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Abstract

In this thesis we examine the behaviour of shells supported by elastic foundations. We begin
by critically analysing the existing literature on the study of thin objects such as films, plates, mem-
branes and shells, and we highlight their limitations, validity and present correct formulations when
possible. We also do the same for various frictional laws, in particular, Coulomb’s law of static fric-
tion. Then, we extend the capstan equation to noncircular geometries by modelling membranes
supported by rigid foundations in presence of friction. We provide closed-form solutions and com-
pare them to other similar existing models in the literature. Then, we begin the study of shells
supported by elastic foundations. We treat the bonded case as a boundary form and prove the
existence and the uniqueness of solutions, and thus, prove it is a mathematical theory and not
merely a mathematical model. To conclude this case we conduct numerical experiments and
compare the results against existing models in the literature. Finally, we introduce a constraint
and assert that this condition is analogous to classical frictional laws. This constraint is then used
to model shells supported by elastic foundations with friction. As with the previous case, we again
prove the existence and the uniqueness of solutions, and conclude by conducting numerical ex-
periments and comparing the results against existing models in the literature. Applications for
our work can be found in cable drive electronic systems, curvilinear stretchable electronics and

modelling skin abrasion.
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1 Introduction

In this thesis we study the general behaviour of thin curvilinear static isotropic linearly elastic struc-
tures such as shells and membranes when supported by elastic bodies, and in this context such
underlying bodies are commonly referred to as foundations. The significance of this research is that
there exists no comprehensive mathematical theory to conclusively describe the behaviour of thin
objects supported by elastic foundations. Thus, we attempt, with the best of our ability, to present a

mathematical theory of shells supported by elastic foundations.

In Chapter |1] we introduce the critical definitions, fundamental theorems and most notable appli-
cations relating to the study of both shell and membrane theory, as well as contact conditions
governing elastic bodies, in particular, friction. In Chapter [2 we examine behaviour of membranes
supported by rigid foundations where the contact region is governed by the common friction-law. To
be more precise, we extend the capstan equation to a general geometry. Then, we present explicit
solutions and compare our results against other models, in particular, Coulomb’s law of static fric-
tion [102]. In Chapter [3|we begin the study of shells supported by elastic foundations. Initially, we
assume that the shell is bonded, and we derive the governing equations with the mathematical tech-
niques for linear Koiter’s shell theory that is put forward by Ciarlet [38] and a technique that is used
in the derivation of surface Cauchy-Bourne model [89]. In this way, we treat the overlying shell as a
boundary form of the elastic foundation, which is analogous to the work of Necas et al. [144], and
use the mathematical techniques put forward by Ciarlet [38], and Badiale and Serra [13] to mathe-
matically prove the existence and the uniqueness of solutions for the proposed model. Chapter [3]
concludes by conducting numerical experiments: by comparing our bonded shell model against an
existing model presented in the literature [16], but modified for our purposes by incorporating gen-
eral elastic properties and extending it to curvilinear coordinates; by checking the numerical validity
of our bonded shell model against the bonded two-body elastic problem. In Chapter 4] we con-
clude our study on shells by asserting that the contact region is governed by a displacement-based
frictional-law that is analogous to Coulomb’s law of static friction. We treat this displacement-based
frictional-law as a constraint, which is analogous to the work of Kinderlehrer and Stampacchia [107],
and with the mathematical techniques put forward by Evans [63], and Kinderlehrer and Stampac-
chia [107] we mathematically prove the existence and the uniqueness of solutions to the proposed
model, and thus, concluding the mathematical theory of overlying shells on elastic foundations.
Chapter [4] concludes by modifying the model for Coulomb’s law of static friction, which is put for-
ward by Kikuchi and Oden [102], to represent two-body elastic problem with friction in curvilinear
coordinates, and we use this extended model to conduct numerical experiments against our shell
model with friction. The reader must understand that, despite we may use other authors’ work as
comparisons, we never use authors’ exact models. We adapt, extend and modify their work to an

extent that they are not original authors’ work, but they are our original work.

We consider Chapter [3| to be the most crucial and the most significant chapter of this thesis as

it contains the most original and fundamental results. Chapter [3} and to a lesser extent Chapter



does not contain mere models: they are mathematical theories. By that what we mean is that,
regardless if our models correctly describe a real life phenomenon or not, the models are mathe-
matically valid as a unique solution exists with respect to an acceptable set of parameters. However,
the work we present in this thesis is by no means complete, and thus, in Chapter 5| we extensively
describe some remaining open questions and limitations of our work. Also, there we present pos-
sible extensions for future work. In Chapter [6] we extend the ideas that we present in Chapters
and [5, and propose mathematical models to study the behaviour of in-vivo skin and fabrics in
presence of friction. With real life experimental data gathered from human subjects and numerical
experiment data from our models we attempt to extract some result that maybe implicated in reduc-
ing skin abrasion due to friction. Finally, we conclude our analysis, and thus, this thesis, in Chapter

where all our research findings and their significance are discussed.

The following chapter is a comprehensive introduction to the study of thin objects such as plates,
shells, films and other relating subjects that are included in study of mathematical elasticity and
friction. We begin, in Section [1.1] with a list of notations that we subsequently use in the latter
chapters. Sections and contain all the necessary mathematical definitions and theorems
that are vital for the rigorous mathematical analysis of the later chapters. Here, we are careful in
the accuracy of our sources and our definitions. For example, the definition of hyperelasticity given
by Kikuchi and Oden [102] (see section 5.1 of Kikuchi and Oden [102]) is ‘hyperelastic means that
there exists a differentiable stored energy function ... representing the strain energy per unit volume
of material, which characterizes the mechanical behavior of the material of which the body is com-
posed’ [102]. Although, this is indeed a property of hyperelasticity, it does not merit as a definition
as hyperelasticity is a fundamental concept in mathematical elasticity. For a more precise defini-
tion of hyperelasticity please consult Ball [17] or Ciarlet [38] (see chapter 7 of Ciarlet [38]). Note
that, if having a differentiable energy functional (with respect to the strain tensor) constitutes as the
material being hyperelastic, then any linear elastic material can be hyperelastic as any linear elas-
tic material also have a differentiable energy functional with respect to the strain tensor. However,
this is not the case as one can find a great example by Morassi and Paroni [139] (see section 2
subsection 7.7 of Morassi and Paroni [139] for the examples of convexity and policonvexity) where
the linear elastic model failed to be physically realistic under a condition, while a hyperelastic model
stayed perfectly physically realistic for the same condition. Also, in Sections and we only
state the theorems and critical results. However, we correctly document the sources so that the
reader may consult for the proofs and the justifications of the results. If the reader is unfamiliar with
pure mathematics, then Sections [1.2]and may seem unmotivated or even superfluous, but the

significance of these results is revealed in the subsequent chapters.

Sections and are dedicated to the study of thin objects. We demonstrate to the reader the
fundamental ideas behind the study of thin objects, the techniques used in deriving of such models
and most notable results in the literature. Sections [1.6land are dedicated to literature of most
notable and relevant commercial applications relating to this work. These sections also double as

a thorough literature review.



Finally, Sections[1.8} [1.10}[1.11]and[1.12] are dedicated to the critical study of vital publications

that paved the way to our current work. Unfortunately, we reveal some authors’ erroneous work that

were responsible for significantly impeding the progress of this project. The reader must understand
that we are not being iconoclastic, but we are merely being mathematically thorough. We urge the
reader not to take our word, but actually review the given publications one’s self as we gone to
great lengths to be meticulous as possible when documenting the flaws (chapters, page numbers,
equations, etc.). In fact, please consult the footnotes for URLSs for the free copies of the publications,

so that the reader can make an informative judgement on the matter.

1.1 Notations and Conventions

In this section we present common notations that we use throughout this thesis, but the strict defi-
nitions of the notations are defined in the subsequent sections. The given definitions stand unless

it is strictly says otherwise.

e n € N where N is the set of natural numbers.

R is usually reserved for a curvilinear real-line.

E is usually reserved for a Euclidean real-line.

e «,f,v,0 € {1,2} are usually reserved for the curvilinear indices.

e 4.7,k 1 €{1,2 3} are usually reserved for Euclidean indices.

e 0:wCR?— o(w) c E? describes the unstrained configuration of the shell.

e X :QcCR®— X(Q) c E?® describes the unstrained configuration of the foundation.

0 . . I .
e 0; = — are usually describe the partial derivatives with respect to R3.
7 Qg

e Hiup = 0a01:050" is the covariant first fundamental form tensor induced by o on R?.

e gi; = 0;X,0;X" is the covariant metric tensor induced by X on R®.

810’ X (920'

e N= — —~
Ha10' X 820|\

is the unit normal to the surface o (w).

* Hijop = N’“aaﬁak is the covariant second fundamental form tensor induced by o on R2.
1 N -
e 0< —5}?”]3 signifies positive mean-curvature.

e 0 < Ko Fyyy — FyaFiny signifies nonnegative Gaussian-curvature, i.e. non-hyperbolic.

e V; are the covariant derivatives in R
e V; are the covariant derivatives in R®.
o 0" =Fi"0, .

o ) =g"p;.

h is the thickness of the shell or the membrane.

H is the thickness of the foundation (special case only).

E is Young’s modulus of the shell or the membrane.

E is Young’s modulus of the foundation.

e v is Poisson’s ratio of the shell or the membrane.



v is Poisson’s ratio of the foundation.

°
>
Il

is first Lamé’s parameter of the shell or the membrane.

1+v)(1-2v)
< E o . .
e \= ——— s first Lamé’s parameter of the foundation.
(1+2)(1-2p)
1 F .
o == is second Lamé’s parameter of the shell or the membrane.
2(1+v)
1 E o .
o ji=— — is second Lamé’s parameter of the foundation.
2(1+v)
o« BBV _ 2\ RS s | perpds | pad piy is the isotropic elasticity tensor of the shell
A2 070 S i or the membrane.

o AU = Ng'ig" + i (g% g7 + ' g7*) is the isotropic elasticity tensor of the foundation.

A4

* A:4H/\—|—2,u'

e o is the mass density with respect to the volume of the shell or the membrane.
e [ is the width of the membrane.

e 0T = Tmax/70 = Tmax/T0 is the tension ratio.

e g = 9.81 is the acceleration due to gravity.

e up is the capstan coefficient of friction.

e v is Coulomb’s coefficient of friction.

e q is the horizontal radius of the contact region.

e b is the vertical radius of the contact region.

b\ . . . .
e (35 = arctan () is the critical parametric-latitude.
a

e ¢ is the regularisation parameter.

1

o |[v]p = (Z (norm(vi,Q))2> , Where norm(-, 2) is Matlab 2-norm of matrix.

i

e R? is the coefficient of determination of linear regression.

Furthermore, the reader must note the following:
o We assume Einstein’s summation notation unless it strictly says otherwise;

¢ In numerical modelling, whenever we say Young’s modulus of the shell, we mean Young’s mod-
ulus of the shell relative to Young’s modulus of the foundation, i.e. 6E = E/E. Furthermore, if

0F > 1, then we say the shell has a high stiffness;

¢ In numerical modelling, whenever we say Poisson’s ratio of the shell, we mean Poisson’s ratio of
the shell relative to Poisson’s ratio of the foundation, i.e. év = v/p. Furthermore, if 1 <« év <

171, where > 0, then we say the shell is aimost incompressible;

¢ In numerical modelling, whenever we say the thickness of the shell, we mean the thickness of the
shell relative to the thickness of the foundation, i.e. 6h = h/H. Furthermore, if 64 < 1, then we

say the shell is thin;



¢ In numerical modelling, whenever we say the vertical radius of the contact region, we mean the
vertical radius of the contact region relative to the horizontal radius of the contact region, i.e.
0b=b/a;

e When discussing numerical results, whenever we speak of a particular variable, we assume all

other variables are fixed unless it is strictly says otherwise;
o All numerical results assume standard Sl units unless it is strictly says otherwise;

¢ All of our numerical modelling is conducted using Matlab 2015b with format long and all numerical

results are expressed in 3 significant figures: always rounded up.

1.2 Measure, Differential Geometry and Tensor Calculus

In this section we present the most important measure theory, differential geometry, and tensor
calculus definitions and theorems that are required in this thesis. Almost all the results given in this
section can be found in Ciarlet [38] 39E], Kay [101] and Lipschutz [124].

Definition 1 (0-algebra). A collection M(R™) of subsets of R™ is called a o-algebra if
@O, R" € M(R™),

i) U e MR™) = {R*"\ U} € M(R"),

(iii) if {Uk }ren € M(R™), then U cy Uk, Npen Ur € M(R™).

Note that n € N and O is the empty set in R™.

Lemma 1 (Lebesgue Measure and Lebesgue Measurable Sets). There exists a o-algebra
M(R™) of subsets of R" and a mapping meas(-;R") : M(R") — [0, +oo] such that:

(i) Every open subset of R"™ and every closed subsets of R"* are belong to M(R");

(ii) If B is any ball in R™, then meas(B; R") is the n-dimensional volume of B;

(i) If {Ur }ren € M(R™), where all Uy are pairwise disjoint, then meas(| |, oy Ur; R™) =

> ke meas(Up; R™);

(iv) IfU C V such thatV € M(R"™) and meas(V;R") = 0, thenU € M(R"™) and meas(U;R™) = 0.
Thus, for any U € M(R"™) we say U is a Lebesgue measurable set and we say meas(-; R") is

the dimensional Lebesgue measure in R".
Proof. Please consult chapter 6 of Schilling [175]. O
For an introduction on measure theory please consult chapter 1 of Kolmogorov et al. [111].

Definition 2 (Measurable Function). Let f : R® — R. Then we say f is a measurable

Junction if f~Y(U) € M(R") for every open set U C R.
Note that f~1(-) is the preimage of f(-) in this context.

Definition 3 (Essential Supremum ess—sup(-)). Let f : R* — R be a measurable function.
Then the essential supremum of f is ess—sup(f) = inf{a € R | meas({x € R™ : f(x) > a};R") =
0}.

1 http://caos.fs.usb.ve/libros/Mechanics/Elasticity /An%20Introduction%20t0%20Differential%20Geometry
%20with%20Applications%20to%20Elasticity%20-%20Ciarlet.pdf
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Definition 4 (Almost Everywhere a.e.). Let f,g : R™ — R be a measurable functions. Then
we say f =g ae. if [;[f —g] dR") =0, for all U € M(R") with meas(U;R") > 0.

For an introduction on measurable functions please consult chapter 2 of Spivak [184].

We say the map X e C2(Q; E?®) is a diffeomorphism that describes the reference configuration of
a Euclidean volume with respect to three-dimensional curvilinear coordinates (x!,z2,23), where
Q c R3 is a three-dimensional bounded domain and E? is the three-dimensional Euclidean space.
By diffeomorphism we mean an invertible map that maps one differentiable manifold to another
such that both the function and its inverse are sufficiently differentiable. Note that C™ is a space of
continuous functions that has continuous first n partial derivatives in the underlying domain, where
n € N. Bold symbols signify that we are dealing with vector and tensor fields and each must be
understood in the context of the statement. Also, note that we usually reserve the vector brackets
(- )g for vectors in the Euclidean space and ( - ) for vectors in the curvilinear space. Furthermore,

the over-bar in the domain Q2 implies the closure of the domain.

The covariant metric tensor of X with respect to curvilinear coordinates is defined as
gij = 0; Xx0; X" | Vi, j€{1,2,3}.

Note that 9; is the partial derivative with respect to the coordinate =7, and we assume Einstein’s
summation notation. Furthermore, gixg" = 67,V 4,5 € {1,2,3} where §/ is the Kronecker delta, and
0’ = ¢7'9;. Einstein’s summation notation is assumed herein unless it is strictly stays otherwise.

Also, we regard the indices i, j, k,1 € {1, 2, 3}.

Here the metric tensor is a symmetric positive-definite C'1(2;R?) function. By positive definite we
mean that there exists a positive constant C that depends on  and X such that C§;;v'v7 < g;;007,
V v € R3 (see section 6.1.1 of Evans [63]). The existence of such a constant can be guar-
anteed as all the three eigenvalues of g are positive in Q by construction, and thus, let C =
inf ;1 .2 49e0{A1, A2, A3} where ); are the eigenvalues of g. Also, as g € C'(€;R?), there ex-

ists a finite positive constant M such that M = ess—sup(det(g)).
We say V is the covariant derivative operator in the curvilinear space. For any v € C'(Q;R?) we
define its covariant derivative as
Vol = 0;0% + T’
where

_ 1
FL’; = 59“ (—=Ougij + 0igji + 0;qui)

are Christoffel symbols of the second kind. Furthermore, V;z% = 5; Vi, j € {1,2,3}, by definition.

Note that here Christoffel symbols are C°(2) functions with symmetry in their lower indices.



We say A is the vector Laplacian operator in the curvilinear space. For any v € C?(Q; R?) we define
its vector Laplacian as

. 1 oo
Avl = %ai (Vg g*Vier?) |

where g = det(g) (see page 3 of Moon and Spencer [138]).

We further restrict the map X by asserting that X |,s_, describes a bounded portion of its boundary,
i.e. given that 992 is the boundary of the domain, there exists a plane w C 99 with meas(w; R?) > 0

such that z3 = 0 in w.

We say the map o € C3(w; E3) is an injective immersion that describes the reference configura-
tion of an Euclidean surface with respect to two-dimensional curvilinear coordinates (z!, z2), where
w C R? is a two-dimensional bounded plane. By immersion we mean a differentiable map between

differentiable manifolds whose derivative is everywhere injective.

The covariant first fundamental form tensor of o with respect to curvilinear coordinates is defined

as
}ﬂ]a@ = &,oi%ai , Va,B e {1,2} .
Also, we regard the indices a,8,v,6 € {1,2}. Furthermore, E”M}m[j =05,V a,B € {1,2}, by

definition.

The covariant second fundamental form tensor of o with respect to curvilinear coordinates is de-

fined as
Rigag = NiBapo' , V a, B € {1,2},
where
N — 0o X Oro
[|010 x Ox0||
is the unit normal to the surface o, x is the Euclidean cross product and || - || is the Euclidean norm.

Here the first fundamental form tensor is a symmetric positive-definite C?(w; R%) function. Thus,
there exists a positive constant C that depends on @ and o such that Céaﬁvavﬂ < Fmaﬁv%ﬂ,
Vv € R% Also, as Fy; € C?%(w;R®), there exists a finite positive constant M such that M =

ess—sup(det(Fyy)). Also, the second fundamental form tensor is a symmetric C'* (w; R®) function.

We say V is the covariant derivative operator in the curvilinear plane. For any v € C!(w;R?) we

define its covariant derivative as
Vpu" = 0gu” + T ju” ,
where

1 s
Lo = 5" (=05 Kiap + OaLiss + O Higsa)



are Christoffel symbols of the second kind in the curvilinear plane. Furthermore, Vzz® = ég,
V a, B € {1,2}. Note that here Christoffel symbols in the curvilinear plane are C'(w) functions with
symmetry in their lower indices. Furthermore, as F;B € C1(w), there exists a finite positive constant
M such that ess—sup(T,);) < M,V «, 8,7 € {1,2}.

We say A is the vector Laplacian operator in the curvilinear plane. For any v € C?(w; R?) we define

its vector Laplacian as

L

D EY'V,0%) |
m (\/E m W)

where Hj = det(Fy;) (see page 3 of Moon and Spencer [138]).

AvP =

Lemma 2. Letw C R? be a plane and let o € C*(w; E*) be an injective immersion. Then there

exists an ¢ > 0 such that the mapping © : @ x [—¢,¢] — E® defined by

®=0c+2°N
is a C?(@ x [—¢, ¢]; E*)-diff eomorphism with det(0,0, 9.0, 0;0) > 0, V (z',22,2%) € @ x [—¢,¢€].
Proof. See the proof of theorem 4.1-1 of Ciarlet [39]. O
Note that x is the Cartesian product in this context.

Proposition 1. Given that (z!,2% 2%) € {w x (—¢,0]}, for an e > 0, the metric tensor, and the
first and the second fundamental forms share the relation
- oy 2
9ap = Fijap — 22° Fmap + (2°)” Fitjon Fyp3 »
93p = 0 )

g3 =1.

Proof. A trivial tensor calculus result that follows directly from the definition of X and

lemma 21 O

Proposition 2. For a vector v € C*(w;R3) the covariant derivative in the curvilinear space

restricted to the plane w is

= 3
Vv = Vo7 — EHng ,
?B’US = 651)3 + Pi]]]agva .

Proof. Note that Fujos = Fagsle = —[305]w = —Is3a/w and the result follows directly from the
definition of V and lemma O

Proposition 3.

V(XEII],B’Y = vﬂFiII]'ya .
Proof. See the proof of theorem 2.5-1 of Ciarlet [38]. O

Lemma 3 (Gauss’ Theorema Egregium). The Gauss curvature is uniquely determined by

the first fundamental form and is, therefore, preserved by isometries.
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Proof. See the proof of theorem 10.2.1 of Pressley [159]. O
By isometry we mean a distance-preserving injective map between metric spaces.

Lemma 4 (Fubini’s theorem). Let X,Y C R be closed intervals and f : X xY — R. If f is

/Y[/Xf(a:,y) dX] dyz/x{/yf(x,y)dy] i

Proof. See the proof of theorem 3-10 of Spivak [184]. O

measurable, then

Proposition 4. As g € C?(Q;R?) is positive definite, there exists a positive constant C' that

Cg/dQ.
Q

Proof. As g is positive definite, there exists a positive constant ¢ such that ¢ < det(g),

V (2!, 2%,2%) € Q. Thus, we get [, dQ = [, det(g)? da'da?da® > ¢ [ dztdr?da® = C. Note that

depends on ) and X such that

Q) is a bounded domain in R3. O

Proposition 5. As Fj; € C?(w;R) is positive definite, there exists a positive constant C that

Cg/dw.

Proof. As Fyj is positive definite, there exists a positive constant ¢ such that ¢ < det(Fy,),

V (2',2%) € @. Thus, we get [ dw = [ det(Fyy)? da'da® > ¢ [ da'da® = C. Note that w is a

depends on @ and o such that

bounded domain in R2. O

Lemma 5 (Positive Definiteness of the Elasticity Tensor). Let E > 0 and —1 < v < % Then

there exists a positive constant C' that depends on Q, X, E and v such that

o v E g 1 o oo
WS My < | g gl 4 = it 4 %) ) My My, V M € Sg .
C5™* 67 M kl_<(1+ﬂ)(1_2p)99 +2(1+D)(9 7' +g"g"*) ) MMy , ¥V M € Ss
Proof. See the proof of theorem 3.9-1 of Ciarlet [39]. O

Note that S,, is the space of n x n real symmetric matrices.

Lemma 6 (Positive Definiteness of the Elasticity Tensor on a General Surface). Let £ > 0
and -1 <v < % Then there exists a positive constant C that depends onw, o, E and v such

that

1 F 2v
a k) af 5 o 36 ad B
(60 766 Moc,BM'ytS < 72 (1 1/) ((1 1/) F[I] F[ﬂ + F[‘H—YEH + m F[‘H—Y> MagM,Yg , V M e SQ .

Proof. See the proof of theorem 4.4-1 of Ciarlet [39]. O

Lemma 7 (Critical Angle of Deflection of a Semi-Ellipse). Consider the set Semi—Ellipse =
{(asin(0),bcos(0))y | a,b € Rso, 0 € [—3m, 7]} Let § be the acute angle that the radial vec-
tor (asin(f), beos()) makes with the unit outward normal vector (¢(0))~* (bsin(8), a cos())x.
where ¢(0) = (b sin?(9) + a® cos2(6)) 2, i.e.

tan(d) = % sin(20) .

9



Then the critical value of § over the set Semi—Ellipse is given by
1 b
Ocrit = —m — 2arctan <> .
2 a
Proof. Consider theorem 1 from chapter 8 of Kalman [98], which is proved for the set
Ellipse = {(asin(#),bcos(f))r | 0 < b < a < o0, 6 € (—m, 7]} and for the angle 6 > 0. Now,

notice that critical points occur at § = +3, and thus, use a few elementary trigonometric

identities to obtain the above lemma. O

Definition 5 (Parametric Latitude 5(-)). Consider the setSemi—Ellipse = {(asin(§),bcos(6))y |
a,b € Rxg, 0 € [—-i, 17]}. Thenthe parametric latitude is define by 3() = arctan((b/a) tan(6)).

See section 5.5 of Osborne [145].

Consider a prism with an elliptical cross-section defined by the map (', asin(6), bcos(6)) g, where
|2!| < oo and 6 € [—1x, in], then we say 35 = arctan(b/a) is the critical parametric-latitude. To
be more precise, §s is the parametric latitude with respect to the angle é.it implied by lemma
i.e. Bs = iw — %5@” . Lemmafurther implies that s o« b/a and we use this as a measure of the

curvature of the contact region.

1.3 Functional Analysis

In this section we present the most important functional analysis definitions and theorems that are
required in this thesis. Almost all the results given in this section can be found in Ciarlet [38], Evans
[63], Adams and Fournier [3], and Badiale and Serra [13].

Definition 6 (Segment Condition). We say the domain 2 C R" satisfies the segment con-
dition if for every x € 092 there is a neighbourhood U, and a nonzero vector y,, such that, if

z € QN Uy, then z + ty,, € Q) for somet € (0,1).

Segment condition implies that, if the domain 2 is not empty, then the boundary must be (n — 1)

dimensional and the domain cannot lie on both sides of any part of the boundary.

Definition 7 (Uniform-C! Regularity Condition). We say the boundary of the domain Q C
R" satisfies the uniform-C1(R™;R"~!) condition, where n € {2,3}, if there exists a locally
finite open cover {U;} of boundary 02, a corresponding sequence {®;} of transformations
with first-order continuous partial derivatives and with ®; taking U, into the ball B = {y €
R™ | |ly|| < 1}, and having ¥; = @;1 such that:

(i) For some finite R, every collection R + 1 of the set U; has empty intersection;

(ii) For some § > 0,95 C U;Z, ¥;({y € R™ | [lyl| < 3});

(iii) For each j, ®,;(U; NQ) ={y € B |y, > 0};

(iv) There exists a finite constant M such that |8a<I>?(a:)\ <M,VaxeU; and |8Q\Il?(y)| < M,
Vye B, Va,B€[l,n].

Definition 8 (Lebesgue Space L?). Let Q C R" be a domain and let v € R. Then we say

v € L?(Q) if there exists a finite positive constant M such that

1
2
ollos = ( [ dﬂ) <M.
Q
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Furthermore, the space (L*(),|| - ||12(n)) is a Hilbert space, i.e. a complete normed space

with the notion of an inner product.

By complete we mean that every Cauchy sequence in the space converges with respect to the
specified norm. Note that the product space (L*(Q2), || - ||z2(y) must be understood in the context
of the statement. For example, if the tensor E € R? x R? is also E € L?*(Q), then we express
the product space as (L*(2), | - Iz2(ey) = (L3(2) x L3() % A(Q) x LX), (|- [Faay+ 11 - |32t
|- 120+l HQLQ(Q))%), ie. [|EllL2) = (Xapeqio) ||E(¥5|\2L2(Q))% < M for a some finite positive
constant M.

Definition 9 (Sobolev Space H™). Let Q) C R™ be a domain and let u € R. Then we say

u € HY(Q) if there exists a finite positive constant M such that

2

l[ullm (o) = ||UH%2(Q) + Z ||aju||%2(sz) <M,

j=1
where H'(Q) = {v € L*(Q) | 8;v € L*(Q) , V j € [1,n]}. Also, we say u € H?(Q) if there exists
a finite positive constant M such that

1
2

|[ul| () = HUH%?(Q) + Z HajuH%?(Q) + Z Haz‘jUHZm(Q) <M,

j=1 ij=1
where H%(2) = {v € HY(Q) | 9;;v € L*(Q) , Vi,j € [1,n]}. The space (H™(Q),|| - ||gm o)) is a
Hilbert space.

Note that 9;v and 0;;v from above statements are weak derivatives and must be understood in a

sense of distributions (see section 5.2.1 of Evans [63]). Also, note that H° = L? by definition.

Proposition 6 (Holder Inequality). Let u,v € L?(Q), then we have the inequity [, |uv| d© <
[ullL2()[|v]| L2 (@) Also, let ess—sup(i) < oo and [, |0] d2 < oo, then we have the inequality

Jo lav] d2 < ess—sup(a) [, o] dQ.

Proof. A simple extension of Cauchy-Schwarz inequality. See appendix B.2 of Evans [63].
O

Proposition 7 (Minkowski Inequality). Let u,v € L?(w), then we have the inequality ||u +

2wy < uflrz) + [vllLz)-
Proof. A simple extension of the triangle inequality. See appendix B.2 of Evans [63]. O

Definition 10 (Support supp). Let @ C R" and ¢ : Q — R, then we say the support of the
JSunction ¢ is the set supp(¢) = {x € Q | ¢(z) # 0}.

Definition 11 (Space of smooth functions with compact supports C§°). LetQ2 C R", then the
space of infinitely differentiable functions with compact support in the underlying domain is
the set C3°(Q) = {¢ € C*°(Q) | supp(¢) € Q}, where C* is the space of infinity differentiable

Jfunctions.

Note that X € 2 ¢ R™ means that X is compact (closed and bounded) in R™ such that the closure

of X is a proper subset of Q2.
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Definition 12 (Space of test functions 2). Let Q C R", then the space of test functions is
the set 2(Q) = {¢p € C°(Q) | D¢ € C(N) , V a € N"}, where D is the differential operator

and « is a multi index.
For more on distribution theory please consult chapter 2 of Demidov [53].

Definition 13 (Sobolev Space H}). Let Q C R", then H}(Q) is the closure of C$°() with

respect to the norm in H'(Q).

Lemma 8 (Fundamental Lemma of J. L. Lions). Let Q C R" be a domain and v be a distri-
butionon Q. Ifv e H~1(Q) and d;v € H~*(Q),V j € [1,n], thenv € L?(Q), where H~'(Q) is the
dual space of H}(Q).

Proof. See Magenes and Stampacchia [131]. O

Lemma 9 (Infinitesimal Rigid Displacement Lemma). LetQ C R? be adomain, X € C?(Q); E?)
be a diffeomorphism and v € H*(Q). If

Viv; + Vv =0,V (z',2%,2%) € Q, Vi, j € {1,2,3},
then there exist two constant Euclidean vectors a,b € E* such that
V' X =a+bx X,V (2% 2% Q.
In particular, if v|aq, = 0, for some 9§y C 9Q with meas(9y; R?) > 0, thena = 0 and b = 0.
Proof. See the proof of theorem 1.7-3 of Ciarlet [38]. O

Lemma 10 (Infinitesimal Rigid Displacement Lemma on a General Surface). Let w C R?

be a plane, o € C*(w; E*) be an injective immersion and v € H' (w)x H'(w) x H?(w). If
Vavs + Vav, =0, V (z',2%) cw, Va,B€{1,2},
Va (?gv‘g) + Vs (?av?’) =0,V (2 2%)cw, Va,B€{1,2},
then there exist two constant Euclidean vectors a,b € E* such that
20,0+ N =a+bxo , V (2}, 2?) cw.

In particular, if v|g,, = 0 and n“9,v3|s., = 0, for some dwy C dw with meas(dwo; R) > 0, then

a =0 and b = 0, where n is the unit outward normal to the boundary Jw.
Proof. See the proof of theorem 3.6-3 of Ciarlet [38]. O
By unit we mean non® = Hjagn®n? = 1.

Lemma 11 (Boundary Trace Embedding Theorem). Let) C R" be a domain with a uniform-
C1(R"™;R"~!) boundary, wheren € {2,3}, then the embedding H'(Q) — L*(09) is continuous.

Proof. See the proof of theorem 5.36 of Adams and Fournier [3]. O
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By continuous we mean that there exists a constant C' that depends on © and 99 such that
[[vlz200) < C|lv||a1 (o). Note that, if 2 is bounded, then there exists a bounded linear operator
Tr: H'(Q) — L%(09) such that Tr(v) = v|aq for v € HY(Q) N C°(Q), where C°(Q) is the space of
uniformly continuous functions on 2 (see section 5.5 of Evans [63])). A word of caution: the trace
theorem presented by Evans [63] does not seem to acknowledge the dimensions of the domain
Q. The reader must be aware that the dimensions of the domain play a significant role in the con-
tinuousness of the trace embedding into the specified Sobolev space. For a more accurate trace
theorem please consult theorem 5.36 of Adams and Fournier [3] or section 2.6.2 of Necas et al.
[144].

Lemma 12 (Trivial Traces). Let w C R? be a domain with a uniform-C*(R?;R) boundary,
thenv € H} (w) if and only if v, = 0, wherev € H'(w).

Proof. See the proof theorem 5.37 of Adams and Fournier [3]. O

Lemma 13 (Rellich-Kondrachov Theorem). Let$) C R? be a bounded domain with a uniform-
C*(R3;R?) boundary, then the embedding H'(Q2) — L*(Q) is compact. Also, let w C R? be a
bounded domain with a uniform-C'(R?;R) boundary, then the embeddings H'(w) — L?*(w)

and H?(w) — H'(w) are compact.
Proof. See the proof of theorem 6.3 of Adams and Fournier [3]. O

Note that we say that the embedding (X,|| - ||x) — (Y,]|| - |ly) is compact if for every bounded
sequence in (X, ]| - ||x), under the given embedding, has a convergent subsequence in (Y,]| -
|ly). Note that Rellich-Kondrachov theorem (lemma[13) is proved for domains that satisfy the cone
condition (see definition 4.10 of Adams [3])). As the uniform-C* boundary implies the cone condition,
lemma[13 holds.

Definition 14 (Coercive). Let (X,|| - ||x) be a Banach space. We say the functional J(-) :

X — R is coercive, if ||vg||x — oo, then J(v;) — oo, for any sequence {vi}ren C X.
By Banach space we mean a complete normed-space.

Definition 15 (Fréchet Differentiable). Let (X, || - ||x) be a Banach space and let U C X be
an open set. Then we say the functional J(-) : U — R is Fréchet differentiable at u € U if
there exists a unique linear map J'(u) € X' such that

Ju+v) = Jw) —J (u)v
llvllx—0 [lv]|x

=0,
where X' is the dual space of X.
By linear we mean that J'(u)v is linear in v.

Definition 16 (Gateaux Differentiable). Let (X, ||-||x) be a Banach space and letU C X be
an open set. Then we say the functional J(-) : U — R is Gateaux differentiable at u € U if

there exists a linear map J{,(u) € X' such that

_ _ !
lim J(u+tv) — J(u) — JL(u)tv _ 0.
t—0 t
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Lemma 14. Let (X, ||-||x) be a Banach space and let J(-) : U — R be a Gateaux differentiable
Jfunctional in the open set U C X. If the Gateaux differential is continuous at a pointu € U,

then the functional is Fréchet differentiable at the point u, i.e. J.(u) = J'(u).

