the wastewater system depend upon the actions taken by and 

external events surrounding their manufacture, disposal and movement through the sewerage 

network which must take into account flow rates, sewer capacities, rainfall, time of year, 

microbial behaviour and so on. Exploration into the spatial and temporal distribution of these 

analytes under different external factors and taking into account the impact that different 

events, pre- syn- and post- the illegal manufacture of homemade explosives can have on the 

interpretation of finding such physical evidence in wastewater is essential. Investigations into 

the behaviour and dynamics of trace evidence have been carried out on both a large scale, at 

crime scene level, looking at bomb scenes (Abdul-Karim et al. 2012) and domestic rooms (R. 

M. Morgan et al. 2014) and on a smaller scale concerning a particular type of trace evidence 

on items such as clothing, footwear and vehicles (R. M. Morgan et al. 2010).    

The analysis of evidence will involve identification and classification of analytical techniques 

that can enable comparisons to be made between samples in order to assess whether particular 

theories may be rejected or not. Trace evidence is frequently used, if not relied upon, in 

forensic investigations to determine whether it is possible to discriminate samples from a 

suspect and a crime scene. Such exclusionary interpretations are highly valuable for assessing 

the theories that can be eliminated, rather than which theories can be confirmed. The 

assumption of uniqueness (that two un-observably different marks must have been created 

from the same source) has not arisen from an empirical foundation and is increasingly being 
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challenged by the evidence of errors of conclusions based upon this assumption (Saks 2005). 

The exclusionary approach to the interpretation of trace evidence is consistent with the theory 

of falsification (Popper 1963), stating that scientists should not seek to prove their theories 

but to disprove them. This philosophy is encouraged in forensic science generally (Walls 

1968) and across many different forensic disciplines including trace (such as forensic 

geoscience (R. Morgan and Bull 2007; R. M. Morgan and Bull 2007)) and pattern evidence 

(such as latent fingerprint identification (Cole 2005)). Interpretational issues of trace evidence 

also affect DNA examiners, in particular the areas concerning DNA mixture interpretation 

and the validity of using Low Copy Number (LCN) typing in forensic cases (Budowle et al. 

2009; Budowle, Eisenberg, and van Daal 2009). Again, it is basic assumptions made by the 

examiners that are causing complications when applying these techniques to a variety of 

contexts relevant in different forensic investigations. Potential issues concerning the 

wastewater analysis approach proposed in this research project surround primarily (i) the 

identification of an explosive in a wastewater sample, and (ii) the confidence of the analyst 

that the positive identification is not due to an alternative substance, for example a 

contaminant with the same ion mass or a precursor chemical that has a legitimate reason for 

being in the wastewater (although if detected in higher than expected levels this could also be 

an indicator of illegal explosives manufacturing). Once an explosives manufacturing hotspot 

has been identified, this area may still cover a geographical area associated with hundreds of 

people, taking into account whether the location in question is a residential or business area 

and the types of buildings present, for example high rise blocks of flats or isolated 

commercial properties.     

2.5.3.1 Spatial and Temporal Nature of Wastewater Evidence 

Given that trace evidence is often not visible by eye, it is important that informed decisions 

can be made as to where and when the optimum location and time to find a given form of 

trace evidence can be uncovered. Information of this nature is often based upon experience 

and tradition rather than evidence generated using a scientific method (Saks and Koehler 
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2008; Saks 2005; Mnookin et al. 2011). There is also the issue of forensic science being an 

applied science, and whereas in most scientific disciplines there is a solid and very valuable 

knowledge base, it is the empirical evidence base for the application of this primary science to 

a forensic context that is lacking and can lead to interpretational errors in the presentation of 

trace evidence in the criminal justice system. The creation of an empirical evidence base, 

taking into account that various facets of the forensic context must be encouraged, allows the 

accurate interpretation of scientific analyses to be applied to the court. Since the approach in 

this study has not previously been researched it is crucial that the spatial and temporal 

behaviours of these explosives in the wastewater system are investigated in an empirical way 

to provide robust foundations for the generation of useful evidence for forensic intelligence 

and crime prevention. However, the processes experienced by similar trace evidence types 

described below can be taken into consideration when investigating the wastewater journey 

and the chemical substances that are carried within it.     

At a crime scene level, it is important to know where the optimal places are to locate different 

types of trace evidence. Even though each crime scene will be different to the next, 

identifying key characteristics with reference to the spatial and temporal distribution of trace 

evidence particulates is valuable information. For example, Abdul-Karim et al. (Abdul-Karim 

et al. 2012) investigated the spatial distribution of post-blast RDX explosive residue in order 

to pinpoint the exact locations where trace explosive residue samples should be sought during 

sample collection from a bomb scene for forensic investigations. This study is the first of its 

kind looking at the spatial distribution following a bombing. However there is still a lack of 

published literature concerning the spatial and temporal distribution of trace explosives 

during their manufacture, and their behaviour after creation and prior to detonation. Another 

crime scene could be in the home; Morgan et al. (R. M. Morgan et al. 2014) studied the 

distribution of pollen grains in a typical domestic room, the effect of time and disturbance on 

the spatial arrangement of the pollen grains and the related forensic implications. This 

approach of mimicking crime scene circumstances and generating empirical data is essential 
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to building a solid empirical foundation for forensic evidence interpretation that is suitable 

and admissible for the courtroom. Similar approaches can be adopted in this study concerning 

the effect of time since manufacture and disturbance from interfering components of the 

wastewater matrix and the varying volume and flow rate of wastewater in the sewers, which 

in turn will affect the magnitude of the unavoidable dilution effects encountered once the 

explosives enter the wastewater system.  

On a more focused and smaller scale, it is also highly important that individual items, which 

are commonly submitted for forensic analysis, are also scrutinised in terms of how trace 

evidence particulates behave in their presence. More specifically, information is often sought 

concerning how independent trace particulates interact with one another; the amount of 

transfer and persistence provides key information concerning the circumstances that items 

such as clothing, footwear and vehicles have been exposed to. Morgan et al. (R. M. Morgan et 

al. 2010) investigated the transfer and persistence of pollen as trace evidence using UV 

powder as a proxy. Different scenarios were tested, again to mimic situations that would be 

relevant to a forensic investigation. Such studies provide valuable contextual information 

regarding where the optimal locations for sampling are, on an item of clothing for example, 

and on other related items such as footwear and car upholstery, given a particular crime scene 

scenario. Understanding the stability and movement dynamics of explosives and their 

precursor chemicals in the environment will provide essential information that will help to 

decide whether or not their presence is of significance for a particular forensic investigation. 

This has an important impact on the interpretation of explosives evidence in forensic 

investigations. 

There is a lack of experimental work in the published literature that deals with the precursor 

chemicals and explosives themselves prior to their use. It is important that we seek to fill 

these gaps in our understanding of the life cycle of homemade explosives and their fate once 

they are synthesised. From entering the wastewater system at the manufacturing location via 

hand washing, storage of finished explosives in containers such as baths and sinks and direct 
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disposal via flushing, to the point at which they are degraded, there is an undefined 

opportunity for detection.   

 

The understanding gained regarding the evidence dynamics in this particular area of research 

will aid in building a holistic tool that harnesses the understanding of the stability and 

degradation pathways of the analytes in complex matrices such as wastewater. Furthermore, 

the time-scales and quantities at play in the illegal manufacturing and wastewater removal 

procedures and the selective processes of the interactions between the analytes and the 

sampling devices in the environment offer a novel and valuable approach to forensic 

investigations.   

2.5.4 Forensic Intelligence 

Intelligence can be defined as the resultant product of collecting, collating, evaluating, 

analysing, integrating and interpreting information (Federation of American Scientists 1996). 

Currently the methods employed to gain information concerning where clandestine explosives 

laboratories exist are limited. Information can be gathered from indirect searches, for example 

at locations searched as suspected drugs laboratories or for unrelated criminal activities, from 

tip-offs from the general public via the counter-terrorism hotline, or from traditional 

intelligence routes.  
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Figure 2.2: Evidence dynamics throughout the course of an investigation – pre-, syn- and post- forensic event, taken from French et al. (French, 2013).  
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The increased use of improvised explosive devices for terrorist behaviour means that there is 

a greater urgency to discover where and when the common household ingredients are being 

manufactured and who is responsible for their usage. In addition, the need to characterise a 

baseline level of explosives and related chemicals in the environment is essential in order to 

be able to then make meaningful conclusions based upon detected levels above this baseline 

in a large urban city such as London. Furthermore the option to use high-resolution mass 

spectrometry for screening environmental samples means that the data generated can be 

stored and mined retrospectively for the analysis of new analytes that emerge in the future to 

check whether such chemicals were present previously, before being targeted.  

2.5.4.1 Different Intelligence Collection Disciplines 

The aim of gathering intelligence is to generate detailed knowledge of threats and then assess 

how best to react to them (MI5 Security Service 2016). According to Richard English 

(English 2010) “intelligence is the most vital element in successful counter-terrorism”. There 

are several different intelligence collection disciplines, including HUMINT (human 

intelligence), SIGINT (signals intelligence), IMINT (imagery intelligence) or PHOTINT 

(photo intelligence), MASINT (measurement and signals intelligence) and OSINT (open 

source intelligence) (Federal Bureau of Investigation 2016). However this is not an 

exhaustive list as many of these categories have their own defined sub-categories. For 

example, SIGINT is compiled from all communications intelligence (COMINT), electronic 

intelligence (ELINT) and foreign instrumentation signals intelligence (FISINT), and types of 

MASINT include radar intelligence (RADINT) and infrared intelligence (IRINT).  

 

Another intelligence collection discipline is forensic intelligence (FORINT), which has been 

defined as “a model and a philosophy where crime scene data and information are pivotal to 

a decision-making framework that facilitates the detection, disruption and prevention of 

crime in a timely manner” (Ribaux et al. 2010; Rossy and Ribaux 2013; Horne et al. 2014). 

This discipline requires information from crime scenes to be collected, even if it is not to be 
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used as evidence, if it has potential to provide a form of intelligence. GEOINT (geospatial 

intelligence) includes imagery and mapping data such as GIS layers or a presentation of data 

collected via other intelligence disciplines such as HUMINT and SIGINT. The forensic 

intelligence gathered from analysing wastewater in targeted locations, not only at crime 

scenes but also in areas of concern based upon pre-existing intelligence, can be used to 

generate geospatial intelligence to help direct resources for disrupting future crimes.     

2.6 Gaps in the Current Research 

As highlighted in this literature review there are several studies covering the detection of 

military explosives in natural waters (Cortada, Vidal, and Canals 2011; Ochsenbein, Zeh, and 

Berset 2008; Badjagbo and Sauvé 2012; Schramm, Vailhen, and Bridoux 2016; Sisco et al. 

2015), the detection of peroxide explosive standards under laboratory conditions (Widmer et 

al. 2002; Crowson and Beardah 2001; Xu et al. 2014), and the detection of explosives 

residues post-blast for analysis following detonation (Abdul-Karim et al. 2012; Hutchinson et 

al. 2008; Calderara, Gardebas, and Martinez 2003). However, there is no record in the 

published literature of methods for the detection of peroxide explosives in the environment. 

The research that has been conducted on wastewater analysis concerns environmental 

contamination from various substances such as personal care products, polar organic 

pollutants, pesticides and their degradation products, perfluorinated acids and endocrine 

disruptors (Loos et al. 2009; Loos, Locoro, and Contini 2010; Postigo, de Alda, and Barceló 

2010; Kolpin et al. 2002). Other further reaching studies have applied wastewater analysis to 

identify human behaviours concerning the use of pharmaceuticals and illegal drug 

consumption per population (van Nuijs et al. 2009; Karolak et al. 2010; H. E. Jones et al. 

2014; Bones, Thomas, and Paull 2007; Kasprzyk-Hordern, Dinsdale, and Guwy 2009). 

Furthermore, the data generated from these studies into population trends has not been 

mapped. In general, the majority of crime mapping is done retrospectively looking for spatial 

patterns and clustering of volume crimes that have already occurred, and does not offer any 

on-going surveillance for use in conjunction with other forms of intelligence information to 
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identify geographic areas of concern before any large scale attacks are committed. This 

research project brings together wastewater analysis, explosives detection, robust laboratory 

analysis, mapping techniques and the application of these to progress understanding to the 

forensic community. These areas need to be addressed holistically in order to achieve the 

overall aims of the project from the sampling and collection methods to the potential 

interpretational complexities.  

2.7 Research problem 

With a very real threat of terrorist activities using homemade explosives in large European 

cities such as London, the disruption of individuals manufacturing their own explosives in 

clandestine “laboratories” is both complex and hidden in nature. No single approach will 

provide the full picture as to where homemade explosives are being synthesised and so a 

multi-indicator approach, by combining several information sources, must be desirable. The 

addition of another tool, such as wastewater analysis, to traditional intelligence sources 

cannot be over-estimated in the face of such a considerable challenge. It is essential that the 

information gained from wastewater analysis must be timely, technically robust and able to 

address the dynamic nature of the problem, without requiring unachievable investments in 

resources and time. As has been shown for the wastewater analysis for illicit drugs, the 

approach offers more dynamic and relevant information concerning geographical and 

temporal patterns with a multidisciplinary approach, which has proven central when 

developing the near real-time and non-invasive approach (EMCDDA 2016).   

2.7.1 Advantages and Limitations of the Wastewater Analysis Approach 

Once a criminal process has been identified, the introduction of counter-measures to prevent 

different stages of the criminal process can be implemented. Often, the criminals involved can 

find ways of circumventing such counter-measures, however, the benefit of the wastewater 

analysis approach is that during the manufacture of homemade explosives there will always 

be generation of waste. In this specific application for wastewater analysis, the means of 

avoiding the release of chemical waste into the wastewater network may create a greater 
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footprint of evidence pertaining to the illegal behaviour. Figure 2.3 identifies the criminal 

process for homemade explosive manufacture, associated counter-measures and how these 

can be circumvented.  

Figure 2.3: General process of HME manufacture, opportunities for counter-measures and 

possible resultant offender behaviour.   

  

There are counter-measures already in place to try and disrupt the manufacture and use of 

homemade explosives. These include tracking IP addresses of individuals who may be 

researching how to make homemade explosives on their computer and accessing online 

forums that discuss how to make a variety of homemade explosives. By accessing the Dark 

Web and using digital currencies, this sort of research and purchasing of precursor chemicals 

can be untraceable. Intelligence gathering and the introduction of European Union regulation 

on marketing and use of explosives precursor materials can control the sale quantity and limit 

the strength of precursor materials being bought. However, by changing buying behaviour 

and purchasing small amounts of precursor chemicals from multiple different sources can 

circumvent this counter-measure. In the same way, a ban on the manufacture of certain 

chemicals by controlling the associated precursor chemicals would displace the problem as 
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offenders could find an alternative chemical with similar properties that could be 

manufactured instead.  

Although the wastewater analysis approach targets this criminal process post-manufacture, as 

a counter-measure it is discrete and difficult to avoid without potentially raising suspicion by 

installation of a separate and independent waste storage system. It is always possible that 

offender behaviour could be masked by the shared use of waste pipes in large complex 

buildings and as previously stated, the quantity of homemade explosives that could be 

entering the wastewater network are unknown. However, by adding the wastewater analysis 

approach to those counter-measures already in place, targeted locations could be monitored 

covertly for the release of homemade explosives into the sewerage network based upon pre-

existing intelligence associated with specific people.  

2.8 Research question 

This thesis aims to answer the following question: to what extent can the wastewater analysis 

approach be applied for the forensic detection of trace explosives and how can this help to 

inform on-going counter-terrorism operations?  

2.9 Objectives 

In order to answer this research question the following chapters had specific questions to 

which the answers would help to evaluate the viability of wastewater analysis for trace 

explosives detection. The chapters are presented in the order in which they were carried out in 

this thesis.  

2.9.1 Chapter 3: Analysis 

The literature review in this chapter has already identified that the target analytes can be 

detected and quantified by using liquid chromatography mass spectrometry methods. 

However the following questions were important in developing a robust protocol for trace 

explosives detection: 
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 What level of sensitivity, selectivity and confidence can be achieved by the optimised 

liquid chromatography and mass spectrometry parameters?  

 What storage requirements need to be met once the samples are in the laboratory? 

 

2.9.2 Chapters 4 and 5: Extraction 

Many methods are available in the peer-reviewed literature and in manufacturer application 

notes for the solid phase extraction methods of trace military explosives from environmental 

and aqueous samples, as detailed in this literature review. However there has not been a 

comprehensive investigation into the extraction of organic peroxide explosives from 

wastewater. The following questions were addressed in the extraction chapters: 

 What is the best method for extracting organic peroxide explosives from complex 

wastewater samples? 

 What level of sensitivity, selectivity and confidence can be achieved by the chosen 

method? 

 Can the chosen method be applied to “real” wastewater grab samples? 

 

 

2.9.3 Chapter 6: Stability 

In order for the wastewater analysis approach to be feasible, the compounds of interest must 

be viable and available for collection and analysis in the wastewater itself, under the 

conditions of the sewers in London. An evaluation of the stability of the peroxide explosives 

tested was focussed upon in this chapter, addressing the following questions: 

 Are the target compounds stable once they enter the wastewater matrix and over a 7 

day period? 

 Can a rate of degradation be established for each compound? 

 What does the observed stability of the analytes mean for the wastewater analysis 

approach? 
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2.9.4 Chapter 7: Passive sampling  

Following the analysis of a range of trace explosives in grab samples taken from central 

London in Chapter 5 and having highlighted the benefits of passive sampling compared to 

traditional grab sampling in the literature review, the concept of passive sampling was tested 

in the laboratory, addressing the following questions:  

 Can the passive sampling devices be adapted for trace explosives collection in situ in 

the wastewater? 

 Can further improvements be made for future testing in the field? 

 

2.9.5 Chapter 8: Forensic intelligence 

The experimental results achieved thus far will help to evaluate the extent to which any 

wastewater analysis of trace explosives can be used as an intelligence-gathering tool, by 

considering the following questions:  

 Does the wastewater analysis approach meet the requirements of the forensic 

process? 

 How can the data gathered regarding detected levels of trace explosives in the 

wastewater system be processed and made into meaningful and actionable 

information? 

 To what extent can the wastewater analysis approach be implemented in on-going 

counter-terrorism operations? 
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SECTION 1 

Chapter 3:  Analysis 

3.1 Introduction 

This chapter presents the method development process for the liquid chromatography-mass 

spectrometry (LC-MS) detection of trace levels of two explosives, hexamethylene triperoxide diamine 

(HMTD) and pentaerythritol tetranitrate (PETN), which took place at the Organic Analysis 

Laboratory at Natural Resources Wales. These two analytes were chosen so that an organic peroxide 

explosive was tested in addition to a nitrate ester, as well as taking research budget limitations into 

consideration when purchasing standard solutions. A published application note provided by the 

manufacturers of the instrument being used was employed as a starting point for the initial parameters 

(Kinghorn and Milner 2005).  

LC-MS is a two-part analysis technique combining a chromatography separation stage with a mass 

spectrometry detection stage. Liquid chromatography separates analytes within a liquid mobile phase, 

which passes through a solid stationary phase. The interactions between the components of the sample 

in the mobile phase and the make-up of the stationary phase material, packed into a chromatographic 

column, dictate the speed at which the analytes move through the system, which is measured by the 

retention time. The elution of different sample components off the column is visualised on a graphical 

output with peaks of varying sizes at different retention times. The addition of mass spectrometry to 

this technique allows the measurement of molecular masses in the form of the mass to charge ratio 

(m/z). In general, sample components are introduced into an ionisation source where either negatively 

charged or positively charged ions are created. These are then separated in the mass analyser based 

upon their mass to charge ratio before they reach the detector, which measures their abundance. 

Samples can be introduced directly by infusion or insertion into the ion source, but are often 

introduced via a chromatography step, for the sequential introduction of sample components into the 

mass spectrometer. There are many different types of ionisation that can be used depending upon the 

characteristics of the analytes being targeted as well as a range of mass analysers, which will suit 
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different mass ranges and be capable of different resolutions and mass accuracies. Tandem mass 

spectrometry is also frequently performed where there are two mass analysers in sequence, the first of 

which measures the precursor ions and the second of which measures the product ions produced 

following fragmentation of the precursor ions.   

There are many different parameters that can be optimised within liquid chromatography-mass 

spectrometry analysis, and a systematic review of the recommended settings for each of these 

parameters can tailor a very specific method for increased sensitivity. In this chapter a recommended 

method for the LC-MS analysis of explosives (Kinghorn and Milner 2005) is adapted and 

systematically optimised for the detection of the organic peroxide explosive HMTD as well as the 

nitrate ester PETN. Both the liquid chromatography and mass spectrometry parameters are optimised 

independently for both analytes, including but not limited to, the column oven temperature, mobile 

phase solvent gradient, ionisation source temperatures and fragmentor voltage.         

For the wastewater analysis approach to be successful, and because the potential quantity of potential 

homemade explosives entering the wastewater system is unknown and likely to vary on a case-to-case 

basis, the more sensitive the analysis methods can be, the more likely the detection of such 

compounds will be possible. Ultimately, the lower limit of detection of the analysis methods will be 

the limiting factor to how well the wastewater approach will work considering the vast volumes of 

wastewater and the rapid and dynamic nature of the wastewater network, particularly in a city such as 

London.  

3.2 Aims and objectives 

In order to develop an accurate and sensitive method for detecting HMTD and PETN, the objectives 

of this study were: 

 To evaluate and optimise the current methods for the trace detection of the explosives HMTD 

and PETN using liquid chromatography-mass spectrometry, 

 To determine the characteristics of the analyte ions during LC-MS analysis, 
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 To determine the instrument limits of detection and quantification of the analytes and test the 

accuracy and precision of the optimised method, 

 To test the stability of standard samples under different storage conditions, and 

 To assess any matrix effects upon the analysis of the analytes.  

3.3 Methods and materials 

3.3.1 Chemicals 

The analytes PETN (99 %) and HMTD (97%) were purchased from SelectLab Chemicals (Bönen, 

Germany) in 100 mL bottles containing a 1% solution in acetonitrile and acetone respectively. Stock 

solutions were made up separately at 100 mg/L in acetonitrile and standards were made up to 100, 50 

and 5 mg/L in acetonitrile and ultra-pure water. HPLC grade methanol was purchased from Sigma 

Aldrich (Gillingham, UK), HPLC grade acetonitrile and hydrochloric acid (ACS reagent, 37%) were 

purchased from Fisher Scientific (Gillingham, UK). Ultra-pure water was provided by a PureLab ultra 

dispenser from Elga (Marlow, UK). 

3.3.2 LC-MS setup 

An Agilent 6460 Triple Quadrupole LC-MS system with Agilent Mass Hunter Workstation Software 

Version B.06.00 for qualitative and quantitative analysis was used. The signal to noise ratio (S:N) was 

calculated by comparison between the generated HMTD peak height and the height of a specific noise 

region set within the Mass Hunter software parameters for one minute, between minute one and two. 

Several different conditions were tested for both the chromatography and mass spectrometry 

parameters. The starting parameters are detailed in Table 3.1 and 3.2 below, the analytical column that 

was suggested in the application note was not available and so an alternative was used, as described in 

Table 3.1.  

3.3.3 Sample Preparation 

The analytes were made up to 100 mg/L in acetonitrile and diluted 1:1 with ultra-pure water to make a 

final concentration of 50 mg/L. Once the final mobile phase gradient had been optimised, the analyte 
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standards were made up to 50 mg/L with 5% organic solvent (acetonitrile) and 95% water to match 

the starting mobile phase conditions. The standards were analysed and stored in silanised amber vials.   

Table 3.1 Starting liquid chromatography parameters used to begin method development for detection 

of PETN and HMTD standards. 

LC conditions  Parameters 

Solvents Methanol and water 

Flow rate (mL/minute) 0.9 

Gradient Time (minutes) Methanol (%) Water (%) 

0 60 40 

1 60 40 

15 92 8 

16 100 0 

18 100 0 

19 60 40 

Post-run time (min.) 5  

Total run time (min.) 24 

Injection volume (µL) 10  

Column temp. (°C) 40 

Column Thermo Scientific Hypersil GOLD C-18 100 x 4.6 mm, 5 µM 

 

Table 3.2: Starting mass spectrometry parameters used to begin method development for detection of 

PETN and HMTD standards. 

MS Detector Conditions Parameters 

Ionisation source Atmospheric pressure chemical ionisation (APCI)  

Gas temperature (°C) 350 

Vapouriser temperature (°C) 300 

Drying gas flow rate (L/minute) 5  

Nebuliser pressure (psi) 40  

Positive corona current (µA) 4  

Negative corona current (µA) 10  

Positive capillary voltage (V) 4000  

Negative capillary voltage (V) 1500  
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Scan range (m/z) 50 – 500  

Fragmentor voltage (V) 135  

3.3.4 Method development process 

A series of different liquid chromatography and mass spectrometry parameters were varied in order to 

establish the parameters which gave the optimum response to the two analytes, measured by the signal 

to noise ratio (S:N). The different parameters tested were: ionisation type, injection volume, solvent 

gradient, column oven temperature and drying gas temperature, vapouriser temperature, nebuliser 

pressure and gas flow rate, fragmentor voltage, capillary voltage and corona current. The use of 

multiple reaction monitoring (MRM) versus single ion monitoring (SIM) was explored using the final 

optimised method in order to ascertain which mode would achieve the best sensitivity by establishing 

the instrument’s limits of detection and quantification. A small study looking at MS/MS breakdown 

was also investigated to identify any further ions that could be useful in the detection of the target 

analytes. Finally, the method was applied to assess the stability of standard samples under different 

storage conditions and to test for any matrix effects.  

3.4 Results 

3.4.1 Ionisation source 

Both of the analytes were tested using electrospray ionisation (ESI) as well as atmospheric pressure 

chemical ionisation (APCI) however there was no response to either PETN or HMTD using the ESI 

source. As recommended, PETN was analysed in APCI negative mode and HMTD in APCI positive 

mode (Crowson and Beardah 2001; Widmer et al. 2002; Xu et al. 2014; DeTata, Collins, and 

McKinley 2013), neither analyte gave a response in the opposite polarity.  

3.4.2 Detected ions 

Ionisation of PETN in negative mode produced two ions: 316 m/z, which is proposed to be [M-

NO2+CH2O2]
-
 (DeTata, Collins, and McKinley 2013) and 378 m/z at a higher intensity, which has 

been reported to be the [M+NO3]
-
 nitrate adduct (Na et al. 2007; Ewing, Clowers, and Atkinson 

2013). It is speculated that the nitrate group could be supplied by the nitrogen drying gas in the 

presence of oxygen. Ionisation of HMTD in positive mode produced a range of ions: 145 m/z [M+H-
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HCHO-H2O2]
+
, 179 m/z [M+H-HCHO]

 +
, 207 m/z [M+CH3OH-H2O2]

+
 and the molecular ion [M+H]

+
 

at 209 m/z. The most abundant of which was the 207 m/z ion. Figures 3.1 and 3.2 are mass spectra 

showing the initial responses to the analytes under the original conditions. Previous studies (Xu et al. 

2014; Crowson and Beardah 2001) have also reported the 207 m/z and 209 m/z ions for HMTD and it 

is proposed that the 141 m/z ion could be the molecular ion for hexamine [M+H]
+ 
which is a precursor 

chemical used in the manufacture of HMTD. Optimisation was carried out on the most abundant ion 

that could be attributed to each analyte, which was 207 m/z for HMTD and 378 m/z for PETN. 

3.4.3 Injection volume 

Different injection volumes were tested: 10 µL, 25 µL and 50 µL. The volume was initially increased 

from 10 µL to 50 µL in order to increase the very small responses that were being seen. However the 

resulting larger peak shapes were very broad and so the injection volume was reduced to 25 µL, 

which gave a good peak shape that was large enough to generate a response that could be optimised 

further.       

3.4.4 Solvent gradient 

The chromatograhic peak corresponding to HMTD had a retention time of 1.53 minutes and the 

chromatogram peak corresponding to PETN had a retention time of 3.52 minutes. In order to move 

both of the peaks away from the solvent front, the solvent gradient was changed. A lower starting 

percentage of methanol was introduced and increased slowly over 15 minutes in order to slow down 

the elution of the analytes. The resulting retention times for each of the gradients tested are shown in 

Table 3.3. The gradient starting with the lowest methanol percentage (5%) proved successful in 

moving the HMTD elution time to 5.14 minutes. However on the gradient starting at 15% methanol, 

the PETN eluted at 17.24 minutes and was starting to be obscured by other inherent compounds 

eluting between 16.50 and 18.00 minutes. For this reason and because the retention time was likely to 

be greater than 19 minutes, PETN was not detected on the gradient starting at 5% but instead two new 

two-step gradients were tested in order to decrease the retention time of PETN but maintain the 

retention time for HMTD, the details of these solvent gradients are described in Table 3.4.   
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Figure 3.1: Mass spectrum showing the precursor ions detected for 50 mg/L HMTD using the original LC-MS conditions.  
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Figure 3.2: Mass spectrum showing the precursor ions detection for 50 mg/L PETN using the original LC-MS conditions. 
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Table 3.3: Different solvent gradients tested against retention times (tR) for eluting PETN and HMTD 

using liquid chromatography. 

 

Time (minutes) 

Methanol % 

Original Gradient 1 Gradient 2 Gradient 3 

0 60 25 15 5 

1 60 25 15 5 

15 92 75 60 50 

16 100 100 100 100 

18 100 100 100 100 

19 60 25 15 5 

HMTD (tR) 1.53 2.16 3.12 5.14 

PETN (tR) 3.52 11.53 17.24 ND 

 

Table 3.4: Different two-step solvent gradients and the corresponding retention times (tR) for both 

PETN and HMTD. 

 

Time (minutes) 

Methanol % 

Two-step Grad 1 Two-step Grad 2 (Final) 

0 5 5 

1 5 5 

5 15 15 

15 60 70 

16 100 100 

18 100 100 

19 5 5 

HMTD (tR) 4.02 5.35 

PETN (tR) 16.37 15.06 

 

With the starting percentage of methanol in the mobile phase gradient being 5%, the organic content 

of the analyte standards had to be reduced from 50% to 5% so that the methanol content was 

compatible with the mobile phase composition. Since the analytes were run on the LC-MS separately, 

the run time for HMTD was cut down to 11 minutes plus 4 minutes post-run time from 19 minutes 

plus 5 minutes post-run time since the HMTD has a much shorter retention time than PETN. The final 

mobile phase gradient used for HMTD detection is presented in Table 3.5. 
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Table 3.5: The final mobile phase gradient used for HMTD detection.  

Time (minutes) Methanol (%) Water (%) 

0 5 95 

1 5 95 

5 15 85 

8 32 68 

9 100 0 

10 100 0 

11 5 95 

 

3.4.5 Column oven temperature and drying gas temperature 

The column oven houses the column and is thermostatically controlled in order to regulate the speed 

at which the analytes pass through the column, and to allow reproducibility of retention times and 

quality of separation. The nitrogen drying gas temperature is also variable, between 0 – 350°C, and 

the instrument default value was set at 325°C. The optimum value for the drying gas temperature will 

depend upon the LC flow rate, the ion source used and the thermal stability of the analyte. 

Optimisation of the column temperature and drying gas temperature was carried out in a matrix 

format where each combination of column oven temperature and drying gas temperature was tested 

for each of the following values: 

 Column over temperature (°C): 20, 30, 40, 50, and 60. 

 Drying gas temperature (°C): 100, (150), 200, (250), 300 and (350) (HMTD only)  

 

For HMTD, the conditions that produced the greatest signal to noise ratio were with the drying gas 

temperature at 250°C, and the column oven temperature at 20°C. The next highest signal to noise 

ratios were with the column oven temperatures at 50°C and 60°C with the gas drying temperature at 

250°C, followed by the column oven temperature at 40°C and drying gas temperature at 300°C and 

the column oven temperature at 20°C and the gas drying temperature at 200°C, see Figure 3.3. Even 

though the signal to noise ratios were very good with the column oven temperatures at 40°C, 50°C 

and 60°C, in general the peak shape suffered, and so conditions at cooler column oven temperatures 

that gave the next highest signal to noise ratios were carried forward for further optimisation.  
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Figure 3.3: Signal to noise ratios for each of the combinations of column oven temperature (20 ºC, 30 

ºC, 40 ºC, 50 ºC and 60 ºC) and drying gas temperature for the analysis of 50 mg/L HMTD.  

 

The conditions that gave the greatest signal to noise ratio for PETN response were with the drying gas 

temperature at 100°C and with the column oven temperature set at 40°C. The three sets of conditions 

that produced the greatest signal to noise ratios were carried forward for further optimization Figure 

3.4 shows the signal to noise ratios for PETN response for the tested column oven and drying gas 

temperatures.   

3.4.6 Vapouriser temperature 

The gas and column oven temperatures that generated the greatest signal to noise ratio responses were 

carried forward to test for the optimum vapouriser temperature. The vapouriser temperatures were 

varied between 150°C and 350°C. The initial suggested vapouriser temperature for according to 

Kinghorn, 2005 (Kinghorn and Milner 2005) was 300°C, and the maximum instrument vapouriser 

temperature was limited to 400°C. Table 3.6 shows the different conditions tested and Figures 3.5 and 

3.6 show the resulting signal to noise ratios for each of the analytes.  
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Figure 3.4: Signal to noise ratios for each of the combinations of column oven temperature and drying 

gas temperature (100 ºC, 200 ºC, 300 ºC) for the analysis of 50 mg/L PETN.  

 

 

Table 3.6: List of the different method conditions tested for HMTD and PETN detection.  

 HMTD PETN 

Method Column 

Oven 

Temp. (°C) 

Drying 

Gas Temp. 

(°C) 

Vapouriser 

Temp. (°C) 

Column 

Oven 

Temp. (°C) 

Drying 

Gas Temp. 

(°C) 

Vapouriser 

Temp. (°C) 

1 20 100 150 40 100 150 

2 20 100 200 40 100 200 

3 20 100 250 40 100 250 

4 20 100 300 40 100 300 

5 20 100 350 40 100 350 

6 20 200 150 50 100 150 

7 20 200 200 50 100 200 

8 20 200 250 50 100 250 

9 20 200 300 50 100 300 

10 20 200 350 50 100 350 
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 HMTD PETN 

Method Column 

Oven 

Temp. (°C) 

Drying 

Gas Temp. 

(°C) 

Vapouriser 

Temp. (°C) 

Column 

Oven 

Temp. (°C) 

Drying 

Gas Temp. 

(°C) 

Vapouriser 

Temp. (°C) 

11 30 200 150 60 100 150 

12 30 200 200 60 100 200 

13 30 200 250 60 100 250 

14 30 200 300 60 100 300 

15 30 200 350 60 100 350 

16 20 250 150 - - - 

17 20 250 200 - - - 

18 20 250 250 - - - 

19 20 250 300 - - - 

20 20 250 350 - - - 

 

For HMTD, the three methods that gave the best signal to noise ratio responses were methods 9, 20 

and 4, which all had relatively high vapouriser temperatures at 300°C and 350°C. The methods that 

gave the best signal to noise ratio response for PETN were methods 7, 3 and 8, which had the 

vapouriser temperature at either 200°C or 250°C. Formerly, method 3 with the column oven 

temperature at 40°C gave the highest signal to noise ratio, but once the vapouriser temperature was 

optimised, method 7 with the column oven temperature set at 50°C provided the greatest response, 

perhaps due to the combination of the three temperatures together. The three methods with the highest 

signal to noise ratios for each analyte were carried forward for further optimisation.  
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Figure 3.5: Signal to noise ratios for each of the different methods tested for HMTD detection. 

