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Abstract
During tissue development, patterns of gene expression determine the spatial arrangement

of cell types. In many cases, gradients of secreted signalling molecules—morphogens—

guide this process by controlling downstream transcriptional networks. A mechanism com-

monly used in these networks to convert the continuous information provided by the gradi-

ent into discrete transitions between adjacent cell types is the genetic toggle switch,

composed of cross-repressing transcriptional determinants. Previous analyses have

emphasised the steady state output of these mechanisms. Here, we explore the dynamics

of the toggle switch and use exact numerical simulations of the kinetic reactions, the corre-

sponding Chemical Langevin Equation, and Minimum Action Path theory to establish a

framework for studying the effect of gene expression noise on patterning time and bound-

ary position. This provides insight into the time scale, gene expression trajectories and

directionality of stochastic switching events between cell states. Taking gene expression

noise into account predicts that the final boundary position of a morphogen-induced toggle

switch, although robust to changes in the details of the noise, is distinct from that of the

deterministic system. Moreover, the dramatic increase in patterning time close to the

boundary predicted from the deterministic case is substantially reduced. The resulting sto-

chastic switching introduces differences in patterning time along the morphogen gradient

that result in a patterning wave propagating away from the morphogen source with a veloc-

ity determined by the intrinsic noise. The wave sharpens and slows as it advances and may

never reach steady state in a biologically relevant time. This could explain experimentally

observed dynamics of pattern formation. Together the analysis reveals the importance of

dynamical transients for understanding morphogen-driven transcriptional networks and

indicates that gene expression noise can qualitatively alter developmental patterning.

Author Summary

The bistable switch, a common regulatory sub-network, is found in many biological pro-
cesses. It consists of cross-repressing components that generate a switch-like transition
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between two possible states. In developing tissues, bistable switches, created by cross-
repressing transcriptional determinants, are often controlled by gradients of secreted sig-
nalling molecules—morphogens.These provide a mechanism to convert a morphogen
gradient into stripes of gene expression that determine the arrangement of distinct cell
types. Here we use mathematical models to analyse the temporal response of such a sys-
tem.We find that the behaviour is highly dependent on the intrinsic fluctuations that
result from the stochastic nature of gene expression. This noise has a marked effect on
both patterning time and the location of the stripe boundary. One of the techniques we
use, MinimumAction Path theory, identifies key features of the switch without computa-
tionally expensive calculations. The results reveal a noise driven switching wave that pro-
pels the stripe boundary away from the morphogen source to eventually settle, at steady
state, further from the morphogen source than in the deterministic description. Together
the analysis highlights the importance dynamics in patterning and demonstrates a set of
mathematical tools for studying this problem.

Introduction

Tissue development relies on the spatially and temporally organised allocation of cell identity,
with each cell adopting an identity appropriate for its position within the tissue. In many cases,
cellular decisions are made by transcriptional networks controlled by extrinsic signals [1–3].
These signals, usually termedmorphogens, spread from a localised source within, or adjacent
to, the developing tissue to form a spatial gradient that becomes the patterning axis of the tis-
sue. Cells are sensitive to the level of the morphogen and respond by producing a set of discrete
gene expression stripes at different distances from the morphogen source [1, 4].
A transcriptional mechanism capable of the analogue to digital conversion necessary to

transform the continuous morphogen gradient into distinct domains of gene expression is the
so-called genetic toggle switch [5, 6]. This sub-network, present in many biological contexts,
consists of cross-repression between sets of transcriptional determinants that are expressed
mutually exclusively in alternative cell identities [7–11]. Thus the expression of one set of fac-
tors represses the alternative identity and vice versa, creating a bistable switch [12–14]. This
mechanism has been extensively studied as a way for cells to make decisions and produce dis-
tinct outputs in response to biological signals [15–18]. In the case of tissue patterning, a mor-
phogen gradient can modulate the production rates of one or more genes that comprise the
switch. This controls the position along the patterning axis at which the switch creates a
boundary between cell identities [5, 11]. Moreover, the principle can be extended to incorpo-
rate multiple morphogen controlled toggle switches, each producing a boundary at a distinct
position, hence explaining the multiple stripes of gene expression generated in a tissue [19, 20]
Mathematical models of morphogen-controlled toggle switches that reproduce the ultrasen-

sitivity necessary to create discrete gene expression boundaries also generate a temporal
sequence of gene expression, prior to reaching steady state, that recapitulates the final spatial
pattern [11, 18, 20]. This sequence and its timing is a consequence of the inherent dynamical
properties of the bistable switch [17, 20, 21]. Strikingly, the temporal behaviour predicted by
the models corresponds to experimental observations of gene expression timing in several
developing tissues [11, 22–25] and has led to the suggestion that it explains temporal features
of morphogen-controlled tissue patterning [20].
Despite the apparent agreement betweenmathematical models and experimental observa-

tions, whether the models correctly identify the biologicalmechanism responsible for the
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dynamics and boundary positioning in morphogen-patterned tissues remains unclear. In par-
ticular, most current models (excepting [25]) are deterministic and have not addressed whether
stochastic fluctuations that arise from noisy gene expression qualitatively alter the behaviour of
morphogen-controlled toggle switches. Fluctuations in the production and degradation rates
of mRNA and protein molecules in individual cells can lead to substantial molecular heteroge-
neity [26–29]. Moreover, genes switch between active and inactive states resulting in bursts of
transcription interspersed by refractory periods in which transcription is suppressed [26, 30–
32]. The intrinsic variations introduced by these processes could facilitate spontaneous transi-
tions between different cell states, see for example [16, 33–39]. The effect of stochastic fluctua-
tions on the position and precision of boundaries needs to be explored as previous work has
suggested, counter-intuitively, that noise can sharpen boundaries in a tissue [1, 25]. Thus in
addition to the effect of gene expression noise on the steady state of a genetic toggle switch,
understanding how stochastic fluctuations influence the temporal behaviour of switching
along a morphogen patterning axis is necessary.
Here we develop a theoretical framework to investigate the dynamics of morphogen-