Proof. Simple extension of continuous partial-derivatives imply differentiability. See the

proof of proposition 1.3.8 of Badiale and Serra [13]. O

Definition 17 (Local Minimum Point). Let (X, || - ||x) be a normed space and let U C X be
an open set. Then we say v € U is a local minimum point of the functional J(-) : U — R if

J(u) = minyey J(v).

Definition 18 (Critical Point). Let (X,||-||x) be a Banach space and let U C X be an open
set. Then we say u € U is the critical point of a Fréchet differentiable functional J(-) : U — R
if J/(u) = 0.

Lemma 15. Let (X, ||-||x) be a Banach space and let J(-) : X — R be a Fréchet differentiable

Junctional, then any local minimum point is a critical point.
Proof. See remark 1.5.1 of Badiale and Serra [13]. O

Definition 19 (Convex). Let (X,|| - ||x) be a Banach space. Then we say the functional

J(-): X = Ris convex if J(tu+ (1 — t)v) < tJ(u) + (1 —¢t)J(v),Vt € [0,1] and V u,v € X.

Definition 20 (Strictly Convex). Let (X, || - ||x) be a Banach space. Then we say the func-
tional J(-) : X — R is strictly convex if J(tu + (1 — t)v) < tJ(u) + (1 —t)J(v), Vt € (0,1) and
Y u,v € X whereu # v.

Lemma 16. Let (X, || - ||x) be a Banach space. Then the Fréchet differentiable functional

J(-) : X — R is strictly convex if it satisfies the relation
0< (J'(u)—J W) (u—0), Yu,v€ X whereu # v.
In particular, if J'(u) is linear in u, then there exist a positive constant C such that
Cllu—v|% < (J'(v) = J' () (u—v), YuveX.

Proof. See the proof of proposition 1.5.10 of Badiale and Serra [13] and apply definition
20 O

Lemma 17 (Unique Global Minimum Point). Let (X, || - ||x) be a Banach space and let
J(-) : X = R be a continuous coercive strictly-convex functional. Then J(-) has a unique

global minimum point.
Proof. Combine the proofs of theorems 1.5.6 and 1.5.8 of Badiale and Serra [13]. O

Lemma 18 (Unique Critical Point). Let (X, ||-||x) be a Banach space and let J(-) : X — R be

a strictly-convex Fréchet-diff erentiable functional. Then J(-) has at most one critical point.

Proof. See the proof of theorem 1.5.9 of Badiale and Serra [13]. O
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Definition 21 (Closed Graph). Let (X,dx) and (Y, dy) be metric spaces were is dx and dy
are metrics in respective spaces X and Y. Then we say the map ¢ : (X,dx) — (Y,dy) is a
closed graph if the set graph(t) = {(z,(z)) | = € X} is a closed subset of the product space
(X,dx) x (Y,dy).

Lemma 19 (Closed Graph Theorem). Let (X, || ||x) and (Y, || - ||y) be Banach spaces and

let.: (X,]|'1lx) = (Y, - |ly) be a be a linear map. Then . is continuous if and only if it has
a closed graph.
Proof. See the proof of theorem 7.19 of Sokal [182]. O

Herein we assert that the set 1 C R3 is an open bounded connected domain that satisfies the
segment property with a uniform-C* (R3; R?) boundary, and we assert that the set w C R? is an open
bounded connected domain that satisfies the segment property with a uniform-C*(R?; R) boundary,
unless it is strictly says otherwise. By connected we mean a set that cannot be represented as the

union of two or more disjoint nonempty open subsets.

1.4 Beams, Plates and Shells

A plate is a structural element with planar dimensions that are large compared to its thickness.
Thus, plate theories are derived from the three-dimensional elastic theory by making suitable as-
sumptions concerning the kinematics of deformation or the state stress through the thickness of the
lamina, thereby reducing three-dimensional elasticity problem into a two-dimensional one. In this
section we only restrict our attention to displacement-based theories. Note that displacement-based
theories such as Kirchhoff—Love plate theory, Mindlin—Reissner plate theory and Euler—Bernoulli
beam theory are originally derived with the use of Newton’s second law of motion and equilibrium
considerations. However, in this work we review them as equations derived by principle of virtual
displacements. For more on principle of virtual displacements please consult section 2.2.2 of Reddy
[163].

For Kirchhoff—Love plate theory [126] the displacement field is defined as

u(x,y,z) = (UI(I,y) - Za??ug(z7y)7u2(x7y) - Zayus(xay)7u3(xvy))E :

This is a first-order shear-deformation theory and it is only valid for thin plates and for very small
deflections. The theory assumes that the order of the unknown functions are dsu* = O(e?) and
dzu3 = O(g), and only the leading order terms are used to derive the governing equations. Fur-
thermore, the following fundamental assumptions of classical plate theory (i.e. Kirchhoff—Love as-
sumptions) are assumed, and they are: (i) straight lines normal to the mid-surface remain straight
after deformation, (ii) straight lines normal to the mid-surface remain normal to the mid-surface after
deformation, and (iii) the thickness of the plate does not change during a deformation [163]. Note
that despite the prevalence Kirchhoff-Love assumptions, they are the subject of some scientific dis-
putes [110].
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Given that ¢(z,y) is a traverse load and one is dealing with an isotropic plate, the governing equa-
tions reduce to the following form,

12(]15}51/2)&%@&3 —q=0,

where Ag is the two-dimensional Euclidean Laplacian, £ and v are Young’s modulus and Poisson’s
ratio of the plate respectively. Note that the term (1 — v?)~'ER? is referred to as the bending
stiffness and it signifies the magnitude of the force that is required to bend a plate in the transverse-

direction per unit-volume.

As for the boundary conditions, one requires at least four boundary conditions per given plate theory.
These boundary conditions include clamped, simply supported and free-end, and each condition
varies from one plate-theory to another. To define each boundary condition in more detail is cum-

bersome, and thus, herein they are not reviewed.

For moderately thicker plates Mindlin—Reissner first-order shear-deformation plate theory is utilised.

For Mindlin—Reissner plate theory [137] the displacement field is defined as

u(x,y,z) = (ul(x’y) - Z¢1($>y)’ ug(x7y) - Z¢2($7y)7 u3(may>)E )

where ¢(z,y) = (¢!, ¢?%,0) are defined as the angles that the normal to the mid-surface makes
with the z = 0 axis. The theory assumes the plane-stress condition, i.e. there is a linear variation
of the displacement across the plate thickness, but the plate thickness does not change during
deformation. This theory is valid for thicker plates as it considers the shear deformations through
the thickness of a plate. For this theory the transverse shear strains are represented as constant
through lamina’s thickness. Thus, it follows that the transverse shear-stress is also constant. It is
known from the elementary theory of homogeneous beams (nonlinear Euler-Bernoulli beam theory
[164]) that the transverse shear-stress variation is parabolic through the beam thickness. This
discrepancy between the actual-stress state and the constant-stress state predicted by the first-
order theory is often corrected by the introduction of the shear-correction factor (see chapter 10 of
Reddy[166]). The theory assumes that the order of the unknown functions are u® = O(e?) and
#”,05u® = O(e), and only the leading order terms are used to derive the governing equations.
Thus, given that ¢(z,y) is a traverse load and one is dealing with an isotropic plate, the governing

equations take the form

Eh3
mAE(VE'¢)+q:Oa
FEhk

2(1+V)(AEU)—VE'¢)+(]:0,
h2

mAE(VEX¢)+KVEX¢:O,

where k is the shear-correction factor, Vg is the two-dimensional Euclidean differential operator
and - is the Euclidean dot product operator. Furthermore, given that w* is the vertical displace-
ment function from Kirchhoff—Love plate theory and w? is the vertical displacement function from

Mindlin-Reissner plate theory, Wang and Alwis [205] show that the vertical displacement functions
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are related by the relation w™ = w® + (1 — v) " h2Agw’

For a second-order plate theory with transverse inextendibility the displacement field is defined as

u(x,y,z) = (ul(x’y) - Z(bl(x?y) - 22¢1(a:,y), UQ(x’y) - Z¢)2($7y) - Z2¢2($7y)’ ug(xvy))E 3

where ° are the curvatures at the mid-surface of the plate. The second-order shear deformation
theories are rarely used as the theories incorrectly estimate the in-plane displacements of the points

(x,y,2) and (x, y, —z) to be the same, irrespective of the direction of bending [165].

Unlike Kirchhoff—Love plate theory for first-order deformations, there exists no standard third-order
shear deformation theory. One theory proposed is Reddy plate theory [166]. For Reddy plate theory
the displacement field is defined as

w(z,y,z) = (ut + 29" — c2® (¢! + 9,u®), u? + 297 — c2*(¢* + Oyu®), u®)g,

where ¢ = %h”. As a consequence of the term ¢, the displacement field accommodates quadratic
variations of the transverse shear-strains, and thus, stress through the thickness, and vanishing of
transverse shear-stress on the top and the bottom of the plate. Thus, Reddy plate theory requires
no shear-correction factors. Just as in Mindlin—Reissner plate theory the order of the unknown
displacement functions are given by dsu® = O(¢?) and ¢°, 9pu? = O(e). Assuming that ¢(z,y) is a
traverse load Reddy and Wang [166] provide a set of governing equations with boundary conditions.
However, the format of the governing equations given in authors’ publication is difficult to decipher.

Thus, if one wishes to, an alternative format comparable with the publication can be formulated as

1 1 o (17 2 Ou L oud

c{u_zy)ax(m B ¢_65AEU>+AE<128¢ _653)] Ot o

1 19 (17 17 , 20u®\] o, ou®

c[(1—2y)8y<128VE ¢‘AE“>+AE (128 _%W)] BT
Eh (1-v)

2,31 _ _

Now, suppose that w’ is the vertical displacement function from Kirchhoff—Love plate theory and
w’ is the vertical displacement function from Reddy plate theory. Reddy and Wang [166] show
that the displacement functions are related by Agw® — Nw® = XN [Zh*Agw® — wX], where
A = T20h=2(1 — v). Note that the plate theory that Reddy and Wang[166] put forward is not a
mathematical theory. It is derived purely in terms of mechanical considerations. The authors never
paid any considerations to the existence of solutions or even variational analysis. Thus, given a spe-
cific problem, the plate theory that the authors proposed may not even have a solution. This implies
that what the authors proposed is merely a mathematical model or a mathematical hypothesis. If
the reader is interested in third-order plate models, Reddy’s models in particular, please consult the

sections 10.3 and 10.4 of [163], where reader can find many numerical results for various examples.

Suppose now that one of the degree of freedom is eliminated from the planer coordinates, and
thus, reducing the two-dimensional plate theory problem into a one-dimensional problem. Such

theories are known as beam theories and they provide methods of calculating the load-carrying
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and deflection characteristics of beams. Thus, if one eliminates the y dependency of Kirchhoff-Love
plate theory, then one obtains Euler—Bernoulli beam theory [195] (for zero-Poisson’s ratio), where
governing equations take the form

o*u?
ozt

and where I is the second moment of inertia of the beam.

EI -q=0, (1)

Euler—Bernoulli beam theory is a good approximation for the case of small deflections of a beam
that are subjected to lateral loads. However, if one also takes into account the shear deformation
and the rotational inertia effects, making it suitable for describing the behaviour of thick beams, then
the most acceptable beam theory to use is Timoshenko beam theory [194]. In fact, Euler—Bernoulli
beam theory is a special case of Timoshenko beam theory. Note that the governing equations for
Timoshenko beam theory maybe derived by eliminating the y dependency from Mindlin—Reissner

plate theory.

Despite the fact that Euler-Bernoulli beam theory is valid only for infinitesimal strains and small
rotations, the theory can be extended to problems involving moderately large rotations by the use
of von Karman strains, provided that the strain remains small, which results in nonlinear Euler-
Bernoulli beam theory [113]. However, in nonlinear Euler-Bernoulli beam theory the stress in the
lateral direction is neglected, even though in large bending lateral stresses are considered to be
significant [206]. Considering this and with the use of the fundamental hypotheses in the beam
theory (i.e. the cross section of a beam, which is perpendicular to the centroid locus before bending,
remain in plane and perpendicular to the deformed locus) Gao [71] modifies Timoshenko beam
theory to model large deflections of beams. The author defines the displacement field as (u(z) —
yO,w(x),w(x))g, where the orders of the unknowns displacements are given as 9,u = O(¢?) and

d,w = O(e). Neglecting all O(£%) terms the author derives the following governing equations,

ER30*w 3 _ 0%w [ow\® 0w
(8:5) +)\w*(1*1/2)q:07 2)

12 90z4 27 Ox2

ou 1 ow\ > A

%-Fi(l—ku) (8x) +m=07
where X is an integral constant that depends on the z-directional external force on the boundary.
A large part of author’s publication is dedicated to proving the existence of solutions to a contact
problem. For this contact problem the author considers a large deformed beam that is supported
by a rigid obstacle, which is prescribed by a strictly concave function. The author shows that in
the elastic buckling analysis of the beam problem, where A > 0: the contact problem is a nonlinear
unilateral bifurcation problem. Using a variational inequality approach the author shows that there
exist numerical approaches that one can take to solve the contact problem. Furthermore, for the
case ¢ = 0 equation may be treated as a nonlinear eigenvalue problem. For von Karman plates

the author explore this case in an earlier publication [70].

In a further publication Gao [72] develops two dynamical nonlinear beam theories for precise mod-

elling of post-buckling behaviour with finite deformation. The author shows that for both models that
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the deformations in the thickness direction are proportional to 9,w(z), which becomes significant
when the beam is subjected to large rotations. The author utilises one of the models to study a
frictional contact problem, and for this, unilateral post-buckling, problem an analytical solution is ob-
tained. This publication is based on the finite deformation theory (very large deformations), which

is beyond the scope of this thesis; hence, it is not reviewed in detail herein.

Figure 1: ‘A beam (a) before bending and (b) after bending; (c) a close-up of the displace-
ment field’ [84], where h is the thickness of the beam and R is the radius of the curvature

of deformation.

Howell et al. [84 propose another method for studying the behaviour of large defections of beams.
Without considering any valid methods in the in the field of finite deformation theory or differential
geometry, the authors derive their own version of the nonlinear Euler—Bernoulli beam equation (see

section 4.9 of Howell et al. [84]), where governing equations take the form

d?0 .
EI— + Ngcosf —Tysinf =0, (3)
ds?

where 6(s) and s are respectively the angle and the arc length between the centre-line of the beam
(see figure[T), and T, and N, are the forces applied at the boundary which are parallel to the = and
y axis respectively. The authors assume that the centre-line is virtually unchanged, and thus, large
in-plane strains of the centre-line are ignored in the derivation of the equation (3). What the authors
put forward is flawed and it does not depict a representation of the Euler—Bernoulli beam equation,
nonlinear or otherwise. For a comprehensive study of the nonlinear Euler—Bernoulli beam equation

please consult Reddy [164] or Hodges et al. [81].

To examine why equation (3) is flawed: consider the case where one is bending a beam into a shape
with constant radius of curvature R, where R3 >> I, by applying appropriate boundary forces Ny and
Ty. Then equation reduces to EI%(R*15)+NO cosf@—Tysinf = 0. As R is a constant, one finds
that Ny cosf — Tysinf = 0, V 6, and thus, Ny, Ty = 0. This implies that it takes no force to bend the

beam with a constant radius of deformation, regardless of the magnitude of the deformation, which

2 https://books.google.co.uk/books?isbn=0521671094
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is not physically viable. Now, the reader can see that when the radius of curvature of deformation is
constant, equation (3) is no longer valid. However, those who are familiar with the beam theory may
argue that one cannot bend a beam so that the radius of the deformation is constant without an ex-
ternal forcing. However, if one considers equation 4.9.3 of the publication, then one can re-express
equation (3) as EI%(R—ls) + N(0) = 0, where N(0) is an normal force acting on the beam. Again,
bend the beam in to a constant radius of curvature R by applying a normal force of N(6) to obtain
EI%(R*ls) + N(08) = 0. As the reader can see that authors’ nonlinear beam equation is, again, no
longer valid, regardless of the magnitude of the deformation, i.e. regardless of the limits of 4 or the
magnitude of the constant R. In contrast, consider, if one is to bending a beam into a shape with a
constant radius R by a traverse load ¢(x) below the z-axis with respect linear Euler—Bernoulli beam
equation (1), then one finds that EI(3(u + R)™® + 1822 (u + R)~® + 152*(u + R)™") + ¢ = 0, where
u=+R?2—22 — Rand z < R. As the reader can see that Euler-Bernoulli equation stays perfectly
valid under such deformations. Can the reader see now why Howell et al.’s [84] beam theory is

flawed?

The flaws of equation (3) have arisen from the derivation of the equation (see section 4.9.1 of How-
ell et al. [84]) as the authors did not consider any valid mathematical techniques in study of the thin
objects subjected to finite strains and mathematical techniques in study of coordinate transforms.
The authors make a fundamental mistake by assuming that an arbitrary coordinate transform is the
same as a deformation of an elastic body. For a model that is similar in nature, also happens to be
flawed, please see Section [1.9] where we further examine in detail why aspects of Howell et al.’s
[84] derivation of their model fails to work. Note that for a comprehensive mathematical study of thin
bodies (plates and shells) subjected to finite strains please consult sections Bs of Ciarlet [37] and
Ciarlet [38].

Over the recent years many important developments in the field of plate theory are made with the
use of (and the mathematical techniques surrounding) I'-convergence. I'-convergence is used to
rigorously justify the passage from three-dimensional to two-dimensional theories in elasticity the-
ory. Friesecke et al. [69] show that the energy functional of nonlinear plate theory is a curvature
functional for surfaces that arises from the I'-limit of the three-dimensional nonlinear elasticity theory
as the thickness of the plate goes to zero. In a separate publication the authors show that the low
energy I'-limit of the three-dimensional nonlinear elasticity theory gives rise to Foppl-von Karman
theory [67]. In a further publication the authors present a hierarchy of plate models derived from
nonlinear elasticity theory by I'-convergence [68]. This is achieved by considering the asymptotic
behaviour of minimisers of three-dimensional nonlinear elasticity theories for plates in the limit as
thickness goes to zero. The authors demonstrate that three-dimensional minimisers converge, after
suitable rescaling, to minimisers of a hierarchy of plate models. This implies that different limiting
theories are distinguished by different scaling exponents of the energy as a function of the thick-
ness. Furthermore, the scaling of the energy is, in turn, controlled by the scaling of the applied
forces. Note that unlike classical derivations of plate theories, no ‘priori’ assumptions are made on

the structure of the three-dimensional solutions. The different theories in the hierarchy are distin-
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guished by the relation between the strength of the applied force and the thickness. If the reader
is more interested in the subject, then an introduction to I'-convergence methods for thin structures

can be found in section 3 of Morassi and Paroni [139].

Mathematical shells are thin objects where the rest configuration exists in some curvilinear plane.
To examine shells further, which we do in this thesis, let us derive linearised Koiter’s shell equations
presented by Ciarlet [38]. Before we proceed any further we inform the reader that the method in
which we derive the equations is not the conventional method of derivation. Here, we derive the
shell equations in a differential geometry fashion so that the reader may get a better understanding
of the governing equations of thin elastic bodies in curvilinear coordinates. A more rigorous method
of deriving the shell equations, in means of asymptotics, is found in Ciarlet [38] which the reader is

urged to consult (for plates please consult Ciarlet [37]).

Figure 2: The reference configuration of an elastic shell (adapted from Ciarlet [39]).

Let w € R? be a connected open bounded domain with a sufficiently smooth boundary dw. Now,
let & : w — E* be a smooth enough injective-immersion. Given that % is sufficiently small, © :
w x (—1h, 3h) — E?® describes a diffeomorphism where © = o (2!, 2?) + 23 N (2!, 2?) (see figure
[2). Now, consider the energy functional of an isotopic linearly elastic body in curvilinear coordinates
described by the equation
L ik i 11
J(v) = §AJ Eij(v)Ep(v) — f'vi| d(w x (_ih’ ih))
wx(féh,%h)
; 1.1
- [ rwd@wx (g gm). @
Owx(—%h,3h)

where v € H' (w x (—%h, $h)) is the displacement field, f € L*(w) is an external force density field

and T, € L*(w) is a traction field. Note that in equation (4) the isotropic elasticity tensor is defined
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as
AR = £g# gt 4y (gikgjl +gilgjk) :

where A = (1 —v — 2v?)7'Ev and p = 1(1 + v)"'E are first and second Lamé’s parameters
respectively with respective Young’s modulus and Poisson’s ratio E and v. Also, Green-St Venant

stress tensor is defined as
1 .,k ...k
Eij(v) = i(gikvjv + gjx Viv") |
and finally second Piola-Kirchhoff stress tensor is defined as
T (v) = AR By (v) . (5)

Now, assume that the boundaries of the body {&w x {—3h}} U {@w x {3h}} are stress free. As the
parameter h is small, i.e. the elastic body in question is very thin, assert that the stress in z3
direction is constant. Thus, subject to the stress free boundary conditions one finds 77 = 0 in

w x (—%h, 1), which in turn implies that

E(v)=0, (6)

A
E3(v) = —mEg(U) : (7)

Substitute conditions (6) and (7) into equation (5) to obtain the following equation for the only
nonzero terms of the stress tensor,

2\
Ta’g('v) =W <)\_~_2M9aﬂgw(S + 97" + 9046967) Eys(v) . (8)

The true intention for what we are doing is to eliminate the x* dependency. However, the strain
tensor in equation (8) is implicitly 2® dependent. Can we re-express the stress tensor in such a way

that it is an explicit function of 2* and satisfies condition (6)?

To investigate this matter further one must analyse the strain tensor: linearised Green-St Venant
strain tensor E to be exact. Let g be the metric of some unstrained body in curvilinear coordi-
nates, and now deform the body with the use of an external loading. This process alters the metric
of the body as the body is now deformed. Let the new metric be gysiormes = 9 + 09 + O(5?).
As the strain tensor is defined as the half of change in metric tensor, one finds E = 15g. Now,
assume that one is dealing with a thin body with a constant thickness where the mid-surface of
the unstrained body is described by the map o. After the given external loading the mid-surface
deforms, and thus, attains the form ogeformea = o + do + O(6%) where do = o,u® + Nu®. As
a consequence of altering the mid-surface, the normal to the surface is also altered. Thus, the
new normal of the deformed mid-surface is Ngetormea = N + 6N + O(6%) where SN = ||o1 x
ool H(o1x60s + 001 x053) —||o1x02|| "IN (01 %602+ do1 x0o2)N. Using some elementary
differential geometry calculations one finds that the covariant components of the change in metric
IS 0gap = (0,000 5+00 40 35) —223(0 050N + 060 45N )+ O((x3)?). Thus, the nonzero components

of the strain tensor can be expressed as E,g = €ap — 2°pas + O((23)?), where 2e is the change in
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first fundamental form tensor and p is the change in the second fundamental form tensor.

In light of above analysis, consider the map of the deformed mid-surface
R(u) = 0 + o ,u® + Nu? |

where u € H'(w) x H' (w) x H?(w) is the displacement field with respect to the mid surface. Assert
that

Uyav"‘—i—Nv?’—i—x?’(N—i—N_’av ) = o qu” + Nu + 23

R;(u) X R2(u)
x R

[[R1(u) x Ra(u)||
Once the above relation is linearised in u, one finds
P (u) = v — 23VPus (9)
v (u) = u? . (10)

As a result of the new values of v7(u), one can re-express the strain tensor as an explicit function
of #3. Thus, with the use of equations (9) and (10), one can re-express the nonzero components of

the strain tensor as

Bop(u) = ap(u) — 2 pag(u) + O(()?) , (a1
where

() = % (Vs + Vota) o

pes ) = & (Va (V) + Vs (Ver®)) L

Substituting equations (8) and (1) into equation (4), one obtains

/lh/[ B3y B (w)ES(u) — ' (ui+O(%)) | (dwda®+O(a?))

— / / [7’8 (ui—i—(’)(xg))] (d(@w)dx3+(9(x3)) .
—%h Ow
Ignoring any O(2?) from both volume and the boundary elements from the above equation, integrat-
ing over the interval [—$h, 11 to eliminate the 2® dependency and finally ignoring all O(h®) terms
one obtains the energy functional of a shell,

st = [ |58 (neastwerstu) + 151 paptarpnsw)) ~ hfu do = [ hgu atow).

w

2\
afyd __
B = <A+2 B

is the isotropic elasticity tensor of a shell,

Y9 ay B8 s By
By o+ By -+ i )
1 v Y 3
€ap(®) = 5 (Hijay Vsu" + Hijpy Vau™) — Hiasu
is the half of the change in first fundamental form tensor, and
pas(w) = VaVsu® — Ry Fydu® + Hingy Vau” + Kijary Vo + (VaFKins,) u”

is the change in second fundamental form tensor.

For future reference we define the stress tensor of a shell as 7% (u) = B*$%¢,4(u) and the

negative of the moments density tensor of a shell as 7 (u) = B p,5(u).
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1.5 Films and Membranes

A membrane is defined as a thin-walled body that can only transmit internal forces tangent to its
deformed shape, and thus, the normal components of the stress tensor of the object may consid-
ered to be zero. The study of such materials is known as membrane theory. Membrane theory
acknowledges two types of membranes: shell and true membranes. Shell-membranes are derived
from suppressing stress couples and transverse shear in the shell equations compared with tan-
gential force resultants. This suppression takes place in force equilibrium equations, force boundary
conditions, energy and moment equilibrium around the normal of the shell. Shell-membranes are
capable of modelling regions of the shell that cannot undergo inextensional bending and they are
considered to support compressive stress without wrinkling until buckling take place [121]. True-
membranes are derived by considering two-dimensional sheets (planar or curved) that are formally
incapable of supporting any stress couples or transverse shears, and by assuming that they can
only sustain tangential force resultants. They cannot sustain compressive stresses and they exhibit
wrinkle fields to compensate for the nonexistence of compressive stresses. True-membranes can
accept lines of angular discontinuity in the deformation pattern on the boundary or within the interior,
while in shell-membranes the angular continuity is preserved. Also, unlike shell-membranes, true-
membranes can sustain large inextensional deformations [26]. True-membranes are often used in
modelling certain biological tissues, inflatables, soap bubbles and even shells subject to immense

pressure and strain.

A grossly oversimplified definition of a true-membrane is a shell that is independent of any trans-
verse effects. Thus, for our use, we eliminate the «® and the O(h?) dependencies from linearised
Koiter’s shell equations to obtain the energy functional of a true-membrane,

J(u)=nh / {;Baﬁvﬁeaﬁ(u)ew(u) - faua] dw—h /8 Ty d(Ow) | (12)

w

where e,5(u) = 1 (Vaug + Vsu,) is the strain tensor of the membrane.

A grossly oversimplified definition of the energy functional of a shell-membrane is, again, de-
fined by equation (12), but with the exception that the strain tensor is now defined as e.s(u) =
+(Vaug + Vsue)|.,. Please consult chapters 4 and 5 of Ciarlet [38] for a comprehensive analysis on

the theory of shell-membranes.

As for films, a grossly oversimplified definition of a film is a membrane whose reference domain is a
subset of the two-dimensional Euclidean plane, i.e. the rest configuration is flat. For our purposes,

we define the energy functional of a film as

s = [ |2 + e - fou) doh [ agu dow).

w

where e,5(u) = 1 (0aup + dpu,) is the strain tensor of the film, and 2! = z and 2? = y.

If the reader is interested to find out more about this subject please consult chapter 7 of Libai and

Simmonds [121], where the authors present a comprehensive study on the nonlinear membrane
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theory. This publication includes topics such as aximembranes (membranes whose unstrained
shapes are surfaces of revolution), cylindrical membranes (initially cylindrical membranes that are
subject to pressure so that the membranes stretch to become non-cylindrical) and edge effects in a

partially wrinkled aximembranes.

1.6 Capstan Equation and Applications in Cable Drive Systems

The capstan equation, otherwise known as Euler’'s equation of tension transmission, is the relation-
ship governing the maximum applied-tension Tmax With respect to the minimum applied-tension T

of an elastic string wound around a rough cylinder. Thus, the governing equation is given by

Tmax = To eXp(,uFe) , (13)

where 6 is the contact angle and ur is the coefficient of friction. By string we mean a one-
dimensional elastic body, and rough is an engineering term that implies that the contact area exhibits
friction. Note that the coefficient of friction is the physical ratio of the magnitude of the shear force
and the normal force between two contacting bodies. The capstan equation is the most perfect
example of a belt-friction model, which describes behaviour of a belt-like object moving over a rigid
obstacle subjected to friction [162]. In engineering the capstan equation describes a body under
a load equilibrium involving friction between a rope and a wheel like circular object, and thus, it is
widely used to analyse the tension transmission behaviour of cable-like bodies in contact with circu-
lar profiled surfaces, such as in rope rescue systems, marine cable applications, computer storage
devices (electro-optical tracking systems), clutch or brake systems in vehicles, belt-pulley machine

systems and fibre-reinforced composites [97].

One of the largest applications of the capstan equation is in electronic cable drive systems, and
notable devices include printers, photocopiers and tape recorders [19]. The most resent applica-
tions can be found in the field of robotics. Cable drive systems are fundamental in the design and
manufacture of high-speed pick-and-place robots (DeltaBot, BetaBot and DashBot), wearable robot-
assisted rehabilitation-devices (robotic prosthetics), biologically-inspired humanoid-robots (ASIMO
by Honda [185]), and haptic devices. For high-speed pick-and-place robots high-speed, high-
acceleration and low-inertia (ability to rapidly accelerate with minimum force) is required [21]. Wear-
able robot-assisted rehabilitation-devices and biologically-inspired humanoid-robots require to be
light weight, have low inertia, have high stiffness (precise motion control and able to maintain
its rigidity), and have backdrivable transmission with zero backlash [18, [143| [156]. Thus, cable
drive systems are widely used in robot applications because of their low inertia, low backlash,
high stiffness and simplicity. Further great advantage of using cable drive devices, especially in bio-
mechanical robots, is that actuators (motors) do not need to be placed at each joint since the cables
(or tendons) can transmit force from a distance. Also, complex designs can be realised due to the
flexibility of the cables, which justifies the use of cable drive systems in portable robotic prosthetics
devices [99]. Note that backdrivable is an engineering term given to a system where the system
can be physically moved when the motor(s) governing the system is (are) not operational. Backlash

is an engineering term given to the clearance or the lost motion in a mechanism caused by gaps
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between the moving parts. A haptic device is an engineering term given to devices that use tactile
feedback technology to recreate the sense of touch by applying forces, vibrations, or motions to the

user.

Baser and Konukseven [19] present an analytical method developed for predicting the transmission-
error of capstan drives due to cable slippage, as prior to the publication, the literature is devoid of
both a common theory of capstan drive transmission-error, due to slippage, and its experimental
validation. The authors develop a theory of wire capstan drive slippage for haptic device applica-
tions and verify the model in experimental tests. The theory based on the classic capstan equation
which is then extended to include the capstan drive slip error. The authors assume that the bending
stiffness of the cable is negligible and in the contact region, of the cable and the drum, the frictional
relationship is linear. Experiments conducted on a thin rope with a 0.35mm diameter show that the
slip of a capstan drive occurs, and results agree with the theory within 10% difference. The authors
hope that the resulting analytical models provide a tool for the designers to predict the slip of cap-

stan drives and allow the models to be utilised in the control algorithms.

Lu and Fan[130] present an analytical method to predict the transmission-backlash of precise-cable-
drive systems. Authors’ work is significant as transmission-backlash of precise-cable-drive systems
is usually neglected as it is much smaller in magnitude than the backlash from gears, chains and
other drives [29,191][189]. However, the existence of transmission backlash affects the precision and
dynamic performance of the drive system, which cannot be neglected in high precision applications.
The backlash also affects both the anti-resonance and resonance frequencies of a system, and the
increase of the backlash magnitude [14], [135] [180]. Thus, the authors argue that it is necessary to
develop both theoretical and experimental methods to predict the backlash transmission. Authors’
analysis shows that as the load and centre distance increase, backlash also increases. Also, as
the coefficient of friction and output drum radius increase, the backlash decreases. Increasing the
preload force decreases the backlash, and the effect cause by decreasing the preload force is ap-
pears to be more significant relative to other parameters. The authors show that their experimental
values fit well with the theoretical curve of transmission backlash. Also, they show experimentally
that the transmission backlash of a precise cable drive is usually several sub-milli-radians and it is
given to be significantly smaller than the backlash in gear, chains and belt drive, which is usually
in tens of milli-radians. The authors hope that the theoretical method presented is to be used for

design guidance and initial performance predictions.

Kang et al. [99] present a design of a passive break for a cable drive system, which is named
by the authors as the capstan brake. Consider the following example of a robotic hand grabbing
an object. As the actuating motor moves the finger, i.e. before the finger reaches the object, the
robotic hand operates within the normal energy efficiency range (a real life example can be found
in Kim et al. [103]). However, once in contact with the object, the motor still needs to apply torque
to maintain in this position. Thus, as a result of backdrivability, energy dissipates even through the

motor is not generating mechanical work [42]. To circumvent this problem Kang et al. [99] design a
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non-backdrivable break with a cylinder (capstan) and two one-way clutches (see figure[3). Previous
methods for non-backdrivable actuators, introduced by others, include worm gear pairs and lead-
screws [32], [122], high reduction ratio transmissions [112] [157], and customised clutches [35] 42].
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Figure 3: ‘Design of the brake system’ [87].

Kang et al. [99] state that their device it is capable of delivering enough brake force and its breaking
force can be adjusted by simply changing the number of windings, and thus, making the device
adaptable for various other devices. However, with each additional winding the external force re-
quired to release the cable increases, which results in a lower controllability of the device. The
capstan does not reduce the maximum winding force and mechanical work. Experimental results
show that lower than 2N is required to rotate the capstan. But, more importantly, releasing the cable
is not an issue if the proper external force is present. The maximum brake force is approximately
equal to 55N, which is suitable for a cable (tendon) driven wearable robotic arms [86], which is the

intended application for the device.

Another application of the capstan equation can be found in the field of textiles, where tensioned
fibres, yarns, or fabrics are frequently in contact with cylindrical bodies [95]. Doonmez and Mar-
marali [59] demonstrate the knitability of a yarn before knitting. The authors use a variation of the
capstan equation with multiple regression analysis (analogous to hypothesis [4) and equations that

depend on yarn’s characteristics to predict yarn-needle and yarn-yarn friction values.