 

Figure 3.6: Signal to noise ratios for each of the different methods tested for PETN detection. 
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3.4.7 Nebuliser pressure and gas flow rate 

Both analytes produced the greatest signal to noise ratios, without compromising on peak shape and 

quality, with the default settings of 40 psi nebuliser pressure and 5 L/min drying gas flow rate. The 

instrument response to the analytes with the nebuliser pressure at either 20 psi or at 60 psi caused 

deterioration of the peak shapes. The same occurred with the gas flow rates at 4 L/min and 6 L/min. 

Figures 3.7 – 3.10 describe the signal to noise ratios for HMTD and PETN detection at the different 

nebuliser pressures and gas flow rates. Even though in some cases the signal to noise ratios for the 

higher and lower gas flow rates and nebuliser pressures are greater than those of the default settings, 

the shape of the peaks suffered and could not be consistently reproduced.  

 

Figure 3.7: Signal to noise ratios for each of the different methods tested for HMTD detection with 

varying gas flow rates. 
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Figure 3.8: Signal to noise ratios for each of the different methods tested for HMTD detection with 

varying nebuliser pressure values.  

 

 

Figure 3.9: Signal to noise ratios for each of the different methods tested for PETN detection with 

varying gas flow rates. 
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Figure 3.10: Signal to noise ratios for each of the different methods tested for PETN detection with 

varying nebuliser pressure values. 
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Figure 3.11: Signal to noise ratios for method 7 tested for HMTD response with varying fragmentor 

voltage values. 

 

 

Figure 3.12: Signal to noise ratios for method 7 tested for PETN response with varying fragmentor 

voltage values. 
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3.4.9 Capillary voltage 

The optimum capillary voltage required depends upon the characteristics of the analyte and the 

polarity used. HMTD is analysed in positive mode and PETN in negative mode, the recommended 

values for positive and negative capillary voltages were 4000 and 1500 V respectively (Kinghorn and 

Milner 2005). Method 4 for HMTD detection was tested with the capillary voltage at 3500, 4000 and 

4500 V and method 7 for PETN detection was tested with the capillary voltage at 1000, 1500 and 

2000 V. The greatest signal to noise ratio from the HMTD responses was from the recommended 

setting of 4000 V and the greatest signal to noise ratio from the PETN responses was also from the 

recommended setting of 1500 V. When the negative capillary voltage was set to 1000 V for PETN 

detection, the identifying peaks produced were consistently split and a poor shape.  

3.4.10 Corona current  

The optimum current over the corona needle during ionisation will largely depend upon the analyte 

and the polarity being used. The corona current in positive mode was recommended to be set at 4 µA 

and in negative mode to be set at 10 µA. The conditions tested for HMTD detection were 2, 4 and 6 

µA and for PETN detection were 5, 10 and 15 µA. Again, the recommended conditions produced the 

greatest signal to noise response for both analytes and so were kept for the final method.  

3.4.11 MS/MS breakdown 

Tandem mass spectrometry (MS/MS) was used to analyse whether the precursor ions generated in the 

ionisation source and detected in the first stage of mass spectrometry could be fragmented into 

product ions, using collision induced dissociation, which were then detected in a second stage of mass 

spectrometry. This helps to further characterise the ions that are associated with the detection of the 

target analytes. The results from the MS/MS breakdown of the analytes, using different collision 

energies to form the product ions, are shown in Figures 3.14 and 3.15. For the fragmentation of the 

HMTD precursor ion (207 m/z) the only collision energy that resulted in product ions being detected 

was when it was set to 0 eV, however this meant that the precursor ion was also detected in the second 

mass spectrometry stage. Unsurprisingly, the PETN precursor ion (378 m/z) was also present when 

the collision energy was set at 0 eV however there was still sufficient in source fragmentation to 
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detect the product ion with the mass to charge ratio of 62 m/z. With the collision energy being 

increased to 10 eV the precursor ion was no longer detected, yet the fragmentation ion (62 m/z) was 

not any more abundant. This could be due to smaller fragmentation ions being produced that were too 

small (<50 m/z) to be detected, or that the 62 m/z ion was not directly created by the fragmentation of 

the precursor ion.  

3.4.12 Final method 

The optimised LC conditions and full method parameters are summarised in Tables 3.7 and 3.8 for 

HMTD and PETN respectively and the optimised MS conditions for both analytes are detailed in 

Table 3.9. Overall, the initial signal to noise ratios for both analytes were increased by approximately 

three orders of magnitude. The optimum oven temperature for HMTD was much cooler than 

originally recommended, perhaps due to its thermolabile nature, whereas PETN benefitted from a 

slightly higher than recommended column oven temperature, which also helped to reduce the 

retention time and provide better separation. The optimised drying gas temperatures for both analytes 

were much lower than the original temperature recommended (Kinghorn and Milner 2005) and the 

optimised vapouriser temperature for PETN detection was 100°C lower than the recommended 

temperature. The parameter that most improved the signal to noise ratio for HMTD detection was the 

fragmentor voltage which was reduced from 135V to 30V. 

The increase in signal to noise ratio for each analyte at each stage of the optimisation process is 

illustrated in Figure 3.13, showing where the largest increases in signal were achieved for each 

analyte.  
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Table 3.7: Optimised LC conditions for HMTD detection.  

 

  

LC conditions  Parameters 

Solvents Methanol and water 

Flow rate (mL/minute) 0.9  

Gradient 

 

 

 

 

 

 

 

Time (minutes) Methanol (%) Water (%) 

0 5 95 

1 5 95 

5 15 85 

8 32 68 

9 100 0 

10 100 0 

11 5 95 

Post-run time (min.) 4  

Total run time (min.) 15  

Injection volume (µL) 25  

Column oven temp. (°C)  20 

Column Thermo Scientific Hypersil GOLD C-18 100 x 4.6 mm, 5 µM 
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Table 3.8: Optimised LC conditions for PETN detection.  

LC conditions  Parameters 

Solvents Methanol and water 

Flow rate (mL/minute) 0.9  

Gradient 

 

 

 

 

 

 

 

Time (minutes) Methanol (%) Water (%) 

0 5 95 

1 5 95 

5 15 85 

15 70 30 

16 100 0 

18 100 0 

19 5 95 

Post-run time (min.) 5  

Total run time (min.) 24  

Injection volume (µL) 25  

Column oven temp. (°C) 50 

Column Thermo Scientific Hypersil GOLD C-18 100 x 4.6 mm, 5 µM 

 

  



 103 

Table 3.9: Optimised MS conditions for HMTD and PETN detection. 

MS Detector Conditions Parameters 

Analyte HMTD PETN 

Ionisation APCI positive mode  APCI negative mode 

Drying gas temperature (°C) 100 100 

Vapouriser temperature (°C) 300 200 

Drying gas flow rate (L/min.) 5  

Nebuliser pressure (psi) 40  

Positive corona current (µA) 4 -  

Negative corona current (µA) - 10 

Positive capillary voltage (V) 4000 - 

Negative capillary voltage (V) - 1500 

Fragmentor voltage (V) 30 100 
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Figure 3.13: Increases in average signal to noise ratios (S:N) for both analytes as each LC-MS 

parameter is optimised.  

 

Figure 3.13 shows the points at which the signal to noise ratio for each analyte increases as each LC-

MS parameter is optimised. The overall increase in signal to noise ratio for each analyte was several 

orders of magnitude; the original HMTD signal to noise ratio was 49 and ended up at 139718 and the 

original PETN signal to noise ratio started at 2179 and ended up at 589565. This gives an overview of 

the success of the optimisation process and also highlights the parameters that produced the greatest 

effect upon signal response from the original method.  
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Figure 3.15: Tandem mass spectrometry (MS/MS) analysis of the PETN precursor ion 378 m/z with the CID energy set at 10 eV (top) and 0 eV (below).  

Figure 3.14: Tandem mass spectrometry (MS/MS) analysis of the HMTD precursor ion 207 m/z with the CID energy set at 0 eV. 
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3.4.13 Method performance testing 

Calibration standards were run in triplicate and the first and second batches started with the lowest 

concentration first and the third and final batch started with the highest concentration standard and ran 

in reverse order in order to test the reproducibility of the analysis as well as check for any carryover of 

the analytes between runs. The calibration curves for HMTD and PETN are shown in Figures 3.16 

and 3.17 respectively.  

Figure 3.16: Calibration curve for HMTD using the optimised LC-MS method. y=664x+373, 

R
2
=0.99831. 

 

Background noise relating to the analytes was not present in the blank standards, and so the LOD and 

LOQ were defined respectively as three and ten times the standard deviation of the response of the 

lowest detected standard, divided by the slope of the calibration curve. This was estimated using at 

least three low-range spiked samples injected for n≥2. Analytes were then re-injected at the calculated 

LOD values to ensure accurate LOD and LOQ measurements. Table 3.10 details the linearity of the 

calibrations curves, the LOD and LOQ on the column as well as in μg/L, and the relative standard 

deviations for the day-to-day analysis and run-to-run analysis for each of the analytes where n≥9.  
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Figure 3.17: Calibration curve for PETN using the optimised LC-MS method. y=1169x+877, 

R
2
=0.99486. 

  

 

Table 3.10: Method performance parameters for HMTD and PETN detection.  

Analyte 

Ion 

tR 

R
2
 value LOD 

pg on the 

column/ug/L 

LOQ 

pg on the 

column/ug/L 

 

Run-to-run 

RSD (%) 

Day-to-day 

RSD (%) 

HMTD 

207 m/z 

6.03 ± 0.03 

0.998 14/0.56 47/1.87 5.76 9.24 

PETN 

378 m/z 

14.50 ± 0.02 

0.995 38/0.95 127/3.18 5.81 7.14 

 

The final method testing was carried out using single ion monitoring (SIM) rather than full scan in 

order to increase the sensitivity by ensuring that the instrument only detects the given mass to charge 
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ratios for the analytes; 207 m/z and 378 m/z for HMTD and PETN respectively. Multiple reaction 

monitoring (MRM) was also tested where the collision energy was set to 0 eV, since this would detect 

the 207 m/z and 378 m/z precursor ions in the initial detection and as the major product ions 

following the collision induced dissociation stage, in order to test whether this would increase the 

instrument’s sensitivity. The results from running the calibration curves for both analytes using MRM 

showed no increased sensitivity since the calculated LODs were not significantly different.   

3.4.14 Storage temperature 

High (10 μg/L) and low (1 μg/L) standards of HMTD and PETN were stored for 24 hours in vials, as 

described in 3.3.3 (Sample preparation), at room temperature (19°C), in the fridge (4°C) and in the 

freezer (-18°C). Each of the vials were made up in duplicate and analysed in triplicate before and after 

being left for 24 hours at the different temperatures. The responses to each of the samples for both 

analytes did not show any deterioration or loss of analytes outside of the expected run-to-run variation 

as previously stated in Table 3.10.  

3.4.15 Matrix effects 

One of the known limitations of using liquid chromatography-mass spectrometry for quantitative 

analysis can be the instrument’s susceptibility to matrix effects. Each of the analytes was quantified 

using its optimised method whilst in a mixture with the other analyte at equal concentration (1 μg/L). 

The matrix effect (ME) was calculated using equation 3.1, where       is the average peak area for the 

combination of analytes and       is the average peak area for the individual standard solution samples 

in methanol.  

Equation 3.1: Matrix effect: 

   
     
     

      

The results showing the matrix effect (either ME % >100% = ion enhancement or ME % <100% = ion 

suppression) upon the analysis of each analyte are shown in Table 3.11. According to the results of 

independent t-tests, there were no significant differences calculated between the average peak area 

responses for the analytes on their own and in combination, and thus no matrix effects.  
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Table 3.11: Matrix effects for the analysis of HMTD in the presence of PETN and of PETN in the 

presence of HMTD.  

Analyte and Matrix Matrix Effect (%) t-Test (independent) Result 

HMTD with PETN 98.28 P= 0.03294 

p > 0.01, 9  

No matrix effect 

PETN with HMTD 112.01 P= 0.02004 

p > 0.01, 9  

No matrix effect 

 

3.5 Discussion  

3.5.1 Research and Method Pathways 

3.5.1.1 Choice of target analytes 

The choice of explosives for the work presented in this chapter was mostly limited by budget 

restrictions, however due to the focus on homemade explosives it was important to have one of the 

commonly used homemade peroxide explosives, TATP or HMTD. The availability of HMTD and not 

TATP in a 100 mL 1% solution meant that HMTD was the chosen peroxide material. PETN is a 

nitrate ester commonly used in plastic explosives by the military but is also emerging as part of a 

group of homemade nitrate ester explosives that can be synthesised by the nitration of sugar alcohols 

found in artificial sweeteners (Sisco and Forbes 2015).  

3.5.1.2 Order of Parameters Tested   

The liquid chromatography and mass spectrometry conditions that were optimised were done so 

according to recommendations from the manufacturer (Agilent) who suggested a systematic approach 

(Kinghorn and Milner 2005). There are many different approaches concerning the order in which 

method optimisation can take place, for example by function within the instrument (e.g. temperature, 

voltage etc.) or chronological order of a sample passing through the instrument. It is unknown 

whether the order in which the optimisation takes place will have a significant effect upon the 

resultant parameter conditions chosen or the level of improvement made from the starting conditions. 

To assess this would have been beyond the scope of this thesis.  



 110 

3.5.2 Ionisation 

It has been well documented (Xu et al. 2014; Widmer et al. 2002; Crowson and Beardah 2001) that 

for the detection of the peroxide explosives TATP and HMTD, atmospheric pressure chemical 

ionisation (APCI) is the most successful ionisation method for the successful detection of their ions, 

in positive mode. Different detection methods for the analysis of PETN include using UV detectors 

(ISO 2006; Caygill, Davis, and Higson 2012b) as well as mass spectrometry, of which electrospray 

ionisation (ESI) (Xu et al. 2014; Mathis and McCord 2005; Pan et al. 2006; Spiegel et al. 2005; 

Schmidt et al. 2006) and atmospheric pressure chemical ionisation (APCI) (Holmgren et al. 2005; 

Cassada et al. 1999; Zhao and Yinon 2002) have also been used. Since there was no response 

measured to HMTD or PETN with ESI on this occasion, the APCI source was used for both analytes 

but using opposing polarities since the observed ions for PETN were negatively charged and 

positively charged for HMTD. The analyte molecules may be ionised via proton transfer and so the 

resulting ions will be either positive or negative depending upon the proton affinity of the analyte 

species in relation to the mobile phase component ions also formed. It is also generally accepted that 

lower molecular weight compounds are more suited to APCI than higher molecular weight 

compounds that are more polar or ionisable, which work better using electrospray ionisation.  

3.5.3 Detected ions 

The APCI ionisation source is considered to be “soft” and thus does not often cause any major 

fragmentation of the analyte ions, but rather production of the molecular ion. In this case, the 

observed ions for HMTD (207 m/z) and PETN (378 m/z) were consistent with those stated in other 

peer-reviewed journals (Crowson and Beardah 2001; Xu et al. 2014; Schulte-Ladbeck, Vogel, and 

Karst 2006; Zhao and Yinon 2002). However the attributed identity of the 207 m/z ion for HMTD 

which was described as [M-1]
+
 by Xu et al. (Xu et al. 2004), has been described here as HMTD plus 

methanol minus hydrogen peroxide, [M+CH3OH-H2O2]
+
, which was only present when methanol was 

used in the mobile phase, as opposed to acetonitrile. There is agreement across all of the peer-

reviewed literature that the 378 m/z ion is the observed adduct for PETN which is described as the 

PETN plus nitrate ion [M+NO3]
- 
 (Na et al. 2007; Ewing, Clowers, and Atkinson 2013).  
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3.5.4 Injection volume 

As the injection volume increased from 10 µL to 50 µL the peak shape deteriorated, this could be 

because of the increased quantity of analyte being introduced onto the column, the longer the process 

of eluting the analyte off the column, the broader the resultant peak as a larger time frame is occupied. 

A compromise of 25 µL was chosen since the peak shape was not too broad and at the same time the 

quantity of analyte being introduced was increased.   

3.5.5 Solvent gradient 

A solvent gradient was chosen rather than having an isocratic method to enable more flexibility with 

adjusting the retention times of the analytes as well as helping to maintain sharp peak shapes with 

later eluting analytes such as PETN, which under isocratic methods tended to be broader as peak 

width increases with the increase in retention time. Smaller ions with lower mass to charge ratio are 

likely to elute more quickly off the column than those with a greater mass to charge ratio. The 

temperature of the column oven as well as the flow rate will also affect the retention time of the 

analytes. However the solvent gradient can be optimised to alter the retention time of the analytes so 

that better separation can be achieved from other compounds that may be present, as well as from the 

solvent front. By identifying the methanol-water ratio with the optimum polarity for elution, it was 

possible to move the HMTD peak from its original retention time of 1 minute 53 to around 5 minutes 

where it was separated out from the solvent front and for PETN to increase its retention time away 

from the HMTD peak but not so that the run time would be greater than 25 minutes. This would also 

allow for further successful separation from other explosives which may want to be separated and 

detected using the same liquid chromatography method.  

3.5.6 Column oven and drying gas temperatures  

HMTD is more sensitive to heat than PETN and in this study a lower column oven temperature 

maintained a greater abundance of HMTD ions, 207 m/z in particular. PETN is a larger and more 

stable compound and so the optimum column oven temperature was greater. This also meant that the 

retention time for HMTD was increased with the lower column oven temperature, as the analyte was 
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slower passing through the column, for this same reason the retention time for PETN increased with 

an increase in column oven temperature.  

3.5.7 Vapouriser temperature 

In general, the faster the LC flow rate the higher the vapouriser temperature is required to ensure 

complete vaporisation. The flow rate was set to 0.9 mL per minute and a lower than recommended 

vapouriser temperature produced the greatest signal to noise ratio for PETN (200 °C), whereas the 

recommended vapouriser temperature of 300 °C gave the greatest signal to noise values for the 

detection of HMTD. Perhaps because of the cooler column oven temperature of 20°C and the drying 

gas temperature of 100 °C, a higher vapouriser temperature would be required for complete 

vapourisation, without causing thermal degradation of the ions. As for PETN it could be that the 

difference between the higher than recommended column oven temperature (50 °C) and the lower 

than recommended drying gas temperature (100 °C), a mid-range vapouriser temperature was required 

for complete vapourisation.  

3.5.8 Nebuliser pressure and drying gas flow rate 

The optimum pressure of the nitrogen nebulising gas and the nitrogen drying gas flow rate will 

depend upon the LC flow rate, which in this study was fixed at 0.9 mL per minute for both analytes. 

The nitrogen drying gas flow rate generally needs to be higher with an electrospray source than with 

atmospheric pressure chemical ionisation, which also works much better with higher (>0.75 mL per 

minute) LC flow rates. The optimum nebuliser pressure and drying gas flow rate were 40 psi and 5 

L/minute respectively for both analytes, again indicating that these parameters are LC flow dependent 

rather than compound dependent. The lower (20 psi) nebuliser pressure resulted in very poor, broad, 

peak shapes, probably caused by a lack of pressure. The higher nebuliser temperature (60 psi) was too 

high causing the peaks to be split. The optimum drying gas flow rate of 5 L/min was the default 

setting on the instrument as well as the recommended value by Kinghorn and Milner (Kinghorn and 

Milner 2005), this was the flow rate which increased the signal to noise the most out of the three 

different flow rates tested. This could be because it was the ideal flow rate to aid the declustering of 
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analyte ions from aqueous and reagent ions which would cause interferences at the detector and cause 

a noisy baseline which would in turn reduce the signal to noise ratio.  

3.5.9 Fragmentor voltage 

The fragmentor voltage is applied to the exit end of the capillary to aid pulling the ions out of the 

capillary and towards the detector. The voltage range for the instrument is 0-400 V and the default 

value was 135 V. The recommended starting value for explosives stated in Kinghorn and Milner 

(Kinghorn and Milner 2005) was 100 V and in general the smaller the analyte the lower the 

fragmentor voltage required. The reduction of the fragmentor voltage made the greatest increase upon 

the signal to noise ratio for HMTD detection. The default setting of 135 V was most likely too strong 

for the smaller, more fragile HMTD ions, and was perhaps causing them to degrade. For the method 

to be successful at detecting a large range of different explosives then a compromise would have to be 

met in order to have a fragmentor voltage strong enough to also pull out the larger ions from the 

capillary and towards the detector. The PETN ion has a larger mass to charge ratio and required a 

greater fragmentor voltage (100 V), which is likely to be due to the increased size of the analyte and 

the need for a stronger pull, compared to HMTD.  

3.5.10 Capillary voltage 

The capillary voltage is one of the parameters that is compound dependent and so varied between the 

two different analytes, fundamentally because they were analysed in different polarities. The voltage 

is applied to the tip of the capillary and aids in dispersion of the analyte ions using the strong electric 

field that has been created. In order to achieve the maximum dispersion of the ions from the capillary 

without causing ion fragmentation the capillary voltage needs to be set according to the characteristics 

of the analyte. Both of the optimised values were the same as those recommended by the 

manufacturer in the application note (Kinghorn and Milner 2005).   

3.5.11 Corona current 

The corona current is essential to the ionisation process since it is the effect of the corona discharge 

upon the nebulised mobile phase components that helps to create the analyte ions for detection. This 

happens either by proton transfer, or adduction of reagent gas ions to produce positive ions, or by 
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proton abstraction, or adduct formation to produce negative ions. Again, this means that the optimum 

corona current parameter will depend upon the compound being analysed. The analytes were analysed 

in different polarities and so the corona current values were different, yet were consistent with those 

recommended by Kinghorn and Milner (Kinghorn and Milner 2005).  

3.5.12 MS/MS breakdown 

Even though APCI is one of the “softest” ionisation techniques and in this study the fragmentor 

voltage was significantly reduced due to the fragile nature of HMTD, no extra energy was required for 

precursor ion fragmentation via collision induced dissociation (CID) to create product ions. The 

results showed that the in-source fragmentation was enough to create product ions. This again 

highlights the sensitive nature of the HMTD molecule but is useful to note that there is no real need 

for the CID step for the analysis of HMTD because there was a range of characteristic precursor ions 

that are likely fragments or adducted fragments of the greater m/z HMTD ions present in the 

precursor scan. For example, the original precursor ion scan (Figure 3.1) shows low levels of small 

m/z ions, which are fragments generated from the breakdown of the less abundant molecular ion at 

209 m/z (179 m/z, 145 m/z and 120 m/z). Three of the product ions produced from the fragmentation 

of the most abundant precursor ion (207 m/z) detected with the collision energy set to zero have also 

been reported in Xu et al. (Xu et al. 2004), those being 117.9 m/z, 87.9 m/z and 58.0 m/z adding an 

extra layer of information associated to the identification of HMTD using LC-MS/MS. PETN was 

also quite sensitive to the collision energies applied for fragmentation of the precursor ion into 

product ions, but only one product ion was present, 62 m/z, which was also detected in the precursor 

scan. This is thought to be the nitrate ion NO3
-
 and although the precursor ion 378 m/z was no longer 

detected with an increased collision energy, there was no increase in the amount of 62 m/z product ion 

detected, which could be due to smaller fragmentation ions being produced as a result from the 

increased collision energy. However, if these ions had a mass to charge ratio of less than 50 then the 

instrument would not be able to detect them. It could be that there is a constant level of this ion 

inherent in the system that is being detected alongside the PETN precursor ion, especially since 
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nitrogen gas is used as the drying gas involved in the ionisation process and a certain amount of the 

NO3
-
 ions are used to form the 378 m/z ion itself. 

3.5.13 Optimised methods 

As shown in Figure 3.13 there were greater increases in signal to noise ratios when certain LC-MS 

parameters were optimised. For HMTD the optimised conditions that produced the greatest increase 

in signal to noise responses were fragmentor voltage with the largest increase, followed by the drying 

gas temperature, column oven temperature and vapouriser temperature. Similar parameters also 

provided the greatest increase in signal to noise ratios for PETN, these were: vapouriser temperature 

producing the greatest increase in signal to noise ratio followed by the drying gas temperature and the 

fragmentor voltage. If these parameters have the greatest impact upon signal response it would be 

useful to suggest that these should be the first sets of parameters to be optimised once a signal has 

been detected. Overall, from the original method to the final optimised method, the HMTD signal to 

noise ratio was on average 2851 times greater, and the average PETN signal to noise ratio was 270 

times greater following optimisation.  

3.5.14 Method performance testing 

The linearity of the response to HMTD was excellent (R
2
=0.998) over the range of 0 – 50 μg/L and 

the lower limits of detection and quantification were at the pg level on the column with a 25 µL 

injection volume. The linearity of the PETN response was also very good (R
2
=0.995) and the limits of 

detection on the column were again at the pg level but were slightly higher than for HMTD meaning 

that the method is not quite as sensitive for PETN detection. Since there was no detected “noise” in 

the blank standards for either analyte using single ion monitoring (SIM), the limits of detection and 

quantification could not be calculated using Equations 3.1 and 3.2 respectively, where the average 

blank signal (         is added to either three times or ten times the standard deviation of the blank 

signal (                   ) and so instead Equations 3.3 and 3.4 were used based upon the response 

of the lowest detected standard and the slope of the calibration curve, where S is the average signal of 

the lowest detected standard, and   is the standard deviation of the signal responses of the lowest 

detected standard  (Cone 2005). 
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Equation 3.1: Limit of detection  

                     

Equation 3.2: Limit of quantification 

                      

Equation 3.3: Limit of detection 

     
  

 
 

Equation 3.4: Limit of quantification 

     
   

 
 

The precision of the methods was tested by measuring the relative standard deviation of the peak 

areas for multiple analyses of the same standard solution (run-to-run precision) and the day-to-day 

precision assessed the variability of human error making up a new standard each day over 9 days in 

the same way. Both methods for HMTD and PETN showed excellent run-to-run precision (RSD 5.76 

% and 5.81 % respectively) and the day-to-day variance was also very good for both analytes, HMTD 

10.24% and PETN 7.41%. More variation is expected for the day-to-day analysis since there is the 

opportunity for error from the operator as well as the instrument, The HMTD stock solution itself may 

have been the source of some of the additional variation seen day-to-day as there was some 

precipitation of the analyte material visible in the stock solution which could have affected the 

original starting concentration and caused variation between standards being made up if the analyte 

was not uniformly distributed amongst the solvent.  

The comparison between sensitivity of the instrument when the analyses were run in SIM and MRM 

mode was interesting to see if there would be any significant gains in the lower limit of detection and 

quantification since it was unknown whether monitoring the same ions as precursor ions and product 

ions would increase the sensitivity however this was not the case.  
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3.5.15 Storage temperature 

Typically samples are left over night following extraction, for analysis the next day, and so different 

conditions were tested in case of any deterioration of samples from different storage conditions. 

Leaving samples at different temperatures over a long period of time may cause degradation of the 

analytes, however, this was not tested. The samples analysed did not degrade after 24 hours under any 

of the conditions and so any of those would be sufficient storage conditions up to 24 hours. Pachman 

and Matyáš (Pachman and Matyáš 2011a) carried out experiments concerning the stability of the 

peroxide explosive TATP in different solvents at different temperatures and recommended the use of 

methanol or acetonitrile for good stability up to a month and if a sample is stored in a mobile phase 

containing aqueous and organic components, then it should be analysed within a few days. Other 

recommendations included storage at 4 °C in silanised amber glassware.  

3.5.16 Matrix effects 

The investigation into any ion suppression or enhancement caused by the analysis of HMTD and 

PETN in combination rather than individually resulted in no measured matrix effects. LC-MS is 

reported to be vulnerable to matrix effects (Chambers et al. 2007; P. J. Taylor 2005; Van Eeckhaut et 

al. 2009), causing problems with the accuracy of the analysis method, particularly where the 

quantification of target compounds is important. For this reason, it is important to test for and quantify 

any matrix effects that will affect the analysis of targeted compounds so that these can be used to 

more accurately determine the quantity of the analyte being measured. For compounds that must not 

exceed a threshold in environmental samples, such as some of the compounds listed in the European 

Water Framework Directive (Lettieri 2015), the accurate back calculation of their concentration is 

essential.   

3.6 Conclusions 

This lengthy optimisation process for the individual detection of HMTD and PETN has not only 

provided sensitive and reproducible methods for using liquid chromatography-mass spectrometry for 

qualitative and quantitative instrumental analysis but also revealed specific characteristics of the 

target analytes in relation to each part of the liquid chromatography and mass spectrometry process. 
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Clear increases in signal to noise ratios were achieved following the optimisation process for both 

analytes. There are, however, benefits in developing a single method that is capable of detecting a 

series of explosives-related analytes, where undoubtedly compromises on the method parameters 

would need to be made in order to accommodate varying chemical characteristics. The gains in 

screening breadth could cause reduction in individual compound sensitivity, however depending upon 

the purpose of the analysis this may or may not be an issue.  

For the particular study of these two analytes, the added sensitivity achieved by the thorough 

optimisation of these methods would be extremely beneficial, specifically for the further investigation 

into their behaviours concerning extraction protocols, stability and the investigation into passive 

sampling techniques, where the sensitivity of the analysis method is a key part of the limiting factor of 

the overall approach to the detection of trace levels of explosives in environmental matrices.  

In this study there were no matrix effects reported for the analysis of standards in combination as 

opposed to individually. These results are specific to the instrument used and the analytes tested 

which is why it is recommended that matrix effects are tested for and measured prior to any 

quantification work, specifically in forensic work where accuracy is of the upmost importance due to 

potentially serious implications relating to whether a crime has been committed, and if so, how 

detected quantities relate to sentencing guidelines, for example in the possession of illegal substances. 

The measurement of matrix effects for the analysis of these analytes in environmental matrices, where 

there is likely to be a greater level of interference, will be critical in determining applied limits of 

detection for the analysis method.  
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SECTION 2 

Chapter 4:  Extraction – method development 

Part 1: Method development for the solid phase extraction of trace peroxide explosives 

4.1 Introduction 

Solid phase extraction (SPE) is one method for cleaning up complex environmental samples, such as 

wastewater, but also acts as a pre-concentration step, potentially increasing the concentration of target 

analytes by two to three orders of magnitude, which is useful for trace analysis (M. Smith, Collins, 

and Wang 2003). There is a wide range of different SPE sorbent chemistries commercially available, 

such as normal silica based columns with different functional groups, and the optimum sorbent 

material will depend upon the sample matrix and the target analytes to be detected. SPE can be carried 

out as an on-line extraction procedure which is an automated system, enabling direct injection of 

untreated samples, although there is a risk of cross-contamination due to sample carry over (Crescenzi 

et al. 2007). The SPE procedure comprises four main steps: conditioning (including equilibration), 

loading the sample, washing and eluting. The development of an efficient sample preparation method 

is the key to the detection of trace explosives in the environment. This development must take into 

account the sample matrix, the analytes to be extracted and the detection instrument in order for it to 

be a sensitive and selective method. SPE sorbent chemistry is important in order to extract target 

analytes at the same time as limiting the extraction of any unwanted compounds. Several sorbents 

have already been tested to achieve high recoveries for a number of explosives; the Forensic 

Explosives Laboratory (FEL) in the UK started testing Chromosorb-104 in 1999 (Warren et al. 1999), 

and since then, a number of different commercially available sorbents have been used, for example: 

(Song-im, Benson, and Lennard 2012b; Ochsenbein, Zeh, and Berset 2008; Tachon et al. 2008; 

Monteil-Rivera et al. 2004). Only one of these groups looked at a peroxide explosive, TATP, (Song-

im, Benson, and Lennard 2012b) and the method was designed for extraction from a swab-like 

material and not an aqueous environmental sample. In addition to the methods detailed in the peer-

reviewed literature it has been useful to use the manufacturer’s recommended SPE protocols (Kinesis 
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2010; Goodman 2011; Biotage 2006; Hong and Slingsby 2013) for achieving the optimum method for 

the extraction of explosives from large volumes (100 – 1000 mL) of wastewater. These recommended 

methods have a primary focus on the extraction of military explosives from natural waters from an 

environmental pollution point of view. This chapter addresses this gap and contributes a new method 

for the adaptation of trace peroxide detection to wastewater analysis.  

4.2 Aims and objectives: 

In order to compare the capabilities of commercially available SPE cartridges and their different 

sorbent materials for the extraction of peroxide explosives (TATP and HMTD) from wastewater, the 

objectives of this study were to:  

 Establish the optimum method for the extraction of TATP and HMTD from ultra-pure water 

comparing analyte recoveries, elution profiles and whether or not a drying step affects analyte 

recovery; 

 Test the optimal SPE cartridge and method on spiked composite wastewater samples, 

including testing different volumes and pH conditions; 

 Evaluate the performance of the optimised SPE method for the extraction of HMTD and 

TATP in wastewater samples, assessing the matrix effects, linearity, efficiency, absolute 

recoveries and precision of the method via a method performance study. 

 

4.3 Methods and materials 

4.3.1 Sample Preparation 

Nalgene bottles were filled with 100 mL ultra-pure water and spiked with HMTD (97.0 %) and TATP 

(99.9 %) from stock solutions in methanol at 100 mg/L from SelectLab chemicals (Münster, 

Germany) and Accustandard (Kinesis, St Neots) respectively. The solid phase extraction was carried 

out using a 12 –port vacuum manifold and the spiked water samples were loaded directly from the 

Nalgene bottles using tubing and cartridge adapters. Table 4.1 lists the different cartridges that were 

tested and the manufacturer recommended methods for each one that were tested in this chapter.  
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Table 4.1: Comparison of SPE methodologies tested for the extraction of TATP and HMTD. 

SPE Method 

Details 

Hypersep PEP  

200 mg 6 mL 

n=6 

Telos ENV  

200 mg 3 mL 

n=3 

Evolute Express ABN 

200 mg 6 mL 

n=3 

Isolute ENV+  

200 mg 6 mL 

n=5 

Bond Abs Elut Nexus  

60 mg 3 mL 

n=3 

Supplier Thermo Fisher Scientific 

(Hemel Hempstead, 

UK) 

Kinesis (St Neots, UK) Biotage (Hengoed, UK) Biotage (Hengoed, UK) Agilent (Stockport, UK) 

Sorbent N-vinylpyrrolidone and 

divinylbenzene 

Styrene and 

divinylbenzene 

 

Polystyrene and 

divinylbenzene 

Hydroxylated polystyrene 

and divinylbenzene 

 

Methyl methacrylate and 

divinylbenzene  

 

Condition 4 mL methanol 2 mL acetonitrile 

2 mL methanol 

6 mL methanol 2 mL acetonitrile 

4 minute soak 

4 mL methanol 

 

3 mL methanol 

Equilibrate 4 mL water 2 mL water 6 mL water 4 mL water 

 

3 mL water 

Load 100 mL water spiked at 

1 μg/L 

100 mL water spiked at 

10 μg/L 

100 mL water spiked at 

100 μg/L 

100 mL water spiked at 

10 μg/L 

 

100 mL water spiked at 

10 μg/L 

Wash 4 mL water:methanol 

95:5 

 

2 mL water 6 mL water 5 mL water 2 mL methanol:water 

60:40 

Elute 4 mL methanol 

 

2 mL methanol  5 mL methanol 2 mL methanol 1 mL acetonitrile 

Flow rate 1 mL/minute except loading at 5-10 mL/minute 

 

Drying  Extracts left under a nitrogen stream at 35 °C to dry then reconstituted in 100 μL methanol 
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4.3.2 Wastewater samples 

Post-screen influent wastewater samples were collected from Beckton Wastewater Treatment Plant in 

East London. The wastewater was filtered using Whatman GF/C 47 mm 1.2 μm glass fibre filters 

(Sigma Aldrich, Gillingham), and stored in Nalgene bottles in the freezer until required.  