controlled genetic toggle switches and analyse how noise in gene expression affects tissue
patterning by this mechanism.We show that exact numerical simulations of the kinetic
reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path the-
ory provide insight into the trajectory, dynamics and directionality of stochastic switching
between states of a bistable switch. First, we introduce the deterministic and stochastic mod-
els of the morphogen-controlled toggle switch. We show how patterning time varies with the
morphogen signal in the deterministic switch and how intrinsic fluctuations alter the pat-
terning time in the monostable zone. We continue by demonstrating how stochastic switch-
ing positions the gene expression boundary within the bistable zone, exploring how the
typical number of proteins and expression bursts shape the stochastic switching process.
Next we show how this analysis suggests that the expression of the morphogen-induced
gene is activated as a wave that travels away from the morphogen source, setting the position
of the pattern boundary. How the velocity and sharpness of the wavefront depends on the
parameters of the system is analysed in the last section of the results. Finally, we discuss
these results in the context of tissue patterning, as well as the broader utility of our theoreti-
cal framework.

Models

In order to characterise the dynamics of a bistable switch we consider a model in which two
genesA and B repress each other, and a morphogen signalM acts as an activator of geneA pro-
moting its expression (Fig 1). This is motivated by the developmental biology scenario of a tis-
sue initially expressing a gene B, sometimes referred to as the “prepattern”, that is exposed to a
gradedmorphogenM which induces expression of the “target” gene A. Examples can be found
in the vertebrate neural tube, in which cells initially express the transcription factors Irx3 and
Pax6. These form cross-repressive interactions with transcription factors Olig2 and Nkx2.2,
which are controlled by the Shh morphogen [11]. Similarly in the Drosophila blastoderm, the
morphogen Bicoid induces the transcription factors Giant and Slp1 which cross-repress Krup-
pel and Runt, respectively [40]. In the nomenclature we adopt, the two possible cellular steady
state outcomes of the patterning, A and B, are characterised by high levels of expression of one
gene and lower levels of the other. For intermediate morphogen signalling levels, both states
are stable, with the region of bistability given byMB < M< MA. In this region, the cellular out-
come will depend on the initial conditions and the history of the morphogen signal. In
response to the graded distribution of the morphogenM, this model is capable of generating
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Fig 1. Bistable switch patterning schematic. (a) Genetic network showing the cross-repression of genes

A and B. The signal M activates gene A changing the available steady states. (b) Stability diagrams for

expression of genes A and B showing the available steady states for different values of the signal. Stable

steady states are indicated with solid lines, while the unstable steady state (in this case a saddle point) is

indicated with a dashed line. (c) A schematic of tissue patterning with the genetic toggle switch: In the

monostable zones (to the left and right of the vertical dotted lines) cells will adopt the state B or A,

respectively. The state adopted by a cell in the bistable zone (between the vertical dotted lines) will be

determined by the history of the signal and by stochastic effects.

doi:10.1371/journal.pcbi.1005154.g001
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two abutting stripes of gene expression. This mechanism can be readily extended to accommo-
date additional stripes at different morphogen levels [11, 19, 20].
Even in the simple scenario, however, there are many possible mechanisms regulating two-

gene interactions, these can act at transcription, translation or post-translational levels. Despite
this, the essential mechanism of patterning reduces to the same bistable switch sub-network
(Fig 1) [11, 12, 14, 20, 25, 41].
In the current study we consider that protein production occurs on a much slower time

scale than transcription factors binding and unbinding to the enhancer, RNA polymerase bind-
ing and unbinding the promoter, transcription and mRNA degradation. Under this assump-
tion the production of each protein can be considered proportional to the probability of
finding the polymerase bound to its promoter ~pi with i 2 A, B. The rate of change in time of
protein concentration ni(t) can then be described as

_nA ¼ aA~pAðM; nBÞ � dAnA

_nB ¼ aB~pBðnAÞ � dBnB;
ð1Þ

where αi is the protein production rate when RNAp is bound to gene i, and δi is the effective
degradation rate of protein i. Additionally, the polymerase binding probability ~pA depends on
the morphogen signalM, since the morphogen controls the production rate of gene A. In Eq
(1) the concentration of protein is given in arbitrary units that can be related to the actual num-
ber of proteins Ni through a multiplicative constant ~O, i.e. Ni ¼ ni

~O.
Eq (1) can be non-dimensionalised by expressing time in units of d� 1

A and the concentration
of proteins in units of αA/δA obtaining,

_xA ¼ pAðM; xBÞ � xA

_xB ¼ apBðxAÞ � dxB;
ð2Þ

describing the evolution of the non-dimensional protein expression xi� δAni/αAwhere the mag-
nitudes α� αB/αA and δ� δB/δA are respectively the relative rates of production and degrada-
tion of genesA and B and the time derivatives are taken with respect to the non-dimensional
time. Similarly, the non-dimensional binding probabilities are defined as pAðM; xBÞ � ~pAðM; nBÞ

and pBðxAÞ � ~pBðnAÞ. This non-dimensionalization simplifies the study of the system and also
reveals intrinsic properties of the network. For given functions pi, the whole dynamical system
behaviour only depends on the parameter ratios α and δ regardless of the actual values of αi or δi.
Additionally, the non-dimensionless expression levels of each stable state ( _xiðxst

i Þ ¼ 0) only
depend on the ratio α/δ independent of the actual values of α and δ,

xst
A ¼ pAðM; xst

B Þ

xst
B ¼

a

d
pBðx

st
AÞ:

ð3Þ

The RNAp binding probabilities pi can be describedusing statistical physics principles by
computing the fraction of possible equilibrium configuration states in which RNAp is bound
to the target gene promoter [42]. We will consider the case in which each enhancer has two
non-overlapping binding sites for the repressive transcription factor that interact indepen-
dently and, when occupied, forbid the binding of RNAp [43]. Assuming that the signal reduces
the recruiting binding energy of RNAp to the promoter of gene A, and that its effector also has
two independent binding sites, also independent of the repressor sites, the probabilities of

