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The proof of the derivation of the governing equation for the limiting-equilibrium case from Section

4.3.3 of Jayawardana [7] is incorrect. Thus, in this document, we provide the correct proof. Also,

we present the corrections to minor typos and missing text of Jayawardana’s thesis [7]. Sometimes

we may rephrase entire passages of text from the thesis or present detailed explanations for the

reader’s benefit.

Pages 3 to 182: most occurrences of the terms Young’s modulus, Poisson’s ratio, Lamé’s parame-

ters, Gaussian curvature and Christoffel symbols should follow the word the.

Page 4: in Section 1.1, Notations and Conventions should include the following:

By convention, we have (uαu
α)

1
2 =
√
u1u1 + u2u2 .

Also, the first Lamé’s parameters of the shell (or membrane) and the foundation should respectively

be

λ =
νE

(1 + ν)(1− 2ν)
and

λ̄ =
ν̄Ē

(1 + ν̄)(1− 2ν̄)
.

Furthermore, we use δb and the critical parametric-latitude, βδ, as proxies for the curvature of the

contact region. Justification: In our numerical analysis, our contact region is often modelled as a

semi-elliptical prism that is parametrised by the map (x1, a sin(x2), b cos(x2))E, where |x1| < ∞,

|x2| ≤ 1
2π − ε and ε > 0. Now, the mean curvature of this surface can be expressed as H(x2) =

1
2abϕ(x2)−3, where ϕ(x2) = (b2 sin2(x2) + a2 cos2(x2))

1
2 . Noticing that both δb and βδ are positively

correlated with H(x2), ∀x2 ∈ [ε− 1
2π,

1
2π − ε], justifies our definition.

Pages 11, 93, 97, 98, 99, 122 and 123: the word inequity should be inequality.

Page 16: second equation of the last set of equations should be

Ehκ

2(1 + ν)
(∆Eu

3 −∇E · φ) + q = 0 .

Pages 16, 17 and 20: the word traverse should be transverse.

Page 19: in the first sentence, the word defection should be deflection.

Page 21: in the last sentence, the word isotopic should be isotropic.

Page 25: in the last paragraph, the word Further should be Another.

Page 26: in the last paragraph, second to last sentence, the word through should be though.

Page 32: in the second paragraph, first sentence, the word micromere should be micrometre.
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Page 34: in the first paragraph, the word subtable should be suitable. Also, in the first paragraph,

fourth to last sentence should read as Also, the very idea of a convex surface is nonsensical ....

Furthermore, the last sentence should read as It is unclear ....

Pages 35 and 36: the word perseveres should be preserves.

Page 36: in the last paragraph, second to last sentence, ignore the duplicate word by.

Pages 36, 136 and 137: the word exit should be exist.

Page 38: in the second to last paragraph, third sentence, right-circler should be right-circular.

Page 39: in the second sentence, note the following:

Regarding Cottenden’s [4] assertion that a 3×2 matrix is invertible (see equation 5.15 of Cottenden

[4]), upon further examination, it is clear that the author failed to understand the difference between

the inverse of a bijective mapping and a preimage (which need not be bijective) as they both use the

same mathematical notation, λ−1, in Pressley’s publication [11] (note that Cottenden [4] accredits

Pressley [11] for his differential geometry results). This misunderstanding of Pressley’s work [11]

leads to a substantial part of Cottenden’s work [4] being incorrect, as Section 5.4 of Cottenden’s

thesis [4] is based on an assumption that a 3× 2 matrix is invertible.

Also, in the last sentence, note the following:

Regarding Cottenden et al.’s [3] derivation of an arc-length, although the formula d[arc length] =√
R(θ)2 + dR(θ)

dθ dθ holds true when calculating an arc-length of a curve (which can be derived with

simple differential geometry techniques), the term d[arc length]2 = (Rdθ)2 +dR2 (see directly above

equation 12 of Cottenden et al. [3]) does not imply the former equation nor does it have any math-

ematical context.

Page 46: in the last paragraph, first sentence, coordinators should be coordinates.