Many researchers report that the classical capstan equation does not hold in certain situations as
it neglects bending stiffness. Thus, much research is devoted to incorporate bending stiffness into
the capstan equation [34, [78]. Another limitation of the capstan equation is that it is based on an
over-simplified friction theory, which stems from Amontons’ laws. It is generally accepted in the field

of polymers that the coefficient of friction, between fibres and other contacting surfaces, is not a
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constant as Amontons’ laws imply, but it is a variable that depends on the conditions such as the
minimum applied-tension [97] (analogous to figure [9). Further evidence for this statement can be
found in Martin an Mittelmann [134], where the authors find the coefficient of friction of wool fibres
measured by experiments with the use of the classical capstan equation reduces by as much as
50% with an increase of the minimum applied-tension (analogous to figure 25). One of the attempts
to include bending stiffness is given by Wei and Chen [207], where the authors give a theoretical
model for the capstan equation for nonflexible fibres and yarns. Wei and Chen [207] consider the
radius of the capstan and the yarn, and present two solutions for yarns (and fibres) with linear and
nonlinear behaviours respectively. The authors conclude by saying that the theoretical model can

be used to calculate the actual tension of cables with bending stiffness.

Jung et al. [95] present a mathematical model to incorporate bending stiffness into the capstan
equation. The authors consider an inextensible beam and propose a mathematical model with
an analytical solution. One numerical experiment suggests that the difference in the tension ratio
(the ratio between the maximum and the minimum applied-tensions) between the classical and the
modified results can be up to 71% for a mere 10° variation in the angle of inclination. In another
publication, Jung et al. [97] present a capstan equation with bending stiffness and with nonlinear
frictional behaviour. The authors consider a power-law friction model in place of Amontons’ laws
friction, which is adapted from the work of Howell [82] [83]. The authors criticise Howell’s [82, [83]
model, and assert that the coefficient of friction must not vary with the change of the beam radius
and the capstan radius as Howell suggested, which is the basis for Jung et al.’s [97] power law.
They show that using their power-law friction or including the rod bending stiffness can change the
tension ratio. In a further publication the authors present a capstan equation with bending stiff-
ness, nonlinear frictional behaviour and Poisson’s ratio [96]. One of authors’ findings show that
presence of a nonzero Poisson’s ratio tends to increase the tension ratio (analogous to figure [65).
Unfortunately, Jung et al.’s [95} [97] mathematical work appear to be questionable as the authors
assumptions and mathematical techniques are not consistent with nonlinear bending theories in
study of thin objects (plates, beams etc.). A more precise analysis of the large deflection of beams

over rigid obstacles can be found in the work of Gao [71} [72].

Kim et al. [105] present a finite-element solution for the capstan equation, where the authors model
a three-dimensional aluminium-sheet deforming over a rigid cylinder. The friction is calculated by
the friction model put forward by Swift [190]. The simulation shows non-uniform pressure distri-
butions, both in the longitudinal and transverse directions of the contact surface, which include
pressure peaks near the inlet and the outlet regions, and near the strip edges (see figure [). This
contradicts the results obtain by the simple capstan equation and the work of Saha and Wilson
[172], where one can observe a monotonic increase in pressure from the inlet region to the outlet
region. Given an initial coefficient of friction ur = 0.1 and the contact angle 6 = 90°, Kim et al.
[105] find the final coefficient of friction is ur = 0.093 and the contact angle is 8§ = 74°. The loss
of contact is clearly due to the bending stiffness of the aluminium-sheet as a portion of the applied

force is expended on overcoming the bending stiffness; however, the reduction in the coefficient of
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Figure 4: Contact pressure distribution at each row at time = 1.024s, where the contact

angle is in degrees and contact pressure is in megapascals [87].

friction is not a factor of the final contact-angle. The author conclude that further investigation is

needed with various geometries and test conditions.

In a rather older publication, Stuart [187] finds similar results to Kim et al. [105]. Stuart et al. [187]
attempts to incorporate bending stiffness with the capstan equation, where the friction governed by
Amontons’ laws. Among other research findings, the author shows that a reduction in the contact
angle and a variable coefficient of friction throughout the contact profile, which are two of the no-

table results that Kim et al. [105] discover in their finite-element experiments.

Due to the lack of time and resources we cannot verify the validity of the work of the authors
discussed in this section. However, we analyse the mathematical aspects of this subject in great
detail in Chapter [2, where we examine the theory and the behaviour of the capstan equation for

non-cylindrical geometries.

1.7 Applications in Flexible and Stretchable Electronics

In recent years flexible and stretchable electronics become a common technology. Few notable
commercially available devices that use this technology are the LG G Flex phone and the LG
77EG9900 4K Flexible OLed TV. Other than conformal displays, which can be folded or rolled [65],
stretchable electronics have applications in thin film solar cells [33] 50, 117, [147], electronic skins
for robots and humans [203], conformable electronic textiles [27] and complex curvilinear stretch-
able devices for biomedical applications [108]. For such applications the degree of the deformation
of the electronic body can endure, before its basic functions (i.e. conductivity, transparency or light
emission) are adversely affected, is immensely important. However, design and process engineers
who are working on the implementation of flexible electronics often lack confidence due to a lack
of understanding or a lack of input data for reliable modelling tools [125]. Thus, there is a tremen-
dous amount research is conducted in the field of academia (Oxford Centre for Nonlinear Partial

Differential Equations, Lu Research Group the University of Texas at Austin, Flexible Electronics
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Figure 5: ‘Transferred 2cmx2cm silicon nanomembrane on polyimide film’ [213].

and Display Center Arizona State University) as well as in the commercial sector (LG Electronics
[215, [183], Samsung Group [90} [104] [1086]).

In a mathematical perspective modelling of such materials follows the following exact procedure. A
thin film (often an inorganic conductor such as copper) is bonded to a thin elastic material, which
in the literature defined as a substrate. In mathematical elasticity language: a film bonded to an
elastic foundation. The problem can now be tackled with just the techniques of solid mechanics.
The research mainly focuses on debonding between the film and the substrate, and the plastic de-

formation of the film due to stretching and the bending of the substrate.

Tensile cracking 7
and delamination A
— e
— Total
/»- Compressive bucklin strain
and delaminaton / Y  Neutalaxis_|)// __ __ Internal
; strain
Neutral axis $3’ .
> —— Bending
§ strain

Figure 6: ‘Summary sketch of damage events and strain state in a flexed substrate coated

on both sides with thin films’ [125].
Figure [6is a simple visual representation, form Logothetidis [125], of the damage and the state of

strain in an elastic substrate with thin brittle films bonded to both surfaces. Upon bending the body

to some radius of curvature, the film located on the upper surface experiences tensile strain, and
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may fracture and eventually debond. The film located beneath experiences compressive strain and
may also debond, buckle and possibly fracture. The neutral axis is the plane where the strain is
assumed to not change upon pure bending (this assumption is an erroneous for large deflections,
for a comprehensive mathematical study of large deflections of plates please consult section B of
Ciarlet [37]), and the total strain is the sum of the internal strain and the bending strain. The critical
radius of curvature is among the key design parameters for flexible electronics. It is defined as
the radius of curvature at which device failure occurs due to significant mechanical damage or func-
tional failure. For such objects, applications can be found in the transfer-printing of nanomembranes
with polymeric stamps, and annular rubbery gaskets and sealers under uniaxial compression during

service [160].

Logothetidis [125] defines the classification of different branches of stretchable and flexible electron-
ics as: (i) flexible electronics, which comprise films with eyt < 2%, which are based on substrate
materials that are thin enough (100mm) to be safely bent to a minimum radius of curvature of 10mm,
but cannot be stretched, (ii) compliant electronics, for which 2% < et < 10%, which can be flexed
to radius of curvature of few millimetres to allow some in-plane loading and can be used with thicker
substrates, and (iii) stretchable electronics, for which ey > 10%, which can be conformed to a broad
diversity of surfaces with two-dimensional curvatures and small radii below a few millimetres. Note
that eqit is the critical strain, where strain exceeding this value results in irreversible mechanical
failure. If the reader is interested more on this subject, especially on the applied mathematical and

the engineering side of it, please consult Logothetidis [125].

Lu et al. [128] experimentally demonstrate that a microcrystalline copper film that is bonded to a
Kapton (poly-oxydiphenylene-pyromellitimide) substrate can be stretched beyond 50% of its origi-
nal length without being ruptured. However, at just below 60% debonding from the substrate and
cracking are observed. When a chromium adhesion layer is introduced between the copper film
and the Kapton substrate, to enhance adhesion, only a few micro-cracks in the film is observed.
This implies that better adhering reduces the irreversible mechanical failure of the copper film. Also,
in the chromium adhesion case the measured electrical resistance is shown to agree with the the-
oretical predictions. Micrographs (digital image taken through a microscope) show that the strain
localisation and debonding coevolve, which are consistent with the existing finite-element models
on the rupturing of plastically-deformable metal-films on polymer-substrates [118,[119]. Such finite-
element models for strain-localisation analysis of strongly discontinuous fields are based on the
standard Galerkin-approximation. Note that the strain localisation is a physically observed feature
(such as the yield strength) of elastoplastic materials undergoing non-homogeneous deformation.
The phenomenon is observed in the form of a shear band, which is a narrow zone of intense strain-

ing across, where some kinematical fields in a deforming body maybe discontinuous.
In another publication Lu et al. [129] show that strains to failure is lower, when stretched to ap-
proximately 10% over its unstrained length, for Kapton polymers when supporting nanocrystalline

copper films. The microstructure (microscopic structure) of which is revealed to be inhomogeneous
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and unstable under tensile loading compared to annealed (temperature sensitive) films (only stated
as room temperature, but no specific temperature is given by the authors). The authors conclude
by saying ‘the films fail by ductile necking as a result of deformation-associated grain growth, strain

localisation at large grains, and film debonding from the substrate’ [129].

In a further publication Lu et al. [127] investigate polyimide-supported copper films with film thick-
nesses varying from 50 nanometres to 1 micromere and a (111) fibre texture, where (---) is the
Taylor factor for a face-centered cubic film. The authors observe that the critical strains first rise
with film thickness, reaching a maximum for the film thicknesses around 500nm, before decreasing
again. The authors demonstrate that films with thicknesses less than 200nm fail at very low strains
as a result of intergranular fracture (fractures that follow the grains of the material). For thicker films
the failure mode switches to transgranular fracture (a fracture that follows the edges of lattices in
a granular material) in a process that involves both strain localisation and debonding. As the yield
strength decreases with increasing film thickness, it becomes increasingly difficult to debond the film
from the substrate. Eventually a (100) texture component develop in the films leading to strain local-
isation and fracture at the softer (100) grains. The authors conclude by saying ‘[the critical strain of]
a metal film on a polymer substrate can be maximised by ensuring good adhesion between film and

substrate, a uniform crystallographic texture, and a large grain size to lower the yield strength’ [127].

Qiao and Lu [160] derive solutions for an elastically compressible-layer bonded between two circu-
lar parallel-stiff-plates, similar to what is shown in figure[6] The authors give closed-form solutions
for bonded elastic layers (i.e. disks, annuli, annuli with rigid shafts and infinitely long strips) under
compression using separation of variables without any pre-assumed deformation profile. The au-
thors demonstrate that the predicted stress, displacement and effective modulus of the solutions
are in ‘excellent’ agreement with finite-element modelling results over a wide range of Poisson’s
ratios and aspect ratios, where the aspect ratio is the value of the radius of the plates divided by the
length of two plate’s separation. The solution that the authors derive is very sensitive to Poisson’s
ratio, in particular, when Poisson’s ratio is approaching the value 0.5 (incompressibility condition).
Also, as Poisson’s ratio approaches 0.5, solutions reduces to classical solutions for incompressible
elastic layers. The authors conclude by proposing that their analytical model is a viable means to
simultaneously measure intrinsic Young’s modulus and Poisson’s ratio of elastically compressible

layers without camera settings (mechanical experiment involved in measuring elastic properties).

The significance of Qiao and Lu’s [160] work is that in previous cases ‘for compressible materials,
solutions obtained by the method of averaged equilibrium are sufficient for effective compression
modulus, but inaccurate for the displacement or stress fields whereas solutions obtained by the
method of series expansion are considerably complicated’ [160]. Note that the effective compres-
sion modulus (also known as the apparent stiffness) is defined as the gradient of the stress-strain
curve. It is observed that the effective compression modulus is often higher than Young’s modulus
of the elastic body, and this is due to the constraint of the parallel plates that are fully bonded to the

elastic layer [74]. Unfortunately, Qiao and Lu [160] mathematical work appears to be questionable
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due to their grossly oversimplified modelling assumptions.

Almost all the mathematical publications reviewed in this section are from the Lu Research Group
the University of Texas at Austin. If the reader is interested in subject of flexible and stretchable

electronics, then please visit their websitef’| for a whole archive of free-to-view publications.

Due to the lack of time and resources we cannot verify the validity of the work of the authors
discussed in this section. However, we analyse the mathematical aspects of this subject in great
detail in Chapter[3] where we examine the theory and the behaviour of thin bodies bonded to elastic

foundations in a curvilinear setting.

1.8 A Critical Study of the Work of Cottenden et al.

Cottenden et al. [48 (the principal author is D. J. Cottenden) attempt to derive a mathematical
model to analyse a frictionally coupled membrane (defined as a nonwoven sheet) on an elastic
foundation (defined as a substrate) based on the research findings of D. J. Cottenden [47E from
his PhD thesis. It is assumed that friction (abrasion in the context of the publication) is the cause
of some pressure ulcers in largely immobile patients (not necessarily true, for detailed cause of
pressure ulcers see Maklebust and Sieggreen [132]), and abrasion due to friction contributes to the
deterioration of skin health in incontinence pad users, especially in the presence of liquid. The cur-
rent literature shows very little research in the area of frictional damage on skin due to fabrics, and
thus, authors’ goal is to present a mathematical model to investigate this phenomenon in a purely
geometrical setting. Thus, the authors propose a model for a general class of frictional interfaces,

which includes those that obey Amontons’ laws.

In reality what Cottenden et al. [48] accomplished is the following: explicit solutions are derived
for a membrane with a zero-Poisson’s ratio and a zero-mass density on a rigid cylinder (ordinary
capstan equation[13) and on a rigid right-circular cone. Finally limited experimental data is given to

imply the trivial asymptotic nature of sin(8) near 6 = 0.

Cottenden et al.’s [48] method for calculating the kinetic frictional force induced on human skin due
to nonwoven fabrics is as follows. The human body part in question is modelled as a homoge-
neous isotropic ‘convex surface [sic]’ [48] (the substrate) and the nonwoven fabric is modelled as
an isotropic membrane (the nonwoven sheet). The goal is to find the stresses acting on the nonwo-
ven sheet, including determining the friction acting on the substrate. The contact region between
the fabric and the skin is defined as ‘An Instantaneous Isotropic Interface, [which] is an interface
composed of a pair of surfaces which have no intrinsically preferred directions and no directional
memory effects, so that the frictional force acts in the opposite direction to the current relative ve-

locity vector ... or to the sum of current applied forces acting to initiate motion ... (see section 2.2

3 http://lu.ae.utexas.edu/
4 http://discovery.ucl.ac.uk/id/eprint/ 69944
5http: //discovery.ucl.ac.uk/id/eprint/ 1301772
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of Cottenden et al. [48]), this simply implies that the contact region is isotropic. Also, consider the
contact body in question: it is modelled as a surface, i.e. a two-dimensional manifold. However,
in reality it must be modelled as a three-dimensional object as a two-dimensional object cannot
describe the elastic properties of a fully three-dimensional object such as a human body part, as a
two-dimensional surface has measure zero in three-dimensional space (see Section for more
on measure): unless subtable assumptions are made as in shell theory (see Section [1.4] for more
on shells), but this is not what the authors are considering. Now, consider authors’ statement re-
garding the modelling assumptions carefully, particularly the term ‘convex surface’. The authors
definition of convexity is 7 - VeN - n > 0 (see section 3.1 of Cottenden et al. [48]), where N and
7 are unit normal and tangential vectors surface respectively. However, authors’ definition is erro-
neous. Convexity has a very precise mathematical definition, i.e. we say the functional f : X — R
is convex, if f(tx + (1 —t)y) < tf(x)+ (1 —t)f(y), Vt €[0,1] and V z,y € X (see definition [19).
Also, the very idea of a convex surface nonsensical as definition of convexity is only applicable to
functionals. A simple example of a convex functional is exp(-) : R — R+ . One is left to assume that
what the authors mean by convexity is surfaces (manifolds) of positive mean-curvature. For more

on elementary differential geometry please consult do Carmo [58] or Lipschutz [124].

Now, consider a membrane with the following properties: (i) ‘has no through thickness and can be
represented as a two-dimensional object, (ii) ‘always drapes, following the substrate surface without
tearing or puckering, (iii) ‘is of sufficiently low density that its weight makes a negligible contribution
to the forces acting, and (iv) ‘does not resist bending in the sense that a beam does’ [48]. Authors’
statement (ii) is erroneous, as one cannot guarantee that the given property will hold for arbitrary
curved surfaces. To illustrate the flaw, consider a flat elastic-membrane (i.e. a film) over a rigid
sphere. The only way one can keep the membrane perfectly in contact with the sphere in a two-
dimensional region with nonzero measure is by deforming the membrane by applying appropriate
boundary stresses and or external loadings. Otherwise, the membrane only makes contact with the
sphere at a single point or a line. Also, the authors do not specify whether the membrane is elastic
or not. One is left to assume that the membrane is elastic as the proposed frame work does not
acknowledge plastic deformations. Note that the authors never referred to their nonwoven sheet as
a membrane, but a membrane (or a film) is the closest mathematical definition for modelling such

objects.

To find the stresses acting on the membrane consider Cauchy’s momentum equation in the Eu-

clidean space, which the authors define as
Ve -T+f=px, (14)

where T is Cauchy’s stress tensor, f = f(T, VeT) is the force density field and p is the material
mass density of the membrane, Vg is the Euclidean differential operator and x is given as a ‘time-
dependent deformation function mapping the positions of points in their undeformed reference con-
figuration to their deformed positions and the superposed double dot denotes a double material

description time derivative’ [48]. It unclear what x represent from authors’ definition, whether it is
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the displacement field of the membrane or some time dependent mapping from one manifold to
another. If the latter is true, then equation has a very different meaning. It means that the
space is dependent of time, and such problems are encountered in the field of cosmology. If the
reader consults section 5.4 of Cottenden’s [47] thesis, then it becomes evident that x is a time de-
pendent map. However, if one consults Cottenden et al. [45], Cottenden et al. [47] and Cottenden
et al. [48], then one concludes that the authors do not put forward the framework to handle the 3+1
decomposition in general relativity, with any mathematical rigour. If the reader is interested in the
3+1 formalism in general relativity, then please consult the publications [77), (186 [204] or Dr J. A.
V. Kroon (QMUL) on his LTCC lecture notes on Problems of General F?e/ativityﬂ where the reader

can find an extraordinary solution for two merging black-holes (the Brill-Lindquist solution).

Assuming that the foundation is static and rigid, and the mass density of the membrane is negligible,

i.e. p = 0, the authors state that Cauchy’s momentum equation can be expressed as

P, - (Ve-T)+P,-f=0, (15)
—(VEN): T+N-f=0, (16)

where P, projection matrix to the substrate (the explicit form is not defined by the authors), N is the
unit normal to the surface, and - and : are a contraction and a double contraction in the Euclidean
space respectively. Although it is not explicitly defined, one must assume that the authors use the
fact that membranes cannot support any normal stresses, i.e. N-T = 0, to obtain equation .
The authors give equations and as the state of the ‘general case’ of the problem. However,
their assertion cannot hold as the system is underdetermined. Consider the vector f which consists
of three unknowns. Also, consider the tensor T which is a symmetric tensor with six unknowns. Us-
ing the condition N - T = 0 the number of unknowns can be reduced by three: leaving six remaining
unknowns. Now, direct one’s attention to equations and which provide three additional
equations. Thus, one comes to the conclusion that one has an underdetermined system, with three
equations and six unknowns. Furthermore, there is no description of the boundary conditions for

the ‘general case’, which are essential in obtaining a unique solution.

The derivation of authors’ governing equations can be found on section 2.2 to 2.4 of the publication.
In the risk of being pedantic we omit reviewing flaws of these sections. Instead, we refer reader
to Kikuchi and Oden [102] to see how to model friction with mathematical precision and to show
how incredibly difficult modelling such problems are. We further refer the reader to Ciarlet [38] to

see how to model mathematical elasticity in a differential geometry setting with mathematical rigour.

To find explicit solutions the authors direct their attention to only ‘surfaces that are isomorphic to the
plane; that is, those which have the same first fundamental form as the plane; the identity matrix in
the case of plane Cartesian coordinates. [sic] [48]. Found in section 4.1 of Cottenden et al. [48], this
is the basis for their entire publication (also Cottenden’s [47] thesis). However, authors’ statement

is nonsensical. An isomorphism (perseveres form) is at least a homomorphism, i.e. there exists at

6 http://www.maths.qmul.ac.uk/~jav/LTCC.htm
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least a continuous bijective mapping, whose inverse is also continuous, between the two manifolds
in question [58] [124]. Thus, a surface that is isomorphic to the plane simply implies that there ex-
its a continuous bijective map, with a continuous inverse, between the surface in question and the
Euclidean plane, and it does not automatically guarantee that the surface have the same metric as
the Euclidean plane under the given map. The latter part of authors’ statement is clearly describing
surfaces that are isometric (perseveres distance) to the Euclidean plane, i.e. surfaces of zero-
Gaussian curvature. However, the statement is still erroneous as being a surface that is isometric
to the Euclidean plane does not guarantee that the surface have the same metric as the Euclidean
plane. Being isometric to the Euclidean plane simply implies that, if f : U ¢ R2 — W c E*is a 2D
manifold that is isometric to the Euclidean plane, then there existsamap g : V C R? — U C R?
such that the first fundamental form of the isometry fog:V c R2 — W c E?® is the 2 x 2 identity
matrix [58| [124]. One is left to assume that the surfaces that are in question by the authors belongs
a subgroup of surfaces of zero-Gaussian curvature that has the same metric as the Euclidean plane
with respect to authors’ coordinate system, i.e. cylinders of unit radius: as one later see that these
are the only possible manifolds that generate any valid solutions. Note that Cottenden [47] accredits
Pressley [159] for his differential geometry results. However, Pressley’s [159] publication is a widely
accepted and verified mathematical publication in the field of differential geometry. Apart from few
typos Pressley’s [159] publication does not contain such provably false statements as given by Cot-
tenden [47].

Now, consider the equation
Py T+ pa(N-f)x =0, (17)

which the authors define as Amontons’ law friction, where 4 is the coefficient of dynamic friction
and x is the relative velocity vector between the membrane and the foundation. The inclusion of the
two equations implied by condition still does not guarantee that the system is fully determined,

as the system requires one more equation to be fully determined.

Now, assume that one is dealing with a rectangular membrane whose orthogonal axis defined by
the coordinates (x,y), where y defines the longer dimension, that is placed over a surface defined
by the regular map o. Also, assume that Poisson’s ratio of the membrane is zero to prevent any
lateral contractions due to positive tensile strain. To reduce the complexity the authors modify the
problem by letting x be parallel to o,,. Also, by applying a boundary stress of T, at some point ¢,
whilst applying a even greater stress at ¢, so that T, (y) is an increasing function in y, where ¢, are
angles of contact with ¢; < ¢o. Due to zero-Poisson’s ratio and the boundary conditions one finds
T, =0, T, = 0, where T;; are stress tensor components. Thus, the governing equations finally
reduce to a fully determined system. Therefore, one must understand that having zero-Gaussian
curvature and zero-Poisson’s ratio is a necessity for this model, and it is not some useful tool for
deriving explicit equations as stated by by the authors. Upon integrating equation (17), under the

specified boundary conditions, one finds solutions of the form,

Yy
T, (y) = Ty exp (—ud J dn) , (18)
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where Frp,, is the only nonzero component of the second fundamental form tensor. However,
equation (see equation 4.4 of Cottenden et al. [48]) is erroneous. This is because, whatever is
inside the exp(-) must be non-dimensional, but this is not the case with equation (18). To illustrate
this flaw let L be an intrinsic Euclidean length scale and ¢ be an intrinsic length scale of the curvi-
linear coordinate y. Now, with the definition of F,, (see equation 3.3 of Cottenden et al. [48]) one
finds that the length scale inside the term exp(-) in equation is (¢/L)*. Giventhaty = 6 (i.e.
the contact angle, which is dimensionless), one finds that the length scale inside the term exp(-) is
L~3, which is not mathematically viable.

To find the explicit solution for the general prism case the authors present the map

o(z,y) = (R(¢) cos(¢), R(¢) sin(¢), x cos(¢) + ysin(())g , (19

where ‘The angle ¢ is defined as the angle between the flow vector and the prism’s plane of cross
section as measured on the surface’ [48]. From authors’ definition ¢ appears to be the acute angle
that the vector 6, makes with the vector 64, and R and ¢ appear to be the radius of curvature and
the angle of the centre of rotation respectively. One can clearly see that map is only valid for
cylinders of unit radius as it must have the same metric as the Euclidean plane, i.e. 0, -0, =1,
oy -0y=1ando, -0, =0andthus, R=1, ¢ =zand ( = 3m (or ¢ =y and ¢ = £n), if &
is positively oriented. Now, given that a solution exists in the interval [¢1, ¢2], the authors state that

the solution is

R(¢) P2
Tyy(d2) = Toexp | pnacos(C) |¢ — arctan L . (20)
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Figure 7: Cross sections of elliptical-prisms (and elliptical-cones for the z = 1 case).

Despite the fact that map is only valid for cylinders of unit radius, solution is valid for cylin-
ders with constant radii, i.e. the capstan equation (13). But this is still an incorrect solution and it
is a mere coincidence that it happens to be valid for the cylinder case. To see why equations

and (20) are incorrect one only needs to consider an example with noncircular cross section. If
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the reader wishes to, then consider a positively-oriented elliptical-prism (for the ¢ = 0 case) that is

Qﬂ-]

defined by the map o(¢, z) = (acos(¢), bsin(¢), z)g Where z € Rand a,b > 0, and let ¢ € [fm, 3

be the contact interval (see figure[7, and see Section for the capstan equation on an elliptical-
prism). Now, the reader can see that both map and solution are no longer valid.

To find the explicit solution for the cone case the authors present the map
T

0(2,Y) = —F/—m———rs

NS OIE

‘where (r,8) are plane polar coordinates ... derived from the Cartesian (z,y)g coordinates by

r = y/x2+y? and 0 = [arctan(¥) — (], where ( is the angle between the direction of slip and the

(R(6(0)) cos(¢(0)), R(¢(0)) sin(4(6)), 1 , (21)

tangential direction when § = ¢ = 0’ [48]. From authors’ definition ¢ appears to be the acute
angle that the vector &, makes with the vector 6 4, R is given as a ‘cylindrical polar function’ and
¢ appears to be the angle of the centre of rotation. One can clearly see that map is invalid
as it cannot have the same metric as the Euclidean plane, i.e. ifo, -0, =1, 0, -0, = 1 and
o, -0, =0, then the conditionso,-0,=1ando, -0, =0(0ro,- -0, =1ando,-o, = 0)imply
that R = 0, and this in turn implies that o, - 0, = 0, - 0, = 0, which is a contradiction. Now, given
that a solution exists in the interval [¢;, 2], the authors states that the solution is

_ Ha . R(¢)¢ @2
Tyy(p2) = Toexp (R(¢) sin ( 1+R(¢)2> ¢1> . (22)

Despite the fact that map is invalid, solution is valid for right-circular cones, i.e. valid for
R = tan(a) where 2a is the (constant-) angle of aperture (see Section [2.5.4). But this is still an

incorrect solution and it is a mere coincidence that it is valid for the arbitrary right-circular cones. To
see why equation (22) is incorrect, one only needs to consider an example with noncircular cross
section. If the reader wishes to, then consider a positively-oriented elliptical-cone (for the { = 0
case) that is defined by the map o (¢, z) = (az cos(¢), bzsin(¢), z)g Where z € R and a, b > 0, and
let ¢ € [i”’ %w] be the contact interval (see figureand consider the z = 1 case). Now, the reader

can that solution is no longer valid.

The authors conclude by saying that their experimental results agreed almost perfectly with equa-
tion for the cylinder case. One expects that the solution to agree with experiment data for the
cylinder case as the solution is only valid for the cylinder case. The authors further state ‘Exper-
imental data gathered on [right-circler] cones constructed from plaster of Paris and Neoprene ...
with half-angles ranging up to 12° and contact angles in the range [70°, 120°] show good agreement
with the simple cylindrical model at their error level (around +10% for most samples)’ [48]. Again,
one expects this be the case as solution is only valid for right-circular cones. Also, it is given
by the authors that in the limit R — 0, the cone case is asymptotically equals to the cylinder case.
This result is just a trivial mathematical result that follows directly from the Maclaurin series, i.e.
sin(f) ~ 0, when 6 ~ 0.

In conclusion, no mathematical claim of Cottenden et al. [48] can be mathematically justified, and

some fundamental and trivial results in mathematical elasticity and differential geometry are mis-
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represented. Only the ordinary capstan equation, and a solution to a dynamic membrane with both
a zero-Poisson’s ratio and a zero-mass density on a right-circular cone are given. Finally limited

experimental data is given to show the trivial asymptotic nature of sin(#) near ¢ = 0.

In Cottenden et al’s [48] publication the authors fails to demonstrate a sufficient knowledge in
the subject of differential geometry, mathematical elasticity and contact mechanics to tackle this
problem with any mathematical rigour, and this is evident in D. J. Cottenden’s [47] thesis as the
publication Cottenden et al. [48] is a summary of all the mathematical results from Cottenden’s [47]
thesis. For example, in section 2.15 of the thesis the compatibility conditions for left Cauchy-Green
deformation tensor is given as a general condition (see page 8 of Cottenden [47]). However, there
exists no general compatibility condition for left Cauchy-Green deformation tensor, and the given
compatibility conditions exist for the two-dimensional case only [2]. Another example is that the en-
tire section 5.4 of the thesis (see pages 132 to 137 of Cottenden [47]) is based on the assumption
that one can invert a 3 x 2 matrix (see equation 5.15 of Cottenden [47]), i.e. given a sufficiently
differentiable map A : R? — E®, the author asserts that the Jacobian matrix, (0sN),,. Where
B e{l,2}and j € {1,2,3}, is invertible.

Despite the fact that Cottenden et al.’s [48] framework is only valid for two trivial cases, the very
ideas and the very problems that the authors tried to model are important subjects of investigation
in Chapters[2]and [6]

In a different publication, a precursor to the one we discussed, Cottenden et al. [45ﬂ give a math-
ematical model to calculate the coefficient of friction based on the experimental findings of S. E.
S. Karavokyros [100] from his master’s thesis. The authors state ‘The model generalizes the com-
mon assumption of a cylindrical arm to any convex prism, and makes predictions for pressure and
tension based on Amontons’ law’ [45]. Coefficients of friction are determined from experiments con-
ducted on Neoprene-coated Plaster of Paris prisms of circular and elliptical cross-sections (defined
as arm phantoms) and a nonwoven fabric. The authors state experimental results agreed within
+8%, i.e. 16%. They also state that the coefficients of friction varied very little with the applied
weight, geometry and contact angle. Thus, the authors conclude by asserting that accurate values
of the coefficient of friction can be obtained by applying the cylindrical model (i.e. capstan model)
to the experimental data on human arms. They further assert that the coefficient of friction is inde-
pendent of the substrate geometry, applied weights and contact angles, and claims that both their

mathematical model and experimental results are in complete agreement.

Unfortunately, none of Cottenden et al.’s [45] mathematical results can be mathematically justified,
mostly for the reasons that we described before. For example, the reader may try to derive an
arc-length of an ellipse with the use of the definition of an arc length from section 2.4 of the publi-
cation (see directly above equation 12 of Cottenden et al. [45])). Another example is the equation

1/tan(0.57) = 0, which is from the latter part of section 4.1 of the publication (see directly below

7 http://discovery.ucl.ac.uk/id/eprint/ 69867
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equation 17 of Cottenden et al. [45]). Thus, in the risk of being pedantic, we omit reviewing the

mathematics of publication in detail.
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Figure 8: Coefficient of friction against applied mass in grams: (a) Cylindrical body; (b)
Elliptical prism with horizontal major axis; (c) Elliptical prism with vertical major axis; (d)

Elliptical prism with major axis making +135° to the horizontal [45].

As for the experimental results, consider figure [8| which shows the coefficients of friction in relation
to different geometries, applied weights, and contact angles, where the figure is extracted directly
from the publication (see figure 11 of Cottenden et al. [45]). One can see that there are clear
discrepancies between each calculated coefficients of friction as the coefficients of friction vary
between different geometries, weights, and contact angles. The authors only acknowledge the de-
pendence of coefficient of friction relative to the applied weight (see section 4 of Cottenden et al.
[48]), but dismiss this effect by asserting that ... the increase [coefficient of friction relative to the
applied weight] is small compared to the scatter in the data, and moreover represents a variation in
w of less than 5 per cent across the experimental mass range. This is likely a result of changes in
the interacting Neoprene and nonwoven surfaces as the pressure increases, and corresponds to a

small departure from Amontons’ law’ [45].

If one consults Karavokyros [100] for the experimental data, then one finds the raw data of the

cylinder for the %w contact angle case (see table 2a of Karavokyros [100]), which is displayed in

table Now, using this data, if one plot the tension ratio, 67 = Tmax/T0, against the applied mass,

then one gets figure 9] Note that the capstan equation implies that the tension ratio is constant for
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Tension 1073N

1st | 2nd 3rd 4th 5th | Mean

Mass g

10 16.0g | 15.0¢ | 15.0¢ | 15.0¢ | 16.0g | 15.6¢
30 51.0¢ | 54.0g | 51.0g | 50.0g | 51.0g | 51.4g
50 88.0g | 87.0¢ | 89.0g | 87.0¢ | 90.0g | 88.2¢
70 125g | 124g | 128¢ | 122¢ | 124g | 125¢

Table 1: Tensometer readings: Cylinder with %w contact angle, where ¢ is the acceleration

due to gravity [100].

all applied mass, i.e. 7 = exp(uabp) is constant given that pz and 6, are constants. But this is not
what the experimental results are implying, as the reader can clearly see from figure [9 that as the
applied mass increases, tension ratio too increases, and this is documented phenomenon in the lit-
erature which cannot be simply dismissed [97]. Thus, this implies that, for the given experiments, it
is unsuitable to use the standard capstan equation to find the coefficient of friction with a significant
degree of accuracy. Now, this is direct evidence that shows the flaws in Cottenden et al. [48] data

analysis methods and their interpretation of the experimental results.

1851
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175 {
X
1.7 T
£
1651
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X
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Mass (grams)

Figure 9: Tension ratio against applied mass.

Unfortunately no raw data is available for the other experiments in the theses of Karavokyros [100]

or Cottenden [47] to conduct further rigorous analysis, as we did with the éggw-cylinder case.