Intrinsic Noise Alters Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005154 October 21, 2016 5 / 23



transcription can be written as,

pAðM; xBÞ ¼ 1þ rA
1þM=KM

1þ fM=KM

� �2

1þ
xB

KB

� �2
 !� 1

pBðxAÞ ¼ 1þ rB 1þ
xA

KA

� �2
 !� 1

;

ð4Þ

where ρi sets the basal gene activation, f controls the activation strength of the signal,Ki is the
rescaled equilibrium dissociation constant of protein i for its binding site in the relevant
enhancer, and KM the equilibrium dissociation constant of the morphogen effector with the
enhancer of gene A. All parameters of Eq (4) are positive and f > 1. The regulatory Eq (4)
returns the usual polynomial ratios that give rise to a sigmoidal response for the activator and
the repressor [17, 43, 44] (Fig 2).
The morphogen gradient signalM is typically a monotonically decreasing function of the

distance from its source. Thus, in contrast to many studies of toggle switches, which focus on
the behaviour for some fixed values of the signal, the patterning problem requires us to under-
stand how the response varies along a continuous gradient of a signal.Without any loss of gen-
erality, the precise spatial dependencewill be omitted and we just consider the outcome in
response to a continuous signalM. Some previous studies introduce a more complex range of
interaction betweenmorphogen gradients and cells, either by considering spatial coupling
between cells [14, 25] or by direct interpretation of the linear spatio-temporal changes of the
morphogen gradient [45]. In contrast, our choice to remove cell-cell interaction or signalling
dynamics aims to reveal fundamental patterning properties of a bistable switch ubiquitous in
similar multistable regulatory systems.

Stochastic dynamics

Protein production and degradation described in Eq (1) give a deterministic description of the
bistable switch dynamics. This deterministic description is the coarse grained outcome of the
underlying single production and degradation stochastic events that generate intrinsic noise in
the network [26, 27]. This random component can be included in the expression dynamics by
the Chemical Langevin Equation (CLE) approximation, that introduces the intrinsic fluctua-
tions as the addition of a multiplicative noise term to the deterministic description [46],

_xA ¼ pA � xA þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nApA þ xA
p

xAðtÞ

_xB ¼ apB � dxB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBapB þ dxB

p
xBðtÞ

ð5Þ

where ξi(t) is a Gaussian white noise with zero average and is delta-correlated:

hxiðtÞi ¼ 0;

hxiðtÞxjðt0Þi ¼ dAa� 1
A

~O � 1dðt � t0Þdij

� O
� 1

dðt � t0Þdij:

ð6Þ

Here δij is Kronecker’s delta, δ(t − t0) is Dirac’s delta, andO is the volume parameter relating
concentrations with number of molecules (NA ¼ nA

~O ¼ xAO), which also allows us to express
the rates in terms of absolute changes in protein number per unit of time for the different reac-
tion channels. The deterministic result Eq (2) is recovered in the limitO!1 [27, 46]. On the
other hand, the parameters νi introduce the stoichiometries of the production reactions, as a first
approximation to account for the effects of expression bursts [46] (for more details see S1 Text).
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Fig 2. Dynamical behaviour of the bistable switch. (a) Bifurcation diagram of the bistable switch, showing

solutions of Eq (3) as a function of the signal M for proteins A (orange) and B (blue). The stable steady states

(solid lines) and the saddle points (dashed lines) are indicated. (b) Trajectories for the indicated levels of

signal M, starting at different initial conditions, marked by coloured circles. The colour indicates the final

stationary state converging to state A (orange) or B (blue). Additionally, the stable steady states (black

circles), and the saddle point (white circle) are indicated. Parameters used are α = δ = ρA = 1, ρB = 1.75 �

10−4, KA = 10−3, KB = 3 � 10−2, KM = 1, f = 10.0.

doi:10.1371/journal.pcbi.1005154.g002
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The introduction of parameters νi and O does not perturb the deterministic landscape,
which only depends on pi, α and δ. Different νi and O will result in different noise dependence
with the regulatory functions and provide a natural mechanism to change fate determination
while keeping the same macroscopic description Eq (1). The sources of noise described repro-
duce the effects of intrinsic fluctuations arising from production and degradation events of the
proteins, through the stochastic parametersO, νA and νB. Other sources of noises, such as noise
in the morphogen signal, may be of relevance in specific biological scenarios and will require
specific formulations of kinetic equations and CLE dynamics.

Results

The patterning time of a deterministic bistable switch varies with

morphogen level

For a genetic toggle switch such as that described by Eq (1), bistability means that the final
steady state is determined not only by the level of the signal but also the initial condition of the
system. In the absence of noise, the response of the system to the signalM can be divided into a
bistable regime (MB < M< MA) where the steady state is dependent on the initial conditions,
and two monostable regimes (M> MA andM < MB) where the final state of the system, A or
B, is independent of the initial conditions. The way in which the system switches steady state is
by application of a level of signal outside of the bistability zone,M> MA for an initial state B,
andM < MB for initial state A (Fig 2). To conform to the tissue patterning paradigm, we
assume that prior to the application of the morphogen signal, the “prepattern” gene, B, is active
homogeneously throughout the tissue. The establishment of the morphogen gradient results in
the activation of the “target” gene A at positions at which the morphogen concentration
exceeds the threshold (M> MA) [11, 40] (Fig 3).
The deterministic description of the patterning process is thus reduced to understanding

the evolution towards the stable state A in zones of the tissue whereM> MA. For these posi-
tions, state A is not reached immediately but will undergo a transient expression describedby
Eq (2). For convenience we refer to the time it takes for a cell at a certain signalM to change its
expression state as the patterning time, T. It is important to note that this is not meant to imply
that developmental patterning of the tissue requires such times to be reached or that the biolog-
ical pattern requires all the cells to reach their steady state expression. Instead, it indicates the
time during which the pattern of gene expression is changing along tissue. The higher the mor-
phogen concentration the faster gene expression changes, saturating at a minimal characteristic
patterning time Tc. In contrast, the switch to state A becomes slower the closer the signal is to
the threshold signalMA, where levels of gene A remain low for a long time before it is expressed
(T� Tc) (Fig 3 and S1 Fig). This marked increase in the patterning time is a signature of the
mechanism by which the stability of state B is lost atM =MA (saddle-nodebifurcation); around
MA the eigenvalues determining stability of B vary smoothly withM and hence close to xst(MA)
the dynamics are very slow (S2 Fig) [20]. This feature has been termed a “dynamical ghost” in
recognition that a vestige of the steady state is present in the dynamics of the system near the
bifurcation point [21]. This property is a signature of the positive feedback loop present in the
bistable switch and is not present in a mechanism that relies solely on strongly cooperative acti-
vation of A byM (See S1 Text).