Page 49: the word precession should be precision. Also, in the second paragraph, first sentence,

ignore the duplicate word coordinates.

Page 50: in the title of Section 1.1, ignore the duplicate word and.

Page 54: in the paragraph, the equation should read as ū(x1, x2, 0) 6= w(x1, x2, 0). Also, errors of

theorem 2 of Baldelli and Bourdin [2] are mainly caused by mismatching of asymptotic scalings (i.e.

mismatching ε terms), most notably in the ε3j(·) tensors, where ∀j ∈ {1, 2, 3}.

Pages 65, 66, 87, 119 and 176: the words stain and stained should be strain and strained, respec-

tively.
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Page 67: in Chapter 2, note the following:

Membranes supported by rigid foundations (generalised capstan equations) are both modified and

special cases of the work of Konyukhov’s [9] and Konyukhov’s and Izi’s [10], but derived indepen-

dently. Also, in our analysis, an elastic string may have an arbitrary Poisson’s ratio, within the limits

(−1, 1
2 ), of course.

Pages 68, 70, 71, 74, 75, 76, 77, 88, 153, 154 and 166: the word parameterised should be

parametrised.

Page 70: in Section 2.3, Theorem 1, the field (0, g2
r , g

3
r) is an external force field in the curvilinear

space where gjr are Lipschitz continuous.

Page 71: in Section 2.3, Corollary 1, the field (0, g2
r , g

3
r) is an external stress field in the curvilinear

space where gjr are Lipschitz continuous.

Page 80: in the last paragraph, incremental azimuthal length should be ∆x2 = 1
N−1π.

Page 84: in the first paragraph, the last sentence should be:

This is an intuitive result and analogous results are found in Section 2.5.3 for the modified capstan

equation, given the contact interval is [ε− 1
2π,

1
2π − ε], where ε > 0.

Page 86: the word equitation should be equation.

Page 86: in Section 2.7, Conclusions, note the following:

Our numerical results indicate that increasing the curvature of the contact region, the Poisson’s

ratio or the thickness of the elastic body (membrane or otherwise) increases the frictional force, for

a constant coefficients of friction, and incompressible materials such as rubber can have a high

frictional forces. Our analysis imply that coefficient of friction is model dependent.

Page 88: in Section 3.2,

Assertion 1, note the following:

K = (F 1
[II]1F

2
[II]2 − F 2

[II]1F
1

[II]2) is the Gaussian curvature and H = − 1
2F

α
[II]α is the mean curvature.

Also, the term J(u)shell should read as Jshell(u).

Page 89: in Section 3.2, Derivation, note the following:

Assume for the time being that we are dealing with a shell with a thickness 2h and where the mid-

surface of the shell is described by σ(ω), and thus, we may express the energy functional of this
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shell as

J2h(u) =

∫
ω

[
Bαβγδ

(
hεαβ(u)εγδ(u) +

1

3
h3ραβ(u)ργδ(u)

)
− 2hf iui

]
dω −

∫
∂ω

2hτ i0 ui d(∂ω) ,

where u describes the displacement field with respect to ω. Note that the above energy functional

can alternatively be expressed as

J2h(u)

2h
+

∫
ω

f iuidω +

∫
∂ω

τ i0 ui d(∂ω) =

∫
ω

[
1

2
µ

(
λ

λ+ 2µ
εαα(u)εγγ(u) + εγα(u)εαγ (u)

)
+

1

6
µ

(
λ

λ+ 2µ
ραα(u)ργγ(u) + ργα(u)ραγ (u)

)
h2

]
dω .