4.3.3 Instrumental analysis  

For TATP and HMTD, separations were carried out over 12 min on an Accela HPLC system coupled 

to a HTS-A5 autosampler (Thermo Fisher Scientific, San Jose, CA, USA) using a Waters Sunfire C18 

column (150 x 2.1 mm, 3.5 μm) with 1 cm guard column. Mobile phases were 90:10 (v/v) 0.2 mM 

ammonium chloride in water/methanol (A) and 10:90 (v/v) 0.2 mM ammonium chloride in 

water/methanol (B). A gradient elution profile was performed at a flow rate of 0.3 mL min
-1

. Mobile 

phase was set at 20 % B at 0 min and raised to 100 % B over 4 min and then held at 100 % for a 

further 2 min. Re-equilibration time was 5 min. Column temperature was maintained at 44 °C.  

For high-resolution mass spectrometric (HRMS) detection, an Exactive
TM

 instrument (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with a heated atmospheric pressure chemical ionisation 

(APCI) source was utilised. Nitrogen was used as the nebulising and desolvation gas within the 

ionisation source and the collision cell. Positive and negative ion mode were used for all analytes 

using full-scan high resolution mode (50,000 FWHM) between m/z 50–400 and m/z 60–625 for 

positive and negative ion mode respectively. All samples analysed were run with Dr Gillian McEneff 

and Dr Leon Barron at the Mass Spectrometry Facility at Kings College London. 

4.3.4 Data analysis 

Chromatograms obtained from the LC-HRMS analyses were integrated using Thermo Xcalibur 

Qualitative and Quantitative Browser software (Thermo Fisher Scientific, San Jose, CA, USA) to 

acquire the retention time, peak area and peak height for each of the target analyte masses identified.  

The extraction efficiency (EE) was calculated using Equation 4.1, where     is the average peak area 

for the recovery samples and       is the average peak area for the post elution spike samples.  
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Equation 4.1: Extraction efficiency 

   
   

     
      

The absolute recovery (AR) was calculated using Equation 4.2, where     is the average peak area for 

the recovery samples and       is the average peak area for the standard solution samples in methanol.  

Equation 4.2: Absolute recovery 

    
   

     
      

The matrix effect (ME) was calculated using Equation 4.3, where       is the average peak area for 

the post elution spike samples and       is the average peak area for the standard solution samples in 

methanol.  

Equation 4.3: Matrix effect 

   
     

     
      

 

4.4 Results 

Average percentage recoveries were calculated by comparison to the responses of known 

concentrations of standards analysed at the same time as the extracts. In these initial stages both the 

peak area and peak height were considered. However since the analysis produced good signals for 

both the analytes, the peak area was used to calculate the percentage recoveries, unless stated 

otherwise.  

4.4.1 Drying  

Although the drying step is very useful for pre-concentrating the sample, and thus allowing a lower 

initial starting level of analytes to be detected, in this case the volatile nature of TATP and HMTD 

meant that they were almost entirely lost during the drying process. Table 4.2 shows the recoveries 

calculated for each of the SPE cartridge methods including the drying step, as well as the retention 
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time (tR) and ions used to identify the analytes using LC-MS. A comparison of recoveries from the 

SPE cartridges tested, without the drying step, is shown in Figure 4.1.  

4.4.2 Hypersep PEP 

Both analytes had good recovery (85-89 %) from the ultra-pure water using the Hypersep PEP 

cartridge. The variation between each replicate extraction was good with the relative standard 

deviation at approximately 10 % for each analyte.   

4.4.3 Telos ENV  

This cartridge performed very well for the extraction of TATP with an average recovery of 132 % and 

a relative standard deviation of approximately 5 %, but less well for the extraction of HMTD with an 

average recovery of 21% and the relative standard deviation of approximately 17 %.  

4.4.4 Evolute ABN  

The extraction of HMTD using the Evolute ABN cartridge was less successful than the extraction of 

TATP, however both showed good recovery percentages of 82% and 99% respectively. However, the 

variability between extracts was larger than the Hypersep PEP, Telos ENV and Isolute ENV+ for both 

analytes (HMTD 16.94% and TATP 24.48%), and larger for TATP than the Nexus cartridge. Overall 

the relative standard deviations for TATP were smaller than for HMTD, apart from when using this 

Evolute ABN cartridge.   

4.4.5 Isolute ENV+  

This cartridge produced high average recoveries for both HMTD (103%) and TATP (122%) from the 

spiked ultra-pure water and also showed good levels of variability between extracts, 11.87 % and 

8.21% respectively. The other cartridges did not perform as well at recovering HMTD as the Isolute 

ENV+, both in terms of recovery and variability.   

4.4.6 Nexus  

Both HMTD and TATP were detected in the extracts from this solid phase extraction cartridge, 

however the average recoveries were comparatively poor and the variability was also not as good as 

some of the other cartridges.   
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Table 4.2: Identifying ions, retention times (tR) and the percentage recoveries for SPE methods 

including drying step. ND, not detected.  

Analyte Ion (m/z) tR  

(min.) 

Hypersep Telos 

ENV 

Evolute Isolute Nexus 

Average % Recovery (RSD %) 

HMTD 207.0974 2.33 0.92 

(26.63) 

ND ND ND ND 

TATP 89.0594 6.30 ND ND ND ND ND 

 

Figure 4.1: Percentage recoveries of HMTD and TATP from spiked ultra-pure water using different 

SPE cartridges. Error bars show the relative standard deviation (RDS %).   

 

 

4.4.7 Optimisation 

Overall, considering the variability between extraction recoveries and the calculated level of recovery 

of the analytes from the ultra-pure water, the Isolute ENV+ cartridge was chosen as the most suitable 

one for the extraction of HMTD and TATP from water samples. Further optimisation was required for 
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this method in order to tailor it for use with wastewater samples, and to maximise the sensitivity of the 

SPE method so that the lowest level possible of the analytes could be detected in such a complex 

matrix of unknown volumes.  

4.4.8 Elution profile 

In order to reduce the loss of any analytes at the elution stage and to assess whether a smaller elution 

volume would be possible in order to increase the pre-concentration factor, an analysis of the elution 

profile for the Isolute ENV+ extraction method was set up using 1 litre of ultra-pure water spiked with 

100 μg/L TATP and HMTD. Following the wash step, four separate fractions of eluent were collected 

and analysed for their analyte content. This was repeated with three cartridges and each extract was 

injected in duplicate. Table 4.3 details each methanol eluent that was collected and the percentage of 

analyte measured within it as well as the accumulative concentration factor (the amount by which the 

sample is pre-concentrated from 100 mL to the elution volume). 

Table 4.3: Elution profile for HMTD and TATP using the Isolute ENV+ solid phase extraction 

method. 

Elution number Elution volume Average  

HMTD (%) 

Average 

TATP (%) 

Accumulative 

Concentration 

Factor 

1 500 μL 75.08 40.45 x 200 

2 1000 μL 20.02 35.37 x 67 

3 1000 μL 4.60 20.21 x 40 

4 1000 μL 0.30 3.97 x 29 

    

As the elution volume increases, the concentration of extracted analytes in the eluent decreases and so 

there is more of a dilution effect meaning that the pre-concentration factor is less powerful. The 

results of the elution profiling show that the largest detected portion of both HMTD (75%) and TATP 

(40%) is eluted in the first 500 μL. In the first 1500 μL 95% of the detected HMTD is present, and 

76% of the TATP is present, whereas in the first 2500 μL there is almost 100% of the detected HMTD 

and 96% of the detected TATP present. Based upon these results, the elution volume was kept at 2 
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mL of methanol since the gains in sensitivity from a smaller elution volume (pre-concentration factor 

x 50) were not outweighed by the recoveries of the analytes.    

4.4.9 Matrix matched testing 

In order to more accurately assess the performance of the solid phase extraction method for use with 

wastewater samples, the analytes were spiked into four different volumes of wastewater, with and 

without pH adjustment, to gauge matrix effects and the effect of acidification, which is often 

employed to reduce biological activity and maintain the integrity of the sample.  

4.4.9.1 Volume 

The analytes were spiked into 100 mL, 250 mL, 500 mL and 1000 mL of wastewater, which was 

adjusted to pH 4.0 prior to extraction, as has been done previously for drug analysis in wastewater 

(Gheorghe et al. 2007; Kasprzyk-Hordern, Dinsdale, and Guwy 2008; van Nuijs et al. 2009; Irvine et 

al. 2011). The final eluent concentration was 100 µg/L for each extract and three replicates were 

analysed for each volume. One of the observations from this first test with wastewater was that the 

HMTD recoveries were much lower than from the spiked ultra-pure water. Figure 4.2 illustrates the 

percentage recoveries of HMTD and TATP from different volumes of wastewater. Furthermore, it 

was clear from loading the larger volumes of wastewater onto the SPE cartridges that, even following 

filtration, the nature of the wastewater meant that there was significant blockage of the cartridge from 

remaining particulates in the sample. This led to a very lengthy laboratory process and resulted in the 

500 mL and 1000 mL sample volumes being excluded from further testing. Out of the 100 mL and 

250 mL samples there were better recoveries of both analytes from the 250 mL samples. The larger 

sample volume also facilitates more opportunity to collect the analytes present in a given wastewater 

sample at a given time.  

4.4.9.2 pH  

Acidification of wastewater samples is sometimes undertaken in an attempt to aid the preservation of 

the analytes within the sample and limit any bioremediation. However the effect of acidification upon 

HMTD and TATP in wastewater has not yet been ascertained. 100 mL and 250 mL samples of 

wastewater were spiked with HMTD and TATP at a final concentration of 100 µg/L and extracted in 
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triplicate. The average recoveries of both analytes were higher in the samples that were at pH 7.0 and 

had not been adjusted with hydrochloric acid to pH 4.0. There was a significant increase in the 

average percentage recovery for TATP and even though there was an increase in the HMTD 

recoveries these were negligible and again the overall HMTD recoveries were very poor, see Figure 

4.3. Based upon these results, wastewater samples were not acidified prior to extraction due to the 

potential acid degradation shown by the reduction in analytes detected.  

Figure 4.2: Average percentage recoveries for HMTD and TATP from different volumes of 

wastewater. 

 

4.4.10 Final method for evaluation 

Based upon the research detailed previously in this chapter, the final solid phase extraction method is 

summarised in Table 4.4. The performance of this method was evaluated, measuring the extraction 

efficiency, absolute recovery, matrix effect and linearity for each of the analytes as well as the 

precision of the method.  
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Table 4.4: Solid phase extraction method using Isolute ENV+ cartridges to extract HMTD and TATP 

from wastewater.  

SPE Cartridge Isolute ENV+ 200 mg 6 mL 

Sorbent Hydroxylated polystyrene and divinylbenzene 

pH adjustment None 

Condition 2 mL acetonitrile 

4 minute soak 

4 mL methanol 

Equilibrate 4 mL water 

Load 250 mL wastewater 

Wash 5 mL water 

Elute 2 mL methanol 

Flow rate 1 mL/minute except loading at 5-10 mL/minute 

Drying  No drying, direct analysis of methanolic extract using LC-HRMS 
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4.4.11 Method performance testing 

In order to thoroughly assess how suitable the developed method for the solid phase extraction of 

HMTD and TATP from wastewater is, a series of method performance tests were carried out to 

calculate the extraction efficiency, absolute recovery, matrix effect and linearity for each of the 

analytes. A series of blank wastewater samples were also analysed to verify that neither of the 

analytes were present in the wastewater samples prior to spiking. Each replicate sample was injected 

in triplicate unless stated otherwise. Table 4.5 lists the different samples that were analysed in order to 

achieve the method performance evaluation, and Table 4.6 details the results of the SPE performance 

testing in wastewater. 

Table 4.5: List of samples analysed for the SPE method performance evaluation.  

Samples Analysed Final/Expected 

Concentration 

Purpose Number of 

Replicates 

Blank composite 

influent wastewater 

samples 

n/a To verify that none of the analytes 

being tested are present in the 

wastewater. 
 

9 

Standard solutions in 

methanol 

200 μg/L 

1000 μg/L 
 

To calculate the absolute recovery 

values as well as matrix effect. 

2  

2 

Post-elution spikes 

(blank wastewater 

extracted and the 

methanol eluent spiked 

with standard solutions) 
 

200 μg/L To identify the retention time of 

the analytes in wastewater and 

calculate the matrix effect. 

9 

Recovery samples 

(spiked wastewater 

extracted according to 

SPE method) 

 

200 μg/L To calculate the extraction 

efficiency and absolute recovery 

as well as instrument and method 

precision. 

7 

1 injected x 6 

Composite wastewater 

samples spiked at 

different levels and 

extracted according to 

SPE method  

50 μg/L 

100 μg/L 

150 μg/L 

200 μg/L 

500 μg/L 

750 μg/L 

1000 μg/L 

1500 μg/L 

To create a calibration curve for 

TATP and HMTD in wastewater.  

2  

2 

2 

2 

2 

2 

2 
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Table 4.6: Results from SPE method performance testing for the extraction of HMTD and TATP from 

wastewater. 

Analyte 

Identifying Ion 

HMTD 

207.0974 m/z 

TATP 

89.0594 m/z 

Blank samples Not detected Not detected 

Standard solution tR (min.) 2.07 ± 0.02  6.16 ± 0.01  

Post elution spike tR (min.) 2.11 ± 0.05  6.20 ± 0.03  

Extraction efficiency (%) 23.31 *  79.06 

Absolute recovery (%) 9.35 * 77.73  

Matrix effect (%) 40.13 * 

Ion suppression  

98.32   

No matrix effect 

Linearity R
2 
= 0.82642 (Figure 4.4) R

2 
= 0.98515  (Figure 4.5) 

LOD (pg on the column/μg/L) 995/199 137/27 

LOQ (pg on the column/μg/L)  3315/663 457/90 

Instrument precision (% RSD) 6.21  11.39  

Method Precision (% RSD) 11.40  28.34  

*peak height used rather than peak area due to poor peak shape. RSD, relative standard deviation.  

4.4.12 Statistical Testing for Matrix Effect 

An independent t-test was used in order to determine whether there were any matrix effects (ion 

enhancement or ion suppression) interfering with the analysis of the target analytes, caused by the 

wastewater matrix. The t-tests showed a significant difference (p=2.32x10
-6

, p<0.01, 8) between the 

average peak height response for HMTD in the post-elution spike samples and the standard solution 

samples. This indicated ion suppression caused by the matrix since the percentage matrix effect was 

significantly less than 100%. There was no significant difference (p=9.69x10
-1

, p>0.01, 8) reported 

between the mean peak area response for TATP in the post-elution spike samples and the standard 

solution samples, confirming the null hypothesis that there was no matrix effect, which was calculated 

as more than 98%.  
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Figure 4.4: Calibration curve for HMTD extracted from wastewater, R² = 0.82642.  

 

Figure 4.5: Calibration curve for TATP extracted from wastewater, R² = 0.98515. 

 

The method performance testing showed different results for HMTD and TATP; the extraction 

efficiency for HMTD was very poor (~23%) as well as having approximately 60% of the HMTD 

signal lost to matrix effects of the wastewater, whereas the extraction efficiency of TATP from 

wastewater was approximately 79% and there were no measured matrix effects. The calibration curve 

for the TATP samples showed good linearity, whereas the HMTD samples were less linear and 

suffered from low signal responses.  The levels of precision were excellent for HMTD and were 

acceptable for TATP.  
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4.4.13 Limits of detection and quantification 

The instrument limits of detection (LOD) and quantification (LOQ) were reported as being 135 and 

450 pg on the column for HMTD and 105 and 360 pg on the column for TATP respectively, for 

standard solutions of the analytes in methanol. These LOD and LOQ values equate to starting 

concentrations of 27 μg/L and for HMTD and 21 μg/L TATP respectively. The method LOD and 

LOQ, taking into account the extraction and analysis procedures from wastewater samples, based 

upon the results of this study, were calculated to be 199 μg/L and 663 μg/L for HMTD and 27 μg/L 

and 90 μg/L for TATP.  

4.5 Discussion 

4.5.1 Research Method Pathways 

4.5.1.1 Choice of target analytes 

Following the analysis work carried out in Chapter 3, an affordable source of TATP became available 

and so both peroxide explosives (HMTD and TATP) that have had their use documented in recent 

terrorist activities were focussed upon for the extraction studies in this section. This choice also 

complemented the work being carried out by the author outside of this thesis in collaboration with 

King’s College London where the focus was on developing screening methods for military explosives 

and their environmental metabolites.    

4.5.1.2 Order of parameters tested 

The order in which the variables of the SPE process were tested started with assessing the current 

capabilities of the different sorbent materials that were commercially available and where the 

manufacturer’s had provided application notes for the extraction of military explosives from water 

samples to varying levels of sensitivity (Biotage 2006; Kinesis 2010; Goodman 2011). From the 

initial results it became apparent that the drying stage of the SPE method was causing large and in 

some cases total losses of the target analytes and so this theory was investigated next. Following this 

the elution profile, loading volumes and pH were optimised in order to minimise the potential analyte 

losses during the SPE process. Again, the optimum order of parameter testing is unknown and to 
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examine the effect of a different optimisation sequence would have been beyond the scope of this 

thesis.    

4.5.2 Cartridge method and sorbent material 

The method for the Isolute ENV+ solid phase extraction cartridge packed with hydroxylated 

polystyrene and divinylbenzene sorbent material produced the highest analyte recoveries out of all of 

the cartridges tested. The retention of the moderately polar analytes (which have a high affinity to 

aqueous solutions yet are very volatile) to the sorbent material is a crucial mechanism to achieve high 

recoveries. The non-polar to polar bonds between the sorbent and the analytes retain the analytes onto 

the sorbent material while the wastewater percolates away to be discarded, and the wash step, which 

is 100% water, does not cause any of the analytes to breakthrough into the waste but does allow 

unwanted compounds to be removed. Elution with a polar organic solvent such as methanol will 

release the analytes from the sorbent material by breaking the potential dipole-(induced) dipole 

interactions and hydrogen bonding. It is thought that in this case, HMTD molecules are more likely to 

be retained by the Isolute ENV+ sorbent material than the TATP molecules, since HMTD is more 

hydrophilic than TATP, indicated by its lower log Kow value, leading to overall lower HMTD 

recoveries.   

4.5.3 Drying  

Omission of the drying stage by evaporation under a nitrogen stream at 35°C of the eluent and 

reconstitution in a smaller volume (typically 100 μL) resulted in greater analyte recoveries. This led to 

the explanation that the peroxides were being lost at this stage and evaporating off with the methanol. 

TATP has a comparatively higher vapour pressure than HMTD, meaning it is more volatile and much 

more likely to be lost via evaporation. Based upon quoted vapour pressures (Oxley et al. 2005; 

Östmark, Wallin, and Ang 2012), TATP and HMTD have higher vapour pressures than the nitramines 

and some nitroaromatics, which when extracted often has an evaporation step included (Kinesis 2010; 

Biotage 2006; Ochsenbein, Zeh, and Berset 2008). The results from this study showed that there was a 

significant decrease in HMTD and TATP signal when the drying step was included compared to the 

exact same method without a final drying stage.     
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4.5.4 Elution profiling 

Different compounds will breakthrough from the sorbent material into the elution solvents that flow 

through the cartridge at different times, depending upon their chemical characteristics and the solvents 

being used. The purpose of the elution profiling was to compare the quantity of analytes that were 

present in each fraction of a series of methanol elutions whilst taking into account the decreasing level 

of pre-concentration with an increasing elution volume. The balance between concentration factor and 

recovery of analytes was made so that the analyte concentration would be increased by a factor of 50 

but also so that the analyte recovery was approximately 95-97% for HMTD and approximately 75-

86% for TATP. This would allow a large proportion of these analytes present in an unknown sample 

to be recovered and pre-concentrated in an elution solvent that is compatible for direct LC-HRMS 

analysis, at an increased concentration for a greater likelihood of overall detection.  

4.5.5 Sample volume  

Wastewater is a very complex and crude environmental sample to process, and even with a clean-up 

and pre-concentration step such as solid phase extraction it is important to recognise that there is 

likely to be some level of interference from the matrix upon the analytical techniques in question. 

Again, there is a compromise between the increased quantity of analytes found in a larger sample 

volume of wastewater, and the practicalities involved in the laboratory with processing such large 

volumes of crude sewage. In this case, the optimum volume of wastewater to be sampled, filtered, and 

extracted was 250 mL since the larger volumes of 500 mL and 1000 mL could not be processed in a 

timely manner and often had a much higher level of imprecision. The lower volume samples (100 

mL) produced lower analyte recoveries and also offered less of a concentration factor.     

4.5.6 pH  

The choice to not adjust the pH of the wastewater following collection was based upon the reduced 

recoveries of the analytes after the addition of hydrochloric acid to the wastewater in order to lower 

the pH of the sample to pH 4.0 from pH 7.0. Without looking specifically for degradation products of 

the analytes in the acidified samples it cannot be certain that the addition of hydrochloric acid was 

causing acid degradation of the peroxide compounds. This could, however, be an explanation for the 
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poor recoveries especially in comparison to the exact same method where the samples were not 

acidified.   

4.5.7 Control samples 

The blank wastewater samples did not contain detectable levels of either of the analytes. This was 

expected, partly due to the large dilution factors involved in the journey from a potential source to the 

wastewater treatment plant where the samples were collected, and partly due to the ambiguous nature 

of homemade explosive manufacture. Composite wastewater samples were created in order to ensure 

an even distribution of wastewater quality and composition across all the samples, so that any day-to-

day variations in the original grab samples that were collected did not affect the comparison of the 

SPE extracts.   

4.5.8 Extraction efficiency 

The extraction efficiency was calculated by comparing the signal response to HMTD and TATP 

spiked into wastewater samples and extracted to the signal response to HMTD and TATP that was 

spiked into the eluent following the extraction process (the post-elution spike or PES samples). This 

enables a comparison between the same concentration of analytes measured with and without having 

gone through the SPE cartridge but still having the same effect of the wastewater matrix upon the 

analyses. The PES samples were also very useful for tracking changes in retention times of the 

analytes in wastewater eluent, in comparison to when the analytes were spiked into ultra-pure water or 

methanol. The extraction efficiency for HMTD was very poor with only 23% of the analyte being 

detected following its extraction from wastewater. On the other hand, the average extraction 

efficiency of TATP was 79%, of which the loss of analyte detection could be matrix effects to a lesser 

degree and certain losses caused by the elution volume where potentially 15% of the TATP was lost 

by not collecting a further 500 μL elution fraction. The extraction efficiency helps to generate a more 

accurate back-calculation of starting quantities of the target analytes since known losses from the 

extraction procedure can be taken into account.  
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4.5.9 Absolute Recovery 

The absolute recovery is a comparison between the signal responses for the analytes that have been 

extracted from the wastewater samples and the signal responses for the analytes that have been made 

up in methanol as standard solutions, both at the same concentration. This highlights all the losses that 

come from wastewater interactions as well as the extraction process itself, which is why the absolute 

recovery values are lower than the extraction efficiencies since there are more opportunities for losses 

of the analytes. The absolute recovery of HMTD from wastewater (9.35%) is much lower than the 

absolute recoveries from spiked ultra-pure water (95-103%) suggesting that the decrease is connected 

to interferences from the wastewater matrix as well as losses from the extraction process itself 

including the interactions with the sorbent material and the elution process. By comparison, TATP 

does not appear to have been affected as much as HMTD with an absolute recovery of 77.73%, very 

similar to the extraction efficiency of 79.06% and absolute recoveries from spiked ultra-pure water of 

over 100%.  

4.5.10 Matrix effects 

The effect that the wastewater matrix has on the LC-MS analysis of compounds contained within it 

can be substantial. All components other than the target analyte itself are considered as the matrix, 

and wastewater is a very complex environmental sample to process, which has a high potential to 

interfere with the true analysis of HMTD and TATP in this case. The LC-MS analysis can be altered 

where the target ion is either supressed or enhanced. Significant ion suppression occurred during the 

analysis of HMTD in the PES sample, with a loss of approximately 60% of the expected response 

signal as measured by the analysis of the standard solution containing HMTD in methanol. This loss 

is attributed to ion suppression during the LC-MS analysis since the HMTD was spiked into the 

wastewater eluent post-extraction, isolating the cause for the loss in HMTD detection to the presence 

of the extracted wastewater in comparison to methanol. Once again, TATP was not affected in the 

same way as no matrix effects were reported for this analyte. This is perhaps due to the specific 

chemical structure of TATP and the ions that are formed for mass spectrometry and the way that these 

ions interact with the components of the wastewater that remained in the eluent. As with the 
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extraction efficiency, by knowing the effect that the matrix has on the analysis of given analytes, 

allowances can be made when performing back calculations to more accurately quantify the initial 

amount of analyte present in a sample. In order to establish whether the calculated matrix effects were 

statistically significant, the two-tailed student’s t-test was used to compare the two group means. The 

two-tailed t-test takes into account the within group variation since it treats the two groups (peak area 

for standard solution replicates and peak area for PES replicates) as independent sets of data. This 

means that any variation within each dataset, such as errors caused by instrument imprecision, are 

taken into account and do not contribute to the overall question of whether the matrix is causing a 

significant difference between the analysis of the two groups of data.  

4.5.11 Precision 

The precision was measured using the percentage relative standard deviation (% RSD) that expresses 

the standard deviation as a fraction of the mean, which is a useful value when dealing with large peak 

area and peak height values. Overall the level of instrument precision was excellent for the analysis of 

both analytes. The precision of the extraction and analysis procedures as a whole was less good but 

still at an acceptable level. The % RSD values for HMTD analyses were lower than those for TATP 

analyses, but this could be explained by the significantly lower peak area and peak height values for 

HMTD, which provide less scope for variation at lower detection levels. Knowing the precision of a 

method used to process operational samples is very useful, especially when estimating the quantity of 

particular analytes at their source so that a range can be identified, taking account of extraction and 

analytical errors associated with the laboratory procedures.  

4.5.12 Method limits of detection and quantification 

Since there was no detected “noise” in the blank wastewater samples for the HMTD ion, the limits of 

detection and quantification could not be calculated by equations 4.4 and 4.5 respectively and so 

instead equations 4.6 and 4.7 were used based upon the response of the lowest detected standard and 

the slope of the calibration curve. The LOD and LOQ for the TATP extraction method were 

calculated using the average blank response plus 3 or 10 standard deviations of this response, as 

shown in Equations 4.4 and 4.5.  
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Equation 4.4: Limit of detection  

                    

Equation 4.5: Limit of quantification 

                      

Equation 4.6: Limit of detection 

LOD = 
  

 
 

Equation 4.7  Limit of quantification 

    
   

 
 

4.6 Conclusions  

The first part of this extraction chapter has established a working method for the extraction of trace 

levels of two peroxide explosives, HMTD and TATP, in wastewater. The optimum method requires 

only 250 mL sample of wastewater and benefits from not including a drying step or a pH adjustment. 

The sorbent material that retained the largest quantity of the analytes, from the sorbents tested, was 

the Isolute ENV+ cartridge (manufactured by Biotage). However the extraction process and analysis 

caused some problems with HMTD detection in wastewater, which was not the case when extractions 

were carried out from ultra-pure water, nor was this seen with TATP extraction. The large matrix 

effects upon the HMTD analysis and poor extraction efficiencies mean that the lower levels of HMTD 

contamination in wastewater samples may be missed. The overall method limits of detection were 27 

μg/L for TATP and 199 μg/L for HMTD, which reflects the higher sensitivity to TATP detection. 

TATP was not affected by any matrix effects unlike for the analysis of HMTD in wastewater samples. 

Again, this highlights one of the challenges working with complex environmental matrices such as 

wastewater. However this study has shown that the extraction and analysis methods detailed can be 

successful for organic peroxide analysis.   

With this part of the chapter being carried out under controlled laboratory conditions it was relatively 

straightforward to identify the spiked analytes that were expected to be present in the samples. 

However it would be interesting to see how effective the method is in “real” samples where unknown 
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quantities are present in non-uniform wastewater samples, and if perhaps a different sampling method 

would help to increase the limit of detection for traces of HMTD in particular. Since the potential 

starting quantities of these analytes is unknown, and particularly difficult to estimate, method 

sensitivity is a key factor in developing a successful procedure, this is discussed in the following 

chapter.   
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Chapter 5:  Extraction - application 

Part 2: Application of solid phase extraction methods for the detection of trace explosives in 

wastewater in London.  

5.1 Introduction 

This second part of the extraction section applies the method developed in part one for peroxide 

explosive extraction, and another method for the extraction of military explosives and 

environmentally relevant compounds (Wrapp-Right et al., n.d.), to the analysis of real wastewater 

samples taken from two different locations in London. In collaboration with Thames Water, 

wastewater samples were taken from manholes along a road in north east London following previous 

operations by police in this area connected to the manufacture of homemade explosives for terrorist 

activities (BBC News 2008). There is no guaranteed way of testing the extraction method for trace 

peroxide explosives in real environmental samples, and so the Thames Water sampling was very 

much speculative. With this in mind, the Thames Water samples were also analysed for a range of 

non-peroxide explosives as well as an additional batch of wastewater samples collected from another 

location in London. The second batch of wastewater samples was collected from within a 

Metropolitan Police Service (MPS) building where the individuals who worked there were likely to 

come into contact with explosives and could be involved in contamination of the wastewater from 

routine hand washing.    

The proposed purpose of the peroxide explosives extraction method is for use in short-term 

surveillance operations in order to gather any physical evidence of the presence of homemade 

explosives in the wastewater in targeted locations, where samples could be taken on a daily basis, in a 

discrete manner with very little disruption to the local environment, by the local water company who 

already carry out routine sampling. The extraction of military explosives and their related compounds 

serves as a proof of principle study where the wastewater samples analysed had a greater chance of 

containing traces of explosives either from environmental pollution (the Thames Water sewer 
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samples) or where individuals contributing to the wastewater were likely to be contaminated with 

explosives (the MPS samples).  

5.2 Aims and objectives: 

In order to apply the developed SPE method for trace peroxide explosives detection to real wastewater 

samples, as well as to screen real wastewater samples for other military explosives-related compounds 

the objectives of this study were to: 

 Collect wastewater samples from sewers in London and analyse them for both peroxide and 

military explosives; 

 Collect wastewater samples from a location likely to be contaminated with military 

explosives and analyse these as a proof of principle study; 

 Draw conclusions concerning the presence or absence of certain explosives in the different 

wastewater samples collected.  

 

5.3 Methods and materials  

5.3.1 Wastewater samples 

Two different scales of sampling were employed: firstly, a series of wastewater grab samples were 

taken from manholes along a two-mile length of road in London under the management of Thames 

Water Limited. Secondly, on a smaller geographical scale, wastewater was taken directly from 

different waste pipes underneath various sinks within the same building owned by the MPS. Members 

of the MPS facilitated the collection of these samples. Following collection, the wastewater samples 

were transported back to the laboratory in a cool box and filtered using Whatman GF/C 47 mm 1.2 

μm glass fibre filters (Sigma Aldrich, Gillingham). The wastewater volume was measured and each 

sample was stored in a Nalgene bottle in the freezer until required. 

5.3.1.1 Thames Water manhole samples 

Thames Water operatives collected five wastewater samples from manholes along a road in 

Walthamstow, London; see Figure 5.1 for further details. The samples were transported to the 

laboratory in a cool box and transferred into Nalgene bottles. The samples were stored in the freezer 
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prior to analysis. Table 5.1 lists each of the samples taken and the volumes of wastewater that were 

collected and analysed from each location.  

Table 5.1: List of Thames Water wastewater sample sites and locations.  

Name Location Volume (mL) 

TW 1 Forest Road – outside no. 1031 50 

TW 2 Forest Road – outside Willow House 150 

TW 3 Forest Road – opposite Fish Bar 200 

TW 4a Forest Road – outside Key Time Ltd. 250* 

TW 4b Forest Road – outside Key Time Ltd.  240* 

TW 5 Forest Road – outside no. 103 165 

*Collected from the same site as one sample but split into two samples for extraction according to the 

optimum volume for SPE being 250 mL.   

Figure 5.1: Map of the Thames Water manhole sample locations in London.  

 

 

5.3.1.2 Metropolitan Police Service samples 

Five different wastewater samples from within a Metropolitan Police Service building in London were 

collected from waste pipes underneath sinks using 100 mL BD Plastipak syringes (BD, Oxford, UK) 

and transferred into Nalgene bottles for transport to the laboratory in a cool box. The samples were 
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stored in the freezer prior to analysis. The samples came from four different locations, that are all part 

of the same connected wastewater system, listed in Table 5.2. One of the two samples taken from the 

downstairs sink (WW 3) was collected immediately after one of the MPS employees washed their 

hands that were contaminated with a small (estimated < 1 mg), but visible, unknown quantity of 

PETN. 

Table 5.2: List of wastewater samples and their volumes taken from a Metropolitan Police Service 

building.  

Name Location Volume (mL) 

WW 1 Sink in men’s bathroom upstairs 150 

WW 2 Sink in the downstairs cells 150 

WW 3 Downstairs sink 1 (spiked PETN) 100 

WW 4 Downstairs sink 1 100 

WW 5 Downstairs sink 2 100 

 

5.3.2 Extraction method 

The method developed for the extraction of HMTD and TATP (see 4.5.10 in the previous chapter) 

was used on the Thames Water wastewater samples only. The loading volumes depended upon the 

amount that was collected from each location. Supplementary extractions were also carried out on 

both sets of samples in order to screen for other explosives that might be present. The extraction 

method for these non-peroxide compounds used Oasis HLB 200 mg 6 mL SPE cartridges (Waters, 

Elstree, UK) and a 12-port vacuum manifold. The cartridges were conditioned with 5 mL methanol 

and equilibrated with 10 mL water before the samples were loaded. 5 mL of water was used to wash 

the cartridges before drying them with the vacuum on for 10 minutes and eluting with 2.5 mL 

acetonitrile (Wrapp-Right et al., n.d.).  

5.3.3 Instrument Analysis 

For TATP and HMTD, separations were carried out over 12 minutes on an Accela HPLC system 

coupled to a HTS-A5 autosampler (Thermo Fisher Scientific, San Jose, CA, USA) using a Waters 
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Sunfire C18 column (150 x 2.1 mm, 3.5 μm) with 1 cm guard column. Mobile phases were 90:10 (v/v) 

0.2 mM ammonium chloride in water/methanol (A) and 10:90 (v/v) 0.2 mM ammonium chloride in 

water/methanol (B). A gradient elution profile was performed at a flow rate of 0.3 mL min
-1

. Mobile 

phase was set at 20 % B at 0 min and raised to 100 % B over 4 min and then held at 100 % for a 

further 2 min. Re-equilibration time was 5 min. Column temperature was maintained at 44 °C. All 

other analytes were separated using an ACE 3 C18-AR column (150 x 2.1 mm, 3 μm) with a 1 cm 

guard column and maintained at 20 °C. A binary gradient was used over 40 min at a flow rate of 0.3 

mL min
-1

: 40 % B at 0 min; a linear ramp to 95 % B over 15 min; to 100 % B over 0.50 min; 100 % B 

for 5.5 min; to 40 % B over 0.50 min. Re-equilibration time was 17.5 min. For both separation 

methods, a 5 µL sample injection volume was taken and samples were stored in a temperature 

controlled compartment at 10 °C during analysis. 

For high-resolution mass spectrometric (HRMS) detection, an Exactive
TM

 instrument (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with a heated atmospheric pressure chemical ionisation 

(APCI) source was utilised. Nitrogen was used as the nebulising and desolvation gas within the 

ionisation source and the collision cell. Positive and negative ion mode were used for all analytes 

using full-scan high resolution mode (50,000 FWHM) between m/z 50–400 and m/z 60–625 for 

positive and negative ion mode respectively. All samples analysed were run with Dr Gillian McEneff 

and Dr Leon Barron at the Mass Spectrometry Facility at Kings College London. 