As a result of flawed mathematics and data analysis techniques, Cottenden et al. [45], Cottenden
et al. [46] and Cottenden et al. [48] assert that the tension in the membrane is independent
of the geometry and the elastic properties of the foundation, and thus, the stress profile at the
contact region and the coefficient of friction can be calculated with the use of the ordinary capstan

equation. They further assert that the experimental methodology for calculating the coefficient of
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friction between fabrics and in-vivo (within the living) human skin is identical to the capstan model.
However, we found no experimental evidence in the body of authors’ publications to verify their
assertion, i.e. no evidence is given for the assertion that foundation’s elastic properties are irrelevant
when calculating the coefficient friction between an elastic foundation and an overlying membrane.

Thus, authors’ experimental methodology is a subject of investigation in chapter|[g]

1.9 A Critical Study of the Work of Efrati et al.

Efrati ef al. [GOEI (the principal author is E. Sharon) present the mathematical model non-Euclidean
plate theory for modelling deformation of thin objects. The main application of authors’ work is in the
study of natural growth of tissue such as growth of leaves and other natural slender bodies. The au-
thors attempt to derive a thin plate theory, as a generalisation of existing elastic plate theories, that
it is valid for large displacements and small strains in arbitrary intrinsic geometries. Some numerical
results are present which is based on an example of a hemispherical plate, and they show the oc-
currence of buckling transition, from a stretching-dominated configuration to a bending-dominated
configuration, under variation of the plate thickness. Note that by non-Euclidean the authors mean
‘the internal geometry of the plate is not immersible in 3D Euclidean space’ [60]. Also, the authors
define ‘a metric is immersible in E*’ if Ricci curvature tensor with respect to the implicit coordinate
system is identically zero, i.e. for a given immersion ¢ : R™ — E*, where 1 < n < 3, the metric g on

R™ induced by the immersion ¢ results in Ric = 0 in R™.

Given that a growing leaf can be modelled by a plate, Efrati et al. [60] focus on the elastic response
of the plate after its planar (i.e. rest) configuration is modified either by growth or by a plastic defor-
mation. The authors ignore the thermodynamic limitations on plastic deformations as they are not
relevant when modelling naturally growing tissue, and further assume that the reference configura-
tion is a known quantity. Their main postulate is that a non-Euclidean plate cannot assume a rest
configuration, i.e. no stress-free configuration can exist, and thus, one faces a nontrivial problem

that always exhibits residual stress.

The authors define a plate as an elastic medium for which there exists a curvilinear set of coordi-
nates x = (z!, 22, 2%), in which the ‘reference metric’, g;; = gi; (2!, z?), takes the form g.s = gga,
Jaz = 0, g3s3 = 1. The reference metric is a symmetric positive-definite tensor and considered to
be a known quantity. The plate is considered to be ‘even’, i.e. the domain 2 c R? of curvilinear
coordinates can be decomposed into 2 = . x [-% 1] where ./ C R? and h is the thickness of
the plate. Thus, it is given that an even plate is fully characterised by the metric of its mid-surface,

at where z% = 0.

Although thin plates are three-dimensional bodies, the authors took advantage of the large aspect
ratio by modelling the plates as two-dimensional surfaces, and thus, reducing the dimensionality of

the problem. To achieve this the authors assume ‘Kirchhoff—Love assumptions:’ (i) ‘the body is in a

8 http://www.ma.huji.ac.il/~razk/iWeb/My_Site/Publications_files/ESKO08.pdf
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state of plane-stress (the stress is parallel to the deformed mid-surface)’, and (ii) ‘points which are
located in the undeformed configuration on the normal to the mid-surface at a point p, remain in the
deformed state on the normal to the mid-surface at p, and their distance to p remains unchanged’
[60].

Now, consider the deformed plate in the Euclidean space, which is defined as a compact do-
main 2 C R?® endowed with a regular set of material curvilinear coordinates. Define the map-
ping r : 2 C R? — Q, from the domain of parameterisation 2 into 2, as the configuration of the
body endowed with the metric tensor g, which is defined as g;; = 0;r - 9;r. It is given that Kirch-
hoff-Love second assumption implies that g.3 = 0. Thus, when defined more precisely, one finds
that »(zt, 2%, 23) = R(2%, 2?) + xBN(ml,xQ), Jap = Gap — 223baps + (2%)%Cap, gas = 0 and gs3 = 1,
where R is the mid-surface, N is the unit normal to the mid-surface, and a.s, bas and ¢, are the
first, the second and the third fundamental form tensors respectively. With further inspection one
finds that ans = OaR - 95 R, bap = (JadsR) - N and cas = (a=')"baybss. The ultimate goal is to
find the metric tensor g, and the authors state that the metric tensor g is immersed in R?, and thus,
the metric tensor uniquely defines the physical configuration of a three-dimensional body. It is also
the case that one needs to find equations to six unknowns which make up the metric tensor for the
general case, where g is not defined by r. For the general case the authors describe one approach
to this problem via the use of ‘the modified version of the hyper-elasticity principle ... the elastic
energy stored within a deformed elastic body can be written as a volume integral of a local elastic
energy density, which depends only on (i) the local value of the metric tensor and (ii) local material
properties that are independent of the configuration’ [60]. It is unclear what the authors mean by
this definition; thus, for a more precise definition of hyperelasticity we refer the reader to Ball [17] or
Ciarlet [38].

The authors define the strain tensor by

1 _
€5 = i(gij —Gij) (23)

and thus, the energy functional is expressed as

E(g) = /@w(g)\/ﬁ dztdx?dr® | (24)

where w = 1 Aiikle; e, is the energy density and A% = \g' gkl + (gt g7t + g g7*) is the elasticity
tensor. With the use of the energy functional the configuration r is varied to find the three

constraints that g,z must satisfy, i.e. ‘the fundamental model for three-dimensional elasticity’ [60].

They also define symmetric Ricci curvature tensor of the metric g by
) 1, 1\kj C1\Kj
Ricy; = 5(9 Y9 (0k 01915 — OkO;qui + 03019k — DiDigrj) + (g 1)ngPQ(Fl1;Flgi -Tp T

As the elastic body is immersed in R?, the variational principle implies that the six independent com-
ponents of the symmetric Ricci curvature tensor must all vanish, i.e. Ric;; = 0. However, Ric;; =0
and the three equations obtained by varying the configuration r in equation imply that the sys-
tem is over-determined. Thus, the authors postulate that there are two possible ways to resolve
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this ‘seemingly over-determination’. The first is by noticing that the six independent components of
Ricci curvature tensor’s derivatives are related through second Bianchi identity. The second way
of resolving this issue is by identifying the immersion r as the three unknown functions (as defined
previously), in which case the six equations that form Ricci tensor are the solvability conditions for
the partial differential equation. However, as the equations in r are of higher order, one needs to
supply additional conditions, namely to set the position and the orientation of the body, in order to

obtain a unique solution for r.

To find the reduced energy density the authors integrate the energy density over the thin di-

L . .
mension as wep = [ 2, w dz* to obtain the equation
2

wap = hwg + h3wB s

where
Y v
= — 770‘[—‘7775 *O"Y*ﬂts 7 _ =
5T 81+ ) (1 —, 979 t9g ) (@ap = Gap)(ays = Grs) »
Y v
_ —afl =vo —ay =30 b ab 25
B .

which are defined as stretching and bending densities respectively. Note that Y is Young’s modulus

and v is Poisson’s ratio of the plate.

It is stated that with the use of Cayley-Hamilton theorem the density of the bending content can be
written in the following form,

Y 1

9 b
S0y Ty ben) 2.

|9l

It is also stated that, if ans = gas (i.€. the two-dimensional configuration has zero-stretching energy),

wp =

then the density of the bending content can be expressed as the density of Willmore functional [210],

Y 4H?
= - 2K
w 24(1 4+ v) (1—1/ ) ’

where K and H are Gaussian and the mean curvatures of the mid-surface respectively.

With the vanishing of Ricci tensor the authors obtain Gaussian curvature and Gauss-Mainardi-

Peterson-Codazzi equations, which are respectively defined as

b 1
— o = 5(07 )OI, 0T, + T, ~ TR, 26)

Oobar + TP bga = Drbas + Tohbs1 27)

where equations and given to provide sufficient conditions for immersiblility of the metric

tensor g in R3.

It may appear to the uninitiated that Efrati et al.’s [60] publication is a coherent piece of work, but it
is, in fact, flawed. To illustrate this matter in detail, we direct the reader’s attention to section 3.4 of

the publication. Upon examining the governing equations and the boundary conditions one can see
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that the governing equations are defined for zero-external loadings, and the boundary conditions
are defined for zero-tractions, zero-boundary moments and there are no descriptions of any Dirich-
let conditions. Thus, it is mathematically impossible to obtain a non-zero solution (excluding any
rigid motions). Furthermore, there is no evidence in authors’ publication for proof of the existence
of solutions, either via rigorous mathematics (I'-limit or otherwise) or via numerical analysis.

(@) ’ (b) (©)

Figure 10: ‘A schematic illustration of an unconstrained plate exhibiting residual stress.
(a) The two elements composing the plate are shows side by side. (b) As the red trapezoid
is too large to fit into the square opening, it is compressed. (c) For a plate sufficiently thin,
the induced compression exceeds the buckling threshold, and the trapezoid buckles out
of plane. Note that there are many shapes that preserve all lengths along the faces of the
plate, yet they cannot be planar’ [60].

Efrati et al.’s [60] erroneous work arises from not fully understanding how to model the given prob-
lem. Consider figure (c), which extracted directly from the publication and considered by the
authors as a simplified version of the problem: the very reason that the red trapezoid is deformed
is because it is compressed at the boundary, i.e. it is deformed as it is subjected to a Dirichlet
boundary condition. Thus, if one attempts to model this problem with mathematical rigour, then one
can derive the actual energy functional for this problem. To do so, consider the map

O, R(u) x 9y, R(u)

rl) = RO 215 Rlw)  0,R(w)]

(28)

which is assumed to be a sufficiently differentiable E* — E?* diffeomorphism for an appropri-
ate u € E®, where R(u) = (z,y,0)g + (u'(z,y),u(z,y),u(z,y))e is the deformed mid-surface
of the plate, and wu is the displacement field that describes a vector displacement in the three-
dimensional Euclidean space. The metric with respect to map (28) in the Euclidean space is
Gap(u) = 8&r;(u)85r5(u), where the over-bar in the indices highlights the fact that one is using

Euclidean coordinates. Now, the strain tensor of a plate can be expressed as
1
6&3(”) =3 (gdﬁ(u> - 5&[9) )

where 2! = z and 22 = y. Thus, the energy functional can be expressed as

J(u) = / hA™ (9, Ri(w) R (u) — b,5) (05 Ry (w) R (w) — 5
LR(u) x ,RwW)"\ [, o (0:R(u) x ,Rw)"\ |
< Wi R xayR<u>|> (‘*ﬂk( 6. () aﬂ(u)ﬂﬂd . 29)
ue{veW(Y)|vloy =uot, (30)

where . c E? is the mid-plane of the unstrained plate, W () is an appropriate Sobolev space,
ug € L*(.7) is the Dirichlet boundary condition and A*%7 = 1(1 4+ v)~1Y(2(1 — v)~'vd*P67° +
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697589 4 §529557) is the elasticity tensor. As R(u) describes a surface, one may argue that with
an appropriate coordinate transform one can express equation in the same form as authors’
energy functional (see equation 3.7 of Efrati et al. [60]), which is true if one is using an appropriate
(z,y)e : R? — E? coordinate transform (authors’ erroneous coordinate transform leads to a refer-
ence metric of a shell at 2> = 0; please see equation 4.1 and see the definition of ®(r) from section
4.2 of Efrati et al. [60]). However, without the Dirichlet boundary condition from equation (30) or
some other external loading, which is exactly what the authors are considering (see respectively
equation 2.5 and section 3.2 of Efrati et al. [60]), one gets the trivial zero-displacement solution,
i.e. u = 0in .. The fact that the authors are claiming that nonzero solutions are possible without
tractions, Dirichlet boundary conditions, external loadings and boundary moments imply that they

are doing something fundamentally flawed.

Now, consider the sufficiently differentiable diffeomorphism ¢ : w ¢ R? — ¢(w) c E? with the
property det(J) > 0, where (z,y)g = (o' (¢!, 22),0%(z',2%))g and J? = 9,¢P is the Jacobian
matrix of the map ¢. Now, consider the mapping R(u) o ¢ : w € R? — R(u)(.¥) C E*>. As pis a
diffeomorphism, R(u)o ¢ is a well defined surface for a suitable displacement field u € W (.), and
as det(J) > 0, the unit normal to the surface R(w) is equal the unit normal to the surface R(u) o ¢

(see Section [2.4). Thus, with respect to ¢ equation reduces to
= /%Aaﬁ“"s (haa[g(u)a.y(;( )+ h bag(u ) V/det(g) detda? (31)

uc{veW(Y) |vloy =uo},
where

() = 5 (0 Rs(w) 0 )05 F () 0 9) ~ )

B : ((01R(u) o ) x
bas(w) = (Das Ri(w) o @)1 5B o o) x (@aR(w) o 0[] |

gaﬁ = aaﬁpfyaﬁwfy )

1Y v
AeBYS — = 9 Zaf =zvo ay =86 ad ﬂv .
21—|—1/<1 y9 9 gty

Now, equation is exactly the same form as the nonlinear plates equations in curvilinear co-
ordinators put forward by the authors, excluding the Dirichlet boundary condition. However, equa-
tion is derived from the plate equations in Euclidean coordinates with the use of the
map ¢ which is a R? — E’ diffeomorphism, and thus, the reference metric g is immersible in
E>. To be more precise, consider Ricci curvature tensor in the two-dimensional Euclidean space,
Ricg%c”dea” = Ricys(J)%(J7)5. As Ricci curvature tensor is identically zero in the Euclidean
space (clearly!) and the map ¢ is a diffeomorphism, we have the vanishing of Ricci curvature
tensor in w C R?, i.e. Ric = 0. Now, consider the map ¢ x (z)g : {w x [-1,3]} C R? xE —
{o(w) x [-3,4]} C E®. As ¢ is a diffeomorphism, the map ¢ x (z)g is also a diffeomorphism,
and thus, the metric generated by the map ¢ x (z)g is immersible in E>. Furthermore, as r(u) :
S x[-1
(i.e. the metric of deformation) is immersible in E*. Thus, the metric on R? x E generated by the

1 C B = r(u)( x [-1,1]) C E® is a diffeomorphism, the metric on E induced by r(u)
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map r(u)o (¢ x (2)g) : {wx [-1, 3]} CR*xE — r(u)( x [-1,3]) C E® (i.e. the metric g) is also
immersible in E*. However, the authors assert that their reference metric is not immersible in E>.
But it is mathematically impossible to derive equation from equation (29) without the use of a
sufficiently differentiable R? — E? diffeomorphism; thus, the fact that the authors implying that their
reference metric is not immersible in the three-dimensional Euclidean space (while their metric g is

immersible in E*) means that the authors are attempting something fundamentally flawed.

Note that, if equation linearised and along with the Dirichlet boundary condition, then one gets
- 1
J(u) = [ ZA%70 (haaﬁ(u)aw;(u) + 12h3baﬁ(u)bw(u)> dxdy ,

ue{ve HI(Y)XHl(Y)XHQ(y) =0, n‘ia@v?’bz% =0, v|{a\0.5) = U0} »

where a,5(u) = 5 (dauz+05ua), bag(u) = 8a5u3, n is the unit outward normal to the boundary 0.7
and 0.y C 0. with meas(0.-%;R) > 0. Such problems can be solved by consulting the literature

that is specialised in the study of linear plate theory (see Ciarlet [37] and Reddy [163]).

For numerical results, instead of finding the unknown metric tensor g which is the goal of the pub-
lication, the authors attempt to analyse the respective stretching and bending densities w, and w;
for a predetermined reference metric g and a predetermined deformed mid-surface R, and thus,
a predetermined metric g (see section 4 of Efrati et al. [6Q]). The authors give numerical results
for an ‘annular hemispherical plate’, i.e. annular plate deformed in to a hemispherical shape, and
state that numerical results demonstrate that in the general case there is no ‘equipartition’ between
bending and stretching energies. The authors conclude by saying their numerical findings support
treating very thin bodies as inextensible, and ‘it also shows that not only in the equilibrium 3D con-
figuration dominated by the minimisation of the bending energy term, but the total elastic energy is
dominated by it also’ [60]. The reader must understand that authors’ numerical results do not imply
the existence of a solutions, i.e. the existence of the deformation metric g, as the numerical results

are obtained for a predetermined metric g.

Authors’ numerical analysis implies that a thin object can be stretched substantially with very little
force. To examine this in more detail consider the following simple example in accordance with
authors’ numerical analysis. Consider two circular plates: plate ¢ and plate s, with same Young’s
modulus Y, Poisson’s ratio v, thickness h and radius r, and further assert that h/r = ¢ < 1.
Now, take plate ¢ and deform it into the shape of a semi-cylinder with a radius 2r (an area pre-
serving deformation). Following authors’ publication one finds that the mid-surface is R(z!,2?) =
(2!, Zrsin(2?), 2r cos(2?))g, and as one knows the deformed configuration in advance, one finds
that the reference metric is g(z!, 2?) = diag(1, (2r)?,1). Thus, the stored energy of a circular plate

that is being deformed into a semi-cylindrical shape is

E. = 17/ // & detdx?da’
21 —1/2 lh {($1)2+(2r 2)2<r2} s
1

3
=9" 1—1/2h . (32)
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Now, take plate s and deform it into a shape of a hemisphere with a radius %\/Er (an area preserv-
ing deformation). Following authors’ publication, one finds that the mid-surface is R(x!,2?) =
1V2r(sin(z!) cos(z?), sin(z!) sin(z?), cos(z!))e (see the definition of R(r,6) from section 4.1 of
Efrati et al. [60]), and as one knows the deformed configuration in advance, one finds that the
reference metric is g(z!, z%) = diag(3r?, $r?sin®*(z'), 1) (see equation 4.1 and the definition of &(r)
from section 4.2 of Efrati et al. [60Q]), where this configuration is defined as the ‘stretch-free configu-
ration’ (see section 4.1 of Efrati et al. [60]). Thus, the stored energy of a circular plate that is being

deformed into a hemisphere is

e Lo [ (52 (5w

_ 2 , 33
3771th (33)

Equations and (33), therefore, imply that, if one deforms a circular plate into a semi-cylinder
with a radius 27 and deform a circular plate into a hemisphere with radius % /2r, then one gets the
very similar respective energy densities g-7%(1 — v?)"'Ye2Jm—3 and 1Y (1 —v)~'e2Jm~3, i.e. both
deformations’ internal energies are of O(<2)Jm=3. Which in turn implies that both deformations re-
quire force of O(¢)N, given that one is applying the forces to the boundaries of the each respective
plates. Thus, authors’ work asserts that it take approximately the same amount of force to bend
a plate into a semi-cylindrical shape or stretch a plate into a hemispherical shape with a similar
radius. The reader may try this one’s self: find a piece of aluminium foil (i.e. kitchen foil) and try to
bend it over one’s water bottle. This is a very simple process and the reader will able to accomplish
this with a minimum of effort. In fact, the force of gravity is alone may even be sufficient to deform
the piece of aluminium foil over the bottle without much interference. Now, try to stretch that same
piece of aluminium foil smoothly over a rigid sphere with a similar radius, e.g. over a cricket ball.
Can the reader do this without tearing or crumpling and with the same force as one applied in the

previous case?

To attempt this problem with mathematical precision consider the set . = {(z,y,0)¢ € E® | 22 +
y? < r?}, which describes the mid-plane of the unstrained plates ¢ and s. Now, if one deforms plate

c is into a semi-cylindrical shape with a radius 2r, then one finds that the map of the deformed

1

sr7tmy), 2rcos(ir

mid-surface is R(z,y) = (z, 27 sin( 57 'my))e, and thus, the total stored energy of

a circular plate of radius r that is being deformed into a semi-cylindrical shape with a radius 2r is

7rz
E. 21_y2 /1h// dxdydz

— 34
96 1—V2 (34)

Now, if one deforms plate s is in to a hemisphere with a radius %\/ir, then one finds that the map
of the deformed mid-surface is R(z,y) = $v2(zsin(3r~1my/22 + y2), ysin(3r—tmy/22 + 2),
rcos(%r*lm/m))g and thus, the total stored energy of a circular plate with a radius r that is
being deformed into a hemisphere with a radius +v/2r is

1 %h afyo 3
=3 / // A% e g(x,y)ers(x, y) dedydz + O(h°)
J—1ih 7
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=ChYr* +0(h?), (35)

where C is an order-one positive constant that is independent of h, Y and r, and

2 sin? (%\/ﬂ +y2> T m™2 1 z2 xy 1(1 0
€(r,y) = <§) x2 + 72)2 — 2 + (Z> x2 +y? 2] 2 ’
Ty Ty Yy 01

is the strain tensor of the plate at = = 0. As the reader can see from equations and that,
if one deforms a circular plate into a semi-cylinder with a radius 2r and deform a circular plate into
a hemisphere with a radius %\/ir, then one get the respective energy densities O(¢?)Jm—3 and
O(1)dJm~3. Thus, one can see that it takes significantly higher amount of energy to deform plate in
to a hemisphere than to simply bend it in to a semi-cylinder, as the former deformation requires a
significant amount of stretching and compression, while the latter requires no such in-plane defor-
mations, which is far more realistic than results obtained by Efrati et al.’s [60] approach. Note that

the both deformations conserve area.

As further analysis consider the deformed plate s in curvilinear coordinate coordinates (z!,x?),
where 0 < z! < Im and [z?| < m. Now, the first and the second fundamental form tensors of
the deformed configuration can be expressed respectively as Fyj(z!,2%) = ir’diag(1,sin*(z'))
and Fyy(z',2?) = —$v/2rdiag(1,sin’*(z')). If one follows authors’ publication, then one finds that
the reference metric tensor is g(z!, %) = diag(3r?, 3r?sin®(2!),1). This can only be derived by
Gij(z',2%) = c')ir,;(xl,xz,xS)ajrk(xl,xz, 2%)| 43—, Where r(z!, 22) = (3v2r 4 23)(sin(z?) cos(z?),
sin(z') sin(z?), cos(z'))g. This implies that g is the reference metric of a shell at 2® = 0, and thus, g
is clearly not immersible in E® as Ricci tensor is not identically zero, i.e. Ric = Lr?diag(1,sin?(z1)).
Thus, authors’ erroneous reference metric implies that ans — gog = 0, V o, 8 € {1,2}, i.e. zero-
planar strain, which in turn implies the existence of a ‘stretch-free configuration’ for a substan-
tially deformed plate. Now, if one attempts this same problem with mathematical precession, then
one finds that the reference metric tensor is g(z!, 2?) = 4r—2r?diag(1, (z')?), where gos(z', 2?) =
9005z + 0aydpy With 2! = Lr~lm\/22 +y2 and 22 = arctan(y/z). The coordinate transform
(z(xt, 2?),y(z', 2?))g : R? — E” is a diffeomorphism (except at 2! = 2 = 0) and Ricci tensor is
identically zero, i.e. Ric = 0. Furthermore, det(dyz, d2x; 01y, d2y) > 0, and thus, the definition
of the unit normal to the deformed surface is not violated (again, except at z! = 22 = 0). Thus,
the change in first fundamental form tensor (i.e. planer strain) can be expressed as 2a(z!,z?) =
ir2diag(l — 87~ 2,sin*(2') — 87~ 2(2')?) and the change in second fundamental form tensor (i.e.
bending) can be expressed as b(z!,2?) = —1+/2rdiag(1,sin?(z!)). Now, with this coordinate trans-
form no such ‘stretch-free configuration’ can exist for a plate with a radius r that is being deformed
into a hemisphere with a £+/2r, unless the radius of the plate is zero.

Above analysis shows that Efrati et al. [60] are not studying plates, but they are studying nonlin-
ear Koiter shells with an erroneous strain tensor. This definition of the strain tensor leads to an
incorrect change in second fundamental form tensor, and thus, an overestimation of the bending
energy density of the shell per h? (see equation ). To attempt this problem with mathematical

precision, let §;;(z) = 8;Xz0;X* be the metric of the reference configuration X () = o (z!,z?) +
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23||o1 x o2||7 (o1 x 02) with respect to the curvilinear coordinate system = = (z!, 22, 2%), where
o : R? — E? is a sufficiently differentiable immersion (Efrati et al.’s [60] reference metric is derived
by g = g|.:—0). Thus, in nonlinear shell theory one defines the strain tensor as e, (1) = % (gas(u) —
Gop), Where gog(u) = 013 (u)dgr(u), r(u) = R(u) + 230y R(u) x &2 R(w)|| =1 (8; R(u) x &y R(u)),
R(u) = o +u*d, 0 +u® N and u(z) is the displacement field in curvilinear coordinates (see Section
[1.4). For more on nonlinear Koiter's shells please consult Ciarlet [38], Koiter [109], and Libai and
Simmonds [121].

Even if Efrati et al. [60] obtain the correct form of the strain tensor for shells they are still unjustified
in using the shell strain tensor to model plates. To explain this matter with mathematical rigour let
. be a two-dimensional plane and let .’ be a two-dimensional surface. What the authors fail to
grasp is that an arbitrary mapping from .7 to .7’ (i.e. o : ¥ ¢ R?2 — .’ C E®) is not same as
deforming the plane .# into the surface .’ (i.e. {.¥ U {u € E*} c E*} = {.# ¢ E*}). The former
is a simple coordinate transform (which may or may not be related to deforming the body), while
the latter is a unique vector displacement (unique up to a rigid motion). This is one of the concepts
that both Cottenden [47] (see section 5.2.1 of Cottenden [47]) and Howell et al. [84] (see section
4.9.1 of Howell et al. [84]) also failed to grasp, which in turn contributed to their erroneous work.
To understand the distinction between a coordinate transform and a vector displacement please

consult section 1 and section 2 of Morassi and Paroni [139].

In conclusion, Efrati et al’s [6Q] publication is not on plate theory: it is on shell theory with an
incorrect strain tensor. Thus, the authors numerical results imply that a thin object can be stretched
substantially with very little force, which is physically unrealistic and mathematically disprovable. All
the theoretical work of the authors, i.e. nonlinear plate equations in curvilinear coordinates, can
easily be rectified with the inclusion of both a sufficiently differentiable R? — E? diffeomorphism and

some external loadings, such as an external strain field.

1.10 A Critical Study of the Work of Baldelli and and Bourdin

Baldelli and Bourdin [16H (the principal author is A. A. L. Baldelli) analyses the asymptotic be-
haviour of bonded thin elastic structures (i.e. films and plates) on elastic foundations. The work is
presented as the first attempt at providing a rigorous derivation of these heuristic models from three-
dimensional elasticity. The authors perform an asymptotic study to explore the different asymptotic
regimes reached in the limit as the thickness of the overlying thin body goes to zero: for varying
thickness of the foundation and stiffness ratios. They give a two-dimensional phase diagram to
visualise the asymptotically reduced dimension models as a function of two relevant parameters.
Two of the major presented results are the identification of the regime of films over in-plane elastic

foundations and the identification of the regime of plates over out-of-plane elastic foundations.

Elastic foundation models are used in the study of many mechanical concepts such as the buckling

9http://arxiv.org/pdf/1410.0629.pdf
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of stiff films bound to compliant substrates under compression [10} (11, [12] (which are considered to
be important in designing of structural sandwich panels [7]) and in the study of crack patterns in thin
films subjected to equi-biaxial residual tensile stress [211] (which are considered to be important
in the study of spiral cracks, in thin brittle adhesive layers bonding glass plates together, due to

environment stress [56]).

Baldelli and Bourdin [16] begin by classifying the study of thin objects on elastic foundations as
Winkler foundations and asserting that the derivation of the Winkler foundations equations must be
done by rigorous asymptotic analysis. However, authors’ assertion is false. Winkler foundation is
a very specific mathematical problem: where an elastic body is supported unilaterally on a bed of
continuously distributed springs with a foundation modulus .#; and where the surface of the foun-
dation is lubricated so that no tangential forces can develop (see section 5.5 of Kikuchi and Oden
[102] and section 10.4.1 of Ding et al. [57] or Section [1.11). Winkler foundation type problem is a
boundary condition that exists regardless of the elastic properties of the elastic body or the bed of
springs (see equation 5.111 of Kikuchi and Oden [102] or equation (47)). Often in the engineering
community Winkler foundation equations are used to describe the behaviour of beams and plates
on elastic foundations of infinite depth [80], with complete disregard to understanding why the Win-
kler foundation equations are applicable to modelling such problems. Thus, the work of the authors
may have intended to be used in justifying the use of Winkler foundation equations in modelling

such problems.

Figure 11: 'Film on the bonding layer’ [16].

The core idea behind Baldelli and Bourdin [16] is as follows. Consider a thin overlying elastic body
(which the authors called the film/membrane) with a constant thickness ¢ bonded to an elastic
foundation (which the authors called the bonding layer) with a constant thickness s>~ hy;,, where the
displacement of the bottom of the bonding layer is zero, i.e. displacement field of the bonding layer
satisfies zero-Dirichlet boundary condition at its lowest boundary (see figure [T1). The parameter
¢ is consider to be a small constant and « is yet to be determined. In their analysis the authors
assume that there exists a common asymptotic behaviour between the elastic properties (Young’s
modulus and Poisson’s ratio) of the overlying body and the bonding layer. To be more precise, the
authors assume that both first and second Lamé’s parameters of the overlying body are the same

order, i.e. Ay ~ 17, both first and the second Lamé’s parameters of the bonding layer are the same
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order, i.e. A\, ~ 1, (see figure[TT]or figure 1 of Baldelli and Bourdin [16]), both Poisson’s ratios of the
overlying body and the bonding layer are the same order, i.e. vy ~ v;, (see hypothesis 2 of Baldelli
and Bourdin [16]), and both Poisson’s ratios of the overlying body and the bonding layer are the
same sign, i.e. v,/vy > 0 (see remark 2 of Baldelli and Bourdin [16]). Now, these conditions result
in—l<vimy<00rd<vy=uy< % given that both Poisson’s ratios are sufficiently away from 0
and % To be more precise, the conditions Ay ~ pr and Ay ~ pp, imply that Ay = cyur and A, = cppp
for some ¢y, ¢, ~ 1 constants, and thus, vy = 1(1 4 ¢;) !¢y and v, = 1(1 + ¢) ~'¢p. Furthermore,
the conditions vy ~ v, and v, /vy > 0 imply that —1(1 — |cf|) “ep| = vy = vy = —3(1 = |cu]) e

or (1 + |eg)Heg| = vy = vy = £(1+ |eb]) "t ep|. Thus, one gets the condition —1 < vy ~ v, < 0,

sufficiently away from 0, or the antithetical condition 0 < vy ~ 1, < 1, sufficiently away from 0
and 1. However, Poisson’s ratio of an object can vary strictly between —1 and % [84] and different
materials have different Poisson’s ratios, and thus, Baldelli and Bourdin’s [16] assertion cannot hold
in general. For example, assume that the bonding layer’s Poisson’s ratio is i and the overlying
body’s Poisson’s ratio is infinitesimally small, i.e. , and thus, one finds v, /v; ~ =1, which violates

authors’ assumption.

P e
N r e
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«

Figure 12: The phase plane: ‘The square-hatched region represents systems behaving
as “rigid” bodies, under the assumed scaling hypotheses on the loads. Along the open
half line (displayed with a thick solid and dashed stroke) (§,0), 6 > 0 lay systems whose
limit for vanishing thickness leads to a “membrane over in-plane elastic foundation” mode

. The solid segment 0 < v < 1 (resp. dashed open line v > 1) is related to systems in
which bonding layer is thinner (resp. thicker) than the film, for v = 1 (black square) their
thickness is of the same order of magnitude. All systems within the horizontally hatched
region v > 0, 0 < 6 < 1, § > v behave, in the vanishing thickness limit, as “plates over
out-of-plane elastic foundation®.” [16]. Note that v = 1(1+¢— ), § = 1(a+¢— 3) and
Ey/Ey ~ €1,

As a result of the restrictive nature of Poisson’s ratios of authors’ analysis, they assert that all

asymptotic behaviour of the overlying bonded body on an elastic bonding layer can be expressed
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on a two-dimensional phase diagram (see figure [T2). However, this cannot hold in general as the
phase diagram is four-dimensional due to the four asymptotic scalings (¢*~2hy/h¢, o/ 11, to/ 1 £,
2uvs/(1 — 2vy)), for all Poisson’s ratios. The only way one may collapse the dimensionality of the
phase diagram is by assuming that one is only considering Poisson’s ratios with the very specific
values -1 < vy =, <00r0 <vy=uy < % given that both Poisson’s ratios are sufficiently away

from 0 and 3.

While describing the rigorous asymptotic analysis, the authors asymptotically rescale the displace-
ment field as u. = (eul,eu?, u?)c (see equation 9 of Baldelli and Bourdin [16]), which is implied by
hypothesis 1 of the publication. If one defines the displacement filed as described, then the only
physical interpretation is that the planar displacement field (su!,eu',0)¢ is infinitesimally small rel-

ative to the normal displacement field (0, 0, u*), and such scaling results in only plate like problems.

As an example of their analysis, the authors put forward a model for an overlying film (defined as a
membrane) with a very high Young’s modulus (i.e. stiff) bonded to an elastic foundation (see theo-
rem 1 of Baldelli and Bourdin [16]). With rigorous mathematics the authors show that there exists
a unique solution in H'(w), where w is the contact surface between the film and the bonding layer
(see section 3.2 of Baldelli and Bourdin [16]). Beneath authors’ analysis the method in which the
authors use to derive the governing equations is simple. Below, we describe in detail the method
used by authors to derive the energy functional of a film bonded to an elastic foundation. However,
we omit authors’ restrictive scalings of the displacement field (see equation 9 of Baldelli and Bourdin
[16]) and Poisson’s ratios (see figure 1 of Baldelli and Bourdin [16]), and the insufficient asymptotic
condition E¢hy > Eyhy, where E¢ and E, are respective Young’s moduli of the film and the bonding

layer (see definition of § of Baldelli and Bourdin [16]).