Note that as ε(·) is the half of the change in the first fundamental form tensor, we have εαα(u)εγγ(u)�

F α
[I]αF

γ
[I]γ = 4 and εγα(u)εαγ (u) � 1

4F
γ

[I]αF
α

[I]γ = 1
2 . Also, as ρ(·) is the half of the change in the second

fundamental form tensor, we have

h2ραα(u)ργγ(u)� h2F α
[II]αF

γ
[II]γ = (2hH)2 � 1 and

h2ργα(u)ραγ (u)� h2F γ
[II]αF

α
[II]γ = 2h2(2H2 −K)� 1 ,

given that this shell satisfies the conditions described by Assertion 1. Therefore, we may assume

that h2ραα(u)ργγ(u) � εαα(u)εγγ(u) and h2ργα(u)ραγ (u) � εγα(u)εαγ (u), and thus, the above equa-

tion implies that one can expect J2h(u) to behave approximately linear in h, despite its cubic h

dependence. This, in turn, implies that the energy stored in the shell’s upper and lower halves

may be approximated by dividing the energy functional of the shell by 2. To be more precise, if

J2h(u) = Jupper(u) + Jlower(u), then assume that 1
2J2h(u) ≈ Jupper(u) ≈ Jlower(u). Now, take the

upper half and assert that this is the form of an overlying shell equation.

Pages 92 and 124: the word action should be acting.

Page 101: in the second to last paragraph, incremental azimuthal length should be ∆x2 = 1
N−1π.

Page 103: in Section 3.6, the term J(w)Baldelli should read as JBaldelli(w).

Page 105: in the last sentence, the word stranded should be standard and the word liner should

be linear.

Page 107: in the first sentence, incremental azimuthal length should be ∆x2 = 1
N−1π.

Page 115: in Section 3.8, Conclusions, note the following:

Our analysis shows that the radial solution of our bonded shell model can approximate the displace-

ment field of foundation with a significant degree of accuracy given that the Young’s modulus of the

shell is high, which is consistent with what is documented in the literature [1]. However, both our

numerical and asymptotic analyses (i.e. the scaling φb ∼ 1) show that there exist optimal values of

the Young’s modulus, the Poisson’s ratio and the thickness of the shell (with respect to the founda-

tion), and the curvature of the contact region such that we observe a minimum azimuthal error. Our

4



numerical modelling also implies that the radial error is a minimum for a shell if it has a relatively

low Poisson’s ratio and is relatively thin, and if the contact region (between the shell and the elastic

foundation) has a low curvature, where the latter two conditions are consistent with our derivation of

the overlying shell model (i.e. consistent with Assertion 1 and Hypothesis 2). Furthermore, it is often

regarded in the field of stretchable and flexible electronics that the planar solution (where stretching

effects are dominant) is mostly accurate when the stiffness of the plate/shell increases indefinitely.

The significance of our work is that, as far as we are aware, this is the first analysis conducted on

the planer solution, both by asymptotically and numerically showing that indefinitely increasing the

stiffness of the membrane will not guarantee a more accurate solution as there exists an optimum

Young’s modulus (with respect to other variables) where the error between the unapproximated and

approximated solution is a minimum.

Pages 118 and 149: the word referrer should be refer.

Page 120: in Section 4.2, Derivation, note the following:

Assume that the shell is coupled to the elastic foundation with friction, where a portion of the foun-

dation is satisfying the zero-Dirichlet boundary condition. Also, assume that one is applying forces

to both the top and to a portion of the boundary of the shell to mimic compression and shear re-

spectively at the contact region. Now, the higher the compression, then the higher the normal

displacement is towards the bottom, i.e. u3|ω+ < 0 (Assertion 1 can guarantee this condition for

sensible boundary forces), and the higher the shear, then the higher the tangential displacement is

in the direction of the applied tangential force, i.e. (uαu
α)

1
2 |ω+ > 0. Now, we consider Kikuchi and

Oden’s model for Coulomb’s law of static friction for a three-dimensional elastic body [8] (i.e. not a

shell), and once extended to curvilinear coordinates and taking the limit ε→ 0, we find[
T β3 (v) + νF (g33)

1
2 (vαv

α)−
1
2 vβT 3

3 (v)
]
|ω+ ≤ 0 ,

for T 3
3 (v)|∂ω+ < 0, where v is the displacement field and the volume {ω × [0, h]} describes the

reference configuration of this elastic body. Just as it is for Coulomb’s friction case, where the bodies

are in relative equilibrium, given that the magnitude of the normal stress is above a certain factor of

the magnitude of the tangential stress, we assert that the bodies (the shell and the foundation) are

in relative equilibrium given that the normal displacement is below a certain factor of the magnitude

of the tangential displacement, i.e.[
(uαu

α)
1
2 + C (g33)

1
2 u3

]
|ω+ ≤ 0 ,

if u3|ω+ ≤ 0, for some dimensionless constant C.