Intrinsic fluctuations accelerate cell fate change in the monostable zone

The inherent fluctuations in the biochemical events that control gene expression, such as pro-
duction and degradation events, introduce stochasticity into the expression dynamics (e.g.
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[28, 29]) (S1 Text). Such fluctuations introduce variability not only in the transient genetic
expression (S1 Fig), but also in the average patterning times.
We first focused on how patterning time is altered in the monostable zone whereM> MA.

Comparison with the deterministic simulations indicate that the average patterning times for
large values of the signal (M�MA) are not affected by intrinsic fluctuations. By contrast, how-
ever, for values close toMA, the patterning time is markedly lower in the stochastic simulations
compared to the deterministicmodel (Fig 4). Close to the thresholdMA, the slow dynamics
introduced by the saddle-node bifurcation do not delay the expression dynamics because the
intrinsic noise allows the system to explore the dynamical landscape and escape the dynamical
ghost. This accelerates the expression change towards the final state while keeping transient
expression levels similar to the deterministic ones. Thus stochasticity in gene expression pro-
vides a mechanism that counterbalances the slow dynamics associated with the saddle-node
bifurcation present in the deterministic system.
We next examined the effects of stochastic fluctuations in the bistable zone. Close to the

bifurcation, the stable steady state B is marginally stable and intrinsic noise can result in suffi-
cient repression of gene B and activation of gene A to switch to the stable steady state A. This
stochastic switching occurs via a similar trajectory in gene expression space and on the same
time scale as the patterning time in the monostable zone, resulting in an average patterning
time that varies continuously between the monostable and bistable zones (Fig 4). Consequently
the resulting pattern boundary is no longer located atM’MA but shifts inside the bistable

Fig 3. Dynamics of spatial pattern formation in the deterministic case. Each line shows the levels of

transcription factors A (top) and B (bottom) as a function of morphogen signal (M) at the times indicated by

the heatmap (right). The change in gene expression becomes more step-like over time. The closer the signal

is to the bifurcation level M = MA = 1, the slower is the rate of change in transcription factor levels; this is a

signature of the “dynamical ghost”. Initial conditions are xA = 0 and xB = 1.0, the rest of the parameters are

those of Fig 2.

doi:10.1371/journal.pcbi.1005154.g003
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zone. This behaviour is inherent to the bistable switch and is not found in the non-feedback
circuit where noise cannot change the position of the pattern boundary, which is always located
atM’MA (See S1 Text).

Stochastic switching positions the pattern boundary inside the bistable

zone

Throughout the bistable region of the system, sufficiently large fluctuations will result in spon-
taneous switching. Such a transition is always possible, with a patterning time that increases
super-exponentially as the signal levelM decreases (Fig 4). Such a marked increase in pattern-
ing time can lead to biologically unfeasible switching times for a range of signal levels. In this
range, the system will be resilient to intrinsic noise. By contrast, when the time scale of noise-
driven switching is comparable to the patterning time of the tissue, the position and precision
of the pattern boundarywill be altered. Moreover, since the change in patterning time occurs
continuously across the bistability thresholdMA, stochastic transitions will always be relevant
during tissue patterning.

Fig 4. Intrinsic noise changes average patterning time along the tissue. Patterning time, measured as

the time to observe a response xA > 0.9, for the deterministic case (solid line) indicates that the time it takes for

a response increases substantially as M approaches the deterministic steady state boundary at M = MA = 1.

The patterning times of stochastic simulations with different values ofΩ (circles) are shown and illustrate that

change of cellular expression state can occur within the bistable region, 0.1 < M < 1.0. Smaller values of Ω
(higher levels of noise) result in decreased patterning times. Each point corresponds to the average mean first

passage time of 100 CLE realisations with initial conditions xA = 0 and xB = 1.0. Error bars correspond to

standard error of the mean. Stochastic parameters are νA = νB = 1 andΩ = 100, the rest of parameters are

those of Fig 2. Inset) Coefficient of variation of the patterning time.

doi:10.1371/journal.pcbi.1005154.g004
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For time scales larger than the degradation rates, the protein expression for each steady
state will follow a certain probability distribution around the deterministic steady state. The
larger the typical number of molecules defining each steady state (Ni = xi O), the smaller the
effect of fluctuations, the narrower the deviations from the deterministic phenotype, and the
longer the typical switching times (Fig 4 and S3 Fig). The tails of this distribution will deter-
mine the stochastic switchings. In this context, large deviation theory predicts an exponential
dependence of the average stochastic switching patterning time onO [47, 49]

Ts ¼ CeOS; ð7Þ

where C is a prefactor to the exponential behaviour and S is the action of the stochastic transi-
tion. Eq (7) can be related to the Arrhenius law whereO−1 plays the role of temperature, con-
trolling the fluctuations of the expression state, and S plays the role of the activation energy of
the transition between different states. Consistent with this, S changes with the level of the
morphogen signal and provides a correlate of the dynamical landscape.
In one-dimensional cases, such as the auto-activating bistable switch, the dependence on

the signal of the stochastic switching time can be obtained directly from knowledge of the prob-
ability distribution in a closed integral form [38, 50, 51]. In multidimensional cases, such as the
one we are studying, there is more than one path across the dynamical landscape linking the
steady states and finding the values of S requires us to consider the contribution of the different
paths. Each path φτ of duration τ has a different probability that can be written as [47, 49]