Consider an overlying film with Poisson ratio vy, Young’s modulus E; and thickness hy, and a
bonding layer (i.e. foundation) with Poisson ratio 14, Young’s modulus E; and thickness h;,. Now,
define the displacement field of the film by v = (u!(z!,2?),u?(z',2?%),0)¢ and the displacement
field of the foundation by w = (1 + 2°h; ) (u! (2!, 22),v? (2!, 22),0)g, where z® € (0,—h;). One
can see that the displacement field of the foundation satisfies the boundary conditions i.e. when
z3 = —hp, w satisfies zero-Dirichlet boundary condition (i.e. w|,s-_5, = 0), and when 23 = 0, w
is same as the displacement field of the film (i.e. w|,s—q = u). Now, the energy functional of the
system can be expressed as

s = [ [ [35 astwresstw) - s awist + [

—hy

’ /lAijkleij(w)ekl(w) dwdz?

where BP0 = 11+ (2(Ay +2up) "IN 5P 670 4 5247550 4 529557 s the elasticity tensor of the film and
AR = (N5 5K 4 11, 677 571+ 11,01 57%) is the elasticity tensor of the foundation. Due to Poisson’s ratio
dependence one comes to the conclusion that {A ks ~ hy *pymeas(w; E?), Aphy > (A + 2u)ho }
is the only possible asymptotic scaling that allows any valid governing equations (i.e. problems that
allow traction), where Ay = 4(\f + 2us) ' pp(As + py), and where Ay = (1 — vy — 203) "' Eyuy

and py = 3(1 + vy)"'Ey are first and second Lamé’s parameters of the film respectively, and
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Moo= (1—v,—202) "By, and py, = 1(1 4 1)1 E;, are first and second Lamé’s parameters of the

foundation respectively. To be more precise, above is the asymptotic scaling that allows

hy 1 0
/ / S B s (w)ers(u) duds® / / A5 g (w)esa(w) duwda®
0 w —hp Jw

hy 0 1
/ / %B“'Bvéeaﬁ(u)evg(u) dwdz® > / / iAa’Bweaﬁ(w)e,ﬂs(w) dwdz® . (36)
0 Jw —hp Jw
To see why relation implies the condition Ayhy > (A, + 2u)hs please consult the proof of

theorems 3.9-1 and theorem 4.4-10of Ciarlet [39].

Now, with a little more asymptotic analysis, one can express the leading-order terms of the energy

functional of a film bonded to an elastic pseudo-foundation as

1 21 A s B 5 in
—Zh ST cey)e 2 o oS — 2 %uq , 7
J(u) th/w [()\f+2uf)ea(u)eﬂ(u)+ prea(u)es(u) + hohy UnU fPuq | dw (37)

where eqp(u) = 3 (0aus + dsua), ¥V a, B € {1,2}, is the strain tensor, (f*, f2,0)¢ is an external force
density field and w is the two-dimensional Euclidean domain representing the contact surface. If
w c E? is a connected bounded plane with a Lipchitz-continuous boundary dw, and f* € L'(w),
then there exist a unique minimiser (u',u?) € H'(w) to equation (37) (see section 1.5 of Ciarlet
[37], in particular Korn’s inequality on a surface without boundary conditions, but with «3 = 0). In
particular, this unique minimiser is also a critical point in H'(w) (see section 1.5 of Badiale and
Serra [13]).

The authors go further with this approach to derive a set of governing equations to describe the
behaviour of a bonded overlying stiff plate on an elastic foundation, where now only the normal
component of the displacement field of the foundation satisfies zero-Dirichlet boundary condition at
foundation’s lower boundary (see theorem 2 of Baldelli and Bourdin [16]). The authors define the

energy functional to this problem as

s = [ ) / {QBC“” € (@)ers (@) — [t | duda’

25 (Mo + 1) 5, 3 ,
/hb / o + 200 e3(w)es(w) dwdz® | (38)

1
u = (ul(:rl,xz) - (x3 - %hf)alu;i(x17x2),u2(x1,x2) — (:v?’ - ghf)82u3(a:1,x2),u?’(xl,xQ))E ,

1

w = (ul('r 71‘2)7U2(I1,x2), (hb + IB)US(IlaI2))E 5

are the respective displacement fields of the plate and the foundation.

Unfortunately, authors’ theorem 2 is erroneous (see equation 18-22 of Baldelli and Bourdin [16])
and the proof (see section 3.3 of Baldelli and Bourdin [16]) is inapplicable to authors’ theorem. For
example, one can clearly see that the displacement field is not continuous at the contact region,
i.e. w(z',22,0) # w(z', w?,0). Authors’ proof of theorem 2 is cumbersome and consists of many

errors, and thus, in the risk of being pedantic we omit reviewing the proof. Instead, we derive a
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solution for a plate bonded to an elastic foundation in accordance with the techniques implied by
the proof of theorem 2, but with mathematical precision. Just as before, we omit authors’ restrictive
scalings of the displacement field (see equation 9 of Baldelli and Bourdin [16]) and Poisson’s ratios
(see figure 1 of Baldelli and Bourdin [16]), and the insufficient asymptotic condition Ethy > Eyhy

(see definition of § of Baldelli and Bourdin [16]).

Let T} (v) be the stress tensor and let v be the displacement field of the foundation. Now, consider
a situation where the planer stresses are zero, i.e. Tg(v) =0,V apf € {1,2}, and use these
conditions to modify the elasticity tensor and the displacement field of the foundation, i.e. use the
conditions €5 (v) = 0,V a, 8 € {1,2} and €5 (v) = —(X + i) " Mpe3(v) to obtain T (v(w)) = (N +
115) " A pped (v(w)) 63 4 26l (v(w)), and thus, one gets 7793 (w) = Alonler(w), where AZE = (A, +
1) " A 073 R 4 1y 67F 53 + 11,691 63F is the new elasticity tensor and w is the new the displacement
field of the foundation that satisfies the conditions €5 (w) = 0, V o, 8 € {1,2}. Now, seek a displace-
ment field w of the form such that € (w) = 0, ey (w) # 0and w?(z', 22, —h,) = 0, and thus, one finds
w = (1+h; '23)(0,0,u3(z!, 22))g, where 3 € (0, —hs). Now, assume that there is an overlying plate
bonded to the foundation. As the displacement filed at the contact region must be continuous, one
finds that the displacement field of the plate is u = (—z*0'uz (2!, 2?), —230?us(z!, 2?), u? (2!, 2?))g,
where 22 € [0, hy). Due to Poisson’s ratio dependence, one comes to the conclusion that {A;-h? ~
hy (A + 1) 7 (BAs + 21p) (meas(w; E?))2, Agh% 3> hypymeas(w; E®)} is the only possible asymp-
totic scaling that allows any valid governing equations (i.e. that allows Winkler foundation type

problems), i.e. the asymptotic scaling that allows
hy 0
/ / 5B eqp(@)eys (@) dwdz’® N/ /2’422%3633(1”)633(10) dwdz® (39)
hs 383
/ / —B* ¢, 5(w)ers(R) dwdz® > / / ASSB3 ¢ a(w)eps(w) dwda® .
}Lb

To see why relation (39) implies the condition Ah% ~ hy iy (Ay + 415) (3N + 2u1p) (meas(w; E?))?

please consult the proof of theorems 3.9-1 and theorem 4.4-10f Ciarlet [39].

Now, with a little more asymptotic analysis one can express the leading-order terms of the energy

functional of an overlying plate on an elastic pseudo-foundation as

3 + 2,Ub>
us
Ab + o

1 1
J(u) = 5hf/ [3Afh§AuSAu3 + h/;lbzb < ud — 2f3u3} dw , (40)

where A is the scalar Laplacian in the Euclidean plane and f3 is a force density. As the reader can
clearly see that equation [38|is different to equation i.e. there exist clear discrepancies between
what Baldelli and Bourdin’s [16] theorem 2 and the method implied by the proof of theorem 2. Note
that we used the condition dsu?|s, = 0, V 3 € {1,2}, to obtain equation , where n is the unit
outward normal to the boundary of the plate ow.

Equation (40) is a Winkler foundation type problem for a plate that is supported by a continuous bed
of springs with a foundation modulus of A, * i, (A + 115) = (3N + 211,). Furthermore, if w C E? is an

connected bounded plane with a Lipchitz-continuous boundary dw, f3 € L'(w), and dsu?|s, = 0,
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V 3 € {1,2}, in atrace sense, then there exists a unique minimiser u* € H?(w) to equation (see
section 1.5 of Ciarlet [37], in particular Korn’s inequality on a surface without boundary conditions,
but with (u!,u?)g = 0). In particular, this unique minimiser is also a critical point in H?(w) (see
section 1.5 of Badiale and Serra [13]).

(a) (b)

Figure 13: (a) ‘Cracked lettering at Ecole Polytechnique, Palaiseau, France. A vinyl sticker
is bonded to an aluminium substrate and exposed to the sun which causes tensile stresses
and subsequent cracking.’ (b) 'Numerical experiment: nucleation at weak singularities,

multiple cracking in the smooth domain, periodic fissuration of slender segments’ [15].

Despite above highlighted flaws, the strength of Baldelli and Bourdin’s [16] work appears lies in
the study of overlying bonded films on elastic foundations, where A. A. L. Baldelli [IISI]E uses the
bonded film model to examine the crack patterns that occurs in thin structures, which is the sub-
ject of his PhD thesis (see page 147 of Baldelli [15]). Baldelli numerically shows that, without
any priori assumptions on the crack geometry, one can capture complex evolving crack patterns
in different asymptotic regimes: parallel, sequential, periodic cracking and possible debonding in a
uni-axial traction test as well as the appearance of polygonal crack patterns in a two-dimensional
equi-biaxial load, and cracking in a geometrically complex domain. One of the perfect examples
of author’s work is a comparison against a real life crack pattern and author's numerical model,
which the reader can see in figure [T3} author's numerical result in figure [T3] (b) is almost identical
to the real crack pattern observed in figure [13] (a). Note that we cannot comment on the validity of
author’'s numerical results with any degree of certainty as author's asymptotic method only utilises
linear elasticity, while the study plastic deformations, such as factures and cracks, is conducted with
nonlinear elasticity in the existing literature. For more on the numerical study of crack formation
please consult Sumi [188].

In conclusion, Baldelli and Bourdin’s [16] work is flawed and valid only when describing the be-
haviour of overlying bonded films on elastic pseudo-foundations (note that authors’ foundation is
not an actual elastic foundation as the displacement field of the foundation is grossly over sim-
plified), where Poisson’s ratios of the both bodies are in between —1 and 0 or in between 0 and
1 (where both Poisson’s ratios are sufficiently away from 0 and ), and with the asymptotic con-
diton {Efhy ~ h; ' Eymeas(w;R?), Ehy > Eyhy}. The authors assert that their method is the

10 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.3946&rep=rep 1 &type=pdf
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correct method of derivation of Winkler foundations equations, but this is false statement as Win-
kler foundation is a very specific mathematical problem (see chapter 5 of Kikuchi and Oden [102])
and different to what the authors put forward. The authors further assert that their asymptotic ap-
proach is valid for all elastic properties. However, we mathematically proved that the asymptotic
approach is only valid if both Poisson’s ratios are in between —1 and 0 or in between 0 and
(where both Poisson’s ratios are sufficiently away from 0 and %). For all Poisson’s ratios authors’
phase diagram is four-dimensional and not two-dimensional as the authors present. Also, due to
the Poisson’s ratio dependence the only scalings that can yield any valid asymptotic solutions are
{Ashy ~ hy ' ymeas(w; R2), Aphy > (A + 2u3)hy } for a film that is bonded to an elastic foundation,
and {Azh} ~ By s + 1) T (BAs + 2) (meas(w; R?))2, Aphd > hypupmeas(w; R?)} for a plate
that is supported by an elastic foundation, but not Eshy > Eyh; as the authors present. Authors’
scaling of the displacement field implies that the method cannot be applicable to films (or strings)
with planar loading, unless 2 is zero. Finally, authors’ method cannot be applied to plates due to
the structure of the overlying body (i.e. limits of integration of the plate) and the foundation (i.e.

planer-stress free condition of the foundation), unless field (u!, u?)¢ is identically zero.

In chapter[3] we extend Baldelli and Bourdin’s [16] model for bonded films on elastic foundations to
curvilinear coordinates with mathematical rigour (original work) and conduct numerical experiments

to see its effectiveness.

1.11 A Critical Study of the Work of Kikuchi and Oden

Kikuchi and Oden [102]12] present a comprehensive analysis of the Signorini’s problem, Coulomb’s
law of static friction and non-classical friction laws. The work includes meticulous documentation of
the existence, the uniqueness and the regularity results for the given mathematical problems with
finite-element modelling techniques, where the numerical analysis techniques are treated with a
significant degree of mathematical rigour. Also, each method consists of peer-reviewed numerical
examples and real life data. As far as we, and the authors, are aware that this is the most com-
prehensive documentation and analysis of the problem of unilateral contact that attempts to unify
physical problems of contact with the mathematical modelling and numerical implementation of the

mathematical models, as well as their applications to real-world problems.

Signorini’s problem [178], [179] is a class of contact problems that study the deformation of a body
that is unilaterally supported by a frictionless (lubricated) rigid foundation. The study of this prob-
lem is unusually complicated as the actual surface on which the body comes into contact with the
foundation is unknown prior to the problem. Thus, the range and the geometry of the actual con-
tact region are calculated as a part of the solution. Furthermore, the variational formulation is an
inequality, an thus, the process of finding numerical solutions is far more complicated than with

ordinary variational-problems. We discuss this problem in more detail in Section|5.4

1Thttps://books.google.co.uk/books?isbn=08987 14680
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Kikuchi and Oden [102] analyse the problem by considering equilibrium of a linearly elastic body
in contact with a frictionless rigid foundation and derive a variational inequality to represent the
given problem. In chapter 6 of the publication the authors show results on the existence and the
uniqueness of solutions, and the approximation of solutions of such problems by means of penalty
methods. They present the formulation and the analysis of rigid punch problems and provide a
solution-method based on Uzawa’s iterative scheme for solving saddle point problems. The authors
give many examples of the rigid punch problem modelled by Q2-elements and Simpson’s rule.
They conclude the chapter with the formulation and the analysis of two-body contact problems as
an extensions of Signorini’s problem, and further propose a numerical scheme for two-body contact

problems. Unfortunately, no numerical examples are given for the two-body case.

The latter part of the publication is dedicated to the study of dry-friction (see chapter 10 of Kikuchi
and Oden [102]), Coulomb’s law of static friction in particular. Given that v is the coefficient of
friction, or(u) is the tangential stress tensor and o,,(u) < 0 is the normal stress at the contact

boundary, Coulomb’s law can be expressed as

if l[or(u)| <vplo,(u)|, thenur =0, or

if l[or(u)|=vp|o,(U)|, then 3IX >0 suchthat ur = —dor(u),

where u is the displacement field and ur is the tangential displacement field of the contact boundary.

It is shown by Demkowicz and Oden [54] that these conditions can alternatively be expressed as

if |or(u)| < vplo,(u)|, then (vp|o,(u)| — |or(u))ur =0, or

if l[or(u)|=vp|lo,(U)|, then or(u) - -ur + ve|o,(U)|lur| =0.

Given that one is considering Signorini’s problem, one may express the variational formulation for

Coulomb’s law as
ueV:a(uv—-u)+jv)—ju)>f(v—u),VveV, (41)
where
V={veH'|vy =0},
j(u7V):/FVF|O'n(U)HVT|dS, uveV, (42)
a(u,v) = /Qaij(u)eij(v) de ,u,veV,
f(v):/f-vdm+/ t-vds,veV,
Q I'r

and where f is an external force density field, t is a external traction applied at some boundary I'f,

and T" is the contact boundary.

Equation is non-convex and non-differentiable, and therefore, cannot be analysed by the con-
ventional mathematical methods; thus, the question of existence of solutions remains open. The
culprit is equation (42), because it is non-convex, non-differentiable, and, coupled with formula-

tion of Signorini’s problem, it makes the problem almost impossible to mathematically analyse. To
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simplify this problem Kikuchi and Oden [102] disregard Signorini’s problem by assuming that the
contact region of the body is fixed and prescribed, and attempt to approximate equation (42).

I

*

slider

spring !
prng
Figure 14: System of springs and sliders attached to an elastic boundary [102].

Consider a uniformly distributed system of springs and sliders attached to the boundary of an elastic

body in such a way as to resist tangential motions (see figure[14), which can be formulated as

1 .
/ {%|UT| - g} ds , if jur| > ¢,
r 2

Je(u) (43)

- 1 |up|? .
/a{' s iflur| <e,
r2 5

where ¢ (units: Nm~?) is the spring modulus of the springs and ¢ is the regularisation parameter.
If one assumes that the purely normal stress o,, (pressure) is no longer an unknown, but it is
prescribed, and further assumes that 2" = —vro,,, then one sees that the boundary condition j.(-)
satisfies Coulomb’s law of static friction in the limit ¢ — 0. This is even more evident if one takes the

Gateaux derivative of j(-) and rearranging it before taking the e — 0 limit to find

u .
uFanu—T , ifjur| > e,

or(u) = ur| (44)
Uur .
VFpOp— if |UT| <e€.
9
The authors prove that j.(-) (43) is convex and Gateaux differentiable, and thus, weakly lower semi-

continuous on all of V, V ¢ > 0 (see Lemma 10.1 of Kikuchi and Oden [102]).

With the use of j.(-) the pseudo-variational form for an elastic body subject to Coulomb’s law of
static friction with a prescribed pressure can be written as a perturbed potential energy functional,

which can be expresses as
1
Fo(u) = Za(u,u) - f(u) + j.(u). (45)

The authors prove that the perturbed potential energy functional has a unique solution u., V ¢
(see theorem 10.3 of Kikuchi and Oden [102])). Furthermore, they prove that the solution u. strongly

converge to a solution u as e — 0 (see theorem 10.3 of Kikuchi and Oden [102]).
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The implication of this approach is that one has a mathematically proven theory to model a real-life
phenomenon, and the theory is simple enough to be numerically modelled. If jur| < ¢, then it
means the body is sticking, i.e. bonded to the boundary as the shear acting on the body at the
boundary (in that given region) is not great enough to yield any displacements. If ur| > ¢, then the
authors define that the body is sliding. However, this terminology is ambiguous as this is a static
problem. Thus, |ur| > ¢ must imply that the body has debonded but still stationary, i.e. it must imply
that the shear acting on the body (in that given region) is great enough to break contact and now

the body is at the static equilibrium state (at the point of slipping).

Note that the j.(-) is a nonlinear function of u, even though the authors only consider linear elasticity.
However, numerical solutions can still be obtained via the use of methods such as Newton-Raphson
method for nonlinear PDEs. Thus, the authors meticulously describe a finite-element algorithm for
solving equation (see chapter 10.6 of Kikuchi and Oden [102]).

It is important to note that the authors only consider very simple problems where the pressure is
known a quantity prior. Now, consider the initial problem of Coulomb’s law of static friction where
the pressure is an unknown. For this, the authors go further (see chapter 10.7 of Kikuchi and Oden
[102]) and give a sketch proof to the problem by claiming that, if one prescribes an appropriate
initial guess for the pressure to the reduced problem (45), then one can use the numerical solution
to calculate an updated pressure, and thus, feeding this new value of the pressure back in to the
reduce problem should provide one an iteratively converging method to obtain a solution for
Coulomb’s law of static friction. However, this approach is not handled with the same mathematical
rigour as previous sections, and thus, the mathematical viability of this approach remains as an
open question. Fortunately, this method does work, numerically at least, as the authors conclude

the chapter with an abundance of numerical examples.

Young's Modulus 1000 Uniform Load
n Poisson's Ratio 0.3 p= %2‘:&!1

The Winkler Foundation
& =100)

Figure 15: ‘finite-element model of an elastic slab resting on a Winkler foundation’ [31].

One example that the authors present is a numerical solution of a thick elastic slab resting on a
Winkler foundation, between which Coulomb’s law holds. Four-node bilinear elements and the reg-
ular mesh are used to discretise a slab of unit width, length B and thickness I. The foundation is
assumed to have a spring constant of 100Pa, and a regularisation parameter of 10~° is used. A
pressure of 20Pa is applied as indicated in figure and numerical solutions are calculated for no

friction case (i.e. vx = 0) and friction case with a coefficient of friction of 0.5. Numerical results
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show that in the non-friction case the contact area is smaller and the magnitude of the deformation
is smaller owing to the absence of frictional forces, with respect to the to the friction case. The
results also demonstrate that the classical Kirchhoff hypothesis of beam theory is not valid when
frictional forces are present. This is due to the fact that plane and normal sections to slab’s axis

before deformation are not plane and normal (respectively) to slab’s axis after deformation.

Note that similar work for Coulomb’s law of static friction is attempted by Panagiotopoulos [148,[149].
One approach author present is the numerical scheme for solving Signorini’s problem with friction
based on stochastic optimisation concepts. Such work is beyond the scope of our understanding,

and thus, it is not discussed any further.

A very important section of Kikuchi and Oden [102] is Chapter 5, where variational formulations of
contact problems in elasticity are present: trace theorems, Green’s formulas and Korn’s inequalities
which are crucial for showing the existence of solutions of contact problems. But, more importantly,
the authors supply precise mathematical formulations for various contact problems, which include
Dirichlet conditions (i.e. constrained displacements), Neumann conditions (i.e. applied traction),
elastic springs are attached normally and tangentially to the boundary (i.e. bonded to an elastic
foundation), on a bed of continuously distributed springs (i.e. Winkler foundation), uniformly dis-
tributed system of springs and sliders (i.e. Coulomb’s law of static friction as we already discussed)

and many more.

By authors’ analysis, elastic springs that are attached normally and tangentially to the boundary
can approximately simulate the bonding to an elastic foundation. Note that this is the same form of
the formulation is proposed by Baldelli and Bourdin’s [16] (consider the boundary condition at the

contact region) before the asymptotic analysis.

Kikuchi and Oden [102] define the formulation of Winkler foundation as
1
Fw(u) = ia(u7u) _f(u)+j(u)w ) (46)

where )
[ 5#alun = 9 ds it (un = 9) 2 0.
jw(u) = r
0 , if (up, —g) <0,
and where %, (units: Nm~®) is the foundation modulus [57] (erroneously defined as the spring
modulus by Kikuchi and Oden [102]), w., is the normal component of the displacement field at the
contact boundary and g is the gap function between the contact boundary of the body and the

foundation. Thus, the equation describing an elastic body resting on bed of continuously distributed

springs, i.e. the Winkler foundation, is given by the equation

(up —g)" = f%UH(U) in LQ(F) , 47)
0

where o,, < 0and (-)™ = max(-,0). Note how equation is different to what Baldelli and Bourdin’s

[16] present as Winkler foundation equations.
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From chapter 11 and beyond the authors examine a more general class of contact problems with
friction. These problems are non-classical and nonlinear with a vast number of models to model
applications in static, quasi-static, and dynamic contact problems. Problems of large deformation,
rolling contact, inelastic materials, phenomena such as stick and slip behaviour, and the mechanics
of dry-friction between metallic bodies are all analysed. As the latter sections contain work still
very much in development, the authors do not treat these chapters with the same mathematical or

numerical rigour as they do with the previous chapters.

Regarding commercial applications, in the introductory section, the authors comment ‘The large
treatise of Bowden and Tabor [28], for example, represents a classical treatment of the physics of
friction; while the National Bureau of Standards Monograph on the Mechanics of Pneumatic Tires
edited by Clark [41] is a frequently referenced source on practical solutions for contact and friction

problems encountered in tire design’ [102].

If the reader is interested in historical notes on Signorini’s problem and Coulomb’s law of static fric-
tion or friction laws in general please consult chapter 1 of Kikuchi and Oden [102], where the reader

can find a richly detailed mathematical history of the subject.

y : applied
2 L traction

1 :applied traction

%

Figure 16: ‘Contact of two surfaces.” [102] (Kikuchi and Oden’s [102] pseudo-two-body

contact problem).

Kikuchi and Oden’s [102] work is the basis for most of our work from Chapters 2} [5] [6|and Chapter
in particular. Note that some of the work present in this publication remains incomplete. One
of the limitations of authors’ work is that they only consider the Euclidean geometry. Another is
that the authors never attempt a full two-body friction problem. The two-body problem the authors
consider is a single elastic body that is being folded in on itself so one only needs to consider a

single displacement field (see figure [16]| or see section 6.8 of Kikuchi and Oden’s [102]). Thus, in
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latter chapters of our thesis we extend Kikuchi and Oden’s [102] model for Coulomb’s law of static
friction to the curvilinear space and then to model the full two-body contact problem, and use the
numerical solutions to compare against our own models. Most importantly, we treat the our models

with the same mathematical rigour as seen in Kikuchi and Oden [102].

1.12 A Critical Study of the Work of Jayawardana et al.

Jayawardana et al. [89]15] (the principal author is C. Ortner) analyse the validity of the surface
Cauchy-Bourne model relative to the Cauchy-Bourne model, when approximating the atomistic
model for large stiffness parameters. The authors show numerically that, if the mean strain be-
tween the atomistic solution and Cauchy-Bourne solution is order 1, then the mean strain between
the atomistic solution and surface Cauchy-Bourne solution is order exp(—«) for a chain of semi-

infinite atoms, where « is the stiffness parameter.

Consider an atomic lattice. Relative to the atoms that lie within the material bulk, the surface atoms
have fewer bonding neighbouring atoms. Now, this results in the elastic properties of surfaces
atoms being different from elastic properties of the atoms that occupy the interior, which is an affect
not observed in continuum mechanics, and such properties are observed in real life and docu-
mented in the literature. For example, Cuenot et al. [562] observe that the elastic modulus of the
silver and lead nano-wires on polypyrrole nano-tubes with smaller diameters is significantly higher
than elastic modulus of ones with larger diameters. They conclude that the increase in the apparent
elastic-modulus for the smaller diameter ones is a result of surface tension effects. Study of objects
with large surface area to volume ratio, such as nano-wires, is an area of focus in the recent years

for their applications in next generation electronics, opto-electronics and sensor systems [151].

When studying the behaviour of a particular body below the length scale of 100 nanometres (nm
= 107%m), it is experimentally observed that such bodies stop behaving as a continuum as the
interaction between individual particles becomes more significant [120]. Thus, if one wishes to
observe a solid at this scale, often referred to as the nanoscopic scale in the literature, then one must
depart from conventional continuum mechanics of elasticity. One of the common ways of modelling
a nanoscale body is by taking account of each atom and its interaction with its neighbouring atoms.
This is often referred to as the atomistic model. For a one-dimensional semi-infinite chain of atoms

with the deformed configuration y the total energy maybe written as

E(y) =Y (6lyi+1 — ) + S(yie2 — 1)) -
=0

J
where ¢ is shifted Morse potential, which is defined as ¢(r) = exp(—2a(r — r9)) — 2exp(—a(r —
T0)) — ¢o [140]. Morse potential is a map that represents the interaction between an atom and its
first and second neighbour, and « is the stiffness between these interactions, i.e. the molecular
bond. For authors’ purposes, they only consider large values of «, in particular, « > 1 + /3. This

ensures that ¢”(2) < 0 which is vital for the error analysis.

12 http:/ /wrap.warwick.ac.uk/56730/1/WRAP_2013-M2AN-ac.scb. 1d.pdf
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Now, introduce the potential W (r) = ¢(r)+¢(2r), which is defined as Cauchy-Bourne stored energy
density. Now, choose ¢, such that W (1) = 0 to ensures that E*(id) is finite, where id is the zero-
Deformation configuration of the chain of atoms. Also, choose rq such that W’(1) = 0, which can

be explicitly expressed as

B 1 1+ 2exp(—a)
ro=1+ o log (1 +2exp(—2a) ) (48)

The drawback of using an atomistic model to model nanoscale materials is that it is computationally
expensive. The equations are nonlinear and it is given that a fully atomistic simulation of a nano-
structure object on the scale of 100 nanometres requires a model consisting of order 10® atoms.
Thus, it motivates one to seek alternative methods to model bulk behaviour of the body: perhaps by
approximating the atomistic model. One such model is Cauchy-Bourne model. This is a mathemat-
ical approximation to model the bulk behaviour of stiff material such as crystals. Cauchy-Bourne
model assumes that the configuration of the atoms is uniform throughout the medium, and thus, the
stored energy density is chosen such that ‘Cauchy-Bourne energy is exact under homogeneous
deformations in the absence of defects’ [89]. As a consequence, any contributions made to the

energy functional by the surface, cracks or point forces are completely ignored.

For a one-dimensional semi-infinite chain of atoms the total Cauchy-Bourne energy can be defined

as
E®(y) =" h;W(y)) (49)
j=0

where h; are the atomic spacing and y’ is the forward finite-difference operator, which is defined
as y; = yj+1 — y; With yo = 0. Note that Cauchy-Bourne model is derived from the atom-

istic model by replacing the second-order interaction by localised quantities, i.e. qs(y; + y§+1) ~
3(0(2y;) + 6(2y541))-

Figure 17: Graphical representation of an over-counted left-hand bond by Cauchy-Born

model [89].

Note that in Cauchy-Bourne model one counts the second-neighbour interaction at the edge too
often (see figure[T7). Thus, surface Cauchy-Bourne model is derived by removing this over counted
quantity $¢(2y'(0)) from the boundary. Thus, for a one-dimensional semi-infinite chain of atoms

total surface Cauchy-Bourne energy can be defined as
scC - 1
E*(y) = ;Oth(y;) - 50(24/(0)) -

Surface Cauchy-Borne model is a recently developed mathematical model by Park et al. [153] [154]
155] to study surface-dominated nanoscale structures. It is successfully applied to various nano-

mechanical boundary value problems such as surface stress effects due to thermo-mechanical
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coupling [216], the resonant properties of silicon nano-wires [154], [150], surface stress effects on
the bending of face-centred cubic metal nano-wires [217] and the electromechanical coupling in

surface-dominated nanostructures to externally applied electric fields [152].

The choice of rq implies that the value 1 is the minimiser of Cauchy-Bourne stored energy function.
This implies that the solution to equation is given by the equation (ujb);?‘;o = 0, which is defined
as Cauchy-Bourne ground state. Notice that at Cauchy-Bourne ground state the distance between
each atom is 1. However, consider the boundary of the chain of atom (described by both atomistic
model and surface Cauchy-Bourne model): the distance between the boundary atom and its neigh-
bouring atom maybe greater as a result of the relaxation of the atom at the boundary. Define this
distance as hg. Now, the error analysis can be split into two cases: case hy = 1 and case hg > 1.

Note that hy > 1 is the physically realistic result.

To conduct error analysis define the relative error as

scb

(™ = uffer

Err, = , (50)

[u{ler

where u*¢®, 4% are respectively the solutions of surface Cauchy-Bourne model and the atomistic
model with respect to Cauchy-Bourne ground state. With asymptotic analysis the authors show that
the relative error is between the values £ and 2 for iy > 1, and the error is 2!/? exp(—a) for hg = 1.
This implies that the discrete (i.e. point wise) positioning of the atoms described by surface Cauchy-
Bourne model is closer to the atomistic model than described by the regular Cauchy-Bourne model,
for the hy > 1 case. Unfortunately, if hy > 1, then the accuracy gained by using surface Cauchy-

Bourne model over Cauchy-Bourne model is negligible.

However, the goal of Cauchy-Bourne and surface Cauchy-Bourne models are to describe the bulk
behaviour of the body: the chain of atoms in this case. Thus, introduce the notion of mean strain by

the error metric

scb __

Z;O:O(uj U?)
ZOO

Err = — (51)
i=0"

With asymptotic analysis the authors show that the mean-stain error is 2(1 — hy') exp(—a) +
O(exp(—2a). This is the most crucial result of this publication. It shows that surface Cauchy-Bourne
model substantially improve the accuracy of Cauchy-Bourne model at a small additional computa-
tional cost when approximation the atomistic model in the study of bulk behaviour. The relevance
of this publication is that, as far as the authors aware, this work presents the first error analysis of
surface Cauchy-Bourne method.

The authors go further by numerically calculating the relative error and mean-strain error for a chain
consisting of 31 atoms with the stiffness parameter ranging between 3 and 7, and for the first atomic
spacing hg = 1 and hy = 5. Note that the authors chose to let ro = 1 in their numerical error-

analysis and it unclear why they do so as ry > 1, Va € R (see equation (48)).
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Mean Strain Error

Figure 18: Relative error in the W!2?-seminorm of the 1D nonlinear SCB model for varying

stiffness parameter « [89].

Jayawardana et al. [89] numerically find that the relative error for p = 2 is again is order 1 for the
ho = 5 case and order exp(—«) for the hy = 1 case. Authors’ mean-strain error is order exp(—3a)
for the ho = 5 case, and order exp(—«) for the hy = 1 case (see figures[18). The authors do not
speculate on the discrepancy between the asymptotic mean stain error and the numerical mean
stain error for the hy = 5 case. But note that the asymptotic results are obtained for a semi-infinite
chain of atoms whilst the numerical results are obtained for a finite chain of atoms. Perhaps dif-
ference in the length of the chain of atoms may lead to the discrepancy. Either way, the numerical

results further justify the use of surface Cauchy-Bourne model over ordinary Cauchy-Bourne model.

The latter part of the publication extends the error analysis to a two-dimensional lattice of atoms.
However, our knowledge in this area is very limited, and thus, we refrain from examining this section
in detail. In this latter part of the publication, authors’ numerical results for domains with corners
are inconclusive. This is due to the coupling between the normal stress and tangential stress of
adjacent edges, which creates additional elastic fields. The authors conclude by proposing that
a finer analysis is needed to estimate the corrections to the energy at corners, similar to what is
attempted by Rosakis [169].

Despite the fact that surface Cauchy-Bourne model belongs to discrete mechanics, the presented
work is relevant to our work as the process in which we derive our overlying shell model in Chapter
utilises the same logical process that is used in the derivation of surface Cauchy-Bourne model.
Also, our numerical analysis from chapter [3| follows the basic structure of this publication, and our

work too has applications in the field of flexible and stretchable electronics.
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2 Membranes Supported by Rigid Foundations with Fric-
tion

Abstract

In this chapter we extend the capstan equation to more general geometries. We show that for a
general prism defined by the map (', f(z?), g(x*))g, where the limits of 2 are chosen such that
g f" —f'¢g” >0,V 22 and an external stress field in the curvilinear space defined by (0, g2, gr3),

the capstan equation can be generalised as

T(0) = exp (—MF arctan (%2)) <C - /9: (grz + uF(fﬂm)%grg) exp (MF arctan (? ))dm ) ,

where Fpo = (f)° + (¢')% C = Toexp(pr arctan(g'/f'))|,2—0,, To is the minimum applied-

tension at z> = . Also, we show that for a general cone defined by the map (z', z' f(z?), z' g(z?)),
where the limits of 22 are chosen such that §' " — f'g” > 0, ¥ =2, the capstan equation can be

generalised as

T(0) = To exp (ILF/G ((1—+ J(r 7)" (5] fig ) cos(¢) dm2> ,

N2+ (@) + @f - fg)?

where

/ )+ @)+ @ - T

1+f2+g

2.1 Introduction

Friction is the force resisting the relative motion of solid surfaces, fluid layers (viscosity) and ma-
terial elements sliding against each other. It is caused by molecular adhesion, surface roughness
and the ploughing effect (deformations of the objects). Note that adhesion is the molecular force
resulting when two materials are brought into close contact, and separating the objects requires
breaking these adhesive bonds. Also, friction leads to energy dissipation, and in micro-contacts,
where extreme stresses are present, friction leads to micro-fractures and surface wear [146]. There
are several types of friction: fluid friction, lubricated friction, skin friction and internal friction. How-
ever, in this thesis we only focus on one type: dry-friction. Dry-friction resists relative lateral motion
of two surfaces that are in contact. Dry-friction is subdivided into static friction between relatively
non-moving surfaces and kinetic friction between relatively moving surfaces. In this chapter, also
mainly in this thesis, we only focus on the static case. For a comprehensive historical and scientific
study on dry-friction please consult chapter 11 of Kikuchi and Oden [102].