To determine the constant C, consider Coulomb’s law of static friction for the limiting equilibrium

case (i.e. at the point of slipping) and rearranging to obtain equation[
∇̄3

(
(vαv

α)
1
2 + 2νF

(
1 +

γ

1− 2γ

)
(g33)

1
2 v3

)
+

(
2νF γ

1− 2γ

)
(g33)

1
2 ∇̄αvα +

vδ∇̄δv3

(vαvα)
1
2

]
|ω+ = 0 .

Now, the above equation must hold for all elastic conditions, even under extreme conditions such as

the incompressible elasticity condition, i.e. ( γ
1−2γ )∇̄ivi = p(x1, x2, x3), where p(·) is a finite function
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[6]. Thus, we may assume the following equation,[
∇̄3

(
(vαv

α)
1
2 + 2νF (g33)

1
2 v3

)
+

vδ∇̄δv3

(vαvα)
1
2

+ 2νF (g33)
1
2 p(x1, x2, x3)

]
|ω+ = 0 .

Now, nondimensionalise the above equation by making the transformations vi = Lwi, xα = Lyα

and x3 = hy3, where L =
√

meas(ω;R2), to obtain[(
L

h

)(
g33
) 1

2
∂

∂y3

(
(wαw

α)
1
2 + 2νF (g33)

1
2 w3

)
+

(g33)
1
2 wδ

(wαwα)
1
2

(
∂w3

∂yδ
+ Γ3

δiw
i

)
+ 2νF p(Ly

1, Ly2, hy3)

]
|ω+ = 0 .

As our goal is to study shells, we consider the limit (h/L) → 0. As we also require Coulomb’s law

of static friction for the limiting equilibrium to stay finite in this limit, the above equation implies that[
(wαw

α)
1
2 + 2νF (g33)

1
2 w3

]
|{( ω

L2 )×[0,1]} = q(y1, y2) +O
((

h

L

)
, y3

)
,

where q(·) is some finite function. As we are seeking a relation of the form of Coulomb’s law, we

may assume q(·) = 0, and thus, letting C = 2νF is a sound approximation. Finally, assuming that u

is continuous on Ω̄ and noting that we have g33 = 1 in a shell, we arrive at Hypothesis 3.

Page 120: in Section 4.2, Hypothesis 3 can be better expressed as:

A shell supported by an elastic foundation with a rough contact area that is in agreement with

Assertion 1 satisfies the following displacement-based friction condition

[
2νFu

3 + (uαu
α)

1
2

]
|ω ≤ 0 ,

where νF is the coefficient of friction between the shell and the foundation, and u is the displace-

ment field of the shell with respect to the contact region ω. If [2νFu
3 + (uαu

α)
1
2 ]|ω < 0, then we say

that the shell is bonded to the foundation, and, if [2νFu
3 + (uαu

α)
1
2 ]|ω = 0, then we say that the

shell is at limiting-equilibrium.

Page 123: in Section 4.3.3, Governing Equations of the Overlying Shell, derivation can be better

expressed as:

The set VF (ω,Ω) is not a linear set as it violates the homogeneity property. However, it can be

shown that for any field u ∈ VF (ω,Ω) there exists a field w ∈ VF (ω,Ω)\{u} and a constant ε > 0

such that u+ sw ∈ VF (ω,Ω), ∀ s ∈ (−ε, 1], i.e.∫
U

[2νF (u3 + sw3) + (uαu
α + 2suαw

α + s2wαw
α)

1
2 ] dx1dx2 ≤ 0 , ∀ U ∈M(ω) with meas(U ;ω) > 0 .