Pðφ
t
Þ � e� OSðφtÞ; ð8Þ

where the exponential dependence onO predicts that for large enough numbers of proteins,
the stochastic switching process will occur following the neighbourhoodof the path φ� that
minimises the action,

S � Sðφ�Þ ¼ min
t;φt

Sðφ
t
Þ: ð9Þ

Applying the Eikonal exponential dependence of Eq (8) to the CLE describing the stochastic
dynamics of the bistable switch (Eq (5)), a closed expression for the action can be obtained
describing the stochastic switching process that for a general CLE of the form _x ¼ f ðxÞ þ
gðxÞxðtÞ gives [47–49],

Sðφ
t
Þ ¼

1

2

Z t

0

k _φtðtÞ � f ðφ
t
ðtÞÞk2

gðφtðtÞÞ
dt ð10Þ

where f(φτ) is the deterministic field that describes the phenotypic landscape and from Eq (5)
is,

fAðxA; xBÞ

fBðxA; xBÞ

 !

¼
pAðM; xBÞ � xA

apBðxAÞ � dxB

 !

ð11Þ

and the norm k � k2

gðφtÞ
in Eq (10) corresponds with the inner product h•,(g(φτ)g(φτ)>))−1•i,

where g(φτ)g>(φτ)� D is the diffusion tensor given by the noise intensity that for Eq (5) reads,

DðxA; xBÞ ¼
nApAðM; xBÞ þ xA 0

0 nBapBðxAÞ þ dxB

 !

: ð12Þ

Thus, the value of the action can be obtained by the numerical minimisation Eq (9) of the
action functional Eq (10) (see S1 Text). The result of this minimisation gives both the rate of
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stochastic switching for different values of the signal Eq (7) and the minimum action path
(MAP) describing the transient expression profiles of A and B during the switching.
To test the validity of the actionminimisation, we compared the MAP with the stochastic

switching trajectories resulting from simulations of the kinetic reaction scheme (S1 Text) and
the CLE Eq (5). This confirmed that stochastic trajectories concentrate around the MAP with
increasingO (Fig 5(a)). This supports the validity of the MAP framework for estimating the
trajectory of the transition and the computational efficiency, compared to stochastic simula-
tions, makes it a useful complement to other techniques. Notably, the trajectory predicted by
the MAP is distinct from the deterministic steepest-descent through the dynamical landscape
given by the deterministic equations. The resulting path is shaped by the changes in intrinsic
noise for different expression states through g(φ). Thus the MAP provides the means to explore
the consequences of stochastic mechanisms, such as expression bursts, that are unavailable in
deterministic descriptions.
In addition to the MAP, the validity of the action can be tested by comparing the switching

times obtained from CLE stochastic realisations with the exponential dependence of switching
time obtained from the action Eq (7) (Fig 5(b)). This shows that the action allows the pattern-
ing time to be determinedwith logarithmic precision for sufficiently large values ofO, i.e.
lnTs ¼ lnC þ OS ’ OS. Such values of O should involve patterning times greater than the
patterning time in the monostable zone (Fig 5(b)). This reduces the necessity to determine the
prefactor C, which is not given by the actionminimisation. In cases whereO is not large
enough, the prefactor has a relevant contribution and can be obtained with the help of the min-
imised action, from a reduced number of CLE simulations (see S1 Text).
To characterise the effect of stochastic switching in the bistable zone, it is necessary to tally

the change of fate B! Awith its opposite A! B (Fig 5(b)). The shape of the MAP and the val-
ues of the action for transitions in both directions (SAB and SBA) change along the bistable zone
(Fig 5(b) and S4 Fig): transitions from A to B become less probable, and B to A more probable
asM increases. This is translated as opposite trends of SBA and SAB withM. As a result, the resi-
dence time of the two states become equal (SBA ’ SAB) at an intermediate value of the signal
M’ 0.3. This predicts a new steady state position for the pattern boundary in the bistable
zone. Away from this signal, the rate of one of the stochastic transitions becomes small com-
pared with the other, resulting in one of the two states dominating. Strikingly, the location of
the steady state boundary, whilst not dependent on O, is different to that predicted by the
deterministic system atM =MA = 1.0.

Expression bursts shape the stochastic switching process but do not

move the steady state boundary

One contributor to the stochastic nature of gene expression is the inherent pulsatility of tran-
scription/translation—so-called ‘bursty’ expression—which results in sporadic interspersed
periods of expression and quiescence [26, 30–32]. The framework we have developed allows us
to explore the effect of the size of these bursts of expression, νA and νB, on the behaviour of the
system whilst keeping the deterministic dynamical landscape constant. The action is indepen-
dent of O but is dependent on the burst sizes νA and νB, which hence alter the MAP. The MAP
approach is therefore suitable for capturing the differences in the effects of different noise
sources.
Intuitively, a larger burst size will introducemore noise in the expression of a protein and

therefore facilitate a transition. This is confirmed quantitatively by comparing the actions of
both switching processes (Fig 6(a) and S5 Fig), which reveals a reduction in the actions as νA

and νB increase. In the particular case of Fig 6(a), the reduction in action for the transition A to
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Fig 5. Stochastic switching trajectories concentrate along the MAP with rates that change along the bistable zone. (a)

Stochastic switching trajectories are compared for CLE (red) and exact realisations of the kinetic reactions through the Gillespie

algorithm (green) for two different values ofΩ for the stochastic transition A! B. The trajectories concentrate along the MAP (solid

blue line), which passes through the saddle point (black circle). This indicates that the MAP is consistent with the stochastic

simulations. (b) The action S and the prefactor C depend on the level of the signal. Top) The value obtained for S by the

minimisation of the action functional (solid lines) compared with the patterning times obtained for 10000 averaged switching CLE

trajectories for each signal value (circles). Error bars indicate standard error from the fitting (see S1 Text). The logarithm of the

switching times are lnCþOS, which predicts that switching rates from B to A increase dramatically with M, whilst the switching rate

from A to B decrease, provided Ω is reasonably large. Parameters are those of Fig 4.