5.3.4 Data Analysis 

Chromatograms obtained from the LC-HRMS analyses were integrated using Thermo Xcalibur 

Qualitative and Quantitative Browser software version 2.2 (Thermo Fisher Scientific, San Jose, CA, 

USA) to acquire the retention time, peak area and peak height for each of the target analyte masses 

identified.  

5.4 Results 

Both sets of samples were screened for a selection of military explosives and some relevant 

metabolites. In addition to these compounds the Thames Water samples were screened for the organic 

peroxide explosives HMTD and TATP. Table 5.3 lists the analytes that could be successfully 



 146 

screened for (some standards were not detected after being spiked into wastewater), their measured 

ions, retention times (tR) and the samples in which they were detected. 

Table 5.3: Details of the analytes that were screened for across the Thames Water and case samples 

and the samples that they were detected in. ND= not detected. *=Change in signal but detection not 

confirmed.    

Analyte Measured Ion Proposed species tR Detected in 

HMTD 207.0974 [M+CH3OH-HOOH+H]
+
 2.1±0.5 ND 

TATP 89.0954 [C4H9O2]
 +

 5.9±0.5 ND 

HMX 331.0157 [M+Cl]
-
 4.6±0.4 WW3, WW4 

RDX 257.0040 [M+Cl]
-
 5.8±0.4 WW1*, WW3, WW4 

3,4-DNT 182.0330 [M]
-
 10.2±0.3 WW5 

2,4-DNT 181.0253 
[M-H]

-
 

11.6±0.3 
TW 4b*, WW1, WW2, 

WW3, WW4, WW5 

2,6-DNT 182.0330 [M]
-
 11.4±0.3 WW2, WW5 

TNT 227.0179 
[M]

-
 

12.6±0.2 
WW1*, WW2*, WW3, 

WW4*, WW5 

Tetryl 241.0218 [M-NO2]
-
 12.1±0.2 WW3 

PETN 350.9827 [M+Cl]
-
 12.7±0.5 WW3, WW4, WW5 

R-salt 209.0193 [M+Cl]
-
 3.5±0.5 ND 

EGDN 61.9884 [NO3]
-
 5.4±2.4 ND 

2-NT 136.0403 [M-H]
-
 10.4±1.0 ND 

4-NT 136.0403 [M-H]
-
 10.6±0.2 ND 

 

5.4.1 Thames Water samples 

The Thames Water samples were analysed for the presence of both of the peroxide explosives 

(HMTD and TATP) as well as for a selection of other military explosives and their degradation 

products, such as trinitrotoluene (TNT) and dinitrotoluene isomers 2,4-DNT, 2,6-DNT and 3,4-DNT. 

As Table 5.3 illustrates, neither of the peroxide explosives were detected in any of the samples, nor 

were there any traces of the other compounds that were screened for. There was, however, a visible 

change in signal relating to the 2,4-DNT ions, which can be seen at both 181.0253 m/z and 182.0330 

m/z at the same retention time (11.58 minutes) but this signal change was below the limit of detection.  
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Figure 5.2: Chromatograms showing the unconfirmed change in signal at 11.58 minutes for both the 

2,4-DNT ions. The x axis is the retention time (min) and the y axis is the peak intensity.  

 

5.4.2 Metropolitan Police Service samples 

Traces of explosives or their metabolites were detected in each of the MPS wastewater samples, 

including PETN from the spiked WW 3 sample. The different traces of explosives that were detected 

include RDX, DNT isomers, tetryl, TNT, PETN, and HMX. The extracted ion chromatograms in 

Figures 5.4-5.7 show the chromatographic peaks for each of the identified compounds in each 

wastewater sample. Those that are labelled with an asterisk (*) such as the TNT in WW 1, 2 and 4 and 

the RDX in WW 1 showed a change in signal at the retention time for the expected mass to charge 

ratio but the signal intensities were below the limits of detection and so could not be confirmed. 

Traces of 2,4-DNT were identified principally by the 181.0253 m/z ion, but there was also a less 

intense 182.0330 m/z ion, at the same retention time, that was attributed to 2,4-DNT (as can be seen 

in Figures 5.4 and 5.8).  Figure 5.3 shows each of the sampling locations and generally how they are 

positioned in relation to one another along the sewerage system; the small arrows indicate the 

direction of the wastewater flow out of the building. The compounds that were detected, or 

provisionally detected (marked with an asterisk*), are also listed next to each of the sampling 

locations.  
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Figure 5.3: Diagram of each of the sampling locations, the wastewater flow direction and the 

compounds detected in each sample.  
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Figure 5.4: Chromatogram showing traces of RDX*, 2,4-DNT and TNT* in the wastewater sample at 

location WW 1. The x axis is the retention time (min) and the y axis is the peak intensity. 

 

Figure 5.5: Chromatogram showing traces of 2,6-DNT, 2,4-DNT and TNT* in the wastewater sample 

at location WW 2. The x axis is the retention time (min) and the y axis is the peak intensity. 
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Figure 5.6: Chromatogram showing traces of HMX, RDX, 2,4-DNT, tetryl, TNT and PETN in the 

wastewater sample at location WW 3. The x axis is the retention time (min) and the y axis is the peak 

intensity. 

 

 

 

Figure 5.7: Chromatogram showing traces of HMX* and RDX in the wastewater sample at location 

WW 4. The x axis is the retention time (min) and the y axis is the peak intensity. 
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Figure 5.8: Chromatogram showing traces of 2,4-DNT, TNT* and PETN in the wastewater sample at 

location WW 4. The x axis is the retention time (min) and the y axis is the peak intensity. 

 

 

 

Figure 5.9: Chromatogram showing traces 2,6-DNT, 3,4-DNT, 2,4-DNT, TNT and PETN in the 

wastewater sample at location WW 5. The x axis is the retention time (min) and the y axis is the peak 

intensity. 
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5.5 Discussion 

5.5.1 Research Method Pathways 

5.5.1.1 Choice of target analytes 

With this chapter applying the already developed SPE method for the extraction of TATP and HMTD 

from wastewater, these were the two analytes that were screened for in the first instance in the 

Thames Water samples. However, since the expectation of finding these explosives in the wastewater 

samples was low, the Thames Water samples were also screened for other non-peroxide explosives 

based upon SPE methods developed in collaboration with King’s College London (Wrapp-Right et 

al., n.d.). This enabled further testing of the wastewater analysis approach for explosives in general 

and also gave an insight into background levels of explosives in the wastewater system in London and 

potential pollution issues.  

The MPS samples were only screened for the non-peroxide explosives that were capable of being 

extracted from wastewater according to Wrapp-Right et al. Due to the nature of the work that 

occurred in the MPS building, and in order to provide a proof of principle study for the wastewater 

analysis of trace explosives the peroxide explosives were not screened for as it was unlikely that these 

would be detected. Resource and time limitations meant that on this occasion screening for both the 

peroxides and non-peroxide explosives would not have been possible.   

5.5.2 Thames Water samples 

Even though the likelihood of having a real domestic wastewater sample containing traces of 

homemade explosives was low, this approach where the sample locations were guided by previous 

police activities and recommendations was a feasible method. The absence of traces of HMTD and 

TATP in these samples is unsurprising and could simply be explained by there being no traces present 

due to the illegal and relatively rare and intermittent nature of the manufacture of homemade 

explosives. Surveillance operations where targeted samples could be taken in a precise geo-location 

would need to be informed by up-to-date and most likely classified intelligence. Multiple samples 

taken from the same location(s) on a regular basis would increase the sample size as well as take into 

account other environmental and behavioural variables, such as rainfall and washing activities, which 
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could affect the overall result. This negative result for the peroxide compounds does not necessarily 

reflect upon the quality of the extraction method since there is no way of guaranteeing the presence of 

the analytes in real samples. The main limiting factor of the peroxide explosive extraction method is 

the relatively poor sensitivity of HMTD detection, but since initial concentrations are unknown this 

may not be a problem when considering the reported quantities of homemade explosives that have 

been manufactured for recent terror attacks (Chivers 2016; Mosher 2016). It could be beneficial to use 

a different sampling method such as passive sampling, rather than grab samples, in order to gain a 

more representative sample with the added benefit of an in-built pre-concentration step.      

The screening of other military explosives and related metabolites in the wastewater from London’s 

sewers was also not expected to produce any positive results; however there were unconfirmed traces 

of the dinitrotoluene isomer 2,4-DNT, which is consistent with a recent study measuring explosives in 

wastewater collected from a wastewater treatment plant in London (Wrapp-Right et al., n.d.). The 

DNT isomers are common degradation products of trinitrotoluene (TNT) (Halasz et al. 2002) which 

has been shown to almost completely degrade in surface waters over approximately ten days (Douglas 

et al. 2009). The presence of these TNT metabolites in the wastewater could potentially have arisen 

from the leaching of TNT from contaminated soils perhaps from army related activities or historical 

munitions factories. Since only 2,4-DNT was detected, a compound which is also widely used in 

industry across Europe for non-explosives related manufacturing, it could be more likely that the 

source of this compound comes from industrial waste not related to the use of explosives (The 

European Chemicals Agency 2010). It could be that there is a consistent background level of such 

nitroaromatic compounds in the urban wastewater system, which should be taken into account if 

looking to identify particular pollution events, as well as performing quantitative analyses to measure 

any uncharacteristic changes in compound quantity. 

5.5.3 Metropolitan Police Service samples  

The detection of a range of different trace explosives in the wastewater of a MPS owned building 

where individuals who are likely to come into contact with explosives regularly wash their hands is 

not wholly unsurprising, but it does highlight the level of contamination attributed to the activities 
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taking place in that building. It also indicates that within the context of the wastewater samples 

analysed, grab samples taken directly from the waste pipes of sinks are useful in analysing the content 

of explosives that have been immediately washed away and collected, as well as those that have been 

there for a longer amount of time and have perhaps built up in the wastewater pipe. The list of 

explosives detected in the wastewater samples were shown to the occupants of the building, who have 

confirmed that the detected compounds are consistent with their expectations. The analysis of the 

wastewater samples taken directly from the waste pipes beneath the sinks within the MPS building 

were much cleaner than those taken from the sewers. This made the interpretation of any measured 

signals slightly easier since there was less potential interference within the matrix. As with the 

Thames Water manhole samples, further sampling from the same locations over different time periods 

would help to build up an idea of the background level of contamination as well as to characterise any 

intervallic events that might be of interest from a counter-terrorism and environmental pollution point 

of view. This would also help to answer the question as to whether the results seen here are also seen 

under different wastewater conditions, for example with different temperatures, pH levels, microbial 

activity or following heavy rainfall, which would have a wastewater dilution effect.  

5.6 Conclusions 

The extraction methods employed in this chapter were successful in producing results for the 

qualitative screening of a range of different explosives, from real wastewater samples taken from two 

different locations in London. The fact that TNT degradation compounds as well as other commonly 

used military explosives were detected in several of the different samples highlights an excellent 

screening method that can be used as a starting point for repeated and more specific investigations.  

No peroxide explosives were detected in the manhole samples, which could have been because there 

were none present in the wastewater to begin with, or because the extraction and analysis methods 

were not sensitive enough to detect them. However considering the efficacy of the overall approach 

shown by the detection of other trace explosives, the capabilities were in place to detect TATP if it 

was present to a similarly low level. The poorer limit of detection for HMTD could have been a 

limiting factor in this experiment. Since the presence of peroxide explosives in domestic wastewater 
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would be an extremely concerning occurrence and hopefully a very rare one, this is an unsurprising 

result. Spiking real domestic wastewater with such substances in a residential setting to serve as a 

positive control is not at all feasible and so it is difficult to test the capabilities of the extraction 

method with real operational samples for these two peroxide analytes. The collection strategy for the 

wastewater samples could have had a significant impact upon the chances of detecting any peroxide 

explosives in the wastewater if they were indeed present. Furthermore, a different sampling method 

could increase the sensitivity of the overall method for detecting other types of explosives as well. 

This will be discussed in Chapter 7: passive sampling for trace explosives, and Chapter 6 explores the 

stability of the peroxide explosives in wastewater.  
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SECTION 3 

Chapter 6:  Stability  

6.1 Introduction 

The fate of peroxide compounds, such as HMTD and TATP, in the environment and particularly in 

the wastewater, is unknown. Some studies have been conducted looking at the thermal decomposition 

of HMTD and TATP (Hiyoshi, Nakamura, and Brill 2007; Oxley, Smith, and Chen 2002) and the 

stability of TATP in laboratory solutions (Pachman and Matyáš 2011b; Haroune, Crowson, and 

Campbell 2011).   

There are many environmental factors that could affect the dispersion and integrity of these 

compounds being introduced into the wastewater system via a domestic waste pipe. For example the 

amount that is being introduced into the wastewater system, the turbulence, volume and temperature 

of the wastewater as well as any other waste compounds also being dispelled could affect the life 

cycle of any homemade explosives. For this wastewater analysis approach to be successful, an 

assessment of the fate of the target analytes in wastewater is essential, and although the exact 

conditions of the analytes in the wastewater are not reproducible, a controlled laboratory based 

experiment can help to measure the general stability of these compounds in real wastewater samples.  

Based upon data provided by Thames Water, wastewater in London travels approximately one mile in 

13 minutes; this depends upon the flow rate encountered, which is subject to other factors specific to 

the journey being taken, and the external environmental conditions. This means that the likely 

window of time that the analytes are in the wastewater for could vary from less than an hour to several 

hours, before it enters the wastewater treatment plant. This means that there is a relatively short period 

of time in which analytes would need to be present in the sewers for any chance of collection, analysis 

and source attribution. An experiment lasting several days was tested in order to assess any rates of 

degradation as well as be assured that a sufficient amount of time had been covered. Different 

conditions were tested in order to try and incorporate some of the likely environments that would be 
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found in the sewers. These included varying the matrix, the turbulence, and the experimental design, 

whilst monitoring the temperature in case of any thermal effects.  

6.2 Aims and objectives 

In order to assess the stability of the two peroxide explosives, HMTD and TATP, in real wastewater 

samples in a laboratory based experiment, the objectives of this study are: 

 To monitor the detected levels of both target analytes in ultra-pure water and still and stirred 

wastewater over a series of days; and 

 To compare the signal degradation rates of the analytes in the different matrices and monitor 

the temperature of the samples to identify any temperature effects.  

 

6.3 Methods  

6.3.1 Chemicals 

HMTD stock solution (97.0%) was purchased from SelectLab Chemicals (Münster, Germany) as a 

1% solution and TATP 0.1 mg/mL (99.9%) was purchased from Accustandard (Kinesis, St Neots), 

both were used to make intermediate solutions in methanol for spiking into the wastewater samples. 

6.3.2 Wastewater samples 

Post-screen influent wastewater samples were collected from Beckton Wastewater Treatment Plant in 

east London. The wastewater was filtered using Whatman GF/C 47 mm 1.2 μm glass fibre filters 

(Sigma Aldrich, Gillingham, UK), and stored in Nalgene bottles in the freezer and thawed when 

required.  

6.3.3 Laboratory setup – study 1 

The first of two different approaches to monitor the stability of HMTD and TATP in wastewater had 

the following setup: 2 x 1 litre silanised Duran bottles containing 500 mL of wastewater spiked with 

HMTD and TATP to give a final concentration of 1 mg/L were setup with one of the Durans set to stir 

at approximately 600 rpm using a magnetic stirrer. The Duran bottles were covered with tin foil to 

prevent light from reaching the spiked wastewater. A third silanised Duran bottle was setup as a 
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control containing wastewater only. Aliquots of the wastewater samples were extracted immediately 

and after 1 day, 2 days, 3 days, 6 days, 7 days and 28 days, using the peroxide extraction method 

detailed in Chapter 4.  

6.3.4 Laboratory setup – study 2 

In the second study five replicate 100 mL wastewater samples were setup in silanised 100 mL Duran 

bottles spiked with HMTD and TATP to give a final concentration of 1 mg/L. Another five 

wastewater samples were setup in the same way but this time they were stirred using magnetic stirrers 

at approximately 600 rpm. A final set of five Duran bottles were setup with ultra-pure water (UPW), 

which was also spiked with HMTD and TATP at 1 mg/L. All the Durans were covered in tin foil in 

order to prevent any light from reaching the water samples. Control samples were also setup in order 

to assess the ultra-pure water and wastewater without any HMTD or TATP as well as post-elution 

spike samples where additional un-spiked samples were later spiked following the extraction process. 

The temperature of the water samples was monitored over the duration of the study using an InkBird 

THC-4 data logger in case the temperature affected the stability of the analytes. This time the entire 

100 mL replicate samples were extracted at each time point as opposed to taking a sub-sample from a 

larger volume. The extracts were analysed using LC-MS at King’s College London.  

6.3.5 Instrument Analysis  

For TATP and HMTD, separations were carried out over 12 minutes on an Accela HPLC system 

coupled to a HTS-A5 autosampler (Thermo Fisher Scientific, San Jose, CA, USA) using a Waters 

Sunfire C18 column (150 x 2.1 mm, 3.5 μm) with 1 cm guard column. Mobile phases were 90:10 (v/v) 

0.2 mM ammonium chloride in water/methanol (A) and 10:90 (v/v) 0.2 mM ammonium chloride in 

water/methanol (B). A gradient elution profile was performed at a flow rate of 0.3 mL min
-1

. Mobile 

phase was set at 20 % B at 0 min and raised to 100 % B over 4 min and then held at 100 % for a 

further 2 min. Re-equilibration time was 5 min. Column temperature was maintained at 44 °C.  

For high-resolution mass spectrometric (HRMS) detection, an Exactive
TM

 instrument (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with a heated atmospheric pressure chemical ionisation 

(APCI) source was utilised. Nitrogen was used as the nebulising and desolvation gas within the 
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ionisation source and the collision cell. Positive and negative ion mode were used for all analytes 

using full-scan high resolution mode (50,000 FWHM) between m/z 50–400 and m/z 60–625 for 

positive and negative ion mode respectively. All the samples analysed were run with Dr. Gillian 

McEneff and Dr. Leon Barron at the Mass Spectrometry Facility at Kings College London. 

6.3.6 Data Analysis 

Chromatograms obtained from the LC-MS analyses were integrated using Thermo Xcalibur 

Qualitative and Quantitative Browser software (Thermo Fisher Scientific, San Jose, CA, USA) to 

acquire the retention time, peak area and peak height for each of the target analyte masses identified.  

6.4 Results 

6.4.1 Study 1 

In this first experiment where sub-samples of spiked wastewater were analysed over time, no HMTD 

was detected in either the still or stirred wastewater samples. A consistently low level of TATP was 

detected across the stirred and still wastewater samples, however no indication of the stability of the 

analytes was able to be determined.   

6.4.2 Study 2 

With the change in experiment design, the spiked HMTD and TATP could be detected on each day in 

order to assess the decreased amount of analytes in each sample. As shown in Figures 6.1 and 6.2 the 

overall initial range of average recoveries of HMTD from the three matrices was much lower (12-

21%) than for TATP (68-78%). After 6 hours, the average recovery of HMTD had decreased by 

between 2-5% in the wastewater samples and 14% in the ultra-pure water sample. After 24 hours none 

of the HMTD recoveries were above the limit of detection (199 μg/L) with an average of between 1 

and 3% of the HMTD being recovered from all three of the samples.  

The average recovery of TATP from all three samples was maintained within 7% of the initial value 

over the first 48 hours. After the 168 hours of the experiment, the average recovery of TATP from the 

stirred and still wastewater samples had decreased by 5% and 15% respectively. The recovery of 

TATP from the ultra-pure water decreased by 22%. Overall, the persistence of TATP in the 
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wastewater samples was much more stable than the persistence of HMTD. Regardless of the 

previously stated matrix effects upon the HMTD extraction method, the relative pattern of 

degradation in wastewater is clearly illustrated in comparison to that of TATP.    

Figure 6.3 shows the temperature profile of the wastewater samples that were left for the entire 

experiment time; there was very little change in temperature recorded with the lowest temperature 

measured to be 19.3°C and the highest temperature measured to be 20.0°C.  

Figure 6.1: Trendlines showing the percentage of HMTD extracted from wastewater over 168 hour 

time period in study 2.  

 

Table 6.1: Comparative rates of signal degradation (peak area/hour) across different matrix conditions 

tested in study 2. 

Analyte Stir Still UPW 

HMTD 3173 9961 8348 

TATP 567 1490 2540 

 

The degradation rates were calculated differently for each of the analytes; the rate of signal 

degradation for HMTD was calculated over the initial 6 hours as after this time either there was no 

signal detected or there was a signal but it was below the limit of detection. The rate of signal 

degradation for TATP was calculated over the duration of the entire experiment. Both results have 

been averaged per hour. The rates of HMTD degradation are greater across all of the conditions 
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compared to those for TATP. The degradation rates for both analytes in ultra-pure water were not 

lower than both of the wastewater samples and the stir samples did not show the highest rates of 

degradation for either analyte.  

Figure 6.2: Trendlines showing the percentage of TATP extracted from wastewater over 168 hour 

time period in study 2.  

Figure 6.3: Temperature profile of the water samples measured during the second stability study. 
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6.5 Discussion 

6.5.1 Choice of target analytes 

Homemade explosives such as the peroxides TATP and HMTD have been the main focus for this 

thesis where possible, particularly because of their use in terrorist activities around the world due to 

their ease of manufacture from legally acquired precursor materials. Thus, the wastewater analysis 

approach for trace peroxide explosives has a direct use in the field of counter-terrorism and so in order 

to address the extent to which the wastewater analysis approach could be viable, it was important to 

address the stability of the intended target analytes in wastewater.   

6.5.2 Experimental Design 

By re-designing the experiment it became less like real-life in the sewers where there is a single 

source of wastewater of which a smaller sub sample would be analysed, however in order to 

determine the stability of the analytes in the wastewater samples a more controlled experimental 

design was required. By analysing the entire volume of spiked wastewater, in smaller volumes, the 

decrease in signal measured in relation to the initial response measured was possible. This meant that 

multiple replicates had to be set up for each different length of time, and so some variation was 

expected due to differences between starting concentrations for each sample. The different starting 

recoveries of the extracted analytes in each sample illustrate the variation between starting 

concentrations of the different conditions tested (most likely caused by minor spiking errors and 

instrumental variation) however this did still enable the relative proportion of the analytes to be 

monitored over the study period. 

6.5.3 HMTD Stability 

Due to the matrix effects and losses of HMTD during the extraction and analysis procedures, it was 

not surprising that HMTD was not detected in the first stability experiment where sub-samples were 

taken and thus a lower concentration of HMTD would be initially present.     

As previously mentioned, some thermal decomposition studies have been carried out on solid (rather 

than liquid) samples of HMTD, which were made from the acidified mixture of hexamine and 
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hydrogen peroxide. Oxley et al. (Oxley et al. 2009) found that when synthesising HMTD, if it is not 

highly purified by re-crystallization, its decomposition is even faster than from purified samples. The 

decomposition products that were identified were N,N'-dimethylformamide, formamide, 

trimethylamine, and hexamine. These are quoted to be its “vapour signature” but do not address any 

solution phase degradation (Oxley et al. 2009). As seen in the analysis chapter (Chapter 3), most of 

the ions associated with HMTD detection were the HMTD molecule with various parts missing, such 

as hydrogen peroxide and formaldehyde, and an ion was detected that could have been for the 

precursor chemical hexamine.   

6.5.4 TATP Stability 

TATP has been shown to have two stable conformers with identical masses, which are distinguishable 

by retention time using liquid chromatography (Haroune, Crowson, and Campbell 2011). The 

identification of the interconversion kinetics of the minor conformer to major conformer over time at 

different temperatures also supports the manifestation of two TATP conformers. The different 

conformers should be taken into account when assessing degradation using LC-MS as there may be 

two TATP peaks present, which would need to be resolved and identified. Another study investigating 

TATP has found that different catalysts used to synthesise TATP from hydrogen peroxide (30%) and 

acetone, as well as the solvents used to store them, produce different product stabilities. Again, as 

stated by Oxley et al. (Oxley et al. 2009), purification of TATP by re-crystallisation results in a more 

stable product regardless of catalyst and solvent used. The recommendations for increasing peroxide 

stability in laboratory solvents are to use either methanol or acetonitrile and to store samples in the 

dark and in the cold (Pachman and Matyáš 2011a).  

6.5.5 Effect of temperature and stirring 

The temperature levels measured in the second stability experiment are likely to be at the higher end 

of the range expected for wastewater, which will depend upon the time of year and external weather 

conditions. The temperature of the wastewater is measured at the wastewater treatment plants in 

London and has to be reported to the UK Environment Agency when it falls below 5 °C, however 
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there is not an equivalent upper limit for reporting high wastewater temperatures, typical Thames river 

water temperatures range between 3 °C and 20 °C throughout the year (Howes 2008).        

It was expected that the analytes in the stirred wastewater samples would degrade fasted than those in 

the still and ultra-pure water samples, due to physical breakdown caused by the turbulence of the 

water. However the rates of degradation were greater for the still samples and so perhaps there is 

some function of the stirring motion, which helps to maintain compound integrity. Repetition of the 

experiment with new wastewater samples and a range of different stirring speeds would help to 

identify if this was the case. Measuring the effect of different temperatures would also help to 

establish the extent to which there was any thermal degradation. The effect of bioremediation from 

bacterial components within the wastewater could also be investigated. The composition of 

wastewater samples is likely to be constantly changing depending upon conditions such as rainfall and 

other weather conditions, human behaviour at different times of the day and year and the sewerage 

ecosystem. This will undoubtedly cause fluctuations in analyte stability and should be investigated 

further.   

6.6 Conclusions 

This small-scale study highlighted the short-term pattern of degradation of the two peroxide 

explosives HMTD and TATP in wastewater, which is key to determining the level of potential 

success that a wastewater analysis approach could have for the detection and source attribution of 

homemade peroxide explosives for use in terror attacks.  

If any homemade peroxide explosives do enter the wastewater system it seems likely that HMTD will 

start to breakdown immediately, but will not completely disintegrate within six hours. TATP is more 

persistent and has the potential to be detected at least up until 7 days after entering the wastewater. 

The journey from the point of introduction to any of the potential sampling locations from the source 

to the entrance to the wastewater treatment plant, in London, is unlikely to take longer than 6 hours 

given the estimated flow rates and distances covered in each wastewater treatment catchment area. 

Variables such as initial starting quantities will remain unpredictable and wastewater flow rates will 

vary throughout the day with further disruption from additional stormwater during rainy periods, 
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however, this study shows that the analytes in question do not immediately degrade in the wastewater. 

This is extremely important for the entire concept of wastewater analysis for trace peroxide explosives 

detection to be viable. If these compounds do enter the wastewater system they will maintain their 

integrity long enough to be detected. Furthermore, by identifying the point at which the compounds 

can no longer be detected, this will help to assess an estimated maximum length of time that they have 

been present in the wastewater. This also validates the development of sampling, extraction and 

analysis methods for HMTD and TATP in wastewater, which given that they are sensitive enough, 

will provide a great contribution to the use of wastewater analysis for information gathering purposes 

in criminal investigations.  
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Chapter 7:  Passive Sampling  

7.1 Introduction 

This chapter addresses the potential use of passive sampling devices for the collection and pre-

concentration of trace target explosives and their related compounds in wastewater. There are several 

different passive samplers available on the commercial market that have previously been used for the 

environmental monitoring of both organic and inorganic compounds of interest, such as 

pharmaceuticals, pesticides and heavy metals (Coes, Paretti, Foreman, Iverson, and Alvarez 2014a; 

Alvarez 2013; C.-E. Chen et al. 2013; P. Thomas 2008; Aguilar-Martínez et al. 2008), which may be 

illegally polluting natural waters as well as wastewater. For inorganic pollutants, there are two 

different passive sampling devices that can be used; the DGT (Diffusive Gradient for Thin film) or the 

Chemcatcher
®
. These two can also be used for organic pollutants as well as POCIS (Polar Organic 

Chemical Integrative Sampler), SPMD (Semi-Permeable Membrane Device) MESCO (Membrane-

Enclosed Sorptive COating) and others (Kingston et al. 2000; Paschke et al. 2006; Alvarez et al. 2004; 

Huckins, Tubergen, and Manuweera 1990). The European Union Water Framework Directive 

(Lettieri 2015) dictates a list of priority substances that must be monitored as environmental pollutants 

to maintain water quality standards. The development of novel passive sampling devices for this 

purpose has helped to more accurately detect and quantify recognised and emerging pollutants 

without having to rely upon expensive auto-sampling devices or labour intensive and intermittent grab 

sampling. In order to adapt a passive sampling device for use in a novel application, such as trace 

explosives detection in wastewater, there are several challenges that have been identified, which must 

be addressed. These include determining the method and instrument sensitivity necessary for the 

determination of low concentrations found in environmental samples; the preservation of the identity 

of species and the achievement of simple, inexpensive, and robust monitoring procedures. An 

optimised instrumental analysis method using LC-HRMS for trace explosives detection enables 

sensitive analysis of trace explosives with the use of passive sampling devices to collect and pre-

concentrate target analytes. This also means that there is no requirement for a solid phase extraction 

step as the clean-up and pre-concentration procedures are carried out during the deployment of the 
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sampler. In collaboration with the University of Portsmouth and Natural Resources Wales, the 

opportunity to test one of the passive sampling devices (the Chemcatcher
®
) for explosives collection 

in wastewater is explored.  

The Chemcatcher
®
 devices work on the general principle that the target analytes diffuse and 

accumulate on a specifically chosen receiving phase by sorption. Depending upon the length of time 

that the devices are deployed in the sewer or river, for example, they can be used during an integrative 

accumulation stage or when the uptake equilibrium has been reached. Chemcatcher
®
 devices are 

commonly used during the integrative accumulation phase in order to be able to calculate time 

weighted average concentrations of the target analytes but can also be left for longer deployment 

times to be used at equilibrium. The receiving phase in the Chemcatcher
®
 can be chosen from a 

variety of different commercially available disks, such as a functionalised chelating disk for inorganic 

analysis or a C18 or ion exchange disk for different organic compounds. Often a membrane is placed 

on top of the receiving phase in order to protect the disk, to add an extra layer of selectivity and 

control the analyte uptake. Different membranes that have already been tested include 

polyethersulfone (PES), glass fibre (GF), polyvinylchloride (PVC) and polyethylene (PE). For 

quantification of targeted analytes in the chosen matrix there are two models that have been described; 

the Chemical Reaction Kinetic (CRK) model, which only considers the kinetic uptake from the water 

column to the receiving phase and assumes isotropic exchanges (Vrana et al. 2006; Charriau et al. 

2016) and the Mass Transfer Coefficient (MTC) model, which considers the mass transfer of the 

compound between each of the passive sampler compartments. For the study described in this chapter, 

the analysis was qualitative and so calculations of the analyte concentrations were not carried out.  

The Chemcatcher
® 

configuration comprises of two sections, the PTFE housing components and the 

changeable internal disk and membrane constituents. The housing is made up of three sections: (i) the 

base with a fastening lug (ii) a retaining ring that screws together with the base to seal the interior disk 

and membrane and (iii) the travel cap which also screws together with the base and ring to protect the 

disk and membrane during transportation, see Figure 7.1 for images of the Chemcatcher
® 

components.     
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Figure 7.1: Components of the Chemcatcher
® 

housing: (i) base, (ii) retaining ring (iii) cap (iv) base 

showing lug for attachment, (v) receiving phase after deployment and (vi) membrane after 

deployment.  

 

The Chemcatcher
® 

configuration tested in this experiment included a PES membrane covering a solid 

phase extraction disk containing a polystyrene divinylbenzene co-polymer sorbent base material with 

n-vinylpyrrolidone functional groups. This configuration was chosen based upon research showing 

that the PES membrane has a higher resistance to biofilm development (Harman et al. 2009), which 

would interfere with the compound uptake, and the SPE sorbent has already been proven to work 

extremely well with trace explosives in wastewater (Wrapp-Right et al., n.d.). Unfortunately the 

sorbent material that works best for the extraction of the organic peroxide explosives TATP and 

HMTD (detailed in Chapter 4) is not currently commercially available in disk format for use in a 

Chemcatcher
®
, but could be available in the future for further research.  

7.2 Aims 

In order to qualitatively assess the potential for collecting trace explosives from wastewater on a 

chosen sorbent layer within the Chemcatcher
®
 with a PES membrane, under laboratory conditions, the 

objectives of this study were:  

 To setup a static renewal exposure experiment using tanks containing wastewater spiked with 

a range of trace explosives known to be compatible with the sorbent material being tested; 

~6 cm 
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 To control the flow rate and monitor the temperature of the spiked wastewater over an 

exposure period of seven days.  

 

7.3 Methods 

7.3.1 Chemicals  

HPLC grade methanol and water were purchased from Sigma Aldrich (Gillingham, UK), HPLC 

explosives mix from Accustandard (Kinesis, St Neots, UK) containing 14 components at 0.5 mg/mL 

in acetonitrile:methanol 50:50; 2-Amino-4,6-Dinitrotoluene (100.0 %), 4-Amino-2,6-Dinitrotoluene 

(98.0 %), 1,3-Dinitrobenzene (97.0 %), 2,4-Dinitrotoluene (100.0 %), 2,6-Dinitrotoluene (100.0 %), 

HMX (99.1 %), RDX (99.2 %), nitrobenzene (99.8 %), 2-Nitrotoluene (99.0 %), 3-Nitrotoluene (98.7 

%), 4-Nitrotoluene (99.2 %), tetryl (100.0 %), TNT (100.0 %) and 1,3,5-Trinitrobenzene (97.5 %) 

was used to spike wastewater samples.  

7.3.2 Wastewater samples 

Post-screen influent samples were collected from south and west inlets at Thames Water’s Beckton 

Wastewater Treatment Plant between 28
th
 September and 2

nd
 October 2015. The samples were 

vacuum filtered using Whatman GF/C 47 mm 1.2 μm glass fibre filters (Sigma Aldrich, Gillingham, 

UK) and pooled in order to create a composite sample and stored in Nalgene bottles in the freezer 

until required.   

7.3.3 Polyethersulphone (PES) membrane preparation 

The PES membranes, provided by Natural Resources Wales (Llanelli, UK), were soaked in 50:50 

methanol:water solution for 24 hours. The solvent solution was then discarded and the PES 

membranes were soaked for a further 24 hours in fresh methanol:water 50:50 solution. The solvent 

was then discarded again and the membranes were soaked for another 24 hours in methanol, which 

was then replaced and the membranes were soaked for a final 24 hours in fresh methanol.  

7.3.4 Solid phase extraction HLB disk conditioning 

The Atlantic
® 

SPE disks containing polymeric HLB (hydrophilic/lipophilic balanced) sorbent material 

(polystyrene divinylbenzene co-polymer sorbent base material with n-vinylpyrrolidone functional 
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groups) manufactured by Horizon Technology (Salem, USA) were supplied by Natural Resources 

Wales (Llanelli, UK). The HLB disks were conditioned with 25 mL methanol followed by 25 mL 

water using a vacuum filtration system.  

7.3.5 Chemcatcher
®
 setup 

The Chemcatcher
®
 devices were provided by Natural Resources Wales and are commercially 

available from the University of Portsmouth, UK. The Chemcatcher
®
 devices were assembled by 

placing a conditioned HLB disk and PES membrane on top of the sampler base component and 

secured by screwing on the retaining ring component.  