Consider a membrane (i.e. two-dimensional elastic body) with a zero-Poisson’s ratio or a string (i.e.
one-dimensional elastic body with a zero or a nonzero Poisson’s ratio) over a rough rigid cylinder
subject to appropriate boundary conditions such that the body in question is at limiting equilibrium,
i.e. at the point of slipping. This is a simple belt-friction problem and its properties can be described
by the capstan equation (13). We ask that what if the rigid contact body is no longer a cylinder,
but some arbitrary geometry? If one extends the capstan equation to these geometries, then what
form of solutions can one expects? Such questions are the main focus of this chapter. Note that by

rough we mean that the contact area of the two bodies exhibits friction [161], 92].
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2.2 Derivation

Consider an elastic body on a rough rigid surface subjected to external loadings and boundary
conditions such that the body is at limiting equilibrium. The governing equation for friction at the

contact region can be expressed as
F=uprR, (52)

where R is the normal reaction force and F is the frictional force experienced on the body, and
wnr is the coefficient of friction between the rough rigid surface and the body at the contact region
[92, [161]. Equation is simply known as the friction law. A word of caution: some authors
erroneously refer to equation as Amontons’ law of friction [45] [48]. However, Amontons only
postulated three nonmathematical frictional laws [146]. Equation may have been derived from

Amontons’ laws, but in the in the literature it is commonly referred to as the friction law [92].

To mathematically investigate the behaviour of an elastic body at the boundary one must know its
stress at the boundary, which is analogous to the boundary force divided by the contact area. Now,
let F be the frictional forces and F3 be the normal reaction force at the contact region, where
the contact region described by the surface 2 = 0 in curvilinear coordinates (z!,z2,23). Then,
the friction law can be expressed in the curvilinear space as F,F'® = u% F3F3. Dividing this
equation by the contact area twice is analogous to 7§73 = u% 7373, where 7 are normal stresses at
the contact surface. If one assumes that one is dealing with a very thin structure (i.e. a membrane),
then the notion of normal stress is meaningless. However, note that the stress tensor is constant
throughout the normal direction for such thin objects, and thus, dividing the above equation further
by the thickness of the object twice enable us to obtain a relation that is analogous in terms of force

densities, i.e. f.f* = uZ f3f3. This leads to our first hypothesis:

Hypothesis 1. For a membrane over a rigid_foundation, where the contact area is described

by (2%, 22,0), at limiting equilibrium the contact region is governed by the equation

V fTOéf;‘l = KUFV fr3f7§ ) (53)

where f& are the frictional force densities and f? is the normal reaction force density of the

membrane in the curvilinear space, and i is the coefficient of friction at the contact region.

2.3 General Prism Case
Now, consider a general prism parameterised by the map
U(I17x2) = ($17f(1'2)7g(x2))E ’ v (xlax2) cw 9

where w C R? and f(-) and ¢(-) are C'(w) 2m-periodic functions. Note that w is a simply-connected
bounded two-dimensional domain with a positively-oriented piecewise-smooth closed boundary dw
such that o forms an injection. Prism’s first fundamental form tensor can be expressed as Fy; =

diag(1, (f")? + (¢')?) and the only nonzero component of its second fundamental form tensor can
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be expressed as
(o1~ 1'9")
() + (g

Note that this is a surface of zero-Gaussian curvature, i.e. det(Fy;) = 0.

Koz = —

I Vembrane
I Prism

z-axis

-0.6

Figure 19: Two-Dimensional schematic representation of a rectangular membrane on a

rigid prism.

Now, consider a rectangular membrane with a zero-Poisson’s ratio (or a string) and with a thickness
h that is in contact with the prism (see figure [T9) and at limiting equilibrium such that the boundary
of this membrane has the form

Ow = 0wy U Owr, U Qwr,,, ,
where
ows = {(z',2%) | 2" € {0,1} and Oy < 2* < Omax} »
dwr, = {(=*,2?) |0 < 2! <landz? =6},
dwr, = {(z',2?) | 0 < 2! <land 2% = Omay} .

Now, assert that the limits of 22, i.e. limits of the contact interval, is chosen such that If”]% <0inw,

i.e. the contact region is a surface of positive mean-curvature.

Consider the diffeomorphism © = o (2!, 2?) + 23 N (2!, 2?) with respect to the map o, where N is
the unit outward normal to the surface and 22 € (—¢,¢), for some € > 0 (see lemma . Now, with
respect to the diffeomorphism © full three-dimensional Cauchy’s momentum equation in the curvi-
linear space can be expressed as ?lT; + f; = 0, where is f is a force density field. By definition,

f is the sum of all the force densities, and thus, one can re-express it as f = f, + g, where g,. is
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some external loading (e.g. effects due to gravity).

Now, assert that f* = 0 and the membrane is subjected to the boundary conditions

1
Tﬂ ’&u =0 ’
T
2 )
T3,y = R (54)
T (/J‘F7o-(w)7g 7T0)
2 _ 4max r
T3 |8meax N hl ’ (55)

where 6y < Omax, and Ty and Tmax(pr, o(w), g,., Tp) are forces applied at the boundary such that
To < Tmax(pr, o(w), g,,To). Note that Tmax(1r, o(w), g,., To) is not arbitrary. For the membrane to
remain at limiting equilibrium Tax (1r, o(w), g,., To) must have a very specific value that depends on

Ty, the contact angle, curvature, external loadings and most importantly the coefficient of friction,

HF-

Due to conditions which include zero-Gaussian curvature, zero-Poisson’s ratio (i.e. v = 0) and
f! = 0, and the construction of the boundary conditions (i.e. ' independence) one finds that the
only nonzero component of the stress tensor is 75 = T%(z?). This result can be further justified
as, if one attempts this as a displacement-based problem, then one finds that the only nonzero
component of the strain tensor is €3(u?(22)). Thus, Cauchy’s momentum equation at 2 = 0 reduce

to

BT5 + fro+gr2=0,

FpTs + fra+grs=0.

As friction opposes potential motion i.e. f2 < 0 (f2 is decreasing as z? is increases for our case)
and the normal reaction force is positive i.e. f3 > 0 (as we are considering a unit outward normal

the surface), hypothesis |1|implies that
Ty + MF(F[l]Qz)%Ffu]ng2 + gro + pr(Fio2) 2 gra = 0,
Ll I
Wﬂz + gro + MF(EI]22)%97*3 =0. (56)

Finally, integrate equation with respect to boundary condition and multiply the resulting

05T5 — pr

solution by (A to arrive at our first theorem:

Theorem 1. The tension T(-) of a membrane with a zero-Poisson’s ratio (or a string) on
a prism parameterised by the map (z', f(z?), g(z%))g. subjected to an external stress field

(0,92, g2) in the curvilinear space, at limiting equilibrium is

T(0) = exp (—MF arctan (?:((g; )) C— /{: (grz + /LF(szz)%grs) exp (MF arctan (?))d:ﬁ] ,

where C = Ty exp(ur arctan(g’/ f'))|z2=6,, To is the minimum applied-tension at z> = 60y, f(-)

and g(-) are C1([0y, Omax]) 27-periodic_functions and the interval [0y, Omax] is chosen such that

g = f'g" >0,V 22 € 0o, Omax]-
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Proof. Please see above for the derivation. O

Yes, we do see the irony of calling a result a theorem which is in fact based on a hypothesis. But
hypothesis 1| is based on the standard friction law and there is no way of avoiding it. Thus,
given that hypothesis ] holds, theorem 1] holds mathematically. In fact, for the cylindrical case with
no external loadings theorem [1|implies that the tension is described by the standard capstan equa-
tion (13). We show this explicitly in Section[2.5.1]

Note that theorem is not valid when f” and ¢’ are either singular or zero between the limits 6, and
Omax. However, one can still evaluate such problems with some thought as arctan(z) remains finite

in the limit z — oo. Such a problem is analysed in Section|2.5.3

Corollary 1. The tensile stress 7(-) of an infinitely long membrane with a nonzero (or zero)
Poisson’s ratio on a prism parameterised by the map (z', f(z?), g(x?)) g, where |z!| < oo,
subjected to an external force density field (0, ¢2,g?) in the curvilinear space, at limiting

equilibrium is

7(0) = exp (-uF arctan (?%)) [C - /9 9 (gr2 + pup (Fyps)? grg) exp (MF arctan (j’;))dﬁ

where C = 1yexp (up arctan(g’/f'))|z2=0,, 70 is the minimum applied tensile stress applied

)

at 22 = 6y, f(-) and g(-) are C'([0y, Omax]) 27-periodic functions and the interval [0y, Omax] is

chosen such that ¢'f" — f'g" > 0,V 2% € [0, Omax]-

Proof. Simple case of noting that the solution in theorem |1|is invariant in the z! direction
for all Poisson’s ratios given that the membrane is infinitely long in the ! direction. This
result is even more evident if one is to use a displacement-based method to derive the

solution. 0

A word of caution: the field g,. from theorem {]is dimensionally different to one from corollary[1], and

thus, do not be confused by the apparent same notation.

2.4 General Cone Case
Now, consider a general cone parameterised by the map
o(z',2%) = (¢!, 2 f(2%),2'g(z"))g , ¥ (¢',27) € w,

where w C R.o xR, and f(-) and g(-) are C?(w) 2r-periodic functions. Note that w is a simply-
connected bounded two-dimension domain with a positively-oriented piecewise-smooth closed bound-

ary Oow such that o forms an injection. Thus, cone’s first fundamental form can be expressed as
1+]F2+§2 $1ff/+x1§§/
2 fF 4 algg (xlf/)2 + (1,1@/)2
Also, only nonzero component of cone’s second fundamental form can be expressed as
g/JI-// _ f/g//
Rijpo = —a* = 2( - _) — .
% (F)" +(@)" +(af - f7)

Fyy =
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Due to the non-diagonal nature of the first fundamental form of the cone it is difficult to find a simple
friction law as with the prism case. But note that this is a surface of zero-Gaussian curvature,
i.e. det(Fyy) = 0. Thus, Gauss’ Theorema Egregium (lemma [3) implies that there exists map
¢ : (x}, x?) — w such that the first fundamental form tensor with respect to the isometry o o ¢ is

the 2 x 2 identity matrix. With some calculations, one can define the properties of this map ¢ as

xt=aM/1+ f2 4 g2 cos(¢),
Y2=a"/1+ f2 432 sin(¢) ,

¢<zz>:/0‘” V) + @) + (a7 - Fg)

_ do .
1+ f2+g°
Also,

— T ——t 77\2 =7\2 =fI_ fA/l 2

V14 f24 g% cos(¢) xliﬂi;fi—a cos(¢) — x! \/(f) ‘*\‘}jlf‘iéz ) sin(¢)
J = Vv 9 . g

T P 437 F)*+@)*+(ar—f3)°

VIT A sin(o) o L gin(g) 4+ ot VLTI o)

is the Jacobian matrix of the map ¢. Furthermore, by the construction of ¢ implies that det(J) > 0.
With further calculations one finds that the first fundamental form tensor of the cone with respect to

the isometry o o ¢ is F[l"]”aﬁ = 0.5 and the second fundamental form tensor is

(L+72+5°) (31" - f'3") sin’(¢)  —sin(@) cos(¢)
— sin(¢) cos(o) cos? ()

Fiy=—

[SI[)

2 (1) +@) + @F - 17))
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Figure 20: Two-Dimensional schematic representation of a isosceles-trapezium membrane

on a rigid cone.

Now, consider an isosceles-trapezium membrane with a zero-Poisson’s ratio (or a string), with a
thickness h and a length [ separating its parallel sides that is in contact with the cone such that it is

at limiting equilibrium (see figure 20). The boundary of this membrane has the form
Ow = 0wy U Owr, U Owr,,,,
where

8<Ajf = {(XlaxZ) | Xl € {d,d—l—l} and §p < < emax} )

72



owr, ={(x",2*) |d<x' <d+landz® =6},

ameax = {(X1’w2) | d g Xl S d+l and .’152 = Gmax} )

and d is the distance between the membrane and the apex of the cone at 22 = 0. Note that d must
always be a positive constant, and, just as it is in Section |[2.3] assert that the limits of 22, i.e. limits
of the contact interval, is chosen such that F[lﬁj < 0inw, i.e. the contact area is surface of positive

mean-curvature.

Now, consider the diffeomorphism ® = o o (X!, x?) + 23 N¥(x!, x?) with respect to the map o o ¢,
where N¥ is the unit outward normal to the surface and x® € (—¢, ), for some £ > 0 (see Iemma.
Note that IV (2!, 22) = N¥(x!, x?), i.e. unit normal to the surface is unchanged under the mapping

o o . To prove this assertion consider following calculation,

NY — (o)1 X (0op),2
(g o) 1 x (0 09) ]|

a B
X
o',aJX1 o3 Jx2

- HU»'YJ;Zl X 0'75J£2|\
_det(J) (o1 x 02)
[det(d) (71 % 72) |
01 X092

" loa <ol
Above result guarantees that the normal reaction force density remains unchanged under the new
coordinate system. Now, with respect to the diffeomorphism @ full three-dimensional Cauchy’s mo-
mentum equation in the curvilinear space can be expressed as ?iTj + f; = 0whereis f is a force
density field. Unfortunately, due to the geometry of the cone one cannot impose a simple physically-
realistic external-loading as one did with the prism case, and thus, omit the external loading field g,.

form the calculations, i.e. now fJ = fi.

Now, assert that f* = 0 and the membrane is subjected to the boundary conditions

Tsl,,=0,vB8e{1,2},

T
c03(D)T5 |5y = 37 - (57)

T ,o(w), Tt
(:05(@5)752‘ameax == (lthl (). T) )

where 6y < Omax, and Ty and Thax(ur, o(w), Ty) are forces applied at the boundary such that
To < Tmax(pr,o(w),To). Comments that we made regarding Tmax(iir, o(w), Tp) in Section

still stand, with exception of the external loadings.

Due to conditions which include zero-Gaussian curvature, zero-Poisson’s ratio (i.e v = 0) and f! =
0, and the construction of the boundary conditions, one finds that the only nonzero component of
the stress tensor is T = T2(x?). This result can be further justified as, if one attempts this as a
displacement-based problem, then one finds that the only nonzero component of the strain tensor

is €3(u?(x?)). Thus, Cauchy’s momentum equation at 23 = 0 reduces to

T3 + fr2 =0,
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Ri3Ts + fr3=0.

As friction opposes potential motion i.e. f2 < 0 (f? is decreasing as x? is increases for our case)
and the normal reaction force is positive i.e. f3 > 0 (as we are considering a unit outward normal

to the surface), hypothesis [f]implies that
OaT3 + prFpTs = 0. (58)

Despite the fact that equation provides one with a simple relation for friction, it is near impossi-

ble to integrate with respect to x'. But notice that x! is related to x? by the equation
2 _ .1
X° = x tan(o) . (59)

In accordance with Fubini’s theorem (lemma [4) one may keep ! fixed. Thus, take the differential
of equation to find

) 1¢(V+@¥+@f—ﬁf

T 71 sec?(¢) dx? |

dy? =zt \/( 7/)2 * (f]’)2:|— (gf/ - fg/>2 sec(¢) da? . (60)
Now, with the use of equation one can express equation purely in terms of 22 as
VITPER (@ -7
P+ @7+ (@7 - 19)°
Finally, integrate equation (61) with respect to boundary condition and multiply the result by

0
——log(T3) — pr

92 os(¢) =0. (61)

hlcos(¢p(y)) to arrive at our second theorem:

Theorem 2. The tension T(-) of a membrane with a zero-Poisson’s ratio (or a string) on a

cone parameterised by the map (x!, x! f(2?),2'g(z?)) at limiting equilibrium is

0 7 9\E (s £ Fran
T(0) = To exp (MF/Q (1,+ fr) (g = 1) cos(¢) dxz) )

(7 + (@) + (af - fa)°

where

z2 71\ 2 =\2 =F_ Far)2
W):/ V)Y + @7+ aF - 17) "
0

1+ f2+g2
and where Ty, is the minimum applied-tension at z> = 6, f(-) and g(-) are C?([0y, Omax]) 27-
periodic functions, and the interval [0y, Omax] is chosen such that ' f" — f'g" > 0, V 22 €
[00, Omax]-

Proof. Please see above for the derivation. O

Note that, if one expresses the map of the cone as z'9(z?) = (2!, 2! f(2?), 2'§(2?))g, then one can

alternatively express the above theorem as:
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Corollary 2. The tension T(-) of a membrane with a zero-Poisson'’s ratio (or a string) on a
cone parameterised by the map x'9(z?), where 9" - (9’ x 9) > 0, V 22 € [0y, 0], at limiting
equilibrium is

6 " I
9 (9 x 9) )
T(0) =T Y| ——= d
i ”e"p<“F/eo' oz ) ) |

where
= ]9’ x 9|
¢(x2)=/ s dh
o 72

and where T, is the minimum applied-tension at 22 = 0.
Proof. Let 9(2?) = (1, f(2?),§(2?))g, then the result follows form theorem O

Perhaps the reader may wonder why one requires Poisson’s ratio of the membrane to be zero. Well,
Poisson’s ratio is the negative ratio of the transverse strain to the axial strain. Thus, if one wish to
reduce the two-dimensional problem into an one-dimensional problem, then one must assert a
zero-Poisson’s ratio, as one does not want the strain of the body to be altered in one direction
due to the strains of its perpendicular direction. Similar reasoning is necessary for asserting that
the contact region is isometric to the Euclidean plane (prisms, cones). As, if the contact region
has two principal curvatures, then any change in strain in one principal direction alters the strain
in the other principal direction. However, this effect can be avoided if one asserts that one of the
principal curvatures is zero. Therefore, membranes of zero-Poisson’s ratio and contact surfaces of

zero-Gaussian curvature are both vital for deriving theorems [f]and

2.5 Explicit Solutions

Let us devote this section to find some explicit solutions, which are subsequently used in Sections
and

2.5.1 Capstan Equation

Consider a cylinder with a radius a. The cylinder can easily be parameterised by the map o (2, 0) =
(z',asin(),acos(9))e. Now, consider a membrane with a zero-Poisson’s ratio (or a string) over the
cylinder at limiting equilibrium. Given that one is applying a minimum tension T, at 6, = 0 and the

membrane is not subject to an external loading, in accordance with theorem[f]one finds
T(0) = Ty exp(purb) , (62)

which is just the ordinary capstan equation (13).

2.5.2 Capstan Equation with Gravity

Consider a membrane with a zero-Poisson’s ratio (or a string) over a cylinder at limiting equilibrium
subjected to the force of gravity g = (0,0, —g)g, Where g is the acceleration due to gravity. Note
that the negative sign in the field g implies that acceleration is towards the ground (i.e. towards

the centre of the earth). To transform g into the curvilinear space, consider the Jacobian matrix
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between standard Euclidean coordinates (z,y, z)g and the diffeomorphism ©(z!, 0, 23) = (2!, (a +
z3)sin(0), (a + z*) cos(#))g, at x* = 0. This can be used to transform the field g into contravariant

curvilinear coordinates, and thus, one finds

0 1 0 0 0
Zsin(f) | =| 0 Llcos(d) —Lsin(h) 0 )
—gcos(0) 0 sin(9) cos(0) —g

where 6 is the acute angle that the vector (0, 0, 1) makes with the vector (0, a, 0). Given that o is the
mass density of the membrane (with respect to the volume), one finds that the covariant force den-
sity due to gravity in the curvilinear space with respect to the map o is g,. = (0, apg sin(6), —og cos(9)).
Thus, given that one is applying an minimum tension T at 8, = 0, in accordance with theorem

one finds

_ 2

T00) — 1—p¥ L —pg 2up .
0)=To— (JLhZQg1 oy exp(ur0) + ahlog 5 cos(f) + 14,2 sin(0) ) .
F F F

2.5.3 Elliptical-Prism Case

Consider prism with an elliptical cross section where the horizontal diameter is 2a and the vertical di-
ameter is 2b. The prism can easily be parameterised by the map o (2!, 0) = (2!, asin(6), bcos())g.
Note that 6 is the acute angle that the vector (0,0,1) makes with the vector (0, ¢(6),0), where
©(0) = (b?sin?(A) + a2 cos?(0))z. Now, consider a membrane with a zero-Poisson’s ratio over the
cylinder at limiting equilibrium. Given that one is applying a minimum tension T; at 8, = 0 and the

membrane is not subject to an external loading, in accordance with theorem[{]one finds

T(0) = Ty exp (,up arctan (Z tan(H))) . (63)

Note that § must not exceed the value 3, as at 3, tan(:) is singular. However, this is still not a
problem for the final solution as arctan((b/a) tan(-)) remain finite at ix, i.e. arctanz — +ir as
x — +oo. For example, assume that the contact angle is 37 + o where 0 < a < im. Thus, by
considering the finiteness of arctan(-) and some elementary trigonometric identities, one finds that

the solution to this problem is

(e -+0) = Toow (e [+ vt (L))

On a different note equation implies that the maximum applied-tension, Thax, is dependent
of the mean curvature of the rigid prism. To investigate this matter further consider a membrane
(infinitely long in «* direction or otherwise) on a rough elliptical prism at limiting equilibrium between

the contact angles 6y = —37 and 6max = +7. Thus, theorem 1| (and coroIIary implies that

T b
0T = Tmax _ Zmax _ exp (2,up arctan ()) . (64)
T0 TO a

As the reader can see that for a fixed contact interval and a fixed coefficient friction, equation
implies a non-constant tension ratio, ¢, for varying éb = b/a. As the mean curvature of the prism is

H(9) = Sabyp(0)~3, one can see that the tension ratio is related to the mean curvature by

0T = exp (2,uF arctan [max(?a]:], 1) + min(2aH,1) — 1}) .
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Figure 21: Tension ratio against §b and S;.

To investigate this matter further plot the tension ratio, 7, against §b, and, as the mean curvature
is not constant at the contact region, plot the tension ratio against the critical parametric-latitude,
Bs. Figureis calculated with up = 3 and 3 < 6b < 2. It shows that, for a fixed contact interval,
as 0b and the critical parametric-latitude increases, i.e. as the mean curvature of the contact region
increases, the tension ratio also increases. This is an intuitive result as the curvature of the contact
region increases, the normal reaction force on the membrane also increases, which intern leads to
higher frictional force, and thus, a higher tension ratio. Now, this is a fascinating result as this effect

cannot be observed with the ordinary capstan equation.

2.5.4 Right-Circular Cone Case

Consider a right-circular cone with a 2a-aperture (i.e. angle between two generatrix lines). The
cone can easily be parameterised by the map o(z',0) = (2!, 2! tan(a) sin(), 2' tan(«) cos(6)).
Now, consider a membrane with a zero-Poisson’s ratio over the cone, which resides in sufficiently
away from the apex, at limiting equilibrium. Given that one is applying a minimum tension 7T}, at

o = 0, in accordance with theorem [2 one finds
T(0) = To exp (up cot|a] sin (sin[e]h)) . (65)

As the aperture becomes infinitesimally small, i.e. 2a ~ 0, one expects the cone to resemble a

cylinder with an infinitesimally small radius. Thus, in the limit « — 0, equation 65| reduces to
T(6) = Ty exp (urb)

which is just the ordinary capstan equation Also, when the aperture is 7, one gets a (flat-)

Euclidean plane, i.e. (c,y, z)g where ¢ > 0. Thus, in the limit o — i, equationreduces to
T0) =T,

which is a logical result as this represent a membrane on a flat surface being pulled tangentially
and independent of any transverse effects. To visualise consider a straight rope under tension, i.e.
Tmax = To.
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2.6 Comparison Against the Works of Kikuchi and Oden

In this section, we extend Kikuchi and Oden’s [102] model for Coulomb’s law of static friction to
curvilinear coordinates, and we conduct several numerical examples to compare the results against

our generalised capstan equation.

Let © C R? be a simply connected open bounded domain and let 9Q = 9Q0 U9 s UIQr be the suf-
ficiently smooth boundary of the domain, where all meas(90; R?), meas(9Q¢; R?), meas(9S27; R?) >
0. Now, let X : Q — E® be a diffeomorphism where X (2!, 22, 2%) = o(2', 22) + 23N (2!, 22) and

o € C?(0Q0;R?) is an injective immersion.

Now, assume that 2 describes the domain of an elastic body such that 0, describes the region
where the body is in contact with a rough rigid surface, 0€2; describes the stress free boundary
and 991 describes the boundary with traction. Let v € C?(92;R?) be the displacement field of
the body. Given that f € C°(Q;RR3) is an external force density field and 7o € C°(9Qy;R?) is
a traction field (i.e. applied boundary stress) at 02, one can express the equations of equilib-
rium in curvilinear coordinates as V;T}(v) + f; = 0, where T% (v) = A"* Ej,(v) is second Piola-
Kirchhoff stress tensor, Ey(v) = 4(V;v; + Vjv;) is linearised Green-St Venant strain tensor and
AR = \gii gkl + 11(g%* g7t + g¥g7%) is the isotropic elasticity tensor in curvilinear coordinates. The
trivial boundary conditions are 7,7} (v) = 0 on 99Q; and 72;T} (v) = 19; on Iy, where 7 is the unit

outward normal to O9).

But what about the boundary conditions at the boundary 9Q,? To investigate this matter further
recall Kikuchi and Oden’s [102] model for Coulomb’s law of static friction from Section Now,
assume that X is constructed such that v* describes the normal displacement and +* describe the
tangential displacements at the boundary 9. Noticing that 75 (v)|sq, = —on(v) simply re-express

the friction equation in curvilinear coordinates to obtain
“3|aszg =0,

1
3 8
v (933)° v . 1
- ( ) ??(v)bgz;r , if (Uava)2|ago+ > e,

T??(U”agj = (vav®)? (66)

vr (gs3) B . 1
7fT§(v)|8Q(T 3 |f ('Ua’l)a)2 |6Q()+ <€ 5

where 9Q7F = lim,s_,+ , v is the coefficient of friction with respect to Coulomb’s law of static

N

friction, T33(v)|890+ is the purely normal stress, Tf(”)bng are the shear stresses and ¢ > 0 is the
regularisation parameter. Note that in this framework one has g33 = 1. Despite the fact that one is
working with linear elasticity, the above equations makes this problem inherently nonlinear. Thus, to
find numerical solutions, employ Newton’s method for nonlinear systems (see chapter 10 of Burden
et al. [30]).

Note that the above set of equations depends on the physical properties of the elastic body. Now,
recall the standard friction law (52). This is a very simple law that does not depend on any me-

chanical and geometrical properties of the body in question. Thus, under what conditions does
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Coulomb’s law satisfy the standard friction law?

To investigate this matter further consider the map of a rigid semi-prism (z!, a sin(2?), b cos(z?))g,

where z? € [—1n, 7], a is the horizontal radius and b is the vertical radius. Now, assume that an

elastic body is over this prism and one is applying a traction 7y at 22 = —%77 and a traction Tmax

at 2% = %w. Also, assume that the cylinder is rough and the coefficient of friction between the

prism and the body in question is 1. Assume further that the body in question is of thickness &,
infinitely long and in contact with an infinitely long semi-prism. This leads to the following map of

the unstrained configuration,
X (2, 2%, 2%) = (2, asin(z?), beos(2?))g + 2 (p(2?)) (0, bsin(z?), a cos(z?))g ,

where o(22) = (b2 sin?(22) + a2 cos?(22)) 2, 2! € (—o0, ), 22 € (—im, im) and 2% € (0,h). With
some calculations, one finds that the covariant metric tensor is (g;;) = diag(1, (¢2)2, 1) and Christof-

fel symbols of the second kind are

I3 = (o) ' 0212
I35 = (Y2) 10312 ,
where 1, = p(2?) +23ab(p(2?)) 2. Now, let v = (0, v?(22, 23), v (22, 2%)) be the displacement field

of the elastic body and let dv = (0, §v*(2?, z3), 5v3 (22, 2%)) be a perturbation of the displacement

field. Thus, with some calculations, one finds that covariant derivatives are
Vov? = 00 4+ TE0? 4+ THo? |
vg’l)g = (92’1_)3 — (1/72)2f‘223U2 s
Vo2 = 850? + T2
63’03 = 831}3 .

Now, with relative ease, one can express the governing equations as

A+ w0 (Viv') + pdv® =0,
(A+p1)0* (V;o') + pAv® =0,
(A +p)0* (V;60") + pAdv® =0,

A+ ) (V;6v") + pAdv® =0 .

Eliminating =! dependency one can express the remaining boundaries as

——=New New

N = 90fe U OO U Iy, U,
where

1 1
o™ = {(~5m.5

o) < {0}
1

oQew = {(f%w, o™ xAh}}

PNV = ({5} x (0,1)}
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o0y = {{5 7r} (0,h)} .
Thus, the boundary conditions reduce to

v \—New = 0 (zero-Dirichlet) , (67)

[(A+21) (020% + T50° + T0°) + A030° | |-onew = 79 (traction)

Foe

[N+ 2p) (8207 + THv? 4+ T350°) + A050° ] e = 7max (traction) ,

[
[(1/;2)2831]2 + 62’1]3} ‘0Q?eanQ¥eanQ¥ew =0 (ZeI’O-RObIn) y
[A (020 + THv” + T550°) + (A + 21) 0507 \BQNew = 0 (zero-Robin) ,

51]2 SaNew =0
‘BQf U@Qg%wuaﬂgl%v‘;x ’

(S’US‘BQNew =0.

Note that condition arises due to the fact that the body is in contact with a rigid boundary. In

chapter 4 we examine a more complicated example where this condition is no longer true.

Now, with some more calculations, one can find the fiction laws governing the boundary conditions

at the boundary aTz[?eW, which are:

If 4o |v?[ | ponew > €, then
(1112050 + vpsign(v?) T3 (v)] logen =05
If 4ho|v?[ | ponew < €, then
[/l?[)233502 + I/F€71’(/;2’U2T§(6U) + I/F€711Z)25’U2T§(’U) + /11;2831)2 + VF6711/_12U2T§’('U)] |aﬂgew =0,

where T3 (v) = M990 + THv? + TE03) + (A + 2u)030°.

Despite the fact that the original problem is three-dimensional, as a result of problem’s invariance
in the z! direction, it is now to a two-dimensional problem. Now, the domain resides in the set
{(#%,2%) | (22,2%) € [-3m, 7] x [0, h]}. We are fully aware that Kikuchi and Oden’s [102] model is
only defend for bounded domains; however, we later show that the reduced two-dimensional prob-

lem is numerically sound.

To conduct numerical experiments we use the second-order-accurate finite-difference method in
conjunction with Newton’s method for nonlinear systems, i.e. given that v,,, and év,,, are m!" iterative
solutions of the problem obtained by the finite-difference method, we assert that v,,,11 = v, +dv,, IS
the updated solution, and we follow this iterative scheme such that év,,, converges to zero in the limit
m — oo. Another issue we must tackle is the discretisation of the (reduced two-dimensional) do-
main. As we are dealing with curvilinear coordinates, there is an inherit grid dependence. To be pre-
cise, it is approximately yoAz? < Az®, V ¢ € {2(2?,2%) | 2% € [~ 3, i7] and 2® € [0, h]}, where
Az is a small increment in 27 direction. For our purposes we use Az? = 5 and ¢y = ¢ (57, h),

where N = 250. Finally, we must define a terminating condition. For this we terminate our iterating
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process given that the condition |1 — (|[vin|le2 + [[00m]]e2) " (|[vms|lez + [|6Vmsa|le2)| < 10719 is
satisfied, where |v|,> = ([norm(v2,2)]2 4 [norm(v?,2)]2)2 and norm(-, 2) is Matlab 2-norm of matrix

[201]. Note that for all our examples we fix the values vy = 1, 7o = 1 and a = 2.
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Figure 22: Displacement field of the modified Kikuchi and Oden’s model.

Figuresand are calculated with the values of 7max = 1,b=2,h =1, E=10%, v = 1,6 =107°
and with a grid of 250 x 41 points. Figure [22| shows the azimuthal (i.e v?) and the radial (i.e v®)
displacements. The maximum azimuthal displacements are observed at 2? = 41, with respective
azimuthal displacements of v? = +1.72 x 10~3. The maximum radial displacement is observed at

z* = +1n, with a radial displacement of v3 = —8.24 x 107*.
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Figure 23: Slip and stick regions of the modified Kikuchi and Oden’s model.

Figure shows the behaviour of the elastic body at the boundary @gew. It shows that in the
region [—%w, —0.0694] the body slid in the negative (i.e. decreasing) azimuthal direction, and in the

region [0.0694, 2] the body slid in the positive (i.e. increasing) azimuthal direction. The region
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(—0.0201,0.0201) describes the azimuthal region of the body that lies below the threshold of sliding
determined by the Coulomb’s friction condition, i.e. |v?| < 10~° for our case. This does not imply the
displacement inside this region is identically zero (see figure[23), but it implies that the displacement
in this region infinitesimal, i.e. the body is unable to overcome the force of friction or in other words
the body is bonded. This bonded region is determined by the regularisation parameter ¢ which is not
a physical parameter as it has no real life significance. It is merely introduced make Coulomb’s fric-
tion law regular when displacements are zero, i.e. to avoid singularities in the numerical solutions.
Note that, if the applied traction at 22 = i is larger than the traction at 2> = —}, then figure [23]
will no longer be symmetric in the azimuthal direction, and for this case the right side (i.e. where slip
= 1) will be much greater than the left side (i.e. where slip = —1). Thus, if one increases the traction
at 22 = %m enough, then the entire body will slip in the positive azimuthal direction, i.e. slip = 1,

v 6. The subject of this section to investigate how this slip region behaves for a given set of variables.
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Figure 24: Grid dependence of the modified Kikuchi and Oden’s model.

Prior to our investigation we must perform is the grid dependence analysis for the numerical solu-
tion. For this, we examine how the solution behave as we vary number of grid points N. To conduct
this experiment let us define the error between two solutions with azimuthal grid points N — 1 and
N as Error = |1 — |\uN_1||;21||uN\|gz|. As the reader can see from figureas N increases, the
difference between the numerical solution N and N + 1 decreases. For our experiments we found
that the azimuthal grid points and the error share the relation N o Error%**°, Note that figure [24]

is calculated with the values of Tmax =2,b=2, h =1, E=10%, v = { and e = 107°.