doi:10.1371/journal.pcbi.1005154.g005
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B is much greater than the reduction in action for the reverse transition. This prompted us to
investigate whether changes in burst size could modify the directionality of transitions.
Perturbations in the shape of the MAP are evident (Fig 6(a) and S5 Fig), suggesting that the

greater the burst size of A the less activation of B is necessary for the repression of A. Equiva-
lently, the greater the burst size of B, the less activation of A is necessary to repress B. This sug-
gests that changes in νA and νB produce contrasting effects on the genetic profiles during
switching. By contrast, a homogeneous increase in the noise, through a reduction in the typical
number of moleculesO, does not result in changes in the switching path.
A more detailed analysis of the effect of the burst sizes on the action profiles reveals that the

approximate effect of an increase in burst size is to reduce both actions by a factor which is
homogeneous across the tissue (Fig 6(b) and S6 Fig). This has the effect that, where SBA is
larger than SAB, the reduction in SBA as burst size increases is greater. By contrast, increases in

Fig 6. The stochastic switching trajectory and the rate change with the burst size. (a) Changing the relative burst size

νA = 1, 3, 5, 10 for both switching processes A! B (top) and B! A (bottom) alters the MAP. The actions for the transitions

(coloured lines) decrease and hence switching becomes more rapid as νA increases. The position of the different steady

expression states are marked with colour circles for state A (orange) and B (blue) as well as the saddle points (black).

Parameters are those of Fig 4. Morphogen signal is M = 0.45. For this value of M the effect on the action is more dramatic

for the transition A!B. (b) Burst size modifies the change of action along the tissue. The action along the tissue evaluated

for different values of νB (indicated by the different colours) for both switching transitions: B! A (solid line) and A! B

(dashed lines) (top panel). The derivative of the action for B! A with respect to morphogen concentration level is shown in

the bottom panel. Increasing the morphogen level biases the cells towards state A. The steady state position of the

boundary is close to the value of M where dotted and dashed lines cross. The burst size has very little effect on these

positions (value of M), but does affect how quickly they are approached. Parameters are those of Fig 4.

doi:10.1371/journal.pcbi.1005154.g006
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burst size result in greater reduction in SAB where SAB is larger. Therefore, curiously, the burst
parameters do not affect the directionality of the transitions, since they reduce the actions by
the same amount at the steady state boundary position. At lower values of the morphogen sig-
nal, state B is still favoured, as at higher values is state A. In summary, different burst sizes pro-
duce different action profiles along the tissue (Fig 6(b)) and these will be translated into
different transients and precisions of the boundary, but the steady state position of the bound-
ary remains the same.

The gene expression boundary propagates through the tissue at a

velocity determined by stochastic effects

The action SBA grows superlinearly as the signal decreases (Fig 5(b)), and the stochastic switch-
ing time grows exponentially withO. This results in patterning times (residence time at B
denoted by TB) that grow super-exponentially as the signal decreases. A consequence of this is
that patterning time varies dramatically, differing by orders of magnitude, along the bistable
zone. This can result in switching times much larger than those relevant to biological processes,
in which case the steady state would never be reached. Such a big difference allows the separa-
tion of the bistable zone into two regions at any time t during the transient: an area where the
stochastic switching time towards state A is much smaller than the current time, TB� t, (this
region expresses predominantly A); and an area where the switching time towards state A is
much larger than the current time, TB� t, (this region expresses predominantly B). The very
large variation of TB along the gradientM allows this separation, since the area of the tissue
where t’ TB is small. At different times the boundary between these two behaviours will be
located at different spatial positions. Specifically, the boundarywill be located at positions cor-
responding with values of the signal where switching time coincides with the current time t =
TB, i.e. a value of the signalMs where SBA ¼

1

O
ln ðt=CÞ. Thus, a bistable switch will produce a

pattern boundary that advances away from the morphogen source with a velocity

vðtÞ ¼
dMs

dt
¼
dTB

dM

�
�
�
�

Ms

 !� 1

¼

¼
1

t
@ lnC
@M

�
�
�
�

Ms

þ O
@SBA

@M

�
�
�
�

Ms

 !� 1

’
1

Ot
@SBA

@M

�
�
�
�

Ms

 !� 1

;

ð13Þ

where, as described above, for large enough number of proteins (largeO), the result is approxi-
mately independent of the prefactor C. The boundary velocity Eq (13) can therefore be deter-
mined by the value of O and by the dependence of the action on the signal, which is readily
computed numerically (see Fig 6(b)). The greater the typical number of proteins, the slower the
advance will be and in the deterministic limit (O!1), the boundary velocity vanishes.
The velocity of the advancing boundary Eq (13) decreases in time and the rate of this decel-

eration is given by the terms 1/t and @SBA
@M , where the absolute value of this second term increases

as the boundary propagates. As a result, the boundary can appear static for short periods of
time, only revealing its movement when tracked for several orders of magnitude in time (Fig 7
and S1 Video). This is relevant for biological time scales, where a slowly travelling boundary
may appear fixed. The position of the boundary at any time will be determined by O and the
change of the action with the signal.
The travelling boundary induced by a gradedmorphogen signal can also be observed in

stochastic simulations implemented on an array of cells (Fig 7 and S1 Video). Moreover, for
each value of signal at each time point, the standard deviation in xA between cells for each
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Fig 7. Switching events result in a travelling boundary with a speed depending on the stochastic parameters.