7.3.6 Laboratory design 

Five 2-litre glass beakers were silanised and filled with one litre of wastewater each. Four of the five 

beakers containing the wastewater were spiked with the explosives standard mix to a final 

concentration of 500 ng/mL and the fifth beaker was left un-spiked as a blank control. Prepared 

Chemcatcher
®
 devices were placed into the beakers, one per beaker, and were stirred using magnetic 

stirrers at approximately 600 rpm in order to move the wastewater around the Chemcatcher
®
 device in 

the beaker. The spiked wastewater was removed and renewed daily to ensure minimal analyte 

depletion. The beakers were covered with tin foil to prevent light from reaching the wastewater as 

well as to prevent evaporation from the beaker. The PES membrane and HLB disk were eluted after 1 

day, 2 days, 4 days and 7 days. The temperature of the wastewater was monitored over the 7-day 

deployment using an InkBird THC-4 data logger.    

7.3.7 Elution 

The PES membranes were eluted using 10 mL methanol and the HLB disks were first washed with 25 

mL of water, left to dry under vacuum for 10 minutes before being eluted with 25 mL methanol. An 

aliquot of this eluent was then analysed using LC-HRMS.  

7.3.8 Instrument Analysis  

The analytes were separated using an ACE 3 C18-AR column (150 x 2.1 mm, 3 μm) with a 1 cm guard 

column and maintained at 20 °C. A binary gradient was used over 40 min at a flow rate of 0.3 mL 
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min
-1

: 40 % B at 0 min; a linear ramp to 95 % B over 15 min; to 100 % B over 0.50 min; 100 % B for 

5.5 min; to 40 % B over 0.50 min. Re-equilibration time was 17.5 min. A 5 µL sample injection 

volume was taken and samples were stored in a temperature controlled compartment at 10 °C during 

analysis. 

For high-resolution mass spectrometric (HRMS) detection, an Exactive
TM

 instrument (Thermo Fisher 

Scientific, San Jose, CA, USA) equipped with a heated atmospheric pressure chemical ionisation 

(APCI) source was utilised. Nitrogen was used as the nebulising and desolvation gas within the 

ionisation source and the collision cell. Positive and negative ion mode were used for all analytes 

using full-scan high resolution mode (50,000 FWHM) between m/z 50–400 and m/z 60–625 for 

positive and negative ion mode respectively. All samples analysed were run with Dr Gillian McEneff 

and Dr Leon Barron at the Mass Spectrometry Facility at Kings College London. 

7.3.9 Data Analysis 

Chromatograms obtained from the LC-HRMS analyses were integrated using Thermo Xcalibur 

Qualitative and Quantitative Browser software version 2.2 (Thermo Fisher Scientific, San Jose, CA, 

USA) to acquire the retention time, peak area and peak height for each of the target analyte masses 

identified.  

7.4 Results 

All of the analytes that were spiked into the different wastewater samples were detected on both the 

PES membrane and HLB disk at each of the time points. Some background levels of 2,6-DNT, 2,4-

DNT, 2-Amino-4,6-DNT and 4-Amino-2,6-DNT were detected in the blank wastewater samples 

tested over the duration of the experiment. These very low levels of compounds detected in the 

background were subtracted from the spiked samples to get a more accurate relative measurement of 

the analytes that had accumulated on the PES membranes and HLB disks because of the spiking. This 

background level of nitroaromatic compounds was also seen in other wastewater samples analysed in 

this thesis (see Chapter 5).  
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Figure 7.2 illustrates the relative amounts of each analyte detected on each PES membrane and Figure 

7.3 illustrates the relative amounts of each analyte detected on each HLB disk over the four time 

points tested over the 7 days. The first result noted was that there was a slightly higher response to the 

analytes detected on the PES membranes than on the HLB disks (apart from PES 2, which could be an 

anomaly due to the experimental setup). There was a clear increase in analyte uptake onto the HLB 

disks from (HLB 1) one day’s deployment to two day’s (HLB 2), four day’s (HLB 3) and seven day’s 

deployment (HLB 4). Unfortunately it was not possible to perform any analyses on the wastewater 

itself over the period of the experiment due to instrument access and budget limitations.  

 

Figure 7.2: Response measured by the mean peak area for each of the analytes detected on the PES 

membranes eluted from the Chemcatcher
®
 devices over the four time points.  
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Figure 7.3: Response measured by the mean peak area for each of the analytes detected on the HLB 

sorbent disks eluted from the Chemcatcher
®
 devices over the four time points. 

 

Figure 7.4: Average temperature of the wastewater samples during the seven day deployment of the 

Chemcatchers
®
. 
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Figure 7.4 shows the temperature of the spiked wastewater measured over the entire time that the 

Chemcatcher
®
 devices were exposed in the tanks during the experiment. A change in temperature can 

affect the uptake rate at which the analytes diffuse through the membrane and accumulate on the 

receiving phase (Charriau et al. 2016). During this experiment the temperature varied between 23.0 

and 28.5 °C with an average of 25.3 °C.  

7.5 Discussion 

7.5.1 Choice of target analytes 

The make-up of the Chemcatcher
® 

device includes the receiving phase which is usually a solid phase 

sorbent material in disk format, specific to the type of analyte that is being targeted. Initially the 

intended analytes for this study were the peroxides TATP and HMTD, however the sorbent material 

that was identified as being the optimum for these two analytes (in Chapter 4) is not currently 

commercially available in disk format and so cannot be used inside a Chemcatcher
®
. The sorbent 

material that is commonly used in the Chemcatcher
® 

device setup is the HLB disk, which based upon 

previous work has been proven to extract non-peroxide explosives when in a SPE column format. 

Based upon this, the decision was made to test the potential use of the passive sampling devices for 

the collection of non-peroxide explosives in wastewater.   
 
 

7.5.2 Background Levels of Explosives 

The background levels of explosives-related compounds that were detected in the wastewater samples 

prior to spiking were 2,4-DNT, 2,6-DNT, 2-amino-4,6-DNT and 4-amino-2,6-DNT. These are all 

recognised TNT transformation products in the aqueous environment, which can be transformed from 

TNT via biotic and abiotic processes. The DNT isomers may also occur as impurities from the direct 

manufacture of TNT. 2-Amino-4,6-DNT and 4-Amino-2,6-DNT can be produced in the environment 

via the biotic transformation of nitro functional groups to amino groups. The dinitrotoluene isomers 

and amino dinitrotoluene isomers have relatively low octanol–water partitioning coefficients (Log 

Kow) and so they may be mobile in the environment once they have been dissolved into water (Juhasz 

and Naidu 2007). The DNT isomers, as well as other related compounds, have been shown to 

accumulate in the environment and have a negative impact upon the local ecosystem (Halasz et al. 
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2002; Letzel 2003). The detected levels of these potential TNT transformation products could be 

attributed to historical munitions manufacture or perhaps as chemical by-products from other 

manufacture processes (Dontsova et al. 2009; US EPA 2008; The European Chemicals Agency 2010).  

7.5.3 PES Membrane Analysis  

The accumulation of the analytes upon the PES membranes across the exposure period could be due 

to a varying affinity between each of the analytes and the hydrophobic polyethersulphone material. 

This could cause a reduction in the rate at which the compounds move across the membrane and onto 

the receiving phase causing a lag-phase before the compounds achieve breakthrough. This concept of 

a membrane barrier induced lag-phase has also been observed when comparisons were made between 

the Chemcatcher
® 

with and without a membrane (Kingston et al. 2000). Different membranes should 

be tested in order to find one that might have less affinity to the analytes and thus enable a greater 

amount of analyte compounds to cross into the receiving phase. The benefit of a Chemcatcher
®
 

without a membrane would be that it could be more responsive to short-term fluctuations of target 

compound concentrations since there would not be a lag-phase. However without the added layer of 

protection in front of the receiving phase, the sampler becomes more susceptible to biofilm 

development and deterioration of the overall process.  

7.5.4 HLB Disk Analysis  

While the aim of this initial study was not to quantify the analytes accumulated on the receiving 

phase, the relative abundances of each analyte by comparison of the peak area for each compound 

detected at each time point was possible, as illustrated in Figures 7.2 and 7.3. The dinitrotoluenes and 

amino-dinitrotoluenes produced the highest relative abundances on both PES and HLB samples 

whereas the lowest relative abundances were produced by the nitrotoluenes and tetryl.   

 The temperature of the spiked wastewater was monitored and showed a change of less than 6 °C over 

the course of the experiment. The temperature of the wastewater is likely to affect the uptake rate of 

the analytes onto the receiving phase, however further experiments where the temperature can be 

controlled rather than monitored would help to identify any specific temperature effects.  
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Overall, these results show that all the analytes were detected on the receiving phase. There was also a 

linear uptake of the compounds onto the receiving phase over the 7-day exposure meaning that 

equilibrium was not reached during the experiment exposure time. From this point, further research 

and calibration studies in the laboratory and field would enable an applied quantitative approach for 

determining trace explosives in wastewater.  More specifically, further research needs to be conducted 

on the conditioning and elution processes, including the drying time of the HLB disks prior to the 

final elution with methanol. It would also be interesting to test the setup for the collection of peroxide 

explosives if the required sorbent material could be made commercially available in SPE disk format. 

As was shown in chapter 5, the extraction of wastewater grab samples taken directly from the sewers 

in London did not show the presence of any peroxide explosives. This could have been because there 

were none to be detected or it could have been a factor of the sampling method. In order to test this 

theory a side-by-side comparison study between the two techniques in the field would be extremely 

helpful.  

7.5.5 Limitations 

There were several limitations to this study since the likely “real world” conditions could not be 

replicated. For example, the high concentration of analytes being present in the wastewater which 

remained at a constant throughout the 7-day deployment, as well as the small volumes of wastewater 

used and the stirring motion that would normally be a constant flow rather than a discrete volume. 

However, there are many studies which have used a similar setup to assess the capabilities of the 

Chemcatcher
®
 and have proceeded to establish successful working methods for the monitoring of 

emerging and existing pollutants (Charriau et al. 2016; Lissalde et al. 2016).  

The wastewater used in this chapter was a composite of samples taken across a week in order to 

prevent day-to-day fluctuations in wastewater composition. The variability of the wastewater 

composition is likely to change throughout a typical day with the effect of regular human behaviours 

such as showering in the morning before work, and the irregular occurrence of rainfall and 

temperature fluctuations. The use of composite samples helps to reduce the effects caused by these 
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events, however further research into different wastewater sample compositions would be extremely 

useful in determining the extent to which the results seen in this chapter can be replicated.  

7.6 Conclusions 

Taking grab samples is often the most commonly used sampling technique due to its simplicity and 

affordability, but there are many associated limitations including sample representativeness (Alvarez 

et al. 2005; Cassidy and Jordan 2011; Tan et al. 2007). Additionally, short-term pollution events 

typically run off events or accidental pollution “dumping” events may be missed. Large volumes of 

water are required for the study of trace level compounds in targeted locations. For the application to 

gathering information for counter-terrorism surveillance operations, the collection of small volume 

grab samples, even on a twice daily basis, would not provide the pre-concentration and coverage of 

wastewater that is constantly being pumped through the sewerage network.  

In order to monitor the wastewater coming from a given residence and reduce the dilution effect, 

where the flow rates mean that the wastewater is moved away very quickly, passive sampling offers a 

way of accumulating target compounds over a variable amount of time from days to weeks with 

increased coverage. The potential is there to use these samplers in triplicate, for example, at different 

targeted sites around a specific residence in London, and with the use of maps provided by Thames 

Water, to create a strategic sampling protocol in order to gain the most information about where 

detected compounds may have originated. The Chemcatcher
®
 devices could be deployed for two or 

three weeks at a time, depending upon the maximum integrative sampling period, and collected and 

analysed on the same day providing supplementary information regarding the illicit manufacture and 

use of explosives. Opportunities to target emerging compounds of concern with different membranes 

and receiving phases can use already established methods for solid phase extraction, for example, to 

transfer into disk format for bespoke applications. This novel use of passive sampling for illicit trace 

substance analysis has great potential to become an extremely useful tool for monitoring wastewater 

in situ by overcoming the limitations of current methods that are either very expensive or not fit for 

purpose.     



 178 

SECTION 4 

Chapter 8:  Forensic Intelligence 

8.1 Introduction 

The wastewater analysis approach for the detection of illicit substances, such as excreted drugs and 

their metabolites, has been extremely successful in estimating the population consumption of a range 

of different substances (Yargeau et al. 2013; Irvine et al. 2011; van Nuijs et al. 2009; Karolak et al. 

2010; Baker and Kasprzyk-Hordern 2011), identifying which drugs are most commonly taken and in 

which different geographical locations across the world (van Nuijs et al. 2011; K. V. Thomas et al. 

2012). Wastewater analysis for illicit drugs monitoring is now an annual European wide research 

project with standardised methodologies and a central reporting portal to map the results across all the 

countries involved and monitor changes year-to-year in drug consumption behaviours (EMCDDA 

2016). Other forensic applications for monitoring environmental samples include the passive 

sampling of acid herbicides in natural waters (Charriau et al. 2016), tracing the illegal usage and 

disposal of such chemicals (Shi et al. 2014; P. Thomas 2008) and using the information to help 

provide a criminal case against specific suspects. The potential of both passive sampling technologies, 

such as the Chemcatcher (as outlined in Chapters 2 and 7) and specifically developed and 

standardised wastewater analysis methodologies have been demonstrated to have significant potential 

(Lissalde et al. 2016; Coes, Paretti, Foreman, Iverson, and Alvarez 2014b; Zabiegała et al. 2009). 

This thesis has so far addressed a large component of the laboratory methodologies, which would 

need to be implemented for a successful wastewater analysis approach to be applied to the trace 

detection of explosives in the wastewater system. There are still some unknown variables such as the 

quantity of homemade explosives that may enter the wastewater system at any given time during their 

illegal manufacture however by ensuring that the detection methods are as sensitive as possible there 

is great potential to harness these scientific approaches in keeping with forensic requirements for use 

in the disruption of terrorist events using homemade explosives.  
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8.2 Scope 

This chapter aims to bring together all the key findings from the experimental chapters undertaken in 

this thesis and use these to evaluate the extent to which the wastewater analysis approach proposed in 

this thesis for the collection of forensic intelligence can address the requirements of a criminal 

investigation.  

Each stage of the wastewater analysis approach that has been investigated in this thesis provides an 

insight into the behaviour of target trace explosives in wastewater and during instrumental analysis. 

This information helps to answer questions posed, relevant to a criminal investigation, particularly 

concerning the likelihood of different scenarios that will help to reconstruct the events that resulted in 

the detection of trace explosives in urban wastewater samples. This will mean considering pre-, syn- 

and post-event occurrences as well as how any intelligence or evidence can be successfully 

implemented in an on-going or closed operation.  

Furthermore, for the purpose of this thesis to be viable in the real world, it is also important to 

consider the logistical, financial and ethical requirements associated with wastewater analysis and 

how passive sampling in the field can be made accessible with affordable laboratory analyses.  

8.3 The forensic process  

The general forensic process consists of the collection of evidence from the crime scene, to the 

laboratory for analysis and prepared for presentation in court. More specifically, as presented in (R. 

Morgan and Bull 2007) for forensic geoscience trace evidence, the order of events include the 

following six stages, which can be applied to the wastewater analysis approach:  

1. Transfer 

2. Persistence and tenacity 

3. Collection 

4. Analysis 

5. Interpretation 

6. Presentation 
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Each of these stages will be discussed in the following sections in relation to wastewater analysis for 

the forensic detection of trace explosives, and how this information can contribute to and be managed 

into actionable information.  

8.3.1 Transfer 

This concerns the transfer of traces of explosives and precursor chemicals from their site of 

manufacture or use into the wastewater network. The transfer of trace materials from a clandestine 

laboratory setting, (for example a rented house or apartment) could result from direct handling of 

homemade explosives and precursor materials followed by washing of hands, or from second or 

multiple transfers from other items that have come into contact with the explosives. There is also the 

possibility that through storage of chemicals and synthesised explosives in bathroom and kitchen 

fittings such as baths and sinks (see Figure 8.1) traces of these substances will leak or be disposed of 

into the sewerage network. The waste pipes taking away the wastewater from private residences will 

carry the contaminated wastewater into the main sewerage network where it will be mixed and diluted 

with wastewater from the local population and transported to the wastewater treatment plant via 

different sewers and through pumping stations.  

Figure 8.1: Bathroom in 18 Alexandra Grove, Leeds, where homemade explosives were made for the 

London 7/7 attacks. (BBC News 2011a)   
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8.3.2 Persistence and tenacity 

Long-term persistence and tenacity of trace explosives in the sewerage system is very much an 

unknown subject area, and due to the sensitive nature of this kind of work, it would be a difficult 

study to carry out in situ. Fortified samples have to be monitored in a laboratory setting, simulating 

the conditions of the sewerage network as closely as possible, as in Chapter 6, which monitored the 

stability and fate of trace peroxide explosives in wastewater in large glass beakers under still and 

stirred conditions. The information gained from such smaller scale reproductions could then be used 

in a computer model or simulation in order to predict the long-term fate of targeted compounds in the 

wastewater network, but there are limitations to using models, which require certain assumptions to 

be made. Proxy materials are often used in experimental studies as replacements where the chosen 

target substance is not available. However, it would be difficult to find a material that would behave 

similarly to the trace explosives that could be spiked into the wastewater system and monitored, 

without causing harm to the natural environment. A certain amount of losses are expected for 

chemical compounds entering the wastewater system. Based upon the stability experiment in Chapter 

6, an idea of degradation rate was established over a time period that, based upon data from Thames 

Water, would be much longer than the estimated time that the peroxide explosives would be in the 

sewers for before they could be collected. This short time frame of collection, from source to 

sampling point, is useful in the respect that there is less time for the analytes to degrade and disperse 

before reaching the sampling devices. External conditions that may affect the dispersion of 

compounds in the wastewater system include heavy rainfall and temperature changes. These 

environmental factors are more likely to affect the quantity of target analytes that are available for 

collection, however if a presence or absence test is all that is required, the absolute quantity would be 

irrelevant, so long as the level is above the lower limit of detection of the instrumental analysis 

method.  

8.3.3 Collection 

The collection of trace evidence relies upon an approved sampling method in order to get the most 

information out of a potential piece of evidence being collected from a targeted location. As has 
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previously been discussed in Chapters 2, 5 and 7, the sampling method for environmental water 

samples varies depending upon the resources available and the target analytes sought.   

Targeted high-frequency sampling campaigns have revealed high temporal fluctuations in the 

concentrations of illicit drugs and pharmaceuticals. Substances entering wastewater in toilet flushes or 

pumping stations lifting and transporting wastewater from entire sub-catchments intermittently to 

wastewater treatment plants cause these fluctuations. Specifically tailored sampling proficiency tests 

have demonstrated that inadequate sampling techniques (e.g. grab samples or time-proportional 

composite sampling) and frequencies (i.e. intervals longer than 1 hour) can lead to substantial 

sampling errors, which can result in both over- and underestimation of resulting concentrations. In 

these cases, sampling errors can be larger than errors associated with chemical analysis (Coes, Paretti, 

Foreman, Iverson, and Alvarez 2014b; Alvarez et al. 2005; Ort et al. 2010).  

This thesis has highlighted the benefits of passive sampling, and in particular the Chemcatcher
®
 

configuration which was successful at collecting a range of trace explosives, and with further research 

could provide continuous sampling and increased coverage of trace peroxide explosives, in situ in 

chosen portions of the wastewater network. One of the main issues with trying to detect trace amounts 

of target compounds in the wastewater system is the vast volume of wastewater that is encountered. 

By having a series of passive samplers deployed, the targeted compounds contained in the wastewater 

that travels through the samplers will be collected over a given time-frame enabling a pre-

concentration step via accumulation of the target compounds.  

8.3.3.1 Strategic sampling  

Thames Water Ltd. were able to provide detailed maps illustrating the sewerage network in their 

catchment areas. The information contained in these maps includes all the sewer locations and sizes, 

manhole and pumping station locations, sewer drainage catchment areas and flow direction. This 

information can be used to establish how to best attach the sampling devices within the manhole or 

pumping station to ensure constant exposure to the wastewater flow, where to deploy sampling 

devices in relation to a target household or building and to determine all the possible sources of 

contaminated wastewater given the locations of deployed samplers. Within London, it is possible to 
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use this data to isolate a specific wastewater journey and thus focus the screening for target 

compounds on as few as five buildings. Strategic sampling planning should be undertaken prior to 

deployment of sampling devices, on a case-to-case basis, in order to maximise the information that 

can be gathered from the wastewater analyses. Collaboration with water companies such as Thames 

Water can also provide invaluable information regarding the structure and nature of the sewers being 

tested.  

8.3.4 Analysis 

There are several different instruments that can be used for the analysis of explosives, depending upon 

the classification of explosive being tested, if known, the quantity of sample available and the 

environment in which the sample is present. These are among an entire range of variables that will 

have to be considered in different scenarios where explosives may be present. This thesis has focused 

in particular on trace levels of explosives, not able to be seen by eye, in both wastewater grab samples 

where an extraction process must first be performed, and from sorbent material disks which have been 

exposed to trace explosives in wastewater. Both of these methods result in a small (millilitres), 

cleaned-up and pre-concentrated sample in an organic solvent such as methanol or acetonitrile, which 

can be successfully analysed using gas or liquid chromatography for separation and mass 

spectrometry for detection of all different classes of explosives including the organic peroxides. For 

those with an ultraviolet (UV) chromophore (e.g. nitrate esters, nitramines, nitroaromatic compounds) 

a UV detector can be used (Gaurav, Malik, and Rai 2009; DeTata, Collins, and McKinley 2012).   

False positive and false negative identifications of target analytes are always an issue during chemical 

analyses regardless of instrument or methodology. The use of high-resolution mass spectrometry 

allows accurate mass measurements up to four decimal places and has resolving power up to 100,000. 

The sensitivity and selectivity of this instrument allows for targeted and untargeted analyses for 

screening and retrospective investigations of analytes in complex environmental matrices.  

8.3.5 Interpretation 

Compound databases can be used to identify unknown substances, with associated “match 

probabilities”, however for new emerging substances to be identified an on-going update of these 
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databases is required. One benefit of HRMS analysis data is that it can be mined retrospectively for 

identification of “novel” compounds in already examined samples via the ‘full scan’ acquisition 

mode.   

Multiple independent indicators of identity of a compound of interest can be used during LC-

MS(/MS) analysis to add confidence to the confirmation of any suspected positive responses. These 

indicators are the retention time of the analyte from liquid chromatography separation, the mass to 

charge ratio (m/z) of the expected precursor ion produced from ionisation during mass spectrometry 

as well as the m/z value of product ions produced during tandem mass spectrometry as well as isotope 

ratio analysis.  Margins of instrument and method variability along with up-to-date limits of detection 

and quantification should be established in order to aid the identification and confirmation of detected 

compounds. In this thesis, the limits of detection and quantification as well as relative standard 

deviations have been provided for the analytical methods developed.  

In order to save time with large data sets for the analysis of multiple compounds, analysis software is 

often used to setup methods that will automatically identify peaks on chromatograms at given 

retention times for particular ions and if required can calculate concentrations and check any quality 

assurance samples that have also been analysed. Multiple individuals if possible should verify these 

results manually, in case of computer errors and operator biases.  

The experimental studies, such as those presented in this thesis, enable a foundational understanding 

of the nature of the trace evidence dynamics and behaviours to be established. Thus meaning that 

when the appropriate and optimal sample collection and analysis methods have been performed, the 

interpretation and presentation of the information gained can be more accurately implemented.   

For the monitoring of trace explosives and their related compounds (e.g. environmental metabolites, 

precursor chemicals) the important elements to consider are: What is it exactly that has been detected? 

What limitations or errors are associated with the analytical process(es)? What is the probability that 

this substance could have come from a legitimate source? Is there an indication of the quantity of the 
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compound that has been detected? Can an estimated source be attributed to the detected compound? 

How can all of this information help to inform an on-going criminal investigation?  

By establishing optimal conditions for the extraction (Chapter 4) and analysis (Chapter 3) of the 

organic peroxides HMTD (and TATP) the sensitivity and selectivity for these compounds is increased 

as well as being aware of the associated variability in the methods. The stability chapter (Chapter 6) 

also shows that if there is any homemade HMTD or TATP entering the wastewater then there is an 

opportunity to collect it before it is degraded. The detection of other compounds in the wastewater, 

such as precursor materials (e.g. hexamine for HMTD production), is not necessarily indicative of 

illegal behaviour. Although hexamine is listed on the European Control of Explosives Precursors Act 

2014 (see appendix C, annex II), it is still legally bought and used in the manufacture of fuel tablets, 

in rubber and textile adhesives, in paints and lacquers and in the production of deodorants and hair 

fixers (Pichelin, Kamoun, and Pizzi 1999; Kamoun and Pizzi 2000a; Kamoun and Pizzi 2000b; Liu et 

al. 2012). Therefore caution must be taken when interpreting the presence of any hexamine in the 

wastewater, since there could be a legitimate reason for it entering the sewerage network. The 

quantity of a precursor material present could be an added indicator of illegal behaviour, either for 

breaching legal disposal limits into the wastewater system or for the illegal manufacture of homemade 

explosives if there are unusually high levels detected in a given location. The absolute quantity of 

organic peroxide explosives is less important since their presence in the environment cannot be 

explained by legitimate behaviour, however the potential for autosynthesis, which would seem 

extremely unlikely, has not yet been disproven. Different detected levels of organic peroxides or TNT 

metabolites for example might be useful for determining the source of contamination if a pattern of 

attrition can be identified along a pre-defined journey of sampling locations, highlighting “hotspot” 

areas. This kind of information could be used to provide an additional layer of information, as 

forensic intelligence (FORINT), in combination with other sources such as human and electronic 

intelligence, which could independently identify a section of a street or block of flats where 

homemade explosives may be being manufactured. Depending upon all of the intelligence that had 
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been collected, collated, evaluated, analysed, integrated and interpreted, this could lead to the basis for 

further action to be taken, such as search warrants and disruption of illegal behaviours.    

8.3.6 Presentation  

The final event in the forensic process for trace evidence is presentation in court by an expert witness 

whose job includes explaining complex graphical outputs from laboratory instrumentation and 

technical concepts, to the court.  Several different studies have tested and discussed how to best 

present complex and technical scientific evidence in court so that juries are not confused or 

misinterpret the evidence, including using likelihood ratios and/or verbal scales of support for certain 

evidence types (Martire et al. 2013; Fenton et al. 2013; Biedermann et al. 2014; de Keijser and Elffers 

2012). Furthermore, the perception of different forensic evidence types shows an over-estimation 

and/or an over-reliance upon the use of DNA evidence and that several other evidence types would 

need to be presented in order to “outweigh” the presentation of DNA evidence (Gamble et al., n.d.). 

There are different approaches for gathering evidence that is going to be used in court and information 

that is purely for intelligence purposes to further an investigation leading to evidence being collected. 

For evidence to be usable in court, the integrity of the evidence is paramount with a detailed chain-of-

custody required, sufficient packaging, storage, processing of items and proof of quality assurance 

during any analyses carried out.  

8.3.6.1 Forensic intelligence  

The aim of gathering intelligence is to generate detailed knowledge of threats and then assess how to 

best react to them (MI5 Security Service 2016), which depending upon the type of information that 

has been processed could lead to its use in court. In order to ensure that any information gathered is 

handled in the appropriate manner, it would be useful to know in advance the purpose of collecting 

the information (intelligence or evidence) so that certain procedures can be adhered to in the case that 

the information must be presented before court. There is also the possibility that forensic evidence 

presented in one case could be further used as intelligence to help inform another on-going 

investigation. The application of wastewater analysis for trace explosives in the sewerage network in a 

large urban area such as London could be used for information gathering that could be for intelligence 
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or for evidence purposes, however due to the non-resident-specific nature of the analysis, it is 

arguably more useful as a surveillance tool to gather information for forensic intelligence.    

8.3.6.2 Mapping and modelling 

Data concerning street level crimes and their outcomes for different police forces in England, Wales 

and Northern Ireland are available to the public for download and analysis via the police.uk website 

(www.police.uk).  This release of data regarding criminal events that have already occurred leads to 

retrospective crime mapping which is interesting for the general public to see as well as being useful 

for police forces to identify areas where their resources should be prioritised (Brunsdon, Corcoran, 

and Higgs 2007; Corcoran, Wilson, and Ware 2003; Harada and Shimada 2006; Spencer 2014; 

Langworthy and Jefferis 1999; Ratcliffe and McCullagh 1999). The areas of high concentrations of 

crime highlighted by the analysis of this open source data could be used as a guide, suggesting that 

these ‘hotspot’ areas will be the locations for future crimes. However, advances in methodologies 

have been made in order to better use existing crime data for the prospective mapping of both 

temporary and chronic crimes (Mohler 2014; Mohler et al. 2011; Caplan, Kennedy, and Miller 2011; 

Chainey 2008). The illegal manufacture of homemade explosives would most likely be a temporary 

occurrence, as it is thought that those responsible would prepare explosives for a one-off event rather 

than establish a clandestine laboratory in a given location, which would supply a number of different 

potential attacks. From the point of view of the criminal, this short-term behaviour would decrease 

their chance of being identified. The datasets available concerning crimes that have been reported to a 

given police force will be extensive and widespread, whereas the data collected from surveillance 

operations using wastewater analysis for trace explosives detection would be discrete, localised and 

directly indicative of an the impending use of explosive materials. In the same way that reported 

burglaries are used to prevent repeated future burglaries in a high-risk time and place (Bowers and 

Johnson 2003), the mapping of detected concentrations of homemade explosives and precursor 

chemicals within the sewerage network in a target geo-location could disrupt the use of improvised 

explosive devices by identifying the source of the homemade explosives and attributing who is 

responsible for their use. The combination of the information available from water companies 
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regarding the organisation of the sewerage network with the mapping of relative quantities of 

different pertinent chemicals (collected following a strategic sampling protocol) could provide the 

source of the explosives production to within four or five buildings (based upon Thames Water data 

provided for the Walthamstow area). Figure 8.2 is an example of one of the maps that Thames Water 

can provide showing the small-scale detail of each building’s wastewater removal journey. The red 

dots represent the accessible manholes and the red lines denote the locations of the sewers that 

transport the wastewater through the network to the wastewater treatment plant. The arrows indicate 

the flow direction of the wastewater, the roads are labelled and the buildings and pavements are also 

visible. Using these maps and other data that is available, it might also be possible to create some 

more in-depth computer models where wastewater flow rates and volumes could be used in 

combination with different measured quantities of target compounds in order to recreate different 

scenarios where the source of the target chemicals and different environmental factors can be varied 

in order to test a range of possible hypotheses.  

Figure 8.2: Thames Water map showing an area of the wastewater network in Walthamstow. The red 

dots represent manholes and the red lines indicate the sewers that transport the wastewater to the 

wastewater treatment plant.  

 
Metres 
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8.4 Operational considerations 

8.4.1 Logistical considerations 

The main benefit of targeting certain sewage access points (mostly manholes and pumping stations) is 

that samples can be collected as close to a target residence as possible without breaching privacy 

regulations or alerting potential criminals to any surveillance operations that are being conducted. 

Gaining access to the sewers that are fed by target residences is fairly simple given that full 

permissions from the water companies have been provided. Regular access to these sewers however 

would be disruptive to the water companies and would not be sustainable during a long period of time 

(over several months). One-off surveillance operations could be conducted using passive sampling 

devices, which would most likely be deployed during the night when the water companies already 

carry out some maintenance work to avoid disruption to the local community. The passive samplers 

could be left for up to several weeks collecting any traces before being removed and transported to the 

laboratory for analysis. Depending upon the laboratory workload it could be possible to process the 

sampling devices and analyse the samples within 24 hours.  

8.4.2 Financial considerations 

Daily or weekly environmental monitoring would be expensive and disruptive, where consistent 

access to sewers is necessary and high numbers of samples would need to be analysed on a long-term 

basis. Small-scale surveillance operations would be better suited and much more cost effective so that 

top quality analysis is undertaken but without too much investment in field and laboratory resources 

and time. By targeting a specific location, information regarding the sewerage network serving that 

particular area can be used in order to design an intelligent sampling strategy in order to place passive 

sampling devices at specific sewer junctions and downstream of target residences. This maximises the 

efficiency of the sampling protocol and reduces costs of taking samples where no new information 

could be gained.  

The Chemcatcher
® 

devices themselves cost approximately £40 each and depending upon the receiving 

phase required and whether or not a membrane is necessary, this could add between £5 and £10 per 

sampler. The devices themselves are re-usable so once they have been paid for the on-going costs are 
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the interchangeable receiving phases and outer membranes. Most locations would have the passive 

samplers deployed in triplicate in case of damage, or problems with the analysis and so this would 

also have to be factored into the number of sampling locations chosen for the available budget. There 

are also Chemcatcher
® 

baskets (shown in Figure 8.3) for housing the sampling devices in triplicate, 

where a different layer of samplers can be removed at different times, from the same location, over 

the total deployment time period. These can usually be loaned if required but often researchers 

construct their own sampling device holders depending upon the deployment locations.  

Figure 8.3: Chemcatcher
®
 baskets designed especially to house multiples of three devices in a secure 

and controlled container. Photo: University of Portsmouth/NRW.  

 

8.4.3 Ethical considerations 

The benefit of wastewater analysis, whether it is taking composite influent samples from wastewater 

treatment plants or using passive sampling devices in sewers located in residential areas, there is no 

breach of private property involved as long as permissions have been granted from the water 

companies responsible for access to the wastewater network. The reporting of prescribed and legal 

drug usage is limited to the number of doses per day per 1000 people since it was considered an 

infringement on personal behaviour to discriminate further on the legal behaviours of any population. 

Where illegal behaviours are concerned there is not this same issue and so even though the reporting 

of illegal drug consumption estimates is done as dose per day per 1000 population, due to the large 

populations involved (millions), if a smaller scale study was conducted, then determining behaviours 

based upon wastewater analysis could be reported per populations <1000 people. The use of 

wastewater analysis for sourcing the manufacture of homemade explosives would be best suited to 
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small-scale populations (streets rather than boroughs) targeting output areas with populations up to 

500, depending upon specific sewer access.  

8.5 Overall impact  

This thesis models an approach to doing real world and industry informed research that can be useful 

for current and future criminal investigations. Since each step of this research has been designed to 

answer a very specific and forensically pertinent question, the results produced can help to provide 

meaningful information and implementable methodologies. Considerations have been made 

throughout this thesis as to what the real world problems are and how they can be answered, as well 

as having an awareness of the limitations of the approach throughout the process. Multiple law 

enforcement, government and industry partners were sought out and engaged with in order to identify 

the range of problems that they each face, in order to tailor this research accordingly. The result of 

this is that not only have the detection technologies been tested but also the operational capabilities 

and forensic implications have also been considered.  

Several novel contributions have been made to the body of research surrounding the detection of 

organic peroxide explosives in wastewater, and how these methods could be useful in on-going 

intelligence gathering operations. These include establishing optimised extraction and detection 

methods for peroxide explosives from wastewater samples, assessing the stability of two peroxide 

explosives in wastewater, conducting proof of principle analyses on real world wastewater samples 

and introducing the use of passive sampling techniques for the short-term monitoring of trace 

explosives in situ in the urban wastewater system. As with all research though, there are more 

questions that need to be answered and further ideas to be developed.  