To find the governing equations for the [2νFu
3 + (uαu

α)
1
2 ]|ω < 0 case consider a unique minimiser

u ∈ VO(ω,Ω), where VO(ω,Ω) = {v ∈ VF (ω,Ω) | [2νF v
3 + (vαv

α)
1
2 ]|ωO < 0 a.e.} and where

ωO = {V ∈ M(ω) | [2νF v
3 + (vαv

α)
1
2 ]|V < 0 a.e., meas(V ;ω) > 0}. Now, given a w ∈ VO(ω,Ω),

there exists an ε > 0 such that we get u+ sw ∈ VF (ω,Ω), ∀ s ∈ (−ε, 1] where

ε <

(
2νF ||u3||L1(U) − ||(uγuγ)

1
2 ||L1(U)

)
(

2νF ||w3||L1(U) + ||(wαwα)
1
2 ||L1(U)

)
6



for some U ∈ M(ωO). Now, simply let v = u + sw in Corollary 4 to obtain 0 ≤ J ′(u)(sw),

∀ s ∈ (−ε, 1] for this w ∈ VO(ω,Ω). Finally, noticing that 0 ≤ J ′(u)(sign(s)|s|w), ∀ w ∈ VO(ω,Ω), we

get the governing equations for the bonded case.

For the limiting-equilibrium case, an incorrect proof is given in the thesis. The correct proof

is as follows: To find the governing equations for the [2νFu
3 + (uαu

α)
1
2 ]|ω = 0 case consider a

unique minimiser u ∈ VC (ω,Ω), where VC (ω,Ω) = {v ∈ VF (ω,Ω) | [2νF v3 + (vαv
α)

1
2 ]|ωC = 0 a.e.}

and where ωC = {V ∈ M(ω) | [2νF v
3 + (vαv

α)
1
2 ]|V = 0 a.e., meas(V ;ω) > 0}. Now, noticing

that uj |ωC are not independent and related by the condition u3|ωC = − 1
2ν
−1
F (uαu

α)
1
2 |ωC , we get

δu3|ωC = − 1
2ν
−1
F (uαu

α)−
1
2 (uγδu

γ)|ωC . Let

VC (u;ω,Ω) = {v ∈ VC (ω,Ω) | (v1, v2)|ωC = (cu1, cu2)|ωC a.e., ∀c > 0, u ∈ VC (ω,Ω)} ,

and now, given a w ∈ VC (u;ω,Ω) there exists an ε > 0 such that we get u + sw ∈ VF (ω,Ω),

∀ s ∈ (−ε, 1], where ε < ||(wαwα)
1
2 ||−1

L1(U)||(uγu
γ)

1
2 ||L1(U) for some U ∈ M(ωC ). Now, simply

let v = u + sw in Corollary 4 to obtain 0 ≤ J ′(u)(sw|Ω + s(w1, w2)|ωC ), ∀ s ∈ (−ε, 1] for this

w ∈ VC (ω,Ω). Finally, noticing that J ′(u)(w|Ω) = 0 (this leads to the governing equations in the

foundation) and 0 ≤ J ′(u)(sign(s)|s|(w1, w2)|ωC ), ∀ w ∈ VC (u;ω,Ω) ⊂ VC (ω,Ω), we get the gov-

erning equations for the limiting-equilibrium case (adapted from Section 8.4.2 of Evans [5]).

Page 129: in the first paragraph, relative displacement between the two elastic bodies should be

Φ(v − u) = (`α(v,u)`α(v,u))
1
2 , where `(v,u) = (v1, v2)|ω+ − (u1, u2)|ω− .

Page 130: the first paragraph should be:

Note that in this framework, i.e. in the set {ω × [0, h)}, one has g33 = 1.

Page 132: in the first sentence, ignore the last (duplicate) word model.