(a) Mean and standard deviation of the expression of the morphogen activated gene A along the tissue at different time

points for different burst sizes. Increasing the burst size makes the wave move faster but has a reduced impact on the

precision of the boundary (see text for details). Results correspond to averaging of 500 trajectories withΩ = 120; the

rest of the parameters are the same as in Fig 4. (b) Tissue simulations of the stochastic patterning process composed
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value ofM can be measured. This gives an estimate of boundary precision. As expected the
maximum variation is at the boundaryMs (Fig 7). Even at this position, however, the majority
of individual cells are ‘decisive’, residing in either an A or B state and relatively few cells are in
undefined/transition states where xA’ xB (Fig 7(b)). The decisiveness of individual cells is a
consequence of the relatively rapid transition between states once initiated, compared with
the stochastic switching time scale. Thus stochasticity results in a salt and pepper distribution
of cell identities close to the boundary. The sharpness of the boundary during the transient at
a time t is determined by the size of the zone where t’ TB, and will therefore increase its pre-
cision withO Eq (7). This indicates a trade-off between the sharpness of the boundary and the
velocity towards the steady state (S7 Fig). The larger O, the more precise the boundary, but
the slower the velocity of the boundary along the patterning axis (S8 Fig).
Finally, we asked how the burst size νA affects the dynamics of this travelling wave. Since

alterations in νA produce different transition profiles SBAðMÞ (S6 Fig), this will affect the veloc-
ity of transitions. Specifically, an increase in burst size is predicted to increase the boundary
velocity (Fig 7). As a result, even though different values of νA have the same steady state
boundaryM’ 0.3, they will have boundaries that travel along the patterning axis at different
velocities. Strikingly, however, it appears (Fig 7), that the patterning precision, measured as the
width of the region with elevated standard deviation in xA between cells, is unaffected by the
burst size, when comparing the patterns at a given time. This contrasts with the effect of O,
where a smallerO always increases the width of the boundary at any time point in the transient
(S8 Fig).

Discussion

Our analysis suggests that gene expression noise profoundly affects key aspects of the dynam-
ics and output of a morphogen controlled bistable toggle switch. A signature of deterministic
models of a bistable switch is that at the threshold,MA, the system undergoes a saddle-node
bifurcation. A consequence of this is that at values ofM just greater thanMA, the transient of
the system is very slow [21]. Our analysis indicates that this slow dynamics of the determin-
istic bistable toggle switch, associated with the dynamical ghost, can be easily eliminated by
the introduction of stochasticity into gene expression. In this situation, the fluctuations in
gene expression allow a system close toM =MA to escape spontaneously from this region of
dynamical space, thereby speeding up cell identity determination in the monostable zone
(M > MA).
Strikingly, stochastic and deterministic descriptions of the bistable switch also predict dis-

tinct final positions of the pattern. Intrinsic fluctuations result in stochastic switching events
between states within the region of bistability (MB < M< MA), which is not possible in the
deterministic case. These rates change along the gradient with opposite trends and the steady
state boundary for the stochastic system is located inside the bistable zone at the point where
the rates of switching between the two states balance. This position, although different from
the one defined by the deterministic system, does not change with increasing values of O.
Moreover, this position is robust to expression burst size, and is therefore determined by the
parameters describing the deterministic switch.

of 20 × 70 cells using trajectories from 7(a) top row (νA = 1). The colour of each cell is the RGB linear combination of

blue and orange weighted with the expression states xA and xB. Individual cells are observed to have a decisive state,

expressing one of the transcription factors at a much higher level than the other. The boundary is not perfectly sharp

but the region containing both cell types narrows over time.

doi:10.1371/journal.pcbi.1005154.g007
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The duration of the transient towards the stochastic steady state is determined by the
switching time. This varies super-exponentially along the tissue and results in a travelling front
of switching in which the pattern boundarymoves away from the morphogen source. The
velocity of the advancing boundary can vary by orders of magnitude along the patterning axis,
decreasing dramatically as the boundary propagates. This slowing of the movement means that
the gene expression pattern in a tissue might never reach steady state within a biologically real-
istic time scale. In this scenario the tissue patterning is always effectively pre-steady state. As
time progresses the slowing in boundarymovement may mean that it appears effectively fro-
zen, but in a different position from the steady state.
Hence, the model predicts the possibility of a biologically functional pattern different from

steady state. The position and precision of the pattern at a particular time will be determined
by the transition rates and these depend on the stochastic parameters comprising the typical
number of proteins O and expression bursts size ν. Comparing the effects of altering these
parameters suggests a trade off between distinct demands on the system. An increase in noise
(smallerO) allows the system to approach steady state more rapidly. The consequence, how-
ever, is that the increased noise increases the rate of spontaneous switching and thereby
decreases the precision of the gene expression boundary. By contrast, increase in burst size ν is
predicted to accelerate pattern formation without the same deterioration in precision that
results from decreasing the system size (O), at least at similar time points. Thus enhancing the
bursting behaviour of gene expression might be one way to increase the speed at which the
boundary advances through the tissue without the loss of precision resulting from decreasing
the system sizeO. Alternatively, additional mechanisms might be employed to bypass any
trade off. In situations in which a fast, precise pattern is required, differential cell adhesion, or
other intercellular communication strategies, could be used to correct patterning mistakes [1,
14, 25]. In addition a morphogen signal that varies in time could be exploited, increasing the
speed at which the steady state is approached. For example, a signal that reaches its peak ampli-
tude rapidly after ligand stimulation and then progressively decreasesmight effectively increase
the speed at which the final pattern is reached. In this respect, it is notable that two well studied
morphogens, Tgfβ and Shh, have both been reported to display the type of adapting signaling
dynamics that could be well suited to this task [11, 52].
To explore the properties of the stochastic switching, the minimisation of the action proved

an effective strategy. It provides a much more computationally efficientmeans to gather infor-
mation about the stochastic properties of the system than conventional CLE or Gillespie inte-
grations (see S1 Text). In cases in which the number of proteins is very small and the Eikonal
assumption Eq (7) fails, further expansion in terms of powers ofO can be used and large devia-
tion principles still hold [33, 49]. The principal caveat of actionminimisation strategies is the
inability to find the prefactor C [16]. Nevertheless, even without the prefactor, the action allows
time scales to be calculated with logarithmic precision and in many cases this is likely to be suf-
ficient to identify the main patterning properties of biological tissues. For example we show
that the dependence of the action on the level of morphogen allows the estimation of the veloc-
ity at which the pattern boundarymoves.
The MAP approach also offers quantitative insight into the transient expression profiles of