8.6 Future work  

There are several areas of research that could be further investigated to build upon the findings of this 

thesis. These include pieces of research in each of the areas discussed in each of the chapters.   
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8.6.1 Analysis 

A comparison of the performance that can be achieved by different types of LC-MS instruments for 

the detection of a range of explosives including the organic peroxides would provide the answer of the 

ultimate level of sensitivity that is capable of being achieved. Increases in instrument sensitivity 

would mean that even smaller levels of illegal substances present in complex environmental samples 

could be detected. Furthermore, the development of a method that combines sensitivity with the 

ability to detect a large and ever increasing number of targeted compounds, including precursor 

chemicals used to make homemade explosives, would improve upon trace detection capabilities and 

help to build up a picture of the background levels of compounds found in wastewater and therefore 

the identify occasions when abnormal levels of target compounds are present. Comparisons between 

different urban wastewaters could be made and help to characterise the chemical profiles across the 

world, informing both pollution monitoring and security operations.   

8.6.2 Extraction 

Again, the development of a solid phase extraction method that can be used for a wider range of 

peroxide explosives, their related compounds and precursor chemicals, would aid in identifying illegal 

behaviours where explosives other than HMTD and TATP are being manufactured or where different 

synthesis paths are being employed. Developing a method which is suitable for a large range of 

different compounds might require the use of a two-layer stacked solid phase extraction cartridge 

setup for the detection of a large number of both military and peroxide-based explosives and their 

related compounds. This could be explored along with different extraction techniques for peroxide 

explosives in different environmental matrices, for example soil, sludge, seawater in order to broaden 

the technical capabilities for detection of a range of different explosives in different environmental 

scenarios.   

8.6.3 Stability 

In order to achieve a more in depth level of understanding around the stability of the organic peroxide 

explosives, further laboratory studies could help to identify the degradation pathways of HMTD and 

TATP in wastewater. By designing and building a more realistic sewer setup and by controlling the 
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created environment, such as the temperature and flow rate of the wastewater, the behaviour of the 

analytes can be more accurately recreated over relatively longer and shorter time periods. 

Identification and measurement of the degradation compounds of the explosives studied in wastewater 

samples would help to understand their life cycle and to potentially identify (new) compounds that 

could signal illegal behaviour.  

8.6.4 Sampling 

The use of novel passive sampling devices for explosives collection and pre-concentration in situ in 

the wastewater system, have proven to have potential, however further laboratory and field studies are 

required in order to enable their use for intelligence gathering purposes. Laboratory-based 

optimisation studies to test different conditioning and elution stages as well as different membranes 

would increase the suitability of the sampler for trace explosives detection. Furthermore, studies into 

the measurement of uptake rates of the target compounds for calibration purposes would enable 

quantitative analyses to be carried out using the sampling devices. Additional testing of different 

sorbent materials for the collection of peroxide explosives, including making bespoke receiving 

phases using the sorbent material that has already been identified as the best for peroxide explosives 

extraction in this thesis would take a step closer to creating a sampler specifically setup for trace 

peroxide explosives sampling.  

Field studies deploying different passive sampling devices and comparing their performance to grab 

sampling would help to evaluate the performance of different samplers and identify which method 

would be best suited to the application of collecting chemical information for intelligence to inform 

security operations. Collaborations with the Metropolitan Police Service (MPS) and Thames Water 

would allow for real field trials and could provide some very useful information in geographical areas 

of concern.  

8.6.5 Forensic intelligence  

Following real field trials with the MPS and Thames Water, investigations into the use of different 

mapping techniques in order to best visualise real wastewater analysis results would provide a range 

of different ways of presenting the data to those who would need to make any critical decisions based 
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upon the information shown. The requirements of these key decision-makers would need to be 

incorporated in the development process of a mapping technique and the way in which the resultant 

maps are presented. The potential use of computer simulation software in order to re-create the 

conditions and variables of a portion of the wastewater network in London would allow a time and 

location specific reconstruction of given events or hypothetical propositions, which could be tested. 

This would provide a means of attributing a range of probabilities to different scenarios, based upon 

the output from a model, which runs using actual recorded parameters such as wastewater flow rates 

and measured compounds in given locations.  

8.6.6 Autosynthesis  

With regards to the potential courtroom defence proposition that any homemade explosives detected 

in the wastewater were present due to random autosynthesis rather than purposeful manufacture, more 

scenario specific research needs to be conducted in order to assess the possibility and probability of 

the validity of this reasoning. The disposal of legitimately purchased precursor chemicals down a sink 

or toilet, for example, resulting in the autosynthesis of explosives such as HMTD or TATP, could be 

used as an explanation for their presence in the wastewater system. Due to the dangerous nature of 

this type of research into the accidental synthesis of peroxide explosives, extreme precaution must be 

taken in the planning and execution of any experiments that would help to answer the question of 

whether any autosynthesis was possible.  
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Chapter 9:  Final conclusions 

9.1 Research question 

This thesis aimed to answer the following question: to what extent can the wastewater analysis 

approach be applied for the forensic detection of trace explosives and how can this help to inform on-

going counter-terrorism operations?  

In order to assess how this thesis has contributed to answering the research question, the results from 

each chapter are evaluated here.  

9.1.1 Chapter 3: Analysis 

The first aim of this chapter was to learn more about the characteristics of HMTD and PETN in 

regards to their responses to different conditions throughout the LC-MS analysis process by 

developing a detection method that was sensitive, selective and reliable. This was achieved with lower 

limits of detection for both analytes at the picogram level on the column, which is the equivalent of 

nanograms per litre. This is the same level of detection that is achieved for the analysis of illicit drugs. 

The relative standard deviations for run-to-run analyses and day-to-day analyses for the detection of 

both analytes were at an excellent level (less than 10 %). The optimised methods for each compound 

were successfully employed to measure any matrix effects (ion enhancement or ion suppression) 

caused by analysing each of the compounds in combination with the other. No matrix effects were 

measured for either method and so there would not need to be any adjustments made to the detected 

quantities of either analyte. This may not be the case when analysing these compounds in wastewater 

rather than laboratory standards.   

The second aim was to investigate in the laboratory whether or not the analyte standards would 

degrade within 24 hours when left at different temperatures. In this short space of time, it did not 

affect the analytes whether they were kept in vials at room temperature, in the fridge or in the freezer. 

This is very useful to know when considering how and where to store samples prior to analysis.  
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With regards to the research question, this data presented in this chapter have illustrated that sensitive, 

accurate and repeatable methods can be developed using LC-MS in order to detect trace levels of 

explosives.   

9.1.2 Chapters 4 and 5: Extraction  

The first of these two extraction chapters developed a novel solid phase extraction method for the pre-

concentration and extraction of trace levels of organic peroxide explosives from wastewater, using 

Isolute ENV+ cartridges. Recoveries of HMTD and TATP from wastewater were 23% ± 11.40 and 

79% ± 28.34 respectively. Considering the complex nature of wastewater, the precision of these 

recoveries is relatively good. The identification of the overall method limits of detection meant that it 

is now possible to provide a quantity at which the peroxide explosives could be detected at in 

wastewater samples. HMTD extraction from wastewater suffered with large matrix effects, losing 

around 60% of the ion signal, whereas TATP did not experience any ion enhancement or suppression. 

The result of this study means that it is possible to detect 199 μg/L or more HMTD in wastewater 

samples, and 27 μg/L or more TATP in wastewater samples. These results answer another part of the 

research question concerning whether or not these explosives could be extracted from wastewater 

samples in order to be quantified for use in an on-going criminal investigation. Both of the analytes 

tested can be extracted from complex wastewater samples and the extent to which this is possible is 

defined by the method limits of detection and the variability of the method quoted by the percentage 

relative standard deviation.  

The second extraction chapter aimed to test the solid phase extraction method developed in the 

previous chapter for peroxide explosive detection in real wastewater samples. Efforts were made to 

identify a geographic area in London where there might be a chance of detecting peroxide explosives 

in the wastewater system. However, this was still an unlikely outcome and resulted in negative 

responses for both HMTD and TATP. Further screening of the wastewater samples collected, using a 

different solid phase extraction method for nitroaromatic, nitrate ester and nitramine compounds 

resulted in the provisional detection of 2,4-DNT, which is consistent with the results of a collaborative 

study carried out by the author with colleagues from King’s College London. Wastewater samples 
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taken from waste pipes in a Metropolitan Police Service building were also screened for 

nitroaromatic, nitrate ester and nitramine compounds, as it was highly likely that some of these 

compounds would be present in the samples taken, due to the nature of the work of the individuals 

using the building. This resulted in the detection of trace levels of TNT, 2,4-DNT, 3,4-DNT, 2,6-

DNT, Tetryl, RDX, HMX, and PETN in wastewater samples. This again proves that developed 

extraction and detection methods are capable of detecting trace explosives in real world wastewater 

samples.  

9.1.3 Chapter 6: Stability  

This chapter aimed to answer the question of whether the organic peroxide explosives (HMTD and 

TATP) persist in wastewater and at what point after being introduced into a wastewater sample they 

can no longer be detected. HMTD degraded much faster than TATP and was no longer detected after 

24 hours. TATP, however, was detected throughout the 7-day period and had only decreased by 

between 6 % and 23 % depending upon the experimental conditions.  

When it is considered that the window of opportunity to detect these compounds from when they are 

introduced into the wastewater system and the time at which they are collected, is very likely to be 

less than an hour in London (based upon average flow rates provided by Thames Water), the results 

here show that both compounds would still be available for detection. This is an important finding for 

the viability of wastewater analysis since this approach makes the assumption that target compounds 

are able to maintain their integrity for collection and analysis. This study is another novel contribution 

to the body of knowledge concerning the detection of peroxide explosives in environmental matrices, 

since this has previously not been investigated, and here it is contributing to the novel use of the 

wastewater analysis approach for trace explosives detection.  

 

9.1.4 Chapter 7: Passive sampling  

This passive sampling chapter addressed the question of whether Chemcatcher
® 

devices could be 

adapted for trace explosives collection in situ in the wastewater system (i.e. deployed in manholes and 

pumping stations). This preliminary study used the Chemcatcher
® 

format for monitoring 
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pharmaceuticals in natural waters and exposed the devices to wastewater spiked with nitroaromatic 

and nitramine compounds in a laboratory setup. The results showed that there was a linear uptake of 

the target compounds onto the receiving phase within the Chemcatcher
® 

devices. Since the receiving 

phase that is optimum for the collection of peroxide explosives was not commercially available, it is 

not possible to know if the same result would be seen for these compounds. However there is no 

particular reason why this would not be the case. The results of the study carried out provide a 

platform for further optimisation work to be performed and ultimately for the samplers to be used in 

real field trials. There is significant potential to use the Chemcatcher
® 

devices as part of the 

wastewater analysis approach, providing the last of the detection capabilities required along with the 

analysis and extraction methods. This was further was discussed in Chapter 8.  

9.1.5 Chapter 8: Forensic intelligence 

The extent to which the wastewater analysis approach, for trace explosives detection, will help to 

inform on-going counter-terrorism operations as a form of forensic intelligence has been addressed in 

reference to stages of the forensic process. This thesis has considered these stages of the forensic 

process and how they apply to the implementation of wastewater analysis from the initial transfer of 

explosives into the wastewater system to the interpretation and presentation of the graphical outputs 

generated from collection and analysis methods.  

The transfer of explosives and/or their precursor chemicals, where applicable, into the wastewater 

system was seen at the house in Leeds where the London 7/7 bombers made their explosives. 

Replications of this scenario for empirical studies where homemade explosives are leaked into the 

wastewater system are not possible, however when a small quantity of the explosive PETN was 

washed down a sink (Chapter 5) it was subsequently detected in the two locations sampled 

downstream of the transfer. This is important to note when considering the likelihood of transferring 

explosives into the wastewater system. Limitations concerning the transfer event include the unknown 

behaviours of bomb makers regarding the quantity of explosives that are being manufactured and the 

access that the precursor chemicals and finished explosives have to the wastewater system, via sinks, 

baths and toilets.  
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As seen in the experimental chapters (Chapter 3-7), the persistence and tenacity of the peroxide 

explosives in wastewater has been addressed showing that once the compounds make it into the 

wastewater they will be viable for collection and analysis for up to 24 hours for HMTD and longer for 

TATP, not that this length of time would be necessary in the dynamic urban wastewater system. 

Furthermore, if wastewater grab samples are taken then the extraction methods detailed in Chapters 4 

and 5 are capable of detecting a range of explosives including peroxide, nitroaromatic, nitrate ester 

and nitramine compounds. The limitations of grab sampling can be overcome with the use of passive 

sampling techniques, and as was shown in Chapter 7, there is great potential to see Chemcatcher
®
 

devices being used in the future for in situ trace explosives monitoring in urban sewers.  

The interpretation and presentation of results from wastewater analysis could be used to inform on-

going counter-terrorism operations, using mapping and modelling techniques to help to attribute the 

source of explosives (and related chemicals) entering the environment. In the instance that some 

information has already been collected concerning a potential location of illegal explosives 

manufacture, the passive sampling devices could be strategically deployed in areas already under 

suspicion. The aim would be to use this approach as an information-gathering tool, to contribute to 

already acquired material and progress the intelligence cycle and ultimately prevent future criminal 

activity.  

Overall, if explosives are transferred into the wastewater system they will be detected within the 

parameters of the method capabilities defined by the limits of detection and selectivity. Since the 

levels of contamination of (homemade) explosives into the wastewater system are unknown, the 

extent to which the wastewater analysis approach will be successful will be determined by the 

technical limits of detection, the execution of strategic sampling and real field trials. The technical 

limits of detection have been established here for analysis and extraction methods, and the 

information required for strategic sampling is available from water companies such as Thames Water. 

The potential for wastewater analysis as proposed in this thesis is apparent, requiring the application 

of this approach to real fieldwork, and the incorporation of passive sampling techniques. 
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9.2 Key themes  

Finally, the key themes that have impacted upon the focussed area of study are shown in Figure 9.1 along with the chapters in which these themes have been 

addressed and the outcomes of this thesis.  

 

 

Wastewater analysis for trace explosives detection 

Forensic intelligence Environmental monitoring 

Chapter 8 

Evaluating the extent to 

which the wastewater 

analysis approach can be 

applied to trace explosives 

detection for gathering 

forensic intelligence.  

Chapter 3 

Development of detection 

methods for trace levels of the 

explosives HMTD and PETN, 

using LC-MS. 

Chapter 6 

Investigation into the stability 

of trace levels of the peroxide 

explosives in wastewater 

samples.   

Chapters 4 & 5 

Development and application 

of solid phase extraction 

methods with LC-MS for trace 

explosives in wastewater 

samples.  

  

Real world and industry informed research providing implementable methodologies 

Forensic detection methods 

Chapter 7 

Investigation into the use of 

passive sampling devices for 

the in situ collection of trace 

explosives in the wastewater 

network. 

Figure 9.1: Overview of the themes and outcomes of this thesis. 
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9.2.1 Forensic detection methods 

These key themes include forensic detection methods, in particular for trace peroxide explosives, and 

other military type explosives. This research has produced systematically optimised methods to ensure 

accurate interpretations of data produced, taking into account associated instrument and operator 

limitations and variability. Both LC-MS and solid phase extraction methods were successfully 

developed for wastewater analysis, a novel application for these well-established techniques. 

9.2.2 Environmental monitoring 

Through collaborations with Thames Water and the Metropolitan Police Service different aspects of 

the wastewater network in London were investigated, analysing both waste pipe samples from 

beneath the sink and sewer samples from manholes. It was apparent that the routine monitoring of 

trace explosives in the wastewater system would not be a feasible application for the wastewater 

analysis approach, and that the surveillance application for individual criminal investigations or 

information gathering operations would be much better suited from an operational and financial 

perspective. The passive sampling devices tested in this thesis also show great potential for future 

surveillance operations since the devices can be left in situ for up to several weeks and access to them 

is only required for deployment and collection, the sampler housing is re-usable and the technique in 

general offers a more representative sample that also acts as an analyte pre-concentration device.  

9.2.3 Forensic intelligence 

This thesis has shown that the idea that the wastewater analysis approach can be used, as an 

intelligence-gathering tool to contribute to an already existing investigation is a viable one. This novel 

application of forensic detection methods for environmental monitoring could be used to identify and 

attribute illegal behaviours but also to provide information that can be fed back into an on-going 

counter-terrorism operation in order to prevent the use of homemade explosives in a future crime 

event. This highlights the potential usefulness of forensic detection methods, such as those developed 

in this thesis, to provide both evidence and intelligence for retrospective and preventative purposes.   
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9.2.4 Research culture 

This thesis demonstrates an approach to doing forensic research where the research questions are 

relevant to the real world, the outcomes are industry informed, in order to establish implementable 

methodologies. Developing such a research culture within forensic science requires research projects 

to be casework informed, involving industry and other academic professionals in order to develop 

implementable solutions and identifying and answering the right questions. The work presented here 

set out to achieve all of these aims, taking into consideration the requirements and feedback from 

scientists at DSTL’s Explosives Detection Group, operations managers at Thames Water Ltd., 

scientific support staff from the Metropolitan Police Service and colleagues at King’s College London 

and the University of Portsmouth. These engagements further helped to assess and challenge the 

financial, ethical and operational issues associated with implementation of the wastewater analysis 

approach of trace explosives detection, in addition to the requirements of the criminal justice system. 

The final result models an approach to doing real world and industry informed research that can be 

useful for current and future criminal investigations.  

 Therefore, the findings of this research provide two significant additions to the knowledge base 

within the forensic sciences.  Firstly, the findings offer a systematic evidence base to develop a robust 

analytical technique that has the potential to offer intelligence in on-going investigations, which is 

highly significant for broadening the scope of forensic science for both intelligence and evidence 

purposes.  Secondly, the manner in which this research has been undertaken offers a model for future 

research that is casework informed, interdisciplinary and focussed on the implementation of the 

results from the outset.  Such an approach has the potential to significantly contribute to the 

development of the research culture within the forensic sciences, ensuring that appropriate questions 

are asked, and accurate intelligence and evidence identified and robust forensic reconstructions 

achieved. 



 203 

References 

Abdul-Karim, Nadia, Ruth Morgan, Russell Binions, Tracey Temple, and Karl Harrison. 2012. “The 

Spatial Distribution of Postblast RDX Residue: Forensic Implications.” Journal of Forensic 

Sciences 58 (2): 365–71. doi:10.1111/1556-4029.12045. 

Aguilar-Martínez, Rocío, M Milagros Gómez-Gómez, and María A Palacios-Corvillo. 2011. 

“Mercury and Organotin Compounds Monitoring in Fresh and Marine Waters Across Europe by 

Chemcatcher Passive Sampler.” International Journal of Environmental Analytical Chemistry 91 

(11): 1100–1116. doi:10.1080/03067310903199534. 

Aguilar-Martínez, Rocío, Richard Greenwood, Graham A Mills, Branislav Vrana, María A Palacios-

Corvillo, and Maria M Gómez-Gómez. 2008. “Assessment of Chemcatcher Passive Sampler for 

the Monitoring of Inorganic Mercury and Organotin Compounds in Water.” International 

Journal of Environmental Analytical Chemistry 88 (2): 75–90. doi:10.1080/03067310701461870. 

Ahmad, Umi K, Sumathy Rajendran, Lee Woan Ling, and Yew Chong Hooi. 2008. “Forensic 

Analysis of High Explosives Residues in Post-Blast Water Samples Employing Solid Phase 

Extraction for Analyte Pro-Concentration.” The Malaysian Journal of Analytical Sciences 12 

(October): 367–74. 

Akhavan, J. 2004. The Chemistry of Explosives. 2nd ed. The Royal Society of Chemistry. 

Allan, I, B Vrana, R Greenwood, G Mills, J Knutsson, A Holmburg, N Guigues, A Fouillac, and S 

Laschi. 2006. “Strategic Monitoring for the European Water Framework Directive.” TrAC Trends 

in Analytical Chemistry 25 (7): 704–15. doi:10.1016/j.trac.2006.05.009. 

Allan, Ian J, Kees Booij, Albrecht Paschke, Branislav Vrana, Graham A Mills, and Richard 

Greenwood. 2009. “Field Performance of Seven Passive Sampling Devices for Monitoring of 

Hydrophobic Substances.” Environmental Science & Technology 43 (14): 5383–90. 

doi:10.1021/es900608w. 

Alvarez, D A, P E Stackelberg, J D Petty, J N Huckins, E T Furlong, S D Zaugg, and M T Meyer. 

2005. “Comparison of a Novel Passive Sampler to Standard Water-Column Sampling for Organic 

Contaminants Associated with Wastewater Effluents Entering a New Jersey Stream.” 



 204 

Chemosphere 61 (5): 610–22. doi:10.1016/j.chemosphere.2005.03.023. 

Alvarez, David A. 2013. “Development of Semipermeable Membrane Devices (SPMDs) and Polar 

Organic Chemical Integrative Samplers (POCIS) for Environmental Monitoring.” Environmental 

Toxicology and Chemistry 32 (10): 2179–81. doi:10.1002/etc.2339. 

Alvarez, David A, Jimmie D Petty, James N Huckins, Tammy L Jones-Lepp, Dominic T Getting, Jon 

P Goddard, and Stanley E Manahan. 2004. “Development of a Passive, in Situ, Integrative 

Sampler for Hydrophilic Organic Contaminants in Aquatic Environments.” Environmental 

Toxicology and Chemistry 23 (May): 1640–48. 

Babaee, Saeed, and Asadollah Beiraghi. 2010. “Micellar Extraction and High Performance Liquid 

Chromatography-Ultra Violet Determination of Some Explosives in Water Samples.” Analytica 

Chimica Acta 662 (1). Elsevier B.V.: 9–13. doi:10.1016/j.aca.2009.12.032. 

Badjagbo, Koffi, and Sébastien Sauvé. 2012. “Mass Spectrometry for Trace Analysis of Explosives in 

Water.” Critical Reviews in Analytical Chemistry 42 (3): 257–71. 

doi:10.1080/10408347.2012.680332. 

Bailly, Emilie, Yves Levi, and Sara Karolak. 2013. “Calibration and Field Evaluation of Polar 

Organic Chemical Integrative Sampler (POCIS) for Monitoring Pharmaceuticals in Hospital 

Wastewater.” Environmental Pollution 174 (C). Elsevier Ltd: 100–105. 

doi:10.1016/j.envpol.2012.10.025. 

Baker, David R, and Barbara Kasprzyk-Hordern. 2011. “Multi-Residue Analysis of Drugs of Abuse in 

Wastewater and Surface Water by Solid-Phase Extraction and Liquid 

Chromatographyâ€“Positive Electrospray Ionisation Tandem Mass Spectrometry.” Journal of 

Chromatography A 1218 (12). Elsevier B.V.: 1620–31. doi:10.1016/j.chroma.2011.01.060. 

Barreto-Rodrigues, Marcio, Flávio T Silva, and Teresa C B Paiva. 2009. “Characterization of 

Wastewater From the Brazilian TNT Industry.” Journal of Hazardous Materials 164 (1): 385–88. 

doi:10.1016/j.jhazmat.2008.07.152. 

Bartelt-Hunt, Shannon L, Daniel D Snow, Teyona Damon, Johnette Shockley, and Kyle Hoagland. 

2009. “The Occurrence of Illicit and Therapeutic Pharmaceuticals in Wastewater Effluent and 

Surface Waters in Nebraska.” Environmental Pollution 157 (3). Elsevier Ltd: 786–91. 



 205 

doi:10.1016/j.envpol.2008.11.025. 

Bayen, Stéphane, Elvagris Segovia, Lay Leng Loh, David F Burger, Hans S Eikaas, and Barry C 

Kelly. 2014. “Application of Polar Organic Chemical Integrative Sampler (POCIS) to Monitor 

Emerging Contaminants in Tropical Waters.” Science of the Total Environment, the 482-483 (C). 

Elsevier B.V.: 15–22. doi:10.1016/j.scitotenv.2014.02.082. 

BBC News. 2008. “Two-Bed Flat ‘Was Bomb Factory’.” Bbc.Co.Uk/News. April 4. 

http://news.bbc.co.uk/1/hi/uk/7331098.stm. 

BBC News. 2011a. “In Pictures: Inside the 7/7 Bomb Factory.” Bbc.Co.Uk/News. February 1. 

http://www.bbc.co.uk/news/uk-12340228. 

BBC News. 2011b. “7/7 Inquests: Coroner Warns Over Bomb Ingredient - BBC News.” 

Bbc.Co.Uk/News. May 6. http://www.bbc.co.uk/news/uk-13307382. 

BBC News. 2012a. “Anders Behring Breivik Trial: Day by Day - BBC News,” June. 

http://www.bbc.co.uk/news/world-europe-17770991. 

BBC News. 2012b. “The 12 October 2002 Bali Bombing Plot.” October 11. 

http://www.bbc.co.uk/news/world-asia-19881138. 

Beer, Sebastian, Gerhard Müller, and Jürgen Wöllenstein. 2012. “Development and Characterization 

of an Electrostatic Particle Sampling System for the Selective Collection of Trace Explosives.” 

Talanta 89 (January). Elsevier B.V.: 441–47. doi:10.1016/j.talanta.2011.12.059. 

Belden, Jason B, Guilherme R Lotufo, James M Biedenbach, Kristal K Sieve, and Gunther Rosen. 

2015. “Application of POCIS for Exposure Assessment of Munitions Constituents During 

Constant and Fluctuating Exposure.” Environmental Toxicology and Chemistry 34 (5): 959–67. 

doi:10.1002/etc.2836. 

Bergen, Peter. 2015. “Paris Explosives Are a Key Clue to Plot.” Cnn.com. November 17. 

http://edition.cnn.com/2015/11/17/opinions/bergen-explosives-paris-attacks/. 

Biedermann, Alex, Paolo Garbolino, and Franco Taroni. 2013. “The Subjectivist Interpretation of 

Probability and the Problem of Individualisation in Forensic Science.” Science & Justice 53 (2). 

Forensic Science Society: 192–200. doi:10.1016/j.scijus.2013.01.003. 

Biedermann, Alex, Tacha Hicks, Franco Taroni, Christophe Champod, and Colin Aitken. 2014. “On 



 206 

the Use of the Likelihood Ratio for Forensic Evaluation: Response to Fenton Et Al.,” July. 

Forensic Science Society, 1–3. doi:10.1016/j.scijus.2014.04.001. 

Biotage. 2006. “Nitroaromatic Explosives From Water.” Solid Phase Extraction Application Note, 

October, 1–2. 

Blanco, Gustavo A, Yi H Nai, Emily F Hilder, Robert A Shellie, Greg W Dicinoski, Paul R Haddad, 

and Michael C Breadmore. 2011. “Identification of Inorganic Improvised Explosive Devices 

Using Sequential Injection Capillary Electrophoresis and Contactless Conductivity Detection.” 

Analytical Chemistry 83 (23): 9068–75. doi:10.1021/ac2020195. 

Boles, Tammy H, and Martha J M Wells. 2010. “Analysis of Amphetamine and Methamphetamine as 

Emerging Pollutants in Wastewater and Wastewater-Impacted Streams.” Journal of 

Chromatography A 1217 (16). Elsevier B.V.: 2561–68. doi:10.1016/j.chroma.2010.01.014. 

Bones, Jonathan, Kevin V Thomas, and Brett Paull. 2007. “Using Environmental Analytical Data to 

Estimate Levels of Community Consumption of Illicit Drugs and Abused Pharmaceuticals.” 

Journal of Environmental Monitoring 9 (7): 701–7. doi:10.1039/b702799k. 

Bowers, K J. 2004. “Prospective Hot-Spotting: the Future of Crime Mapping?.” British Journal of 

Criminology 44 (5): 641–58. doi:10.1093/bjc/azh036. 

Bowers, Kate J, and Shane D Johnson. 2003. “Measuring the Geographical Displacement and 

Diffusion of Benefit Effects of Crime Prevention Activity.” Journal of Quantitative Criminology 

19 (3). Kluwer Academic Publishers-Plenum Publishers: 275–301. 

doi:10.1023/A:1024909009240. 

Braithwaite, Alex, and Shane D Johnson. 2011. “Space–Time Modeling of Insurgency and 

Counterinsurgency in Iraq.” Journal of Quantitative Criminology 28 (1): 31–48. 

doi:10.1007/s10940-011-9152-8. 

Braithwaite, Alex, and Shane D Johnson. 2014. “The Battle for Baghdad: Testing Hypotheses About 

Insurgency From Risk Heterogeneity, Repeat Victimization, and Denial Policing Approaches.” 

Terrorism and Political Violence 27 (1): 112–32. doi:10.1080/09546553.2014.972160. 

Brimicombe, Allan J, Martin P Ralphs, Hoi Yuen Tsui, and Alice Sampson. 2001. “An Analysis of 

the Role of Neighbourhood Ethnic Composition in the Geographical Distribution of Racially 



 207 

Motivated Incidents. Implications for Evaluating Treatment.” British Journal of Criminology 41 

(2): 293–308. 

Broeders, A P A. 2006. “Of Earprints, Fingerprints, Scent Dogs, Cot Deaths and Cognitive 

Contamination—a Brief Look at the Present State of Play in the Forensic Arena.” Forensic 

Science International 159 (2-3): 148–57. doi:10.1016/j.forsciint.2004.11.028. 

Brunsdon, Chris, Jonathan Corcoran, and Gary Higgs. 2007. “Visualising Space and Time in Crime 

Patterns: a Comparison of Methods.” Computers, Environment and Urban Systems 31 (1): 52–75. 

doi:10.1016/j.compenvurbsys.2005.07.009. 

Brust, Hanneke, Arian van Asten, Mattijs Koeberg, Antoine van der Heijden, Chris-Jan Kuijpers, and 

Peter Schoenmakers. 2013. “Pentaerythritol Tetranitrate (PETN) Profiling in Post-Explosion 

Residues to Constitute Evidence of Crime-Scene Presence.” Forensic Science International 230 

(1-3). Elsevier Ireland Ltd: 37–45. doi:10.1016/j.forsciint.2013.03.042. 

Budowle, Bruce, Anthony J Onorato, Thomas F Callaghan, Angelo Della Manna, Ann M Gross, 

Richard A Guerrieri, Jennifer C Luttman, and David Lee McClure. 2009. “Mixture Interpretation: 

Defining the Relevant Features for Guidelines for the Assessment of Mixed DNA Profiles in 

Forensic Casework.” Journal of Forensic Sciences 54 (4): 810–21. doi:10.1111/j.1556-

4029.2009.01046.x. 

Budowle, Bruce, Arthur J Eisenberg, and Angela van Daal. 2009. “Validity of Low Copy Number 

Typing and Applications to Forensic Science.” Croatian Medical Journal 50 (3): 207–17. 

doi:10.3325/cmj.2009.50.207. 

Calderara, Stéphane, Dominique Gardebas, and Fabienne Martinez. 2003. “Solid Phase Micro 

Extraction Coupled with on-Column GC/ECD for the Post-Blast Analysis of Organic 

Explosives.” Forensic Science International 137 (1): 6–12. doi:10.1016/S0379-0738(03)00256-1. 

Caplan, Joel M, Leslie W Kennedy, and Joel Miller. 2011. “Risk Terrain Modeling: Brokering 

Criminological Theory and GIS Methods for Crime Forecasting.” Justice Quarterly 28 (2): 360–

81. doi:10.1080/07418825.2010.486037. 

Cassada, D A, S J Monson, D D Snow, and R F Spalding. 1999. “Sensitive Determination of RDX, 

Nitroso-RDX Metabolites, and Other Munitions in Ground Water by Solid-Phase Extraction and 



 208 

Isotope Dilution Liquid Chromatography–Atmospheric Pressure Chemical Ionization Mass 

Spectrometry.” Journal of Chromatography A, May, 87–95. 

Cassidy, R, and P Jordan. 2011. “Limitations of Instantaneous Water Quality Sampling in Surface-

Water Catchments: Comparison with Near-Continuous Phosphorus Time-Series Data.” Journal 

of Hydrology 405 (1-2): 182–93. doi:10.1016/j.jhydrol.2011.05.020. 

Castiglioni, Sara, Zuccato, Elisabetta Crisci, Chiara Chiabrando, Roberto Fanelli, and Renzo Bagnati. 

2006. “Identification and Measurement of Illicit Drugs and Their Metabolites in Urban 

Wastewater by Liquid Chromatography−Tandem Mass Spectrometry.” Analytical Chemistry 78 

(24): 8421–29. doi:10.1021/ac061095b. 

Caygill, J Sarah, Frank Davis, and Seamus P J Higson. 2012a. “Current Trends in Explosive 

Detection Techniques.” Talanta 88 (January). Elsevier B.V.: 14–29. 

doi:10.1016/j.talanta.2011.11.043. 

Caygill, J Sarah, Frank Davis, and Seamus P J Higson. 2012b. “Current Trends in Explosive 

Detection Techniques.” Talanta 88 (January). Elsevier B.V.: 14–29. 

doi:10.1016/j.talanta.2011.11.043. 

Chainey, S. 2008. “Identifying Priority Neighbourhoods Using the Vulnerable Localities Index.” 

Policing 2 (2): 196–209. doi:10.1093/police/pan023. 

Chainey, Spencer, and Jerry Ratcliffe. 2005. GIS and Crime Mapping. Wiley. 

Chainey, Spencer, Lisa Tompson, and Sebastian Uhlig. 2008. “The Utility of Hotspot Mapping for 

Predicting Spatial Patterns of Crime.” Security Journal 21 (1-2): 4–28. 

doi:10.1057/palgrave.sj.8350066. 

Chakraborty, Barnini. 2013. “Boston Attack Underscores Growing Threat of Ieds in America.” 

FoxNews.com, April. Fox News. http://www.foxnews.com/politics/2013/04/16/use-ieds-in-us-

terror-attacks-on-rise.html. 

Chambers, Erin, Diane M Wagrowski-Diehl, Ziling Lu, and Jeffrey R Mazzeo. 2007. “Systematic and 

Comprehensive Strategy for Reducing Matrix Effects in LC/MS/MS Analyses.” Journal of 

Chromatography B 852 (1-2): 22–34. doi:10.1016/j.jchromb.2006.12.030. 

Charriau, Adeline, Sophie Lissalde, Gaëlle Poulier, Nicolas Mazzella, Rémy Buzier, and Gilles 



 209 

Guibaud. 2016. “Overview of the Chemcatcher® for the Passive Sampling of Various Pollutants 

in Aquatic Environments Part a_ Principles, Calibration, Preparation and Analysis of the 

Sampler.” Talanta 148 (C). Elsevier: 556–71. doi:10.1016/j.talanta.2015.06.064. 

Chen, Chang-Er, Hao Zhang, and Kevin C Jones. 2012. “A Novel Passive Water Sampler for in Situ 

Sampling of Antibiotics.” Journal of Environmental Monitoring 14 (6): 1523–29. 

doi:10.1039/c2em30091e. 

Chen, Chang-Er, Hao Zhang, Guang-Guo Ying, and Kevin C Jones. 2013. “Evidence and 

Recommendations to Support the Use of a Novel Passive Water Sampler to Quantify Antibiotics 

in Wastewaters.” Environmental Science & Technology 47 (23): 13587–93. 

doi:10.1021/es402662g. 

Chisum, W Jerry, and Brent E Turvey. 2011. “Evidence Dynamics.” In Crime Reconstruction, 2nd ed. 

Elsevier Academic Press. 

Chivers, C J. 2016. “Quantity of Explosive Found in Belgium Surprises Officials.” Nytimes.com. 

March 23. http://www.nytimes.com/2016/03/24/world/europe/brussels-explosives-

tatp.html?_r=0. 

Coes, Alissa L, Nicholas V Paretti, William T Foreman, Jana L Iverson, and David A Alvarez. 2014a. 

“Sampling Trace Organic Compounds in Water: a Comparison of a Continuous Active Sampler 

to Continuous Passive and Discrete Sampling Methods.” Science of the Total Environment, the 

473-474. Elsevier B.V.: 1–11. doi:10.1016/j.scitotenv.2013.12.082. 