Another input parameter we must determine is our choice in the regularisation parameter, . For
these experiments we use the values mmax =2, b=2,h=1, E=10% v=1and 107° <e < 107'.
For all our experiments we find that the slip region remains at a constant value of 71.2% for all ¢,
except for the value ¢ = 10710, For this particular value we find the slip region to reduce to 69.6%.
This may be caused by the terminating error condition as it is also 10~!°. Thus, for all our experi-

ments we continue to use the value ¢ = 1075.
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Figure 25: Slip for 67 = Tmax/70-

Figure[25|shows how close the elastic body is to limiting equilibrium for varying tension ratio, 7. For
these experiments we assert that 67 € {1,2,%, 7,2 3 10 3 sp =1, h =1, E=10and v = 1. In
figure [25) we see that as the tension ratio increases, the elastic body gets closer and closer to fully
debonding. In fact, when i = %, our elastic body is fully debonded from the rigid foundation and
sliding in the positive x2 direction. To compare it against the capstan equation we invoke corollary
with 6t = L1, which implies that the capstan coefficient of friction is nr = 0.322, regardless of the
Poisson’s ratio of the body. This result implies that the capstan coefficient of friction is an underesti-
mate of Coulomb’s coefficient of friction, i.e. ur < vr. Note that capstan equation underestimating

the actual coefficient of friction is a documented phenomenon in the literature [134].

Low Critical Parametric-Latitude: a=2,b =15 25 High Critical Parametric-Latitude: a=2,b =2.5

z-axis

y-axis y-axis

Figure 26: Schematic representations of the reduced two-dimensional domain for the i =

l,a=2,and b= 2 and b = 2 cases.

Figure 27| shows how close the elastic body is to limiting equilibrium for a set of vertical radii of the

contact region, db = b/a. For these experiments we assert that 67 = 2, 6b € {3, 5. 15, 55+ 15> 1> 1o
12 38 13 13} (see figure[26), h = 1, E = 10%and v = 1. Figureimplies that as b increases,
the modified Kikuchi and Oden’s model moves away from limiting equilibrium, i.e. as the critical

parametric-latitude increases, the normal reaction force of the body increases, which intern leads to
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Figure 27: Slip for éb = b/a.

greater frictional force. This is an intuitive result, and analogous results are found in Section [2.5.3

for the modified capstan equation.
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Figure 28: Slip for h.

Figure|28|shows how close the elastic body is to limiting equilibrium for varying thickness of the over-
lying body, . For these experiments we assertthat 7 =2,6b=1,h € {5, 3, 5. 15 B> 15+ 15> 15+
>, 1}, E=10%and v = 1. Figure implies that as h decreases, the modified Kikuchi and Oden’s
model moves away from limiting equilibrium, i.e. as the thickness decreases, Coulomb’s law of

static friction behaves more like the standard friction law.

Another numerical experiment that we conduct is to examine the behaviour of the body under
variable Young’s modulus, E. For these experiments we assert that max = 2, 6 = 2, h = 1,
500 < E < 1500 and v = 1. We find that the body has a constant slip of 71.2% in the positive 22
direction for all values of Young’s modulus. This is intuitive as, whatever the value of Young’s mod-
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ulus is (given that it is not zero or infinite), one can always rescale the displacement field without
affecting the final form of the solution. This result also tends to coincide with the capstan equation
as the capstan equation is also invariant with respect to Young’s modulus of the elastic body. Note
that for values above £ = 10'° we observe total bonding. We hypothesise that this is due to the
magnitude of ¢ and not to do with any physical realistic properties as the displacement field can be
rescaled for any given value of Young’s modulus. Our hypothesis is further justified as when the
magnitude of the regularisation parameter is reduced further, we did not observe total bonding for

the case FE = 101,

100% = === === === === — = - —
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Figure 29: Slip for v.

Figure[29]shows how close to the elastic body is to limiting equilibrium for varying Poisson’s ratio, v.
For these experiments we assert that 67 =2, 6b =2, h =1, E =10* and v € {0, 55, 2, 55, 35> 25
1. Figureimplies that as v increases, the modified Kikuchi and Oden’s model moves away from
the limiting equilibrium, i.e. as the body becomes incompressible, one needs to apply more force
to debonded the body from the rigid surface. This is a surprising result as this tends to contradict
the capstan equation, as the modified capstan equation for the infinite width case (see corollary [f)
is invariant with respect to Poisson’s ratio of the elastic body. This effect is incredibly small, but it is
still noticeable. Note that at the value v = 2—70 the terminating error of the solution failed to fall below

the value 1019,

2.7 Conclusions

In this chapter we taken the standard friction law and extend it to model thin objects on rough
rigid surfaces in an attempt to extend the capstan equation to more general geometries. In
Section we derived a closed from solutions for a membrane with a zero-Poisson’s ratio (or a
string) supported by a rigid prism at limiting equilibrium. Then, in Section we derived a closed
from solution for a membrane with a zero-Poisson’s ratio (or a string) over a rigid cone at limiting

equilibrium.
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Then, in Section we extended Kikuchi and Oden’s [102] model for Coulomb’s law of static
friction to curvilinear coordinates. There, we conducted numerical experiments to see how close
Coulomb’s law of static friction is to the ordinary friction law is, in curvilinear coordinates. To
do this we modelled an elastic body over a rigid rough prism with an elliptical cross section. Our
numerical results indicate the following (for a fixed coefficient of friction): (i) capstan coefficient of
friction is an underestimate of Coulomb’s coefficient of friction, i.e. ur < vp, (ii) as the critical
parametric-latitude of the contact region increases, one require a larger force to debond the body,
a result that coincides with the modified capstan equation, (iii) as the thickness of the body de-
creases, one require a larger force to debond the body, yet this force is still an underestimate to
what is predicted by the modified capstan equitation, (iv) Young’s modulus of the body does not
affect the governing equation of the contact region, a result that coincides with the ordinary capstan
equation, and (v) as Poisson’s ratio of the body increases, one requires a larger force to debond
the body. The last result implies that incompressible elastic bodies such as rubber tend to be more
difficult to debond from a rigid surface relative to a compressible object (e.g. piece of marshmallow)
with the same coefficient of friction acting on the contact region. Now, this is a surprising result as
this behaviour is not predicted by the modified capstan equation as the modified capstan equation

is invariant with respect to Poisson’s ratio of the body, for the given problem.

Our analysis shows that modelling friction is not a well understood problem. This is due to the fact
that for the same value of coefficient of friction different models predict vastly different results, such
as different limiting equilibriums. This further implies that, if one’s goal is to find the coefficient of
friction for a given set of input values, then different models predict a different coefficient of friction
for the same set of input values, i.e. coefficient of fiction is dependent on the friction model that is

being used to calculate it.

Note that the work we presented in Sections[2.3|and[2.4] has real life significance as it can be easily
be applied to cable drive devices (see Section [1.6). Consider an electronic robotic hand, where
precision is significant, and consider a tendon running over outer part of a joint. Given that the joint
has a noncircular crosses section, hypothetically assume it is elliptical, one can easily calculate the
force required to overcome friction with the use of equation (63), or using theorem [1] for a more

complicated geometry.
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3 Shells Supported by Elastic foundations: Boundary Forms
to Model the Bonded Case

Abstract

In this chapter we derive a theory for bonded shells on elastic foundations. We show that, if the
diffeomorphism X € C2(Q; E*) describes the unstrained configuration of the foundation and the
injective immersion o € C*(@; E®) describes the unstrained configuration of the overlying shell,
where Q C R? is a connected open bounded domain that satisfies the segment condition with a
uniform-C*(R?; R?) boundary 9 such that w, 8Qy C 99, @ N Qs = @, meas(9Q0; R?) > 0, and
w C R? is a connected open bounded plane that satisfies the segment condition with a uniform-
C*(R%;R) boundary dw, with f € L*(Q), f, € L*(w) and 7y € L*(dw), then there exists a unique

field u € Vi (w, ) such that u is the solution to the minimisation problem

J(w)= min J
(u) ve‘gl(gm(v),

where

Vo (w, Q) ={v € H(Q) | v]o € H (w) x H' (w) x H*(w), v]og, =0, 95(v°]u)ow =08 € {1,2}},
() :/Q BAijklEij (w) B (u) — fiul] aQ

1 . 1 i i
+ [ 15577 (heasiess(u) + 3 poplwpns(w)) = | do = [ s atow)
w Ow
and where A is the elasticity tensor and E(-) is the stain tensor of the foundation, and B is the
elasticity tensor, €(-) is half of the change in first fundamental form tensor, p(-) is the change
in second fundamental form tensor and 4 is the thickness of the shell. In particular, the unique

minimiser w is also a critical point in (Vo (w, Q), J(+)).

3.1 Introduction

In this chapter we develop a theory for elastic shells that are bonded to elastic foundations (see fig-
ure[30). In the current literature there exists a limited number of publications on the study of plates
and films that are bonded to elastic foundations (see sections and [1.10), yet there exists no
comprehensive theory to describe the behaviour of shells that are supported by elastic foundations.
In Section (3.2, we begin by modifying the linear Koiter’s shell equations to describe the behaviour of
a shell if it is in contact with a three-dimensional elastic body by considering a technique that is used
in the derivation of surface Cauchy-Bourne model [89]. Then, in Section we explicitly derive the
governing equations and the boundary conditions for the general case. In Section 3.4 we treat the
bonded shell as a boundary form of the elastic foundation, which is analogous to the work of Necas
et al. [144]. Then, we use a combination of Ciarlet’s [38], and Badiale and Serra’s [13] work to prove
the existence and the uniqueness of solutions, and then conduct some numerical experiments in
Section In Section [3.6| we extend Baldelli and Bourdin’s [16] model for bonded films on elastic
foundations to curvilinear coordinates and show how numerical solutions fair against our numerical
model, with respect to the bonded two-body elastic problem. To conclude our numerical analysis, in
Section we analyse how effective our model is at approximating the bonded two-body problem.

Finally, in Section (3.8 we conclude this chapter with our findings and some notable applications.
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Figure 30: Two-Dimensional schematic representation of the reference configuration of an

overlying shell bonded to an elastic foundation.

3.2 Derivation

Consider an unstrained static three-dimensional elastic body described by the diffeomorphism
X e C2(Q; E®), where Q ¢ R? is a connected open bounded domain that satisfies the segment
condition with a uniform-C*(R3; R?) boundary. Now, assume that on a part of body’s boundary,
with a positive mean-curvature with respect to the unit outward normal and described by the injec-
tion o € C3(w; E?) where w C R? is a connected open bounded plane that satisfies the segment
condition with a uniform-C* (R?; R) boundary, lies an elastic shell with the same curvature and the
same physical form as the given surface, which is also bonded to the surface. Now, recalling the
shell equations form from Section [.4]it is clear that one cannot directly apply the shell equations
to describe the behaviour of an overlying shell for the following reasons: (i) if one applies the
shell equations as it stands, they imply that both the shell and the elastic body occupy the region
@ x [0, —%h], which is not physically viable, and (ii) one may displace the map o by %hN amount,
where N unit outward normal at the contact region, but this violates the condition that the lower
(and the upper) surface of the shell is stress free. Also, the latter condition is problematic as when
trying to prove the existence and the uniqueness of the solutions as one will not be able to express
the governing equations of shell as a boundary form. Thus, one must consider an alternative way

of tackling this problem.

To do so, consider the following: assume an overlying shell whose lower-surface is parameterised
by the sufficiently smooth injection o (2!, 2%). Thus, any surface of the shell can be parameterised
by the map p(z!,22) = o + EN(al,2?), V € € [0,h], where h is the thickness of the shell. Now,

consider the normal (not the unit normal) of the map ¢(«!, 2), which can be expressed as
d1p X Oa¢p = (010 X 020) (1 — EFue +€° (Euﬁﬁu]zz - Ffll]%F[’II]%)) , VEe[0,n].

For our analysis we require the normal to any surface of the overlying shell, 9;¢ x 924, to be the
same sign as the normal to the lower-surface, 9,0 x d>0, and to be almost the same magnitude as

the normal to the lower-surface, for all £. Now, this can be achieved by asserting the following:

Assertion 1. Let the map o € C*(w; E*) describes the lower-surface of an unstrained shell,

where w C R? is a connected open bounded plane that satisfies the segment condition with
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a uniform-C*(R?;R) boundary. Given that the thickness of the shell is h, we assert that
1 o -
0 < W* (Fgyt By — Fyt Fi) < _QhF[‘Ha <1,V (zha?) ew,

i.e. the lower-surface of the shell is not hyperbolic and it is a surface of positive mean curva-

ture, and the thickness of the shell is sufficiently small .

Note that positive mean-curvature (i.e. %If,,]g < 0) is essential in our numerical modeling in Section
[3.5[3.6]and[3.7] Also, assertion[l]is essential in chapter[4} where we no longer assert that the shell

is bonded to the elastic body.

Now, assume that one is dealing with shell with a thickness 24, i.e. the energy functional is Jo, (w) =
J(w, 2h, §h3), where w describes the displacement field with respect to the mid-surface. Given
that this shell satisfies the conditions described by assertion [1} its upper and lower half maybe
approximated by dividing energy functional of the shell by 2. To be more precise, if Jop(w) =
Jupper(w) + Jiower(w), then assume that %JQh(W) ~ Jupper(w) ~ Jiower(w). This is due to the fact
that we asserted that the lower-surface of the shell is not hyperbolic and it is a surface of positive
mean curvature, and the thickness of the shell is sufficiently small, and thus, these conditions imply
that the change in the second fundamental form tensor is small for infinitesimal deformations, i.e.
hQF[,,]ZF[”];‘ ~ 0 = h*pS(w)pl(w) ~ 0. Thus, one can expect Jo,(w) to behave approximately
linear in h, despite its cubic h dependence. Now, take the upper half and assert that this is the
form of an overlying shell equation: this is a similar logical process that is used in the derivation of

surface Cauchy-Bourne model [89]. Thus, we come to our second hypothesis of this thesis:

Hypothesis 2. The energy functional of an overlying shell with a thickness h is
1 1 . ,
I(w)snen = [ [QBW (hemu)ew(u) + Sh?’ﬂaﬁ(u)ﬂwa(u)) - hfu} do— [ hrju; d(ow)
w ow
given that the shell satisfies the conditions from assertion where u describes the dis-
placement field with respect to the lower-surface, the map o € C°(w; E*) describes the lower-
surface of an unstrained shell, and w C R? is a connected open bounded plane that satisfies

the segment condition with a uniform-C'(R?; R) boundary.

an . Ishel

Figure 31: Two-Dimensional schematic representation of hypothesis

Note that there are two things differ from the ordinary shell equations and our overlying shell equa-

tions: the choice in the displacement field and the fraction that proceeding the »® term. In the
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ordinary shell equations the displacement field describes the displacement from the mid-surface
and, for a shell with a thickness h, fraction that proceeding the 13 term is ;. But, in our overlying
shell equations the displacement field describes the displacement from the lower-surface and, for a
shell with a thickness 4, fraction that proceeding the h? term is % Why does this make sense? Well,
consider a thin overlying body. Let the diffeomorphism ©® = o + 23N € C%(@ x [0, h]; R?) describes
the unstrained configuration of this body and let u(z, 2?) be the displacement field with respect to
the lower-surface, i.e. w is the displacement field with respect to the contact surface. Now, con-
sider the pure-stretching case with the displacement field (u!, u?,0), an external force density field
(f1, f2,0) and a traction field (¢, 72,0). For this case one can express the energy functional as

J(u) = /w BhB“ﬂ”‘seag(u)evg(u) — hf“ua} dw —/8 hif ug d(Ow)

w

= J .
o fm ()shel

Now, consider the pure-bending case with the displacement field ( — 239 us, —39%us, 0), an exter-
nal force density field (f*, 2,0) and a traction field (7}, 7Z,0). For this case one can express the
energy functional as
J(u) = / B <Z1’>h3> BP0 p s (w) pys(u) — }Lf3U3:| dw 7/ hius d(Ow)
w ow
= ul,u21,iergt)~>() J(U)shell )

where f3 = %hvo,fCY and i = %hvaroa. Thus, if one considers the pure-stretching and the pure-
bending case separately for a thin overlying body where the displacement field is approximated by
the displacement with respect to the contact region, then hypothesis [2| perfectly coincides with the

each respective energy functionals. Can the reader now see why hypothesis [2 makes sense?

Now, with hypothesis [2| one can finally express the equations for a bonded shell on an elastic

foundation, which leads to the following theorem:

Theorem 3. Let Q C R? be a connected open bounded domain that satisfies the segment
condition with a uniform-C*(R?; R?) boundary 09 such that w, 9y C 05, where N IQy = O
with meas(9Qg; R?) > 0, and let w C R? be a connected open bounded plane that satisfies
the segment condition with a uniform-C*(R?;R) boundary dw. Let X € C*(; E*) be a dif-
Jeomorphism and o € C?(w; E®) be an injective immersion. Let f € L*(Q), f, € L*(w) and
7o € L*(0w). Then there exists a unique field u € Vi (w, ) such that u is the solution to the

minimisation problem

J(w)= min J(v),
(w) ve‘?;,ll(?,,m(”)

where

Vi (w,Q) = {ve H(Q) | v|, € H' (w)x H (w)x H*(w), v|aa, = 0, 95(v3|.)]aw = 0 VB € {1,2}},

s = [ [GAM B (w Bt - ] a0

+ [ [380 (heas(iesstw) + 316 paptulorsta) ) s o -

w
ow
In particular, the unique minimiser u is also a critical point in (Ve (w,Q), J(+))

higu; d(Ow) .
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Proof. See Section O

Note that by v|sq, and v|,, we mean in a trace sense.

What does theorem [3l mean? Well, it means that for some well-posed normal and tangential forc-
ings, and tractions acting on a shell with a thickness h that is bonded to an elastic foundation,
J(-) has a unique weak solution in the set Vi (w,Q2). This weak solution is sufficient for finding
finite-element solutions. For a comprehensive study of finite-element modelling of similar problems
please consult chapter 4 of Kikuchi and Oden [102]. However, one requires higher regularity results
to prove the existence of classical solutions. This problem is a subject of discussion in Section (5.3
Also, note that due to the conditions ds(u?|.,)|s. = 0, V 8 € {1,2}, external moments cannot be

applied to the boundary of the shell.

Theorem (3| is also valid for the weaker conditions f € L%(Q) (see theorem 3.9-2 of Ciarlet [39]),
fre L"(w)Vae{1,2} and £ € L*(w), where r > 1 (see theorem 4.4-2 of Ciarlet [39]). However,

we are unfamiliar with the proof, and thus, we refrain from asserting these weaker conditions herein.

Note that the displacement u restricted to the boundary w should be understood in the context of
the statement. For example, by [ u dw we mean that | wu|, dw, where ul, in a trace sense. We

often neglect the term |, for convenience.

3.3 Equations of Equilibrium

For this section we assume that u € C?(Q;R3) with u*|, € C*(w) and v?|, € C*(w), and use

theorem [3]to derive a set of governing equations and boundary conditions for our problem.

3.3.1 Governing Equations of the Elastic Foundation

ViTj(uw)+ f; =0, Vje{1,2,3},

where T% (u) = AY* Ey, (u) is second Piola-Kirchhoff stress tensor, E;;(u) = 1 (g:,Vjuk + g;x Viu)
is linearised Green-St Venant stress tensor, A% = \g gk + fi(g™*git + g'g7*) is the isotropic
elasticity tensor, A = (1 — v — 20?)~ ' E is first Lamé’s parameter, i = 1(1 + »)~'E is second
Lamé’s parameter, £ is Young's modulus and i is Poisson’s ratio of the elastic foundation, and f is

an external force density field acting on the elastic foundation.

3.3.2 Boundary Conditions of the Elastic Foundation

ulp, =0, (68)
1T (u)| (a0 fwusney =0, Vi € {1,2,3}, (69)

where 7 is the unit outward normal to the boundary 052 in curvilinear coordinates. Dirichlet boundary
condition is often referred to as the zero-displacement boundary condition and Robin boundary

condition is often referred to as the stress free boundary condition.

91



3.3.3 Governing Equations of the Overlying Shell

VaTg (u) + gth[u]ﬁVWZ(U) + ghz (VwF[u]ﬁ) Na(u) — BTI"(T[;’(U)) +fop =0,V 3e{l,2},
1 1 1
a7 () = 3h*Va (V1™ (w)) + S h* R g (w) = 3 Tr(T5 (w) + foz = 0,

where 799 (u) = B*#7%¢_ 5(u) is the stress tensor, n°#(u) = B“#7°p_;(u) negative of the change in

moments density tensor,

(Va(uglw) + Va(ual,)) — Fijas(u’])

N |

eaﬂ(u) =

is half of the change in first fundamental form tensor,

pap(u) = VaV(u’lu) = Rijay g () + Fings Va(u”]w) + Hitar Vo (ulw) + (VaFinsy) (u7l)
the change in second fundamental form tensor,
Baﬁ'yé _ QAM FoéﬁF’YJ + (FQ’YF55 + FaéFﬁ’Y)
T+ 21 r -m A m -m
is the isotropic elasticity tensor, A = (1 — v — 2v%)"'vE is first Lamé’s parameter, = 3(1+ v)'E
is second Lamé’s parameter, E is Young’s modulus and v is Poisson’s ratio of the overlying bonded
shell, Tr(T?(u)) = T?(u)|., is the normal stresses of the foundation at the contact region and £, is

an external force density field action on the overlying bonded shell.

3.3.4 Boundary Conditions of the Overlying Shell

2
[na7f (u) + §h2”vF[||]§773(u)] low =18, VB €{1,2},
1
*§h2”wva7fw(u)|aw =3,
9(u*|w)low =0, V B €{1,2}, (70)

where n is the unit outward normal vector to the boundary dw in curvilinear coordinates and r is
an external traction field acting on the boundary of the overlying bonded shell. Neumann boundary
condition is often referred to as the zero-slope boundary condition. Due the zero-slope bound-
ary conditions one cannot apply external moments to the boundary of the shell. If one requires to
apply boundary moments to the shell, then one must assume that 95(u3|.,)|s. are unknowns. The

reason that we insist upon the zero-slope boundary conditions is described in Section

3.4 Existence and Uniqueness of Solutions

In this section we prove theorem 3] and thus, finally concluding that the model derived in this chap-
ter is a mathematical theory. As we consider the equations of the overlying shell as a boundary
form of the foundation, one may think that we may easily prove the existence and the uniqueness
of solutions of our problem with the use of mathematical techniques for boundary forms put forward
by Necas et al. [144] (see chapter 4 of Necas et al. [144]). However, this is not the case. This is
due to the fact that w requires higher regularity at the boundary than in the interior of the foundation.

Thus, we need to prove the existence and the uniqueness results from scratch. However, we still
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retain the mathematical techniques introduced by Necas et al. [144] in our proof.

Step 1 : Reflexive
The space

W(w,Q)={ve H (Q)|v|, € H'(w)x H' (w)x H*(w)} ,

equipped with the norm

Nl=

[vllw(w,0) = (Hvllﬁfl(ﬁ)—’—|‘U2||§{1(Q)+||U3|‘%Il(Q)+||U1‘w|‘%11(w)+||v2|w”%11(w)+Hv3|w|‘%12(w)) )

is a Hilbert space, and thus, it is reflexive. This is due to the fact that W (w, Q) is a finite Cartesian
product of Hilbert spaces equipped with a product norm consists of a finite collection of the norms
of each respective spaces. This is a trivial result. For comments on the subject please see the proof
of theorem 7.19 of Sokal [182].

Step 2 : Coercive
J(u) is coercive in the set Vi (w, Q2) with respect to the norm || - ||y (,,0)- To show this we introduce
Korn’s inequity, which states that there exists a constant C that depends on €2, 99, X, w, dw and

o such that

=

lullww.) < C (IB@)IIL2q) + lle@)lLa) + lp(@)]Z2)) VU €Var(w, Q). (71)
(@) @) (@)

This implies that Vi»(w, Q) is a closed subspace of the complete space W (w, 2), closed under the
norm || - ||w (w,)- The given Korn’s inequality can be proved by combining and modifying the
proofs of theorems 1.7-2, 1.7-4, 2.6-1 and 2.6-4 of Ciarlet [38]. For an explicit proof please see
Section

Now, recall the energy functional from theorem 3| and consider that
BA”’”E w) By (u) — fiui] dQ
[ |50 (reastwenstw + 3 pastwpss(u) ) = nfiu] do— [ hus aiau)
> CLlE(W) B + Co (h||e<u>|iz(w> + §h3|p(u>|iz<w>)

— G3||fll2 ) |vllL2 ) — hCsl| foll L2 @)l [wll L2 w) — hCallTol|L2 (g 1wl L2 (9
> Cs||ully .0y — Csll Fll2@llullL2 @) — BCs| Foll L2 w)llwl L2 w) — Collull g o)
> Cs|ullfy .0y — Crllullww.o) — Csllullm w)

> Csllulliy (.0) — Collullwwe) , ¥ u € Vo(w,Q).

This implies that there exist positive constants ¢; and ¢, that depends on Q, 9Q, X, w, dw and o
such that J(u) > c1||u||%4,(wm — collullww,o), YV u € Vo(w,Q),ie. J(u) is coercive. Note that
the constant C; follows from positive definiteness of the elasticity tensor (lemmal5) and proposition
C, follows form the positive definiteness of the elasticity tensor on a general surface (lemma [6)

and proposition B} Furthermore, C5 and C, follow from Hélder inequality (proposition [6), C; follow
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from Korn’s inequality (71), and Cj follows from the boundary trace embedding theorem (lemmal(TT).

Step 3 : Differentiable
J(u) is Fréchet differentiable. To show this, let u € W (w, ) and consider the Gateaux derivative

of the functional J(u),
T = [ A E(wEi(o) - f'u] d
Q

+ [ [52 (neaptwlessto) + 3pmatwpte) ) ~nfje| o= [ egus o)
w Ow

< Cll|E(u)| L2 @)1 E(v)|]L2(0)
1. .
e (||e<u>|Lz(w>|e<v>|L2<w) n 3h3|p<u>|L2<w)|p<v>||Lz<w>)

+ C3l[fll2 @ vl L2 @) + ROl FollL2 @ llvll 2wy + RCal|Tol L2 (o) 11| L2 (9
< Cslullw w0 lv]lw w0
+ Cs|[fll 2@l |vllL2 ) + hCs|[ foll 2wy [v]|L2(w) + Collv| 1 (w)
< Gsllullw w,o) 1] lw w0 + Crllvllww,a) + Csllvl| g1 (W)
< Gsl|ullw w.o l1v]lwwa) + Collv]lw(w.a)
< C (Jullw(w,) +1) [[v[lwewea) » VveEW(wQ).
This implies that there exists a positive constant C that depends on €, 9Qq, X, w, Ow and o such
that |J'(u)| < C(|Jullww,o) +1), Vu € W(w,Q). Now, this implies that .J'(u) is continuous in

W' (w,Q), which is the topological dual space of W (w, ). By Iemma J(u) is Fréchet differen-

tiable. Note that the constant Cj follows from the boundary trace embedding theorem (lemma([TT).

Step 4 : Strictly Convex

J(u) is strictly convex. To show this consider the following relation,

(J'(u) = J'(v) (u —v) = /Q AT (B (u) = Eij(v)) (Br(uw) — Eg(v)) d9

b [ B ) — eap(0)) (ers() — e15(0) d
1 3 afyo
3l [ BY (pap(u) = pap()) (pré(u) = pyé(v)) duw
> C1||E(u) — E(v)[[72(0)
1
+Ca (Blletw) = (@)l + gllptu) — plo)] e
> Cllu—v[[iy o0y, Va0 € W(w,Q).
This implies that there exists a positive constant C that depends on €, 9Qq, X, w, Ow and o such
that (J'(u) — J'(v)) (u —v) > Cllu = o[y, 0 ¥ v € W(w,Q). By lemmalTg] J(u) is strictly
convex. Note that the constant C; follows from positive definiteness of the elasticity tensor (lemma

and proposition (4] and C; follows from the positive definiteness of the elasticity tensor on a gen-

eral surface (lemmalg) and proposition
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The above analyses imply that J(-) : Vo (w, Q) C W(w,Q) — R is a coercive differentiable strictly-
convex functional, where Vi (w, Q) is complete as subspace of the reflexive Banach space W (w, 2)
under the norm || - ||w (). Thus, lemmas and imply that there exists a unique field
u € Vy(w,Q) such that u is the solution to the minimisation problem J(u) = min,cy;, (w,0) J/(v). In

particular, this unique minimiser w is also a critical point in (Vo (w, ), J(-)).

As a result of the symmetry (in indices {{1t,2"9}, {39, 4" 1) of the elasticity tensors A and B, one
can also use Lax-Milgram Theorem (see section 6.2.1 of Evans [63]) to prove the existence and the
uniqueness of solutions. Although, we do not explicitly use the segment condition (definition [6), it
is used in some fundamental theorems that are necessary for our proof to work, as the segment
condition ensures that the boundary of an n-dimensional domain is an (n — 1)-dimensional and that

the boundary remains on one side of the domain.

3.4.1 Korn’s Inequality

In this section we prove Korn’s inequality that we introduced, i.e. equation (71). The following proof
is a combination of the modified versions of Ciarlet’s [38] proofs of theorems 1.7-2, 1.7-4, 2.6-1 and
2.6-4.

Step 1 : Korn’s Inequality Without Boundary Conditions

Consider the space
K(w,Q) ={veL*Q)|v|, € L*(w)x L}(w)x H(w), E(v) € L*(Q), e(v) € L*(w), p(v) € L*(w)},

equipped with the norm

Nl

Hvllmw,m:(I\vl\iz(nﬁ||v1|I%2<w)+|\UQ\|2L2<w>+\|v3llip(w>+|IE(v)HZLz(Q)JrIIe(v)llizwﬁIIP(v)\|2Lz<w)) )

where E(u) € L*(Q), e(u) € L*(w) and p(u) € L*(w) in a sense of distributions. We assert that

there exists a positive constant C that depends on €2, 99, X, w, dw and o such that
[ullw(w.) < Cllullkwea) » Vo€ Ww,Q), (72)

i.e. Korn's inequality without boundary conditions.

First we must show that the space (K (w,Q),|| - ||k (,0)) is @ complete space. To prove this, let
{ummen C K(w,) be a Cauchy sequence. As L%(Q)), L?(w) and H'(w) are complete and the
fact that || - || k(w,) is @ product norm with a finite collection of the standard norms in L*(2), H' (w)
and L?(w), there exist unique fields u € {v € L*(Q) | v|, € L?(w)x L?(w)x H'(w)}, E € L*(Q),
€ € L*(w) and p € L*(w) such that u,, — win {v € L*(Q) | v|. € L*(w)x L*(w)x H'(w)},
E(u,,) — E in L*(Q), €(u,,) — € in L*(w) and p(u,,) — p in L*(w). Note that g € C'(Q;R?),
Lk € C°(Q), Fy € C*(@;R®), Fyy € C*(@,R%) and T); € C* (@) from our definitions of X and o.
Thus, given any test functions ¢ € 2(Q2) and ¢ € Z(w), we get

/QEij(um)gb datdx?da® = —/

1 1 _
(29ikaj¢ + §gjkai¢ + Fijk¢> ub detda?dax®
Q
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1
— —/ 5911@3](? + g]kaﬂﬁ + szk¢) o de'da?da?
¢

o~

/ Eij(u)¢ do'da?da®
Q

1
/eaﬁ(um)w dz'dz® = —/ K Hija O + Fllmaawrfaﬁw@) u), + eFijapts, } da' dz®

4

—/ [( Hijar O + F[']/M a‘P+PaBVSD) u’ + pHijasu } da'da?
= / €ap(u)p dz'dz?
/ Pap (um)@ do'da® = _/ [aa(paﬂui + F(i,@‘)@atsuﬁn + }:[‘||]Q5Ffll]g<pqtfrz

+ (9o (Higyp) + 95(Hinar)) wh
— (0aHigy — TosKinsy — I3 Fings) @U%] da* da?

— —/ [8a<p85u3 + r§ﬁ¢85u3 + E||]a515['||]g<pu3

+ (O (Fing ) + 05(Hiay ) u”

— (0aFinsy — TogFitns — Loy Fis) W”} dz'da?

= / pop(w)p dztda?

Vi, gk e {1,2,3}, V o, 8,7,0 € {1,2} and for the unique field u € {v € L*(Q) | v|, € L?(w)x
L?(w) x H'(w)}. The weak limits are obtained by using integration by parts, and to see why these
results follow please consult section 1.2 of Gelfand and Shilov [73]. The above results imply that

E = E(u), e = ¢(u) and p = p(u) in a weak sense, i.e. (K(w,Q),| - [|x(w,)) is complete.

Now, we must show that the spaces (K (w, ), || || k(w,0)) and (W (w, Q), || ||w(.)) coincide. Due
to the construction of the space K (w, §2), one can see that it is larger than the space W (w, ), i.e.
(W (w, ), ]| - [lww,n) € (K(w,Q2),]| - [|kweq))- This is due to the fact that the space (K (w,?),
|- ||k (w,52)) allows more functions than the space (W (w, ), || - |[[w(w,))- One can clearly see this

by observing the norms of each respective spaces.

To prove the other inclusion first we must show that, if d7u® + 0% is in L?(2), then 9;u” is in
L?(Q). To do so, consider the covariant displacement field components u; = g;;u’. As u € L*(Q)
and g € C'(;R%), we get u; € L*(Q), V j € {1,2,3}. Now, let 5;;(u) = £(0iu; + 0;u;) and
let #;;(u) = —T}ux, and thus, by construction, we get E;;(u) = 5;;(u) + ti;(u), ¥V i,j € {1,2,3}.
As u; € L*(Q) and TF € C°(Q), we get t(u) € L*(Q). Now, as E(u),t(u) € L*(), we get
5(u) € L*(Q), and this implies that 9;5,;(u) € H='(Q), ¥ i,4,k € {1,2,3}. By rearranging a linear

combination of 9;3;;(u), we obtain the relation
81;juk = —8k§1;j(u) + 37§]k(u) + 8]§k7(u) .

Thus, the fact 0x35;;(u) € H-Y(Q) implies that d;;u, € H=(2), V 4,5,k € {1,2,3}. Note that
ug, € L?(2) implies that 9;u;, € H~1(£2), and thus, along with the condition 9;;u, € H~*(Q) funda-
mental Lemma of J. L. Lions (Iemma implies that u, € HY(Q), V k € {1,2,3}. Now, recall the

contravariant displacement field components u/ = g¥u;. As u; € H'(Q2) and g € C'(Q;R?), we find
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uec HY(Q).

Now, we must do the same process on the plane w. To do so, consider the covariant displacement
field components vs = Kjosu® |, and vy = u?|,. As ul, € L?*(w)xL?(w)xH!(w) and Fy; € C?(w; RY),
we get vg € L?(w), V 3 € {1,2}. Now, let s,5(v) = 5(davs + dpva) and tas(v) = =T 30y — Kigapv?,
and thus, by construction, we get €,5(v) = sap(v) + tas(v), ¥V o, 8 € {1,2}. As vz € L3*(w),
vs € H'(w), I}y € C'(@) and Fyy € C*(w; RY), we get t(v) € L*(w). Now, as €(v), t(v) € L*(w),
we get s(v) € L*(w), and this implies that 9,s.5(v) € H '(w), ¥ a,3 € {1,2}. By rearranging a

linear combination of 9., s,3(v), we obtain the relation
Oapvr = —0y8ap(V) + 0aspy(v) + 0pya(v) -

Thus, the fact 0,s.5(v) € H '(w) implies that d,pv, € H '(w), ¥V o, 8,7 € {1,2}. Note that
vy, € L?(w) implies that dzv, € L?(£2), and thus, along with the condition v, € H!(w) fun-
damental Lemma of J. L. Lions (lemma [8) implies that v, € H*(Q), V v € {1,2}. Now, recall
the contravariant displacement field components /|, = [ﬁ“ﬁva and u3|, = v3. As v, € HY(w),
vy € H'(w) and Fyy € C*(w; RY), we find ul, € H' (w).