A and B during the stochastic switching between cell identities. The trajectory predicted by the
MAP is distinct from that predicted by the steepest-descent of the deterministic landscape and
is shaped by the burst size parameters (although not the system size parameterO). Stochastic
simulations were consistent with the MAP, indicating that gene expression during individual
cell switching can be predicted even when high levels of stochasticity are introduced. In this
view, the dynamical landscape imposed by the regulatory interactions restricts the expression
of cells as they transit between states to pass close to the saddle point in gene expression space.
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In addition, the transient path is similar in the mono- and bistable region of the system. This
suggests that, in developing tissues, changes in cell identity should be characterised by defined
trajectories in the levels of expression of the key genes. Thus even in the presence of gene
expression noise, tightly constrained paths between the cell states would be representative of
underlying kineticmechanisms driving the cell state transition. This is consistent with ideas of
developmental canalisation [55, 56] and leads to experimentally testable predictions that could
be assessed using single cell resolution imaging of reporters for the two genes comprising the
bistable switch. Observingcoordinated changes in gene expression that matched MAP predic-
tions would support the validity of the MAP approach and allow key parameters of the biologi-
cal system to be estimated. Experimental corroboration of gene expression dynamics
characteristic of those predicted by the MAP would provide insight into the mechanisms con-
trolling cell decisions and greatly strengthen the evidence underpinning the use of dynamical
systems theory to model these developmental events.
A practical feature of MAP theory is that it can be extended to larger networks comprising

several genes and to full kinetic reaction schemes, that include, for example, the dynamics of
mRNA production and decay and discrete promoter states as well as more detailed description
of the expression bursts [16, 53, 54]. This would offer insight not only into simple binary deci-
sions, such as that described in this study, but also provide a way to study transitions in more
complex and realistic models of cell development [57, 58]. Thus MAP theory has the potential
to provide a powerful framework to explore and understand the role of noise and dynamics in
cell state transitions during normal development and also in other situations such as artificial
directed reprogramming experiments [8, 58, 59]. More generally, our results emphasise that
stochastic fluctuations in gene expression can influence the dynamics and outcome of gene reg-
ulatory networks and highlight the importance of developing the mathematical tools to explore
these aspects of developmental patterning.

Supporting Information

S1 Text. Supplementary text. Technical details of the model including the detailed kinetic
reactions of the bistable switch, the analysis of a switch without feedback, numerical integration
of the stochastic trajectories and minimisation of the action.
(PDF)

S1 Video. Stochastic patterning in the bistable zone. Trajectories correspond to the same
simulations as in Fig 7. Time between frames increases exponentially.
(GIF)

S1 Fig. Transient expression profiles for different values of morphogen signalM. a) Deter-
ministic transient shows a slow down close to the thresholdMA. b) Stochastic transient profiles
to the steady state. Each line corresponds to one CLE realisation with a different signal input
using same parameters from Fig 2 with νA = νB = 1 and O = 100.
(EPS)

S2 Fig. Schematic representation of the cell fate dynamics for different values of the mor-
phogen signalM around the thresholdMA. For each morphogen valueM, the velocity of
change in genetic expression (green arrows) depends on the expression levels. (a) For low val-
ues of the signal in the bistable zone (MB�M�MA), there are two well defined cellular
states. (b) As the signal increases, the attraction towards the stable state B becomes weaker. (c)
At the thresholdMA the stable minimum and the saddle collide cancelling each other (saddle-
node bifurcation) resulting in a flat dynamical landscape for valuesM ≳ MA with a very slow
change in gene expression in time. (d) For higher morphogen signal the evolution towards the
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activated state A becomes faster.
(TIF)

S3 Fig. Mean patterning time as a function of the system sizeO inside the bistable zone.
Each point corresponds to the average mean first passage time of 100 CLE realisations. Inset)
Coefficientof variation of the patterning times. Error bars correspond with standard error of
the mean. Parameters are the same as in Fig 4.
(TIF)

S4 Fig. Change of MAP along the bistable zone.MAPs correspond to 5 different values of the
signalM for both transdifferentation processesA! B (top) and B! A (bottom). The value of
the action (line colour) changes with the signal. The position of the different steady expression
states are marked with colour circles for state A (orange) and B (blue) as well as the saddle
points (black). The values of morphogen signal used areM = 0.10, 0.31, 0.52, 0.73, 0.95.
(TIF)

S5 Fig. Stochastic switching trajectory and rate change with the burst size νB. Change of
MAP for different values of the relative burst size νB = 1, 3, 5, 10 for both switching processes
A! B (top) and B! A (bottom). The value of the action (line colour) changes with νB. The
position of the different steady expression states are marked with colour circles for state A
(orange) and B (blue) as well as the saddle points (black). Morphogen signal isM = 0.45.
Parameters are those of Fig 4.
(TIF)

S6 Fig. Burst size νAmodifies the change of action along the tissue. The action along the tis-
sue is evaluated for different values of νA for both switching transitions: B! A (solid line) and
A! B (dashed line), and its derivative over the morphogen concentration (bottom panel),
vary as a function of the morphogen, revealing the time scale differences and directionality dur-
ing the patterning process. Parameters are those of Fig 4.
(TIF)

S7 Fig. Position of the boundary towards the steady state depends on the typical number of
proteins. Position of the boundary is measured as the value of the signal for which hxAi = 0.5
and error bars indicate the ranges hxAi = [0.4, 0.6]. Each point is the average of 200 stochastic
trajectories. Parameters are the same as in Fig 4.
(TIF)

S8 Fig. Travelling boundary velocity and precision depend on system sizeO.Mean and
standard deviation in expression of the morphogen activated gene A along the tissue at differ-
ent time points for different values ofO. Results correspond to averaging of 500 trajectories
with νA = νB = 1; the rest of the parameters are the same as in Fig 4.
(TIF)
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