Page 137: in Section 4.7, Conclusions, note the following:

In the literature, friction laws are represented in either force or stress based formulations. However,

as far as we are aware, this is the first documented displacement-based friction condition that is

compatible with shells and shell-membranes on elastic foundations, and can also can be expressed

in a closed variational form. Note, however, its physical validity (as is also the case with other friction

models) still remain as an open question.

Page 137: in Chapter 5, Abstract, the first sentence, the words a question should be open ques-

tions.

Page 151: in the third paragraph, last sentence, the words a dancers should be dancers.

Page 156: in the third paragraph, incremental azimuthal length is ∆x2 = 1
N−1π.
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Page 166: in Section 6.4, Hypothesis 4 can be better expressed as:

Consider a rectangular membrane over a rough elastic prism whose strained contact region is

parametrised by the map (x, f(θ), g(θ))E, where f(·) and g(·) are C1([θ0, θmax]) 2π-periodic func-

tions, |x| ≤ ∞, and the contact interval [θ0, θmax] is chosen such that g′f ′′−f ′g′′ > 0, ∀ x2 ∈ [θ0, θmax]

(i.e. has a positive mean curvature). If Tmax is the maximum applied-tension at θmax and T0 is the

minimum applied-tension at θ0, then there exists a regression curve Y (·) of the form ξTmax + ε =

Y (ξT0 + ε), such that Y ′(x)|x→∞ is positive, finite and invariant with respect to the quantity (mean

radius of curvature of the contact region)

r0 =

(
arctan

(
g′(θ0)

f ′(θ0)

)
− arctan

(
g′(θmax)

f ′(θmax)

))−1 ∫ θmax

θ0

(
(f ′)2 + (g′)2

) 1
2 dθ ,

where the normalising constant ξ is chosen such that ξ ≤ 1
max(Tmax)

and the translating constant

ε is chosen such that Y (ε) is not singular. Furthermore, given such a regression curve Y (·), the

coefficient of friction µF has the following relation,

µF =

(
arctan

(
g′(θ0)

f ′(θ0)

)
− arctan

(
g′(θmax)

f ′(θmax)

))−1

log (Y ′(x)) |x→∞ ,

and, in particular, µF is invariant with respect to the quantity r0.

Page 166: in the last paragraph, both regression curve and the coefficient of friction should be

Y (ξT0 + 1) = a+ b(ξT0 + 1) + c log(ξT0 + 1) and

µF =
log (b)(

arctan
(
g′(θ0)
f ′(θ0)

)
− arctan

(
g′(θmax)
f ′(θmax)

)) ,
where (0, f, g)E is the cross section of the final deformed geometry and [θ0, θmax] is the final contact

interval.

Page 168: in the first paragraph, the last word, modules should be modulus.

Page 171: in Section 6.6, the first sentence, the word cylindrical should be cylinder.

Page 172: in the first set of equations, following is the correct formulation:

Λ = 4µ
λ+ µ

λ+ 2µ
.

Page 172: in the second to last paragraph, incremental azimuthal length should be ∆x2 = 1
N−1π.

Page 177: right after the definition of δl, the word how should be the.

Page 179: in Section 6.8, Conclusions, note the following:

Both numerical-modelling and experiments conducted on human subjects imply that it is unwise to

use belt-friction models (e.g. capstan equation) to calculate the friction between in-vivo skin and

fabrics. This is because such models assume a rigid foundation while human soft-tissue is com-

plaint, and thus, a portion of the applied force is expending on deforming the soft-tissue, which
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in turn leads to the illusion of a higher coefficient of friction when belt-friction models are used to

calculate the coefficient of friction. We also found that both numerical-modelling and real-life exper-

imental data imply that given a constant coefficient of friction, a higher volume of soft-tissue (high

radius) and more compliant soft-tissue (lower Young’s modulus) would result in higher deformation

of the skin, and a higher volume of soft-tissue would result in more shear-stress generated on the

skin, which in turn could lead to grater probability of skin damage.

We stress to the reader that our statistical modelling techniques used in this section are unsatis-

factory, due to a clear lack of knowledge in the field of statistics during the time of this analysis.

However, the conclusions implied by various correlations (as described above) still stand.
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