Coes, Alissa L, Nicholas V Paretti, William T Foreman, Jana L Iverson, and David A Alvarez. 2014b. 

“Sampling Trace Organic Compounds in Water: a Comparison of a Continuous Active Sampler 

to Continuous Passive and Discrete Sampling Methods.” Science of the Total Environment, the 

473-474 (C). Elsevier B.V.: 731–41. doi:10.1016/j.scitotenv.2013.12.082. 

Cohen, Lawrence E, and Marcus Felson. 1979. “Social Change and Crime Rate Trends: a Routine 

Activity Approach.” American Sociological Review 4 (August): 588–608. 

Cole, Simon A. 2005. “More Than Zero: Accounting for Error in Latent Fingerprint Identification.” 

The Journal of Criminal Law and Criminology 95 (July): 985–1078. 

Cole, Simon A. 2013. “Forensic Culture as Epistemic Culture: the Sociology of Forensic Science.” 



 210 

Studies in History and Philosophy of Biol & Biomed Sci 44 (1): 36–46. 

doi:10.1016/j.shpsc.2012.09.003. 

Commission, The Law. 2011. “Expert Evidence in Criminal Proceedings in England and Wales.” 

Report No. 325. London: The Stationary Office. 

Cone, Margaret. 2005. “Validation of Analytical Procedures: Text and Methodology.” International 

Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for 

Human Use. 

Corcoran, Jonathan J, Ian D Wilson, and J Andrew Ware. 2003. “Predicting the Geo-Temporal 

Variations of Crime and Disorder.” International Journal of Forecasting 19 (4): 623–34. 

doi:10.1016/S0169-2070(03)00095-5. 

Cortada, Carol, Lorena Vidal, and Antonio Canals. 2011. “Determination of Nitroaromatic Explosives 

in Water Samples by Direct Ultrasound-Assisted Dispersive Liquidâ€“Liquid Microextraction 

Followed by Gas Chromatographyâ€“Mass Spectrometry.” Talanta 85 (5). Elsevier B.V.: 2546–

52. doi:10.1016/j.talanta.2011.08.011. 

Crescenzi, C, J Albiñana, H Carlsson, E Holmgren, and R Batlle. 2007. “On-Line Strategies for 

Determining Trace Levels of Nitroaromatic Explosives and Related Compounds in Water.” 

Journal of Chromatography A 1153 (1-2): 186–93. doi:10.1016/j.chroma.2006.11.055. 

Cronin, D, and T Mark. 2006. “The Role of Hydrophobicity in Toxicity Prediction.” Current 

Computer-Aided Drug Design 2 (9): 405–13. 

Crowson, Andrew, and Matthew S Beardah. 2001. “Development of an LC/MS Method for the Trace 

Analysis of Hexamethylenetriperoxidediamine (HMTD).” The Analyst 126 (10): 1689–93. 

doi:10.1039/b107354k. 

Curran, J M, C M Triggs, J S Buckleton, K Walsh, and T Hicks. 1998. “Assessing Transfer 

Probabilities in a Bayesian Interpretation of Forensic Glass Evidence.” Science & Justice, no. 38: 

15–21. 

Damour, Paul L, Andrew Freedman, and Joda Wormhoudt. 2010. “Knudsen Effusion Measurement of 

Organic Peroxide Vapor Pressures.” Propellants, Explosives, Pyrotechnics 35 (6): 514–20. 

doi:10.1002/prep.200900083. 



 211 

de Keijser, Jan, and Henk Elffers. 2012. “Understanding of Forensic Expert Reports by Judges, 

Defense Lawyers and Forensic Professionals.” Psychology, Crime and Law 18 (October): 191–

207. doi:10.1080/10683161003736744. 

DeTata, David A, Peter A Collins, and Allan J McKinley. 2012. “A Comparison of Solvent Extract 

Cleanup Procedures in the Analysis of Organic Explosives.” Journal of Forensic Sciences 58 (2): 

500–507. doi:10.1111/1556-4029.12035. 

DeTata, David, Peter Collins, and Allan McKinley. 2013. “A Fast Liquid Chromatography 

Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS) Method for the Identification of 

Organic Explosives and Propellants.” Forensic Science International 233 (1-3). Elsevier Ireland 

Ltd: 63–74. doi:10.1016/j.forsciint.2013.08.007. 

Dicinoski, Greg W, Robert A Shellie, and Paul R Haddad. 2006. “Forensic Identification of Inorganic 

Explosives by Ion Chromatography.” Analytical Letters 39 (4): 639–57. 

doi:10.1080/00032710600609735. 

Dontsova, Katerina M, Judith C Pennington, Charolett Hayes, Jiri Šimunek, and Clint W Williford. 

2009. “Dissolution and Transport of 2,4-DNT and 2,6-DNT From M1 Propellant in Soil.” 

Chemosphere 77 (4). Elsevier Ltd: 597–603. doi:10.1016/j.chemosphere.2009.05.039. 

Douglas, Thomas A, Laura Johnson, Marianne Walsh, and Charles Collins. 2009. “A Time Series 

Investigation of the Stability of Nitramine and Nitroaromatic Explosives in Surface Water 

Samples at Ambient Temperature.” Chemosphere 76 (1). Elsevier Ltd: 1–8. 

doi:10.1016/j.chemosphere.2009.02.050. 

Dror, Itiel E, Christophe Champod, Glenn Langenburg, David Charlton, Heloise Hunt, and Robert 

Rosenthal. 2011. “Cognitive Issues in Fingerprint Analysis: Inter- and Intra-Expert Consistency 

and the Effect of a Â€˜Targetâ€™ Comparison.” Forensic Science International 208 (1-3). 

Elsevier Ireland Ltd: 10–17. doi:10.1016/j.forsciint.2010.10.013. 

Dror, Itiel, and Robert Rosenthal. 2008. “Meta-Analytically Quantifying the Reliability and 

Biasability of Forensic Experts.” Journal of Forensic Sciences 53 (4): 900–903. 

doi:10.1111/j.1556-4029.2008.00762.x. 

Eck, John E, Spencer Chainey, James G Cameron, Michael Leitner, and Ronald E Wilson. 2005. 



 212 

“Mapping Crime: Understanding Hot Spots.” NCJ 209393. Mapping and Analysis for Public 

Safety. 

EMCDDA. 2016. “Assessing Illicit Drugs in Wastewater.” Edited by Sara Castiglioni. EMCDDA 

Insights 22. doi:10.2810/017397. 

English, Richard. 2010. Terrorism: How to Respond. Oxford University Press. 

Environment Agency. 2014. “Monitoring of Discharges to Water and Sewer.” 4 ed. Environment 

Agency. 

Ewing, Robert G, Brian H Clowers, and David A Atkinson. 2013. “Direct Real-Time Detection of 

Vapors From Explosive Compounds.” Analytical Chemistry 85 (22): 10977–83. 

doi:10.1021/ac402513r. 

Federal Bureau of Investigation. 2016. “Intelligence Branch.” Fbi. 

https://www.fbi.gov/about/leadership-and-structure/intelligence-branch. 

Federation of American Scientists. 1996. “Operations Security, Intelligence Threat Handbook.” 

Fas.org. May. http://fas.org/irp/nsa/ioss/threat96/index.html. 

Fenton, Norman, Daniel Berger, David Lagnado, Martin Neil, and Anne Hsu. 2013. “When ‘Neutral’ 

Evidence Still Has Probative Value (with Implications From the Barry George Case),” August. 

Forensic Science Society, 1–14. doi:10.1016/j.scijus.2013.07.002. 

Ferrando-Climent, L, S Rodriguez-Mozaz, and D Barceló. 2014. “Incidence of Anticancer Drugs in 

an Aquatic Urban System: From Hospital Effluents Through Urban Wastewater to Natural 

Environment.” Environmental Pollution 193 (C). Elsevier Ltd: 216–23. 

doi:10.1016/j.envpol.2014.07.002. 

Fisher, R Stephen. 2002. “Groundwater Quality in Kentucky: Arsenic .” National Geological Survey. 

French, James. n.d. “Transfers of Gunshot Residue (GSR) to Hands: an Experimental Study of 

Mechanisms of Transfer and Deposition Carried Out Using SEM-EDX, with Explorations of the 

Implications for Forensic Protocol and the Application of Bayesian Networks to Interpretation .” 

Gamble, Sally, Helen Earwaker, Sherry Nakhaeizadeh, Nadine Smit, Beth Wilks, and Ruth Morgan. 

n.d. “Perceptions of Evidential Weight Surrounding Forensic Evidence.” In Preparation. 

Gaurav, Ashok Kumar Malik, and P K Rai. 2009. “Development of a New SPME–HPLC–UV 



 213 

Method for the Analysis of Nitro Explosives on Reverse Phase Amide Column and Application 

to Analysis of Aqueous Samples.” Journal of Hazardous Materials 172 (2-3): 1652–58. 

doi:10.1016/j.jhazmat.2009.08.039. 

Gaurav, Varinder Kaur, Ashwini Kumar, Ashok Kumar Malik, and P K Rai. 2007. “SPME-HPLC: a 

New Approach to the Analysis of Explosives.” Journal of Hazardous Materials 147 (3): 691–97. 

doi:10.1016/j.jhazmat.2007.05.054. 

Gheorghe, Adriana, Alexander van Nuijs, Bert Pecceu, Lieven Bervoets, Philippe G Jorens, Ronny 

Blust, Hugo Neels, and Adrian Covaci. 2007. “Analysis of Cocaine and Its Principal Metabolites 

in Waste and Surface Water Using Solid-Phase Extraction and Liquid Chromatography–Ion Trap 

Tandem Mass Spectrometry.” Analytical and Bioanalytical Chemistry 391 (4): 1309–19. 

doi:10.1007/s00216-007-1754-5. 

Goodman, Nicole. 2011. “Agilent Bond Elut Plexa and Polymeric SPE Selection Guide.” Agilent 

Application Note, July, 1–24. 

Gurke, Robert, Martin Rößler, Conrad Marx, Sam Diamond, Sara Schubert, Reinhard Oertel, and 

Joachim Fauler. 2015. “Occurrence and Removal of Frequently Prescribed Pharmaceuticals and 

Corresponding Metabolites in Wastewater of a Sewage Treatment Plant.” Science of the Total 

Environment, the 532 (C). Elsevier B.V.: 762–70. doi:10.1016/j.scitotenv.2015.06.067. 

Halasz, A, C Groom, E Zhou, L Paquet, C Beaulieu, S Deschamps, A Corriveau, et al. 2002. 

“Detection of Explosives and Their Degradation Products in Soil Environments.” Journal of 

Chromatography A, February, 411–18. 

Haned, Hinda. 2011. “Forensim: an Open-Source Initiative for the Evaluation of Statistical Methods 

in Forensic Genetics.” Forensic Science International: Genetics 5 (4). Elsevier Ireland Ltd: 265–

68. doi:10.1016/j.fsigen.2010.03.017. 

Harada, Yutaka, and Takahito Shimada. 2006. “Examining the Impact of the Precision of Address 

Geocoding on Estimated Density of Crime Locations.” Computers & Geosciences 32 (8): 1096–

1107. doi:10.1016/j.cageo.2006.02.014. 

Harman, Christopher, Olav Bøyum, Kevin V Thomas, and Merete Grung. 2009. “Small but Different 

Effect of Fouling on the Uptake Rates of Semipermeable Membrane Devices and Polar Organic 



 214 

Chemical Integrative Samplers.” Environmental Toxicology and Chemistry 28 (October): 2324–

32. 

Haroune, Nicolas, Andrew Crowson, and Bill Campbell. 2011. “Characterisation of Triacetone 

Triperoxide (TATP) Conformers Using LC-NMR.” Science & Justice 51 (2). Forensic Science 

Society: 50–56. doi:10.1016/j.scijus.2010.09.002. 

Heuel-Fabianek, Burkhard. 2014. “Partition Coefficients (Kd) for  the Modeling of Transport 

Processes of  Radionuclides in Groundwater,” June, 1–63. 

Hiyoshi, Reiko I, Jun Nakamura, and Thomas B Brill. 2007. “Thermal Decomposition of Organic 

Peroxides TATP and HMTD by T-Jump/FTIR Spectroscopy.” Propellants, Explosives, 

Pyrotechnics 32 (2): 127–34. 

Holmgren, Erik, Håkan Carlsson, Patrick Goede, and Carlo Crescenzi. 2005. “Determination and 

Characterization of Organic Explosives Using Porous Graphitic Carbon and Liquid 

Chromatography–Atmospheric Pressure Chemical Ionization Mass Spectrometry.” Journal of 

Chromatography A 1099 (1-2): 127–35. doi:10.1016/j.chroma.2005.08.088. 

Hong, Jing, and Rosanne Slingsby. 2013. “Automated Solid Phase Extraction of 14 Explosives in Tap 

Water Based on U.S. EPA Method 8330 Using Hydrophilic Reversed-Phase Cartridge Followed 

by HPLC with UV Detection.” Thermo Fisher Scientific Application Note, February, 1–3. 

Horne, Natasha, Katrina Edmondson, Mark Harrison, and Brett Scott. 2014. “The Applied Use of 

Forensic Intelligence for Community and Organised Crime.” Australian Journal of Forensic 

Sciences 47 (1): 72–82. doi:10.1080/00450618.2014.916755. 

Houck, Max, and Jay Siegel. 2015a. Fundamentals of Forensic Science. 3rd ed. Elsevier Academic 

Press. 

Houck, Max, and Jay Siegel. 2015b. “Legal Aspects of Forensic Science.” In Fundamentals of 

Forensic Science, edited by Jay Siegel and Max Houck, 3rd ed. 

Howes, Natalie J. 2008. “UK ENVIRONMENTAL STANDARDS and CONDITIONS (PHASE 1) 

Final Report April 2008,” August, 1–73. 

Huckins, James N, Mark W Tubergen, and Gamini K Manuweera. 1990. “Semipermeable Membrane 

Devices Containing Model Lipid: a New Approach to Monitoring the Bioavailability of 



 215 

Lipophilic Contaminants and Estimating Their Bioconcentration Potential.” Chemosphere 20 

(December): 533–52. 

Huerta-Fontela, Maria, Maria Teresa Galceran, Jordi Martin-Alonso, and Francesc Ventura. 2008. 

“Occurrence of Psychoactive Stimulatory Drugs in Wastewaters in North-Eastern Spain.” Science 

of the Total Environment 397 (1-3): 31–40. doi:10.1016/j.scitotenv.2008.02.057. 

Hutchinson, Joseph P, Cameron Johns, Michael C Breadmore, Emily F Hilder, Rosanne M Guijt, 

Chris Lennard, Greg Dicinoski, and Paul R Haddad. 2008. “Identification of Inorganic Ions in 

Post-Blast Explosive Residues Using Portable CE Instrumentation and Capacitively Coupled 

Contactless Conductivity Detection.” Electrophoresis 29 (22): 4593–4602. 

doi:10.1002/elps.200800226. 

Ibrahim, Imtiaz, Anne Togola, and Catherine Gonzalez. 2013. “In-Situ Calibration of POCIS for the 

Sampling of Polar Pesticides and Metabolites in Surface Water.” Talanta 116 (C). Elsevier: 495–

500. doi:10.1016/j.talanta.2013.07.028. 

Irvine, Rodney J, Chris Kostakis, Peter D Felgate, Emily J Jaehne, Chang Chen, and Jason M White. 

2011. “Population Drug Use in Australia: a Wastewater Analysis.” Forensic Science 

International 210 (1-3). Elsevier Ireland Ltd: 69–73. doi:10.1016/j.forsciint.2011.01.037. 

ISO. 2006. Iso 22478:2006. 

Jackson, Andrew R W, and Julie M Jackson. 2008. Forensic Science. 2nd ed. Pearson. 

Jenkins, T F, V H Dale, V Morrill, and N R Giffen. 2009. Ecotoxicology of Explosives. 

crcnetbase.com 

. doi:10.1201/9781420004342.ch11. 

Jiang, Guifeng. 2010. “Simultaneous UHPLC/MS Analyses of Explosive Compounds.” Application 

Note. Thermo Fisher Scientific, San Jose, CA, USA. 

Jones, Hayley E, Matthew Hickman, Barbara Kasprzyk-Hordern, Nicky J Welton, David R Baker, 

and A E Ades. 2014. “Illicit and Pharmaceutical Drug Consumption Estimated via Wastewater 

Analysis. Part B: Placing Back-Calculations in a Formal Statistical Framework.” Science of the 

Total Environment, the, April. Elsevier B.V., 1–9. doi:10.1016/j.scitotenv.2014.02.101. 

Jönsson, S, L Gustavsson, and B van Bavel. 2007. “Analysis of Nitroaromatic Compounds in 



 216 

Complex Samples Using Solid-Phase Microextraction and Isotope Dilution Quantification Gas 

Chromatography–Electron-Capture Negative Ionisation Mass Spectrometry.” Journal of 

Chromatography A 1164 (1-2): 65–73. doi:10.1016/j.chroma.2007.07.023. 

Juhasz, Albert L, and Ravendra Naidu. 2007. “Explosives: Fate, Dynamics, and Ecological Impact in 

Terrestrial and Marine Environments..” Reviews of Environmental Contamination and 

Toxicology 191: 163–215. 

Kamoun, C, and A Pizzi. 2000a. Mechanism of Hexamine as a Non-Aldehyde Polycondensation 

Hardener. Part 2: Recomposition of Intermediate Reactive Compounds. Holzforschung und 

Holzverwertung. 

Kamoun, C, and A Pizzi. 2000b. Mechanism of Hexamine as a Non-Aldehyde Polycondensation 

Resins Hardener. Part 1: Hexamine Decomposition and Reactive Intermediates. Holzforschung 

und Holzverwertung. 

Karolak, Sara, Thomas Nefau, Emilie Bailly, Audrey Solgadi, and Yves Levi. 2010. “Estimation of 

Illicit Drugs Consumption by Wastewater Analysis in Paris Area (France).” Forensic Science 

International 200 (1-3). Elsevier Ireland Ltd: 153–60. doi:10.1016/j.forsciint.2010.04.007. 

Kasprzyk-Hordern, Barbara, Richard M Dinsdale, and Alan J Guwy. 2008. “The Occurrence of 

Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface 

Water in South Wales, UK.” Water Research 42 (13): 3498–3518. 

doi:10.1016/j.watres.2008.04.026. 

Kasprzyk-Hordern, Barbara, Richard M Dinsdale, and Alan J Guwy. 2009. “Illicit Drugs and 

Pharmaceuticals in the Environment - Forensic Applications of Environmental Data. Part 1: 

Estimation of the Usage of Drugs in Local Communities.” Environmental Pollution 157 (6). 

Elsevier Ltd: 1773–77. doi:10.1016/j.envpol.2009.03.017. 

Kaye, David H. 2003. “Questioning a Courtroom Proof of the Uniqueness of Fingerprints.” 

International Statistical Review 71 (May): 521–33. 

Kaye, David H. 2010. “Probability, Individualization, and Uniqueness in Forensic Science Evidence: 

Listening to the Academies.” Brooklyn Law Review 75 (4): 1163–85. 

Kent, Josh, Michael Leitner, and Andrew Curtis. 2006. “Evaluating the Usefulness of Functional 



 217 

Distance Measures When Calibrating Journey-to-Crime Distance Decay Functions.” Computers, 

Environment and Urban Systems 30 (2): 181–200. doi:10.1016/j.compenvurbsys.2004.10.002. 

Kinesis. 2010. “Extraction of Explosives From Water.” Telos Application Note ENV, January, 1–2. 

Kinghorn, Russel, and Courtney Milner. 2005. “Analysis of Trace Residues of Explosive Materials by 

Time-of-Flight LC/MS Application.” Agilent Application Note, March, 1–18. 

Kingston, Jenny K, Richard Greenwood, Graham A Mills, Gregory M Morrison, and Lena Björklund 

Persson. 2000. “Development of a Novel Passive Sampling System for the Time-Averaged 

Measurement of a Range of Organic Pollutants in Aquatic Environments.” Journal of 

Environmental Monitoring 2 (5): 487–95. doi:10.1039/b003532g. 

Kirk, P L. 1953. Crime Investigation. New York: Interscience Publishers Inc. 

Kolpin, Dana W, Edward T Furlong, Michael T Meyer, E Michael Thurman, Steven D Zaugg, Larry 

B Barber, and Herbert T Buxton. 2002. “Pharmaceuticals, Hormones, and Other Organic 

Wastewater Contaminants in U.S. Streams, 1999−2000:  a National Reconnaissance.” 

Environmental Science & Technology 36 (6): 1202–11. doi:10.1021/es011055j. 

Kuster, M, A De la Cal, E Eljarrat, M J López de Alda, and D Barceló. 2010. “Evaluation of Two 

Aquatic Passive Sampling Configurations for Their Suitability in the Analysis of Estrogens in 

Water.” Talanta 83 (2). Elsevier B.V.: 493–99. doi:10.1016/j.talanta.2010.09.033. 

Lai, Foon Yin, Raimondo Bruno, Ho Wing Leung, Phong K Thai, Christoph Ort, Steve Carter, Kristie 

Thompson, Paul K S Lam, and Jochen F Mueller. 2013. “Estimating Daily and Diurnal 

Variations of Illicit Drug Use in Hong Kong: a Pilot Study of Using Wastewater Analysis in an 

Asian Metropolitan City.” Forensic Science International 233 (1-3). Elsevier Ireland Ltd: 126–

32. doi:10.1016/j.forsciint.2013.09.003. 

Langenburg, Glenn, Christophe Champod, and Thibault Genessay. 2012. “Informing the Judgments 

of Fingerprint Analysts Using Quality Metric and Statistical Assessment Tools.” Forensic 

Science International 219 (1-3). Elsevier Ireland Ltd: 183–98. 

doi:10.1016/j.forsciint.2011.12.017. 

Langworthy, Robert H, and Eric S Jefferis. 1999. “The Utility of Standard Deviation Ellipses for 

Evaluating Hot Spots.” In Analyzing Crime Patterns Frontiers of Practice, edited by Victor 



 218 

Goldsmith, Philip G McGuire, John H Mollenkopf, and Timothy A Ross, 87–99. 

Larki, Arash, Mehdi Rahimi Nasrabadi, and Nahid Pourreza. 2015. “UV-Vis Spectrophotometric 

Determination of Trinitrotoluene (TNT) with Trioctylmethylammonium Chloride as Ion Pair 

Assisted and Disperser Agent After Dispersive Liquid–Liquid Microextraction.” Forensic 

Science International 251 (June). Elsevier Ireland Ltd: 77–82. 

doi:10.1016/j.forsciint.2015.03.019. 

Legler, L. 1885. “Ueber Producte Der Langsamen Verbrennung Des Aethyläthers..” Berichte Der 

Deutschen Chemischen Gesellschaft 18 (March): 3343–45. 

Lehto, Niklas J, William Davison, Hao Zhang, and Wlodek Tych. 2006. “Analysis of Micro-Nutrient 

Behaviour in the Rhizosphere Using a DGT Parameterised Dynamic Plant Uptake Model.” Plant 

and Soil 282 (1-2): 227–38. doi:10.1007/s11104-005-5848-6. 

Lettieri, Teresa. 2015. “Development of the First Watch List Under the Environmental Quality 

Standards Directive,” March, 1–168. doi:10.2788/101376. 

Letzel, S. 2003. “Exposure to Nitroaromatic Explosives and Health Effects During Disposal of 

Military Waste.” Occupational and Environmental Medicine 60 (7): 483–88. 

doi:10.1136/oem.60.7.483. 

Levine, Ned. 2004. “CrimeStat III (Version 3.0): a Spatial Statistics Program for the Analysis of 

Crime Incident Locations.” Washington D.C. : The National Institute of Justice. 

Lissalde, Sophie, Adeline Charriau, Gaëlle Poulier, Nicolas Mazzella, Rémy Buzier, and Gilles 

Guibaud. 2016. “Overview of the Chemcatcher® for the Passive Sampling of Various Pollutants 

in Aquatic Environments Part B_ Field Handling and Environmental Applications for the 

Monitoring of Pollutants and Their Biological Effects.” Talanta 148 (C). Elsevier: 572–82. 

doi:10.1016/j.talanta.2015.06.076. 

Liu, Dan, Jia-Heng Lei, Li-Ping Guo, Deyu Qu, Yu Li, and Bao-Lian Su. 2012. “One-Pot Aqueous 

Route to Synthesize Highly Ordered Cubic and Hexagonal Mesoporous Carbons From 

Resorcinol and Hexamine.” Carbon 50 (2): 476–87. doi:10.1016/j.carbon.2011.09.002. 

Loos, Robert, Bernd Manfred Gawlik, Giovanni Locoro, Erika Rimaviciute, Serafino Contini, and 

Giovanni Bidoglio. 2009. “EU-Wide Survey of Polar Organic Persistent Pollutants in European 



 219 

River Waters.” Environmental Pollution 157 (2). Elsevier Ltd: 561–68. 

doi:10.1016/j.envpol.2008.09.020. 

Loos, Robert, Giovanni Locoro, and Serafino Contini. 2010. “Occurrence of Polar Organic 

Contaminants in the Dissolved Water Phase of the Danube River and Its Major Tributaries Using 

SPE-LC-MS2 Analysis.” Water Research 44 (7). Elsevier Ltd: 2325–35. 

doi:10.1016/j.watres.2009.12.035. 

Lubczyk, Daniel, Carsten Siering, Jürgen Lörgen, Zinaida B Shifrina, Klaus Müllen, and Siegfried R 

Waldvogel. 2010. “Simple and Sensitive Online Detection of Triacetone Triperoxide Explosive.” 

Sensors and Actuators B: Chemical 143 (2): 561–66. doi:10.1016/j.snb.2009.09.061. 

Machatha, Stephen G, and Samuel H Yalkowsky. 2005. “Comparison of the Octanol/Water Partition 

Coefficients Calculated by ClogP®, ACDlogP and KowWin® to Experimentally Determined 

Values.” International Journal of Pharmaceutics 294 (1-2): 185–92. 

doi:10.1016/j.ijpharm.2005.01.023. 

MacLeod, Sherri L, Evelyn McClure, and Charles S Wong. 2007. “Laboratory Calibration and Field 

Deployment of the Polar Organic Chemical Integrative Sampler for Pharmaceuticals and Personal 

Care Products in Wastewater and Surface Water.” Environmental Toxicology and Chemistry 26 

(November): 2517–29. 

Marsh, Christine M, Robert F Mothershead II, and Mark L Miller. 2015. “Post-Blast Analysis of 

Hexamethylene Triperoxide Diamine Using Liquid Chromatography-Atmospheric Pressure 

Chemical Ionization-Mass Spectrometry.” Science & Justice 55 (5). Elsevier B.V.: 299–306. 

doi:10.1016/j.scijus.2015.05.006. 

Martire, Kristy A, Richard I Kemp, Ian Watkins, Malindi A Sayle, and Ben R Newell. 2013. “The 

Expression and Interpretation of Uncertain Forensic Science Evidence: Verbal Equivalence, 

Evidence Strength, and the Weak Evidence Effect..” Law and Human Behavior 37 (3): 197–207. 

doi:10.1037/lhb0000027. 

Mathis, John A, and Bruce R McCord. 2005. “The Analysis of High Explosives by Liquid 

Chromatography/Electrospray Ionization Mass Spectrometry: Multiplexed Detection of Negative 

Ion Adducts.” Rapid Communications in Mass Spectrometry 19 (2): 99–104. 



 220 

doi:10.1002/rcm.1752. 

McEwen, J Thomas, and Faye S Taxman. 1995. “Applications of Computer Mapping to Police 

Operations,” May, 259–84. 

McLafferty, Sara, Doug Williamson, and Philip G McGuire. 1999. “Identifying Crime Hot Spots 

Using Kernel Smoothing.” In Analyzing Crime Patterns Frontiers of Practice, 77–87. Sage. 

Metcalfe, Chris, Kathryn Tindale, Hongxia Li, Angela Rodayan, and Viviane Yargeau. 2020. “Illicit 

Drugs in Canadian Municipal Wastewater and Estimates of Community Drug Use.” 

Environmental Pollution 158 (10). Elsevier Ltd: 3179–85. doi:10.1016/j.envpol.2010.07.002. 

MI5 Security Service. 2016. “Gathering Intelligence.” Mi5. https://www.mi5.gov.uk/gathering-

intelligence. 

Mnookin, Jennifer L, Simon A Cole, Itiel E Dror, Barry A J Fisher, Max M Houck, Keith Inman, 

David H Kaye, et al. 2011. “The Need for a Research Culture in the Forensic Sciences.” UCLA 

Law Review 58 (February): 725–78. 

Mohler, G O, M B Short, P J Brantingham, F P Schoenberg, and G E Tita. 2011. “Self-Exciting Point 

Process Modeling of Crime.” Journal of the American Statistical Association 106 (493): 100–

108. doi:10.1198/jasa.2011.ap09546. 

Mohler, George. 2014. “Marked Point Process Hotspot Maps for Homicide and Gun Crime Prediction 

in Chicago.” International Journal of Forecasting 30 (3). Elsevier B.V.: 491–97. 

doi:10.1016/j.ijforecast.2014.01.004. 

Monteil-Rivera, Fanny, Chantale Beaulieu, Stéphane Deschamps, Louise Paquet, and Jalal Hawari. 

2004. “Determination of Explosives in Environmental Water Samples by Solid-Phase 

Microextraction–Liquid Chromatography.” Journal of Chromatography A 1048 (2): 213–21. 

doi:10.1016/j.chroma.2004.07.054. 

Morgan, R M, and P A Bull. 2007. “The Use of Grain Size Distribution Analysis of Sediments 

Andsoils in Forensic Enquiry.” Science & Justice 47 (3): 125–35. 

doi:10.1016/j.scijus.2007.02.001. 

Morgan, R M, E Allen, T King, and P A Bull. 2014. “The Spatial and Temporal Distribution of Pollen 

in a Room: Forensic Implications.” Science & Justice 54 (1): 49–56. 



 221 

doi:10.1016/j.scijus.2013.03.005. 

Morgan, R M, J C French, L O'Donnell, and P A Bull. 2010. “The Reincorporation and Redistribution 

of Trace Geoforensic Particulates on Clothing: an Introductory Study.” Science & Justice 50 (4). 

Forensic Science Society: 195–99. doi:10.1016/j.scijus.2010.04.002. 

Morgan, R M, J Cohen, I McGookin, J Murly-Gotto, R O'Connor, S Muress, J Freudiger-Bonzon, and 

P A Bull. 2009. “The Relevance of the Evolution of Experimental Studies for the Interpretation 

and Evaluation of Some Trace Physical Evidence.” Science & Justice 49 (4). Forensic Science 

Society: 277–85. doi:10.1016/j.scijus.2009.02.004. 

Morgan, Ruth, and Peter Bull. 2007. “Forensic Geoscience and Crime Detection.” Minerva 

Medicolegale 127 (June): 73–89. 

Morin, Nicolas, Cécile Miège, Marina Coquery, and Jérôme Randon. 2012. “Chemical Calibration, 

Performance, Validation and Applications of the Polar Organic Chemical Integrative Sampler 

(POCIS) in Aquatic Environments.” Trends in Analytical Chemistry 36 (C). Elsevier Ltd: 144–

75. doi:10.1016/j.trac.2012.01.007. 

Mosher, David. 2016. “The Homemade Explosive Used by the Brussels Suicide Bombers Is a 

Chemical Nightmare.” Www.Techinsider.Io. March 23. http://www.techinsider.io/brussels-attack-

tatp-chemical-bombs-2016-3. 

Mudge, S M. 2008. “Environmental Forensics and the Importance of Source Identification.” Edited by 

R E Hester and R M Harrison. Environmental Forensics. 

Na, Na, Chao Zhang, Mengxia Zhao, Sichun Zhang, Chengdui Yang, Xiang Fang, and Xinrong 

Zhang. 2007. “Direct Detection of Explosives on Solid Surfaces by Mass Spectrometry with an 

Ambient Ion Source Based on Dielectric Barrier Discharge.” Journal of Mass Spectrometry 42 

(8): 1079–85. doi:10.1002/jms.1243. 

Nakagawa, Yoshiaki, Keiichi Izumi, Nobuhiro Oikawa, Tomoko Sotomatsu, Masao Shigemura, and 

Toshio Fujita. 1992. “Analysis and Prediction of Hydrophobicity Parameters of Substituted 

Acetanilides, Benzamides and Related Aromatic Compounds.” Environmental Toxicology and 

Chemistry 11 (7). Wiley Periodicals, Inc.: 901–16. doi:10.1002/etc.5620110704. 

National Academy of Science. 2009. “Strengthening Forensic Science in the United States: a Path 



 222 

Forward. Committee on Identifying the Needs of the Forensic Sciences Community, National 

Research Council.” U.S. Department of Justice. 

Nelson, Amanda I, Rosemary D F Bromley, and Colin J Thomas. 1996. “The Geography of 

Shoplifting in a British City: Evidence From Cardiff .” Geoforum 27 (February): 409–23. 

Neumann, Cedric, and Pierre Margot. 2009. “New Perspectives in the Use of Ink Evidence in 

Forensic Science.” Forensic Science International 192 (1-3): 29–42. 

doi:10.1016/j.forsciint.2009.07.013. 

Nipper, Marion, Yaorong Qian, R Scott Carr, and Karen Miller. 2004. “Degradation of Picric Acid 

and 2,6-DNT in Marine Sediments and Waters: the Role of Microbial Activity and Ultra-Violet 

Exposure.” Chemosphere 56 (6): 519–30. doi:10.1016/j.chemosphere.2004.04.039. 

Ochsenbein, Ueli, Markus Zeh, and Jean-Daniel Berset. 2008. “Comparing Solid Phase Extraction 

and Direct Injection for the Analysis of Ultra-Trace Levels of Relevant Explosives in Lake Water 

and Tributaries Using Liquid Chromatography–Electrospray Tandem Mass Spectrometry.” 

Chemosphere 72 (6): 974–80. doi:10.1016/j.chemosphere.2008.03.004. 

Ort, Christoph, Michael G Lawrence, Julien Reungoat, and Jochen F Mueller. 2010. “Sampling for 

PPCPs in Wastewater Systems: Comparison of Different Sampling Modes and Optimization 

Strategies.” Environmental Science & Technology 44 (16): 6289–96. doi:10.1021/es100778d. 

Osterburg, James W, and Richard H Ward. 2010. Criminal Investigation. Edited by Ellen S Boyne. 6 

ed. Elsevier. 

Oxley, Jimmie C, James L Smith, and Heng Chen. 2002. “Decomposition of a Multi-Peroxidic 

Compound: Triacetone Triperoxide (TATP).” Propellants, Explosives, Pyrotechnics 27 (4): 209–

16. 

Oxley, Jimmie C, James L Smith, Joseph E Brady, and Austin C Brown. 2012. “Characterization and 

Analysis of Tetranitrate Esters.” Propellants, Explosives, Pyrotechnics 37 (1). WILEY‐ VCH 

Verlag: 24–39. doi:10.1002/prep.201100059. 

Oxley, Jimmie C, James L Smith, Kajal Shinde, and Jesse Moran. 2005. “Determination of the Vapor 

Density of Triacetone Triperoxide (TATP) Using a Gas Chromatography Headspace Technique.” 

Propellants, Explosives, Pyrotechnics 30 (2): 127–30. doi:10.1002/prep.200400094. 



 223 

Oxley, Jimmie C, James L Smith, Wei Luo, and Joseph E Brady. 2009. “Determining the Vapor 

Pressures of Diacetone Diperoxide (DADP) and Hexamethylene Triperoxide Diamine (HMTD).” 

Propellants, Explosives, Pyrotechnics 34 (6): 539–43. 

Östmark, Henric, Sara Wallin, and How Ghee Ang. 2012. “Vapor Pressure of Explosives: a Critical 

Review.” Propellants, Explosives, Pyrotechnics 37 (1): 12–23. doi:10.1002/prep.201100083. 

Pachman, Jiri, and Robert Matyáš. 2011a. “Study of TATP: Stability of TATP Solutions.” Forensic 

Science International 207 (1-3). Elsevier Ireland Ltd: 212–14. 

doi:10.1016/j.forsciint.2010.10.010. 

Pachman, Jiri, and Robert Matyáš. 2011b. “Study of TATP: Stability of TATP Solutions.” Forensic 

Science International 207 (1-3). Elsevier Ireland Ltd: 212–14. 

doi:10.1016/j.forsciint.2010.10.010. 

Page, Mark, Jane Taylor, and Matt Blenkin. 2011. “Uniqueness in the Forensic Identification 

Sciencesâ€”Fact or Fiction?.” Forensic Science International 206 (1-3). Elsevier Ireland Ltd: 12–

18. doi:10.1016/j.forsciint.2010.08.004. 

Pan, Xiaoping, Baohong Zhang, Stephen B Cox, Todd A Anderson, and George P Cobb. 2006. 

“Determination of N-Nitroso Derivatives of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) in 

Soils by Pressurized Liquid Extraction and Liquid Chromatography–Electrospray Ionization 

Mass Spectrometry.” Journal of Chromatography A 1107 (1-2): 2–8. 

doi:10.1016/j.chroma.2005.12.025. 

Paschke, Albrecht, Katrin Schwab, Janine Brümmer, Gerrit Schüürmann, Heidrun Paschke, and Peter 

Popp. 2006. “Rapid Semi-Continuous Calibration and Field Test of Membrane-Enclosed Silicone 

Collector as Passive Water Sampler.” Journal of Chromatography A 1124 (1-2): 187–95. 

doi:10.1016/j.chroma.2006.06.094. 

Pichelin, F, C Kamoun, and A Pizzi. 1999. “Hexamine Hardener Behaviour: Effects on Wood 

Glueing, Tannin and Other Wood Adhesives.” Holz Als Roh-Und Werkstoff 57 (5). Springer-

Verlag: 305–17. doi:10.1007/s001070050349. 

Popper, K. 1963. “Conjectures and Refutations.” Readings in the Philosophy of Science, 33–39. 

Postigo, Cristina, María José López de Alda, and Damià Barceló. 2010. “Drugs of Abuse and Their 



 224 

Metabolites in the Ebro River Basin: Occurrence in Sewage and Surface Water, Sewage 

Treatment Plants Removal Efficiency, and Collective Drug Usage Estimation.” Environment 

International 36 (1). Elsevier Ltd: 75–84. doi:10.1016/j.envint.2009.10.004. 

Ratcliffe, Jerry. 2010. “Crime Mapping: Spatial and Temporal Challenges.” In Handbook of 

Quantitative Criminology, edited by Alex R Piquero and David Weisburd, 5–24. 

Ratcliffe, Jerry, and M J McCullagh. 1999. “Hotbeds of Crime and the Search for Spatial Accuracy.” 

Journal of Geographical Systems 1 (September): 385–98. 

Raymond, Jennifer J, Roland A H van Oorschot, Peter R Gunn, Simon J Walsh, and Claude Roux. 

2009. “Trace Evidence Characteristics of DNA: a Preliminary Investigation of the Persistence of 

DNA at Crime Scenes.” Forensic Science International: Genetics 4 (1): 26–33. 

doi:10.1016/j.fsigen.2009.04.002. 

Ribaux, Olivier, Amélie Baylon, Claude Roux, Olivier Delémont, Eric Lock, Christian Zingg, and 

Pierre Margot. 2010. “Intelligence-Led Crime Scene Processing. Part I: Forensic Intelligence.” 

Forensic Science International 195 (1-3): 10–16. doi:10.1016/j.forsciint.2009.10.027. 

Richardson, Susan D. 2007. “Water Analysis:  Emerging Contaminants and Current Issues.” 

Analytical Chemistry 79 (12): 4295–4324. doi:10.1021/ac070719q. 

Rodgers, James D, and Nigel J Bunce. 2001. “Treatment Methods for the Remediation of 

Nitroaromatic Explosives.” Water Research 35 (April): 2101–11. 

Rossy, Quentin, and Olivier Ribaux. 2013. “A Collaborative Approach for Incorporating Forensic 

Case Data Into Crime Investigation Using Criminal Intelligence Analysis and Visualisation.” 

Science & Justice, September. Forensic Science Society, 1–8. doi:10.1016/j.scijus.2013.09.004. 

Rowell, Frederick, John Seviour, Angelina Yimei Lim, Cheryl Grace Elumbaring-Salazar, Jason 

Loke, and Jan Ma. 2012. “Detection of Nitro-Organic and Peroxide Explosives in Latent 

Fingermarks by DART- and SALDI-TOF-Mass Spectrometry.” Forensic Science International 

221 (1-3): 84–91. doi:10.1016/j.forsciint.2012.04.007. 

Rudram, D A. 1996. “Interpretation of Scientific Evidence.” Science & Justice 36 (3): 133–38. 

doi:10.1016/S1355-0306(96)72587-X. 

Saks, M J. 2005. “The Coming Paradigm Shift in Forensic Identification Science.” Science 309 



 225 

(5736): 892–95. doi:10.1126/science.1111565. 

Saks, Michael J. 2010. “Forensic Identification: From a Faith-Based Â€œScienceâ€� to a Scientific 

Science.” Forensic Science International 201 (1-3). Elsevier Ireland Ltd: 14–17. 

doi:10.1016/j.forsciint.2010.03.014. 

Saks, Michael J, and Jonathan J Koehler. 2008. “The Individualization Fallacy in Forensic Science 

Evidence.” Vanderbilt Law Review 61 (1): 199–218. 

Schmidt, A C, B Niehus, F M Matysik, and W Engewald. 2006. “Identification and Quantification of 

Polar Nitroaromatic Compounds in Explosive-Contaminated Waters by Means of HPLC-ESI-

MS-MS and HPLC-UV.” Chromatographia 63 (1-2): 1–11. doi:10.1365/s10337-005-0703-8. 

Schramm, Sébastien, Daniel Léonço, Cécile Hubert, Jean-Claude Tabet, and Maxime Bridoux. 2015. 

“Development and Validation of an Isotope Dilution Ultra-High Performance Liquid 

Chromatography Tandem Mass Spectrometry Method for the Reliable Quantification of 1,3,5-

Triamino-2,4,6-Trinitrobenzene (TATB) and 14 Other Explosives and Their Degradation 

Products in Environmental Water Samples.” Talanta 143 (C). Elsevier: 271–78. 

doi:10.1016/j.talanta.2015.04.063. 

Schramm, Sébastien, Dominique Vailhen, and Maxime Cyril Bridoux. 2016. “Use of Experimental 

Design in the Investigation of Stir Bar Sorptive Extraction Followed by Ultra-High-Performance 

Liquid Chromatography–Tandem Mass Spectrometry for the Analysis of Explosives in Water 

Samples.” Journal of Chromatography A 1433 (February). Elsevier B.V.: 24–33. 

doi:10.1016/j.chroma.2016.01.011. 

Schulte-Ladbeck, Rasmus, Martin Vogel, and Uwe Karst. 2006. “Recent Methods for the 

Determination of Peroxide-Based Explosives.” Analytical and Bioanalytical Chemistry 386 (3): 

559–65. doi:10.1007/s00216-006-0579-y. 

Schwarzenbach, R P. 2006. “The Challenge of Micropollutants in Aquatic Systems.” Science 313 

(5790): 1072–77. doi:10.1126/science.1127291. 

SCORE. 2016. “Sewage Analysis CORe Group Europe.” Edited by Kevin V Thomas and Sara 

Castiglioni. Score. January 31. http://score-cost.eu/. 



 226 

Shea, Dana A, and Daniel Morgan. 2005. “Detection of Explosives on Airline Passengers: 

Recommendations of the 9/11 Commission and Related Issues.” Library of Congress Washington 

DC Congressional Research Service. 

Shi, X, J L Zhou, H Zhao, L Hou, and Y Yang. 2014. “Application of Passive Sampling in Assessing 

the Occurrence and Risk of Antibiotics and Endocrine Disrupting Chemicals in the Yangtze 

Estuary, China.” Chemosphere 111 (C). Elsevier Ltd: 344–51. 

doi:10.1016/j.chemosphere.2014.03.139. 

Sisco, Edward, and Thomas P Forbes. 2015. “Rapid Detection of Sugar Alcohol Precursors and 

Corresponding Nitrate Ester Explosives Using Direct Analysis in Real Time Mass 

Spectrometry.” The Analyst 140 (8). Royal Society of Chemistry: 2785–96. 

doi:10.1039/C4AN02347A. 

Sisco, Edward, Marcela Najarro, Candice Bridge, and Roman Aranda IV. 2015. “Quantifying the 

Degradation of TNT and RDX in a Saline Environment with and Without UV-Exposure.” 

Forensic Science International 251 (June). Elsevier Ireland Ltd: 124–31. 

doi:10.1016/j.forsciint.2015.04.002. 

Smith, Matthew, Greg E Collins, and Joseph Wang. 2003. “Microscale Solid-Phase Extraction System 

for Explosives.” Journal of Chromatography A 991 (2): 159–67. doi:10.1016/S0021-

9673(03)00234-6. 

Song-im, Nopporn, Sarah Benson, and Chris Lennard. 2012a. “Evaluation of Different Sampling 

Media for Their Potential Use as a Combined Swab for the Collection of Both Organic and 

Inorganic Explosive Residues.” Forensic Science International 222 (1-3): 102–10. 

doi:10.1016/j.forsciint.2012.05.006. 

Song-im, Nopporn, Sarah Benson, and Chris Lennard. 2012b. “Establishing a Universal Swabbing 

and Clean-Up Protocol for the Combined Recovery of Organic and Inorganic Explosive 

Residues.” Forensic Science International 223 (1-3): 136–47. 

doi:10.1016/j.forsciint.2012.08.017. 

Söderström, Hanna, Richard H Lindberg, and Jerker Fick. 2009. “Strategies for Monitoring the 

Emerging Polar Organic Contaminants in Water with Emphasis on Integrative Passive 



 227 

Sampling.” Journal of Chromatography A 1216 (3): 623–30. doi:10.1016/j.chroma.2008.08.030. 

Spencer, CHAINEY. 2014. “Examining the Influence of Cell Size and Bandwidth Size on Kernel 

Density Estimation Crime Hotspot Maps for Predicting Spatial Patterns of Crime,” January, 1–

13. 

Spiegel, Katrin, John V Headley, K M Peru, Nazar Haidar, and Narine P Gurprasard. 2005. “Residues 

of Explosives in Groundwater Leached From Soils at a Military Site in Eastern Germany.” 

Communications in Soil Science and Plant Analysis 36 (1-3): 133–53. doi:10.1081/CSS-

200043010. 

Stockdale, Anthony, and Nick D Bryan. 2013. “Application of DGT to High pH Environments: 

Uptake Efficiency of Radionuclides of Different Oxidation States Onto Chelex Binding Gel.” 

Environmental Science: Processes & Impacts 15 (5): 1087–5. doi:10.1039/c3em00088e. 

Tachon, Romain, Valérie Pichon, Martine Barbe Le Borgne, and Jean-Jacques Minet. 2007. “Use of 

Porous Graphitic Carbon for the Analysis of Nitrate Ester, Nitramine and Nitroaromatic 

Explosives and by-Products by Liquid Chromatography–Atmospheric Pressure Chemical 

Ionisation-Mass Spectrometry.” Journal of Chromatography A 1154 (1-2): 174–81. 

doi:10.1016/j.chroma.2007.03.059. 

Tachon, Romain, Valérie Pichon, Martine Barbe Le Borgne, and Jean-Jacques Minet. 2008. 

“Comparison of Solid-Phase Extraction Sorbents for Sample Clean-Up in the Analysis of 

Organic Explosives.” Journal of Chromatography A 1185 (1): 1–8. 

doi:10.1016/j.chroma.2008.01.026. 

Tamiri, Tsippy, Rinat Rozin, Nitay Lemberger, and Joseph Almog. 2009. “Urea Nitrate, an 

Exceptionally Easy-to-Make Improvised Explosive: Studies Towards Trace Characterization.” 

Analytical and Bioanalytical Chemistry 395 (2). Springer-Verlag: 421–28. doi:10.1007/s00216-

009-2882-x. 

Tan, Benjamin L L, Darryl W Hawker, Jochen F Müller, Frédéric D L Leusch, Louis A Tremblay, 

and Heather F Chapman. 2007. “Comprehensive Study of Endocrine Disrupting Compounds 

Using Grab and Passive Sampling at Selected Wastewater Treatment Plants in South East 

Queensland, Australia.” Environment International 33 (5): 654–69. 



 228 

doi:10.1016/j.envint.2007.01.008. 

Taroni, F, A Biedermann, P Garbolino, and C G G Aitken. 2004. “A General Approach to Bayesian 

Networks for the Interpretation of Evidence.” Forensic Science International 139 (1): 5–16. 

doi:10.1016/j.forsciint.2003.08.004. 

Taylor, Paul J. 2005. “Matrix Effects: the Achilles Heel of Quantitative High-Performance Liquid 

Chromatography–Electrospray–Tandem Mass Spectrometry.” Clinical Biochemistry 38 (4): 328–

34. doi:10.1016/j.clinbiochem.2004.11.007. 

Tchobanoglous, G, F L Burton, and H D Stensel. 2004. Wastewater Engineering. 4 ed. New York: 

McGraw-Hill. 

The European Chemicals Agency. 2010. “Service Request on Providing Actual Data on the European 

Market, Uses and Releases/Exposures for 2,4-DNT.” ECHA/2008/2/SR25. ECHA. 

Thomas, Kevin V, Lubertus Bijlsma, Sara Castiglioni, Adrian Covaci, Erik Emke, Roman Grabic, 

Félix Hernández, et al. 2012. “Comparing Illicit Drug Use in 19 European Cities Through 

Sewage Analysis.” Science of the Total Environment, the 432 (C). Elsevier B.V.: 432–39. 

doi:10.1016/j.scitotenv.2012.06.069. 

Thomas, Mary Ann, Thomas L Schumann, and and Bruce A Pletsch. 2005. “Arsenic in Ground Water 

in Selected Parts of Southwestern Ohio, 2002-03.” Scientific Investigations Report, November, 

1–38. 

Thomas, Philip. 2008. “Metals Pollution Tracing in the Sewerage Network Using the Diffusive 

Gradients in Thin Films Technique,” March, 1–9. 

Thornton, J, and D Kimmel-Lake. 2011. “Trace Evidence in Crime Reconstruction.” In Crime 

Reconstruction, edited by W Jerry Chisum and Brent E Turvey, 2nd ed. Crime Reconstruction. 

Townsley, Michael, Shane D Johnson, and Jerry H Ratcliffe. 2008. “Space Time Dynamics of 

Insurgent Activity in Iraq.” Security Journal 21 (3): 139–46. doi:10.1057/palgrave.sj.8350090. 

US EPA, OSWER Federal Facilities Restoration and Reuse Office. 2008. “Munitions and Explosives 

of Concern Hazard Assessment Methodology Interim October 2008,” October, 1–313. 

Van Eeckhaut, Ann, Katrien Lanckmans, Sophie Sarre, Ilse Smolders, and Yvette Michotte. 2009. 

“Validation of Bioanalytical LC–MS/MS Assays: Evaluation of Matrix Effects.” Journal of 



 229 

Chromatography B 877 (23): 2198–2207. doi:10.1016/j.jchromb.2009.01.003. 

van Nuijs, Alexander L N, Isabela Tarcomnicu, Lieven Bervoets, Ronny Blust, Philippe G Jorens, 

Hugo Neels, and Adrian Covaci. 2009. “Analysis of Drugs of Abuse in Wastewater by 

Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry.” Analytical and 

Bioanalytical Chemistry 395 (3): 819–28. doi:10.1007/s00216-009-3017-0. 

van Nuijs, Alexander L N, Sara Castiglioni, Isabela Tarcomnicu, Cristina Postigo, Miren Lopez de 

Alda, Hugo Neels, Zuccato, Damia Barcelo, and Adrian Covaci. 2011. “Illicit Drug Consumption 

Estimations Derived From Wastewater Analysis: a Critical Review.” Science of the Total 

Environment 409 (19): 3564–77. doi:10.1016/j.scitotenv.2010.05.030. 

Varela, Ana Rita, Sandra André, Olga C Nunes, and Célia M Manaia. 2014. “Insights Into the 

Relationship Between Antimicrobial Residues and Bacterial Populations in&Nbsp;a Hospital-

Urban Wastewater Treatment Plant System.” Water Research 54 (c). Elsevier Ltd: 327–36. 

doi:10.1016/j.watres.2014.02.003. 

Vrana, Branislav, Graham A Mills, Ewa Dominiak, and Richard Greenwood. 2006. “Calibration of 

the Chemcatcher Passive Sampler for the Monitoring of Priority Organic Pollutants in Water.” 

Environmental Pollution 142 (2): 333–43. doi:10.1016/j.envpol.2005.10.033. 

Walker C, Cullum H Hiley R. 2014. “An Environmental Survey Relating to Improvised and 

Emulsion/Gel Explosives,” March, 1–14. 

Walls, H J. 1968. “Forensic Science.” London. 

Walsh, Marianne E. 2001. “Determination of Nitroaromatic, Nitramine, and Nitrate Ester Explosives 

in Soil by Gas Chromatography and an Electron Capture Detector.” Talanta 54 (April): 427–38. 

Warren, D, R W Hiley, S A Phillips, and K Ritchie. 1999. “Novel Technique for the Combined 

Recovery, Extraction and Clean-Up of Forensic Organic and Inorganic Trace Explosives 

Samples..” Science & Justice 39 (1). Elsevier: 11–18. doi:10.1016/S1355-0306(99)72009-5. 

Widmer, Leo, Stuart Watson, Konrad Schlatter, and Andrew Crowson. 2002. “Development of an 

LC/MS Method for the Trace Analysis of Triacetone Triperoxide (TATP).” The Analyst 127 (12): 

1627–32. doi:10.1039/B208350G. 

Wrapp-Right, Helena, Gillian McEneff, Bronagh Murphey, Sally Gamble, Ruth Morgan, Matthew S 



 230 

Beardah, and Leon Barron. n.d. “Suspect Screening and Quantification of Trace Organic 

Explosives in Wastewater Using Solid Phase Extraction and Liquid Chromatography-High 

Resolution Accurate Mass Spectrometry.” Journal of Hazardous Materials. 

Xu, Xiaoma, Anick M van de Craats, Eric M Kok, and Peter C A M de Bruyn. 2004. “Trace Analysis 

of Peroxide Explosives by High Performance Liquid Chromatography-Atmospheric Pressure 

Chemical Ionization-Tandem Mass Spectrometry (HPLC-APCI-MS/MS) for Forensic 

Applications.” Journal of Forensic Sciences 49 (July): 1–7. 

Xu, Xiaoma, Mattijs Koeberg, Chris-Jan Kuijpers, and Eric Kok. 2014. “Development and Validation 

of Highly Selective Screening and Confirmatory Methods for the Qualitative Forensic Analysis 

of Organic Explosive Compounds with High Performance Liquid Chromatography Coupled with 

(Photodiode Array and) LTQ Ion Trap/Orbitrap Mass Spectrometric Detections (HPLC-(PDA)-

LTQOrbitrap).” Science & Justice 54 (1). Forensic Science Society: 3–21. 

doi:10.1016/j.scijus.2013.08.003. 

Yang, Jihoon, Byungun Yoo, and Joonhong Park. 2015. “Improved RDX Detoxification with Starch 

Addition Using a Novel Nitrogen-Fixing Aerobic Microbial Consortium From Soil Contaminated 

with Explosives.” Journal of Hazardous Materials 287 (April). Elsevier B.V.: 243–51. 

doi:10.1016/j.jhazmat.2015.01.058. 

Yargeau, Viviane, Bryanne Taylor, Hongxia Li, Angela Rodayan, and Chris D Metcalfe. 2013. 

“Analysis of Drugs of Abuse in Wastewater From Two Canadian Cities.” Science of the Total 

Environment, the, December. Elsevier B.V., 1–9. doi:10.1016/j.scitotenv.2013.11.094. 

Yinon, Jehuda. 1996. “Trace Analysis of Explosives in Water by Gas Chromatography-Mass 

Spectrometry with a Temperature-Programmed Injector.” Journal of Chromatography A, no. 742 

(February): 205–9. 

Zabiegała, Bożena, Agata Kot-Wasik, Magdalena Urbanowicz, and Jacek Namieśnik. 2009. “Passive 

Sampling as a Tool for Obtaining Reliable Analytical Information in Environmental Quality 

Monitoring.” Analytical and Bioanalytical Chemistry 396 (1): 273–96. doi:10.1007/s00216-009-

3244-4. 

Zhao, Xiaoming, and Jehuda Yinon. 2002. “Identification of Nitrate Ester Explosives by Liquid 



 231 

Chromatography– Electrospray Ionization and Atmospheric Pressure Chemical Ionization Mass 

Spectrometry.” Journal of Chromatography A, no. 977 (October): 59–68. 

Zuccato, Sara Castiglioni, Renzo Bagnati, Chiara Chiabrando, Paola Grassi, and Roberto Fanelli. 

2008. “Illicit Drugs, a Novel Group of Environmental Contaminants.” Water Research 42 (4-5): 

961–68. doi:10.1016/j.watres.2007.09.010. 

 

 

 



 232 

Appendix A: List of publications 

Gamble, S.C., Campos, L. C., Morgan, R. M. (2016) Detection of trace peroxide explosives in 

environmental samples using solid phase extraction and liquid chromatography mass spectrometry, 

Environmental Forensics (In press)  

Wrapp-Right, H. McEneff, G., Murphey, B., Gamble, S. C., Morgan, R., Beardah, M., Barron, L. 

(2016) Suspect screening and quantification of trace organic explosives in wastewater using solid 

phase extraction and liquid chromatography-high resolution accurate mass spectrometry, Journal of 

Hazardous Materials (In press)  

Gamble, S. C., Earwaker, H., Nakhaeizadeh, S., Smit, N.M., Wilks B., Morgan, R.M., (2016) 

Perceptions of evidential weight surrounding forensic evidence, Science and Justice (In submission) 

Gamble, S.C., McEneff, G., Campos, L. C., Barron, L., Morgan, R., (2016), Explosives in the 

environment: opportunities in analysis for forensic applications, Environmental Science and 

Technology (In preparation)  

 

 

 



 233 

Appendix B: Data from SPE and LC-MS analyses 

Table 1/4 showing raw data from the extraction and analysis of explosives in negative mode from Thames Water and MPS samples.  

RT= Retention time, PA= Peak area, PH= Peak height 

 

 

  R-SALT HMX EGDN RDX 

SAMPLE Volume mL Rt PA PH Rt PA PH Rt PA PH Rt PA PH 

TW 1 50 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 2 150 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 3 200 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 4A 250 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 4B  240 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 5 165 ND ND ND ND ND ND ND ND ND ND ND ND 

SINK 1 150 ND ND ND ND ND ND ND ND ND 6.10 1488 468 

SINK 2 150 ND ND ND ND ND ND ND ND ND ND ND ND 

SINK 3 100 ND ND ND 4.78 1565122 198091 ND ND ND 6.12 5338613 630279 

SINK 4 100 ND ND ND 4.96 2474 662 ND ND ND 6.15 21705 3669 

SINK 5 100 ND ND ND ND ND ND ND ND ND 6.10 1795 473 

              

SPIKED PES 1 ppm ND ND ND ND ND ND ND ND ND 6.08 2366 538 

STD MIX 1 ppm 3.59 4885157 493315 4.70 7898045 493315 ND ND ND 6.04 6353535 633129 
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Table 2/4 showing raw data from the extraction and analysis of explosives in negative mode from Thames Water and MPS samples.  

RT= Retention time, PA= Peak area, PH= Peak height 

  NB NG 3,4-DNT 2-NT 

SAMPLE Volume 

mL 

Rt PA PH Rt PA PH Rt PA PH Rt PA PH 

TW 1 50 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 2 150 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 3 200 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 4A 250 ND ND ND ND ND ND 11.32 760 201 ND ND ND 

TW 4B  240 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 5 165 ND ND ND ND ND ND ND ND ND 11.15 10657 888 

SINK 1 150 ND ND ND ND ND ND ND ND ND ND ND ND 

SINK 2 150 ND ND ND ND ND ND ND ND ND ND ND ND 

SINK 3 100 ND ND ND ND ND ND 11.54 1971 520 10.89 444 194 

SINK 4 100 ND ND ND ND ND ND 11.41 1691 439 ND ND ND 

SINK 5 100 ND ND ND ND ND ND 10.38 5090 1162 ND ND ND 

SPIKED PES 1 ppm ND ND ND ND ND ND 11.34 5152 954 ND ND ND 

STD MIX 1 ppm ND ND ND 9.38 10550 1640 10.71 36395891 4663764 11.11 630655 86040 
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Table 3/4 showing raw data from the extraction and analysis of explosives in negative mode from Thames Water and MPS samples.  

RT= Retention time, PA= Peak area, PH= Peak height 

  4-NT 3-NT 2,6-DNT 2,4-DNT 

SAMPLE Volume 

mL 

Rt PA PH Rt PA PH Rt PA PH Rt PA PH 

TW 1 50 ND ND ND ND ND ND 11.55 1429 340 11.60 1226 245 

TW 2 150 ND ND ND ND ND ND 11.57 1865 406 11.56 821 213 

TW 3 200 ND ND ND ND ND ND 11.50 1268 324 11.49 2730 458 

TW 4A 250 ND ND ND ND ND ND ND ND ND 11.54 2105 453 

TW 4B  240 ND ND ND ND ND ND 11.58 5380 881 11.58 6677 1223 

TW 5 165 11.15 10657 888 ND ND ND 11.52 2865 662 11.51 5160 767 

SINK 1 150 ND ND ND ND ND ND ND ND ND 11.62 8533 1636 

SINK 2 150 ND ND ND 19.46 322 81 11.56 13346 2442 11.69 7366 1255 

SINK 3 100 11.10 2810 569 16.49 366 99 ND ND ND 11.63 36525 5286 

SINK 4 100 ND ND ND 12.23 235 61 ND ND ND 11.57 7505 1058 

SINK 5 100 ND ND ND 12.59 302 81 11.63 35193 4949 11.54 37814 5115 

SPIKED PES 1 ppm ND ND ND 18.63 266 67 11.48 8315 1229 11.46 12088 1978 

STD MIX 1 ppm 11.11 630655 86040 13.84 279 74 11.69 45609837 5069905 11.83 29302425 3266051 
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Table 4/4 showing raw data from the extraction and analysis of explosives in negative mode from Thames Water and MPS samples.  

RT= Retention time, PA= Peak area, PH= Peak height 

  ETN TETRYL TNT PETN 

SAMPLE Volume mL Rt PA PH Rt PA PH Rt PA PH Rt PA PH 

TW 1 50 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 2 150 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 3 200 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 4A 250 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 4B  240 ND ND ND ND ND ND ND ND ND ND ND ND 

TW 5 165 ND ND ND ND ND ND ND ND ND ND ND ND 

SINK 1 150 ND ND ND ND ND ND 12.72 1551 450 ND ND ND 

SINK 2 150 ND ND ND ND ND ND 12.79 6461 1304 ND ND ND 

SINK 3 100 19.47 306 76 12.16 316694 48239 12.69 1932117 288728 12.77 10865094 1794972 

SINK 4 100 ND ND ND ND ND ND 12.71 1442 373 12.72 64020 11110 

SINK 5 100 ND ND ND ND ND ND 12.47 33016 5164 12.48 17447 3486 

SPIKED PES 1 ppm 6.45 299 81 10.42 333 88 12.54 3096 715 12.62 1457 351 

STD MIX 1 ppm 12.27 950 157 12.49 6957127 903821 12.98 29929522 3919821 13.16 109511 16206 
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Table showing raw data from the extraction and analysis of explosives in positive mode from Thames Water samples.  

RT= Retention time, PA= Peak area, PH= Peak height 

  HMTD  TATP 

SAMPLE Volume mL RT PA PH RT PA PH 

TW 1 50 ND ND ND ND ND ND 

TW1 50 ND ND ND ND ND ND 

TW 2 150 ND ND ND ND ND ND 

TW 2 150 ND ND ND ND ND ND 

TW 3 200 3.11 840 261 3.25 3960120 521918 

TW 3 200 2.30 1185 366 3.18 3652511 522435 

TW 4A 250 ND ND ND 3.25 67340 9929 

TW 4A 250 2.36 1481 469 3.15 40263 7272 

TW 4B  240 ND ND ND 3.17 71166 11246 

TW 4B  240 ND ND ND 3.28 80995 11760 

TW 5 165 ND ND ND 3.25 1.85E+08 1.68E+07 

TW 5 165 ND ND ND 3.18 2.30E+08 1.72E+07 

STD MIX 100 PPB na 2.84 424609 42496 6.89 1324389 143193 

STD MIX 100 PPB na 2.85 435243 44218.00 6.87 1458546.00 143996 
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Table showing the average peak areas, matrix effects and extraction efficiencies for the stability study samples.  

TATP Average PA 

 

TATP % matrix effects 

 

TATP % extraction efficiencies 

Hours Still Stir DIW 

 

Hours Still Stir UPW 

 

Hours Still Stir UPW 

0 1370767 1287951 1323877 

 

0 78.86 74.10 68.46 

 

0 69.69 65.48 67.31 

6 1376427 1289457 1263281 

 

6 79.19 74.18 65.32 

 

6 69.98 65.56 64.22 

24 1397872 1349846 1263761 

 

24 80.42 77.66 65.35 

 

24 71.07 68.63 64.25 

48 1248057 1288613 1240377 

 

48 71.80 74.13 64.14 

 

48 63.45 65.51 63.06 

168 1120499 1192947 897039 

 

168 64.46 68.63 46.39 

 

168 56.97 60.65 45.61 

              HMTD Average PA 

 

HMTD % matrix effects 

 

HMTD % extraction efficiencies 

Hours Stir Still UPW 

 

Hours Stir Still UPW 

 

Hours Still Stir UPW 

0 40718 63834 80613 

 

0 12.04 18.87 21.59 

 

0 8.72 13.67 17.26 

6 21679 56710 30527 

 

6 6.41 16.77 8.17 

 

6 4.64 12.14 6.54 

24 0 4067 10631 

 

24 0.00 1.20 2.85 

 

24 0.00 0.87 2.28 

48 0 962 9649 

 

48 0.00 0.28 2.58 

 

48 0.00 0.21 2.07 

168 0 10890 438 

 

168 0.00 3.22 0.12 

 

168 0.00 2.33 0.09 
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Table showing the average peak areas for the analytes detected on the Chemcatcher
®
 PES membrane and on the HLB sorbent receiving phase.  

  

ANALYTE PES 1 PES 2 PES 3 PES 4 ANALYTE HLB 1 HLB 2 HLB 3 HLB 4 

2,6-DNT 9.54E+08 2.53E+08 1.10E+09 8.38E+08 2,6-DNT 2.87E+07 9.87E+07 1.64E+08 4.27E+08 

2,4-DNT 5.28E+08 1.40E+08 5.55E+08 3.90E+08 2,4-DNT 1.06E+07 4.18E+07 7.30E+07 1.82E+08 

4-A-2,6-DNT 3.99E+08 1.02E+08 6.25E+08 4.53E+08 4-A-2,6-DNT 1.30E+07 4.82E+07 7.99E+07 2.14E+08 

2-A-4,6-DNT 2.04E+08 5.32E+07 3.21E+08 2.29E+08 2-A-4,6-DNT 7.03E+06 2.44E+07 4.16E+07 1.10E+08 

1,3-DNB 4.26E+08 1.01E+08 2.27E+08 1.42E+08 1,3-DNB 2.28E+07 7.64E+07 1.09E+08 2.23E+08 

1,3,5-TNB 1.67E+08 2.08E+07 1.17E+08 4.95E+07 1,3,5-TNB 1.41E+07 3.37E+07 2.62E+07 4.68E+07 

TNT 2.66E+08 6.02E+07 2.92E+08 1.59E+08 TNT 1.92E+07 6.12E+07 6.21E+07 1.60E+08 

HMX 7.53E+06 2.70E+06 5.47E+06 4.74E+06 HMX 3.98E+06 1.47E+07 1.97E+07 4.64E+07 

RDX 1.04E+07 3.26E+06 1.30E+07 8.94E+06 RDX 3.94E+06 1.50E+07 1.89E+07 4.50E+07 

NB 1.84E+05 5.72E+04 1.42E+05 9.77E+04 NB 3.04E+04 7.08E+04 1.04E+05 1.92E+05 

2-NT OR 4-NT 4.00E+07 1.28E+07 2.37E+07 1.74E+07 2-NT or 4-NT 1.41E+06 3.59E+06 6.49E+06 1.33E+07 

3-NT 7.56E+05 1.93E+05 1.38E+06 1.02E+06 3-NT 2.74E+04 1.17E+05 1.98E+05 5.56E+05 

TETRYL 7.33E+07 1.38E+07 4.42E+07 1.88E+07 TETRYL 1.01E+07 1.41E+07 4.97E+06 2.04E+06 
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Appendix C: The Control of Explosives Precursors Regulations 2014  

Regulation (EU) 98/2013 ANNEX I 

Substances on their own or in mixtures or in substances for which suspicious transactions, significant 

disappearances and thefts shall be reported. 

List of restricted explosives precursors: 

 

  

Substance Limit Value CAS No. 

Hydrogen peroxide 12% w/w 7722-84-1 

Nitromethane 30% w/w 75-52-5 

Nitric acid 3% w/w 7697-37-2 

Potassium chlorate 40% w/w 3811-04-9 

Potassium perchlorate 40% w/w 7778-74-7 

Sodium chlorate 40% w/w 7775-09-9 

Sodium perchlorate 40% w/w 7601-89-0 
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Regulation (EU) 98/2013 ANNEX II substances 

 

 

 

 

 

 

                                                      
1
 In concentration of 16% by weight of nitrogen in relation to ammonium 

2
 The placing on the market of ammonium nitrate for supply to non-professional users is restricted by the 

REACH Regulation (Regulation No 1907 of 18 December 2006 as amended by Commission Regulation (EC) 

No 552 of 22 June 2009, Annex XVII, Item 58). 
3
 Fertilisers with at least 8 weight % nitrogen from ammonium and at least 8 weight% nitrogen from nitrate 

contain at least 16 weight % nitrogen from ammonium nitrate. On a voluntary basis, economic operators and 

farmers are asked to also report on Ammonium Nitrate with less than 16% by weight of nitrogen in relation to 

ammonium nitrate. 

Substance CAS No. 

Hexamine 100-97-0 

Sulphuric acid 7664-93-9 

Acetone 67-64-1 

Potassium nitrate 7757-79-1 

Sodium nitrate 7631-99-4 

Calcium nitrate 10124-37-5 

Calcium ammonium nitrate 15245-12-2 

Ammonium nitrate
123
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Appendix D: Additional maps 

Map showing the locations of the wastewater samples and the Thames Water gravity sewers transporting the wastewater to the wastewater treatment plant.  
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Pin point map showing HMTD and TATP finds in England and Wales between 2000-2013. 