Finally, recall the change in the second fundamental form tensor p,4(v) and rearrange it as

DapVs = —pap(v) + F£586“3 + F[ll]aéF[n]gUS + Biya0svy + I Oavy
5 16
- (aaF[n]g + LsHigs — TosFns ) Uy -

As p(v) € L*(w), v € H'(w), Fyy € C*(@;RY), Fy € C'(@;R*) and I}, € C'(w), we get
Dapvz € L*(w), ¥V a,B € {1,2}. Now, as v3 € H?(w) and along with the fact u|, € H'(w), we
get ul, € H' (w)x H' (w) x H?(w).

Above analyses imply that, if u € K(w,(2), then we get u € W (w,Q), i.e. (K(w,Q), || [|kw,0)) €
(W(w,9Q), || - [lww.,)- Thus, the two spaces (K (w,Q),]| - ||k(w,2) and (W (w,Q), || - [lw(w.))

coincide.

Above results show that the identity mapping ¢ : (K(w,Q),|| - [|[k(w,0) = (W(w,Q),[| - [lww,)
is a injective, surjective and continuous. Thus, by the closed graph theorem (lemma([f9), . is a

continuous bijection. Thus, Korn’s inequality without boundary conditions holds.

Our proof of Korn’s inequality without boundary derived from Ciarlet’s [38] proof of Korn’s inequality
without boundary conditions. The required inequality can also be obtained by applying the triangle
inequity to Ciarlet’s [38] Korn’s inequality without boundary conditions (theorem 1.7-2 of Ciarlet [|38])

and Korn’s inequality on a surface without boundary conditions (theorem 2.6-1 of Ciarlet [38]).

Step 2 : The Rigid Displacement Result

Consider the space

V(w, Q) ={ve H(Q) | v|, € H (w)x H (w)x H*(w), v|sa, = 0} .
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We assert that, if for any u € V(w,Q), if E(u) = 0in Q, and e(u) = 0 and p(u) = 0 in w, then
u=0inQ.

To show this recall the infinitesimal rigid displacement lemma (lemma [9), which states that for
v € H'(Q), if E(v) = 0in Q, then there exist constant Euclidean vectors a,b € E® such that
v'0; X = a+bx X in . Also, if v|sn, = 0, then Iemma@]further implies that a = 0 and b = 0. Now,
recall the infinitesimal rigid displacement lemma on a general surface (lemma([f0), which states that
forw € H'(w)x H'(w)x H?(w), if e(w) = 0 and p(w) = 0 in w, then there exist constant Euclidean
vectors a, b € E® such that w*d,0 + w3N = a + b x o in @. By construction, we have X|, =0,
and thus, for any u € V(w,Q), if E(u) = 0in Q, and e(u) = 0 and p(u) = 0 in w, then boundary
trace embedding theorem (Iemma implies that @ + b x X|., = a + b x & in L*(w). This implies
thata=a=0andb=b=0,ie. u=0in .

As our shell is bonded to the elastic foundation, it is possible to omit the assertions u|a.,, = 0 and

n*9au?|aw, = 0 from the infinitesimal rigid displacement lemma on a general surface (lemmal10j.

Step 3 : Korn’s Inequality With Boundary Conditions
Consider the space V' (w, 2) equipped with the norm

[N

llse.e) = (IE@)I3e @)z +lp@)Eae, )

where E(u) € L*(Q), e(u) € L*(w) and p(u) € L*(w) in a sense of distributions. We assert that

there exists a positive constant C that depends on €2, 9, X, w, dw and o such that
HUHW(w,Q) < CHU’”S(w,Q) ) Vue V(w,Q) )

i.e. Korn’s inequity with boundary condition.

To prove this assertion consider the converse, i.e. consider the claim that 3 C' > 0 such that
lullw ) > Cllullswa), ¥ u € V(w,Q). If this is indeed the case, then we can find a se-
quence {u;,fmen C V(w,Q) such that [[u,|lwwo = 1, Vm > 0, and [[un|[swa — 0. As
Cllum||sw,o < 1, ¥ m > 0, the sequence is {u,, }men is bounded in V(w,(2), and thus, by
Rellich-Kondrasov theorem (lemma there exists a convergent subsequence {u,, }m,en in
{v e L*(Q) | v|, € L*(w)x L*(w) x H'(w)}. As the subsequence {w,,, }m,cx iS convergent in
{v e L*(Q) | v, € L*(w) x L*(w) x H*(w)}, the condition ||w,,, ||sw,q) — 0 implies that the
subsequence {u,, }m,en is @ Cauchy sequence with respect to the norm || - || (., ). As the sub-
sequence {u.m,, }m,cn is @ Cauchy sequence with respect to the norm || - || k(. ), Korn’s inequity
without boundary conditions implies that the subsequence {u,, }m,en is Cauchy sequence with
respect to the norm || - ||y (.,0). By construction, the space (V(w,Q),]| - [lww.0)) is complete as
a closed subspace of (W (w,Q), || - ||ww,q)), and thus, there exists a unique field u € W (w,Q)

120 — B3 =0,

such that ||um, [lww.o — |[ullwwe = 1, in particular, ||E(uy,,) 220

et ) = le@lfEzq) = 0 and llpum, Iz, = le(wllEa, = 0 and this is due
to the fact that ||u,,,

Sw. — 0. Butrecall that for any u € V(w,Q), we have ulspq, = 0.
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Thus, our rigid displacement result implies that the limit is identically zero, i.e. w = 0, but this
contradicts our assumption ||w., |[w w0 = 1, ¥ m > 0. This implies that our initial assumption
l|w||w(w,0) > Cllullsw,n), Vu € V(w,Q), cannot hold, and thus, we conclude the proof by confirm-
ing that exists a positive constant C' that is independent of , such that ||u||w (,,0) < Cllul|sw,0),
Vue V).

Our proof of Korn’s inequality is not too dissimilar to Ciarlet’s [38] proof of Korn’s inequalities for the
displacement-traction case. The only difference is that Ciarlet’s [38] Korn’s inequity for a general
surface is proved for the u|s.,, = 0 and n®d,u?|a.,, = 0 case, while our Korn’s equality is proved for
the ulg, = 0 case, as it was possible to omit the conditions u|s,,, = 0 and n®9d,u3|s., = 0 due to
the fact that we treated the shell as a boundary form of the foundation (please see step 2 for more
detail).

Step 4 : Zero-Slope Boundary Conditions
Now, we must show that the space Vi (w, §2) is a proper subset of the space V (w, ?) that is closed

under the norm || - ||y (w,0)-

The rigid displacement result (see step 2) implies that for any v € V(w,Q), if E(u) = 0in £, and
e(u) = 0and p(u) = 0inw, thenu = 0in Q. Thus, if u = 0 in ©, then clearly we get V(u3|,) = 0, in
particular 95(u?|.)|aw = 0,V B € {1,2}. This implies that the conditions 95 (u?|.,)|a. = 0,V 3 € {1, 2}
does not violate the rigid displacement result. Thus, for any u € Vo (w,2), we get u € V(w, ), i.e.
Vo (w, Q) C V(w, Q).

By definition, for any v € H?(w), we have dsv € H'(w), V 8 € {1,2}. Also, as dw is a uniform-
C'(R?;R) boundary, trivial traces (lemma[12) implies that the space H¢ (w) is a proper subset of the
Hilbert space H'(w) that is closed under the norm || - || g1 (., i.€. the space (Hg(w), || - || (w)) C
(H'(w), || - || (w)) is closed. Note that for any u € Vi (w, ), we get 95(u?|.,)|ow = 0,V 5 € {1,2},
and thus, we get 93 (u?|,) € Hj(w), V 8 € {1, 2}, by trivial traces (Iemma. Now, this implies that
the space (Vo (w,Q), || - [lw(w,0)) € (V(w,9Q), || - [lw(w,0)) is closed.

Above analyses imply that the space Vi (w, 2) is a proper subset of the space V (w, Q) that is closed
under the norm |- [|w (,,0)- Thus, we can conclude our proof of Korn’s inequality by confirming that

[u]|lw(w,0) < Cllullsw,a), Vu € Ve (w,Q), where C is a positive constant that is independent of w.

3.5 Numerical Example

To conduct numerical experiments assume that one is dealing with overlying shell with a thick-

ness h that is bonded to an elastic foundation, where the unstrained configuration of the foundation

is an infinitely long annular semi-prism characterised by the diffeomorphism X (2!, 22, 23) = (2!,

asin(x?),bcos(2?))g+23(p(22))1(0, bsin(x?), a cos(2?)) g, where p(2?) = (b sin®(2?)+a? cos? (z2))z,
1

z! € (—o0,00), 2? € (—3m, 37), 2® € (—H,0), and a is the horizontal radius and b is the ver-
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tical radius of the upper surface. With some calculations, one finds that the metric tensor is

g = diag(1, (v2)2,1), where o = p(2?) + 23ab(v(2?))~2, and Christoffel symbols are
L3, = (o) 10212 ,
T3 = () 10312 .
With few more calculations one finds
Vou? = Oou? 4 Tu? + Tiu® |
Vou? = Gqu® — (i2)2f223u2 ,
Vau? = O5u? + f‘223u2 ,
?gu?’ = 83u3 s

where u = (0,u%(22, 2%),u? (22, 2%)) is the displacement field. Armed with this knowledge, one can

express the governing equations of the foundation as

(A + )0* (Viu') + pAu® =0,

A+ m)0* (Vu') + pAu® = 0.
Now, eliminating ! dependency one can express the remaining boundaries as

GQNeW _ wNew U aQBlew U 6Ql}lew ,

oNew {(_%7(7 %77) X {—0}} ,
HONew — {(—%w, %w) x {-H}},

1 1
0" = {{—5m} x (~H,0)} U {37} x (~H,0)} .
Thus, the boundary conditions one imposes on the foundation reduce to

uQ\mgew = 0 (zero-Dirichlet) ,

u?|snen = 0 (zero-Dirichlet) ,
[(1p2)?03u” + Dou?] |aagen = 0 (zero-Robin) ,

(A + 20)00u® 4+ X (93u® + Thu® + Tiu?) | |auen = 0 (zero-Robin) .
Now, consider overlying shell’'s unstrained configuration, which is described by the injective immer-
sion o(z',2?) = (!, asin(x?), beos(x?))g, Where z! € (—o0,00) and 2? € (—3m, 37). With some
calculations one finds that the first fundamental form tensor is Fy = diag(1, (¢2)?), the second

fundamental form tensor is Fy = diag(0, —ab((2z?))~*) and only nonzero Christoffel symbol is

2, = ¥y '921be, Where 15 = (22). With few more calculations one further finds

Vou? = Oou? + I‘222u2 ,
Eg(u) = Vou® — f’f||]§u3 )

p3(u) = Au® — Fyp3 Fpdu® + 2Fy5 Vau® + 0o Fygu®
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where u|gnew = (0,u?(22,0),u3(22,0)) is the displacement field of the shell. Thus, one may express

the governing equations of the shell as

hAdse3(u) + %h3/\(2ffu]§82p§ (u) + 32 K3 p3(w)) — Te(T5 (u) =0, (73)
AR () + SHAAR () — Ry Fudod(w) + Te(T () = 0. (74)
where
Te(T5 (w)) = fi ((2)*03u® + 9ou®) [ new
Te (T3 (u)) = [A (9ou® + Tu? + T35u®) + (A + 22)03u° ] | e
and
A= du :\ ++ 2lL '

Now, eliminating ! dependency one can express the remaining boundaries as
AN = QWi | guien |
dwis" = {0},
Qi = {7} -
Thus, the boundary conditions of the shell reduce to
[Ac3(u) + %hQAF[”ﬁpg(u)] |8w¥%‘” = 79 (traction) ,
[Ach () + SHAFyy 03 (w)] ouyen, = Tna (raction)
Do p2(w) | gnew = O (zero-pressure)

Dou® | gnew = 0 (zero-Neumann) .

Despite the fact that the original problem is three-dimensional, as a result of problem’s invariance in
the z! direction, it is now to a two-dimensional problem. Now, the domain merely resides in the set
{(2%,23) | (22,2%) € [-im, 7] x [-H,0]}. Despite the fact that theoremis only valid for bounded

domains, we show later that the reduced two-dimensional problem is numerically sound.

To conduct numerical experiments we use the second-order-accurate finite-difference method, but
one issue we must tackle prior is the discretisation of the (reduced two-dimensional) domain. As
we are dealing with curvilinear coordinates, there is an inherit grid dependence. To be precise, it is
approximately ¢oAz? < Az?, V ¢y € {¢po(x?,2%) | 2? € [—3m, 3n] and 2® € [-H, 0]}, where Az’
is @ small increment in z7 direction. For our purposes we use Az? = A~ and ¢y = ¥2(i7,0),
where N = 250 (see figure . We also keep thevalues a =2, H =1, E =103, 0 = 1, 79 = 1
and max = 1 fixed for all experiments. Finally, we must define a terminating condition. For this,
we choose to terminate our iterating process once the condition |1 — ||w,,[|2!|[wm+1]le2| < 10710 is

satisfied, where w,,, is the m!" iterative solution.

Figure is calculated with the values b = 2, h = 1, E = 6000 and v = 1. Figureshows the

azimuthal (i.e. «2) and the radial (i.e. «%) displacements at the contact region wNe". The maximum
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Figure 32: Discretised reduced two-dimensional domain for the ¢« = 2, b = 2, H = 1 and

N = 250 case.
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Figure 33: Displacement field of the bonded shell model at the contact region.

azimuthal displacements are observed at z? = i%w, with respective azimuthal displacements of
u? = £2.75 x 10~*. The maximum radial displacement is observed at > = +ix, with a radial
displacement u® = —2.26 x 10~*. As the displacement field experiences maximum displacements
at the boundary of the shell (i.e. at 0wNe¥), one may expect that this is the region where the shell is

most likely to debond from the elastic foundation, in this scenario of course.

To confirm our numerical scheme we must perform a grid dependence analysis for the numerical

solution. As the reader can see from figure [34] as NV increases, the difference between the numer-
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Figure 34: Grid dependence of the bonded shell model.

ical solution N and N + 1 decreases. For our experiments we found that the azimuthal grid points

and the error share the relation N oc Error™ %!

, where Error = |1 — |lun_1||2'||un]||¢z|. Note that
figure [33|is calculated with the values b = 2, h = 1, E = 6000 and v = 1. Also, we use UCL
DPS machines (operating-system: Centos 7, CPU: 8 core Intel Xeon, memory: 64GB) to run the

numerical simulations.

While the above numerical results seem interesting, without something tangible to compare it
against any conclusions deduced from above results are merely speculative. Thus, we dedicate
the next section to numerical comparison against another, but a similar, model that is described by
the work of Baldelli and Bourdin [16].

3.6 Comparison Against the Works of Baldelli and and Bourdin

In this section we extend Baldelli and Bourdin’s [16] model for bonded films on elastic pseudo-
foundations into curvilinear coordinates. To extend Baldelli and Bourdin’s [16] model to curvilinear
coordinates consider the following: consider a thin overlying body with constant thickness h whose
unstrained configuration is described by the diffeomorphism X € C'(@ x (0, h); E*), where X =
(21, 2%,23) = o(2t,2?) + 23N (2!, 2%), o € CQ(@;ES) is an injective immersion and w C R? is
a domain of concern, and with the displacement field of the lower-surface (w!' — 23Viws, w? —
23V2ws3, w?), where w € H'(w) x H'(w) x H%(w). Now, assume that this overlying body is bonded
to an elastic foundation with a constant thickness H whose unstrained configuration is described
by the diffeomorphism X e C'(w x (—H,0]; E*) such that at 2®> = —H the displacement field of
the foundation satisfies zero-Dirichlet boundary condition. Thus, in accordance with Baldelli and
Bourdin [16], we may approximate the displacement field of the foundation as u = (1 + H~'2%)w.
However, unlike Baldelli and Bourdin [16], we make no prior assumptions regarding the asymptotic
nature of Young’s moduli or Poisson’s ratios or the displacement fields. Now, with some asymptotic
analysis one finds that the condition {Ah ~ H ! fimeas(o (w); E*), hB**Y Riyos Kipys ~ H~ 1 (A+272)}
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is the only asymptotic scaling possible that yields any valid leading order solutions, i.e the scaling

that allows

h
1
/ /iBaﬁwéeag(wl,wQ)evg(wl,w2)dwdmg’z/
0 w

-H
" apys 3 3 3 0 L 13333 3 3 3
§B Peap(w?)eys(w?) dwdaz” ~ §A Es3(u’)Es3(u’) dwdx” .

0 w —-HJw

Thus, collect all the leading order terms to find:

0
/ A®BE s (ut,u?)Egz(ut, u?) dwda®

Corollary 3. Let w C R? be a connected open bounded plane that satisfies the segment
condition with a uniform-C* (R?;R) boundary dw. Leto € C?(w; E®) be an injective immersion.
Let f, € L*(w) and 1y € L*(0w). If {Ah ~ H~'fimeas(o(w); E*), hB*%Y Fiyos Fmpys ~ H™ (X +
2f1)}, then exists a unique field w = (w',w?) € H'(w) such that w is the solution to the

minimisation problem

J(w) Batdeni = vergifzwsf(v) ,

where

1 1
J (W) Batdeti :/ {ZhBaﬂ""seo%(w)e,%(w) + igwawa — hfélwa] dw —/ hig*we d(Ow) ,
w 3]

w

and where A = 4(\+2u) " (X + i), A and p are respectively first and second Lamé’s param-
eters, h is the thickness, e(%(w) = 1(Vawp + Vsw,) is the strain tensor and B is the isotropic
elasticity tensor of the membrane, and )\ and [i are respectively first and second Lamé’s pa-
rameters and H is the thickness of the foundation. In particular, the unique minimiser w is

also a critical point in (H ! (w), J(*) Baidelti) -

Proof. Coersive: J(w)paaeni > C1ll€M (w72, + Callwlly: ) — CsllwllL2w) — Callwl|2(ow) =
c1||w||§{1(w) — cl|w|[g1 (), Yw € H'(w). Note that we use the condition w1 (w) <

C(l[e" ()72, + [lwl]7- (w))%, which is Korn’s inequality without boundary conditions for
a membrane (see chapter 4 and 5 of Ciarlet [38] with w® = 0). Fréchet Differentiable:
J'(w)Baideniv < C1||€" (w)]| L2 (w)l1€" (v)]| 22 () +Col [w|| L2 (w) 191 L2 () +C3l V]| L2 () +Cal o] L2 (0) <
Cllwl g (@) + Dlv|[a1(w). Vv, w € H'(w). Strictly convex: (J'(w)paden — J'(v)saiden)(w —
v) > C1||eM(w) — eM(v)||2Lz(w) + Cyllw — vHQLQ(M) > Cllw — v||§_p(w), V v,w € H'(w). Thus,
lemmas and imply that there exists a unique field w € H'(w) such that w is the
unique solution to the minimisation problem J(w)paidelli = Minyc g1 () J/ (V)Baldeni- In partic-

ular, this unique minimiser w is also a critical point in (H"(w), J(-)Baldelii)-

Alternatively, proof follows from theorem [3|in the leading order case when the foundation
takes the form Q = wx (—H,0) and for the asymptotic condition {Ah ~ H~!imeas(o(w); E?),
hB*7° FinasFuns ~ H™1(A + 21)}, given that the displacement field of the foundation is
approximated by u = (1 + H '23)w. O

To conduct numerical experiments we remain with the framework that we introduced in Section|3.5
Thus, given that w = (0,w?(2?),0) is the displacement field of extended Baldelli and Bourdin’s

model for a membrane supported by an elastic foundation, one finds

2 2, 12,2
Vow* = Osw* + Irw” |
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es(w) = Vow? .
Thus, one can express the governing equations as
Adye(w)3 — i(hH) ™ () *w? = 0.,
and the boundary conditions as
AéZ(w)] puen = To (traction) ,
Aeg(w)m% = Tmax (traction) .

With a little more effort, one can solve this problem explicitly. For example, given that 7y, Tmax = 1,
the explicit solution is

sinh (aaE(2?,€))
alp(x?) cosh (aaE(e)) ’

w?(2?) =

(75)

where E(2?,e) = fo””2(1 — ¢2sin?(0))z df is the incomplete elliptic integral of the second kind,
E(e) = E(3m,e) is the complete elliptic integral of the second kind, e = (1 — (b/a)?)z is the elliptical
modulus (see chapter 17 of Abramowitz et al. [1]) and « = (ﬁ/(hHA))%.

Let ¢, = (2aE(e))?. As a result of the asymptotic condition {hA ~ H~'ji(meas(o(wN¥); E))?,
hB33 Ry Ry ~ H ™' (X + 202)} (modified as w is now no longer bounded), one finds that ¢, ~ 1 is
the condition that equation is mostly accurate for when approximating the contact region. Thus,

we use this fact in our numerical analysis.

Now, recall equations and (74), and non-dimensionalise them by substituting in the transfor-
mations (z2,2%) — (2%, Hz?) and (u?,v®) — (u?, Hu?). Collecting all the leading order @? terms
for the ¢, = 1 case, and with a little intuition, one finds that the only asymptotic scaling is of signifi-
cance is aaE(z?, €) ~ 3, and thus, let ¢, = 72(2accE(e))?. This is another asymptotic scaling we

examine with the numerical experiments.

Figure [38]is calculated with the values b = 2, h = 1, E = 6000 and v = . Figure [35) shows the
azimuthal (i.e. w?) and the radial (i.e. w?) displacements at the contact region wN®". The maximum
azimuthal displacements are observed at z? = i%w, with respective azimuthal displacements of
w? = £1.43 x 10~*. This is a significantly lower result than what is predicted by our bonded shell
model. Also, extended Baldelli and Bourdin’'s model predicts the radial displacement to be identi-
cally zero, while our shell model gives nonzero radial displacement. Now, this raises an important

question: which model accurately depicts the displacement field at the contact region?

To investigate this matter further, we numerically model the overlying body as a three-dimensional
body and we do not approximate this body as a shell or otherwise. Thus, the displacement at the
contact region with this approach is the displacement field at the contact region of the bonded two-
body elastic problem, whose solution is obtained by the use of the stranded equilibrium equations

in the liner elasticity theory.
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Figure 35: Displacement field of extended Baldelli and Bourdin’s model at the contact

region.

In accordance with the framework that is introduced in Section the overlying body is restricted

to the region 2 € (0, h). Thus, with some calculations one finds
Vov? = 00 4 TEHv? 4+ Tho?
Vou? = 09v® — (102)*Th0?
Viv? = 0302 + f‘223v2
vgvg = 63’1)3 y
where v = (0,v%(2?,23),v3(22,2%)) is the displacement field of the overlying body. With relative

ease, one can express the governing equations of the overlying body as

(A +p)0* (V') + pAv? =0,
A+ p)d?® (Vv') + pAv® =0,

and the boundary conditions of the overlying body as

[()\ + 2#)821]2 + )\ (83’03 + f222U2 + f223U3) ] |{6w¥%w><[0,h]} =170 (tl’aCTIOH) 5
[()\ + 2/1,)82'02 + )\ (agvs + f22202 + 1:‘2237)3) } ‘{awNew X[O,h]} = Tmax (tl’aCtIOn) 5

Tmax

(A (920® + T3v® + T350%) + (A + 21)950°] [ {(_ 1, 1) x {n}} = O (zero-Robin) ,

[(1;[;2)283’02 + 82’03] |{8UJN9W><[O,h]}u{(—%ﬂ',%ﬂ)x{h}} =0 (Zero-Robin) s

with following equations characterising the bonding of the overlying body to the foundation

[u® — v*]| new = 0 (continuous azimuthal displacement) ,
[u? — v*]| new = 0 (continuous radial displacement) ,
Tr(T5 (w)) — p ((1h2)?050 + 920%) | new = 0 (continuous azimuthal stress) ,

Tr(T35 (w)) — [A (820% 4 [50% + T30°) + (A 4 20)950° ]| new = 0 (continuous radial stress) .
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Figure 36: Discretised reduced two-dimensional domain of the two-body elastic problem

forthea=2,b=2, h=%, H=1and N =250 case.

Note that the grid dependence of the overlying body is approximately yoAz? < Axz3, V ¢y €
{2(2?,2%) | 22 € [—3m, 37 and 2® € [0, h]}, where Az7 is a small increment in 27 direction. For our
purposes, we use Az? = A~ and 1y = 12(37, k), where N = 250 (see figure. Furthermore, we
choose to terminate our iterating process once the condition |1 — (||wm|]e2 + ||vm||e2) 7 (|| wma ||e2 +
[[Vma1lle2)| < 10719 is satisfied, where u,,, and v,, are the m™" iterative solutions of the bonded

two-body model.

%10 1 X 10

-15r

-25r

Azimuthal Displacement
o
Radial Displacement

Figure 37: Displacement field of the bonded two-body model at the contact region.
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Figure 37]is calculated with the values of b = 2, h = 4, E = 6000 and v = 1. Figure 37| shows the
azimuthal (i.e. v?) and the radial (i.e. v®) displacements at the contact region wNe". The maximum
azimuthal displacements are observed at z? = i%w, with respective azimuthal displacements of
v? = £2.78 x 10~*. The maximum radial displacement is observed at z? = +1, with a radial dis-
placement of v3 = —3.24 x 10~%. This implies that our overlying shell model’s prediction is closer to
bonded two-body’s displacement field at the contact region relative to extended Baldelli and Bour-

din’s model’s prediction, for this case of course.
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Figure 38: Grid dependence of the bonded two-body model.

As for the analysis on grid dependence, the reader can see from figure as N increases,
the difference between the numerical solution N and N + 1 decreases. For our experiments

0.894, Where

we found that the azimuthal grid points and the error share the relation N o« Error™
Error = |1 — ([lun—1|lez + ||[on—1]lez) " (|Jun]|e2 + |[vn]e2)|. Note that figure [37]is calculated with
the values of b =2, h = 1, E = 6000 and v = .
But this is still not sufficient analysis, and thus, our goal in this section is to investigate how our
bonded shell model approximates bonded two-body model’s displacement field at the contact region
relative to extended Baldelli and Bourdin’s model for the variables 6b = b/a, 6h = h/H, §E = E/E
and dv = v /. To proceed with this investigation we calculate the error in the energy-norm (see

Jayawardana et al. [89]) as

[N

, (Z{M?} [[ugnen(A2?,0) = Upyo pody (A7, O)HQ)
Errg(u') = - ;

. 2
(a0} o bocy (B2, 0)12)
. (E{Aﬁ} || whaigen (Az?) — uzwo—body(AxQ’ 0)||2>
Erry(w') = T )

(3807} INobogy (A2, 0)I?)

to calculate the relative error between the bonded two-body displacement field and the approxi-

1
2

mated displacement fields at the contact region.
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Figure 39: Shell model error v extended Baldelli and Bourdin's model error for éh = h/H.

Figure 39]is calculated with the values 6b = 1, 61 € {55, 2, 25, 56+ 35> a5+ 95+ 29> 35+ 39 }» 0 = 6. and
év = 1. From figure [39 one can see that the azimuthal error of the extended Baldelli and Bourdin’s
model attains a minimum at 62 = 35 with an azimuthal error of 50.4%. This coincides with the
asymptotic condition ¢;,, as when ¢, =~ 1, one observes this minimum in the azimuthal error. Notice
how extended Baldelli and Bourdin’s azimuthal error increases as the thickness of the overlying
body decreases. Now, this raises an important issue regarding Baldelli and Bourdin’s work [16] as
the authors present their model to be valid for analysing overlying thin objects, yet the asymptotic
condition ¢, implies that their assertion cannot be valid, i.e. authors’ model is mostly accurate for
overlying bodies with a very specific thickness. Now, consider the azimuthal error of our bonded
shell model, and it is significantly smaller than the error of extended Baldelli and Bourdin’s model.
For our bonded shell model the maximum azimuthal error is observed at §h = % with an error of
3.32%, and it rapidly decreases as dh decreases or increases. This maximum in azimuthal error of
the bonded shell model is observed for the asymptotic condition ¢, = 1. The radial error of extended
Baldelli and Bourdin’s model is 100% and this is the case for all values of 6. This is due to the fact
that with extended Baldelli and Bourdin’s model the only value the normal displacement can obtain
is zero, and this is case for all variables. In contrast, the radial error of our bonded shell model
is, again, significantly smaller. For the shell model, the highest radial error is, again, observed at
§h = , with an error of 12.9%. This maximum in radial error of the shell model is observed again

for the asymptotic condition ¢ = 1.

Figure is calculated with the values 6b = 1, 6h = 1, 6F € {1,2,3,4,5,6,7,8,9,10} and ov = 1.
From figure[40]one can see that the azimuthal error of extended Baldelli and Bourdin’s model attains
a minimum at 6 E = 4 with an azimuthal error of 50.8%. This, again, coincides with the asymptotic
condition ¢, as when ¢, =~ 1, we observe this minimum in the azimuthal error. Notice how ex-
tended Baldelli and Bourdin’s azimuthal error increases as Young’s modulus of the overlying body

increases. Now, this raises an important issue regarding Baldelli and Bourdin’s work [16] as the au-
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Figure 40: Shell model error v extended Baldelli and Bourdin's model error for 6E = E/E.

thors present their model to be valid for analysing overlying stiff objects, yet the asymptotic condition

¢p implies that their assertion cannot be valid, i.e. authors’ model is mostly accurate for overlying

bodies with a very specific Young’s modulus. Now, consider the azimuthal error of our overlying

shell model, again, it is significantly smaller than the error of extended Baldelli and Bourdin’s model.

For our bonded shell model the lowest azimuthal error is observed at §E = 10 with an error of

1.55%, and it increases as 0 F decreases. For our bonded shell model the radial error decreases

monotonically, from 25.0% to 9.83%, as 0 E of the overlying body increases, from 1 to 10. This implies

that for a stiff overlying body on an elastic foundation, our bonded shell model can approximate the

normal displacement with a much higher degree of accuracy.
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Figure 41: Shell model error v extended Baldelli and Bourdin’s model error for v = v/v.

Figure 41|is calculated with the values b = 1, 6h = 1, SE =6 and év € {0,1,2,2,24,1,8 7 8 93

From figure |41, one can see that the azimuthal error of extended Baldelli and Bourdin’s model at
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tains a minimum at 6v = 0, with an azimuthal error of 50.4%. This, once again, coincides with the
asymptotic condition ¢, as when ¢, ~ 1, we observe this minimum in the azimuthal error. Now, this
raises an important issue regarding Baldelli and Bourdin’s work [16] as the authors present their
model to be valid for overlying bodies with nonzero Poisson’s ratios, yet the asymptotic condition
¢p implies that their assertion cannot be valid, i.e. authors’ model is mostly accurate for overlying
bodies with zero-Poisson’s ratio. Now, consider azimuthal error from our bonded shell model, it is,
again, significantly smaller than the error of extended Baldelli and Bourdin’s model. For our bonded
shell model the highest azimuthal error is observed at év = % with an error of 3.56%. Also, for
our bonded shell model the radial error increases monotonically, from 11.6% to 14.2%, as ov of the

overlying body increases, from 0 to g
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Figure 42: Shell model error v extended Baldelli and Bourdin’s model error for 6b = b/a.

Figureand calculated with the values 6b € {43, 15 4T 18 19 7 21 22 23 28 25} 5 — L 6F =6
and év = 1. From figure[42] one can see that the azimuthal error of extended Baldelli and Bourdin’s
model decreases monotonically with increasing 6b, and at b = g, the azimuthal error is 46.3%.
This, however, is not predicted by the asymptotic condition ¢, as in accordance with the condition
op =~ 1 we expect to observe this minimum in the azimuthal error at 6 = 1 i.e. when the mean
curvature of the system is constant. Now, consider the azimuthal error of our bonded shell model,
once more, it is significantly smaller than the error of extended Baldelli and Bourdin’s model. The
lowest azimuthal error of our bonded shell model is observed at §b = é—g with an error of 1.02% and
this error increases as 0b increases or decreases. These results imply that there exists a critical
parametric-latitude where the azimuthal error of our shell model is a minimum. For the bonded shell

model the radial error increases monotonically, from 3.78% to 18.9% as db increases, from % to %.

The above analysis appears show that our bonded shell on an elastic foundation model is far su-
perior to extended Baldelli and Bourdin’s model with respect to the bonded two-body model, as
extended Baldelli and Bourdin’s model’s error failed to fall below or even come close to our bonded

shell model’s error, even a for set of variables which extended Baldelli and Bourdin’s model is mostly
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accurate for. Also, extended Baldelli and Bourdin’s model asserts that the normal displacement is
always zero, while our bonded shell model can predict a nonzero normal displacement, often dif-
fering from two-body problem’s solution by 10%. Another disadvantage of extended Baldelli and
Bourdin’s model is that, for the model to be valid, the foundation must have a very specific form (i.e.
constant thickness H, planer dimension cannot exceed the contact region w, the lower boundary
must satisfy zero-Dirichlet boundary condition and the remaining boundaries must be stress free),
while for our bonded shell model the foundation may take arbitrary form, as long as in a proper sub-
set of the boundary of the foundation the displacement field of the foundation satisfies zero-Dirichlet
boundary condition. However, there are some advantages of extended Baldelli and Bourdin’s model
over our bonded shell model. For example, extended Baldelli and Bourdin’s model is extremely sim-
ple to numerically model as it approximates the foundation. Thus, often a closed-form of a solution
can be found, while our bonded shell model requires lengthy computations to calculate solutions,

even for a simple problem such as the one investigated in this section.

The numerical results raise fundamental questions regarding extended Baldelli and Bourdin’s model.
As 0h decreases beyond a certain threshold, extended Baldelli and Bourdin’s solution diverge away
from two-body model’s azimuthal solution, implying that extended Baldelli and Bourdin’s model is
mostly accurate for overlying bodies with a very specific thickness. However, Baldelli and Bourdin
[16] assert that their model is to be used for overlying thin bodies, such as thin films and membranes.
Clearly our numerical experiments (see figure [39) contradict their assertion about the model must
be used for modelling very thin overlying bodies. Another peculiar behaviour we observed is that
as 0F of the overlying body increases above a certain threshold, extended Baldelli and Bourdin’s
azimuthal error diverge away from two-body model’s azimuthal solution. This, again, contradicts
authors’ asymptotic assertion, which states that the stiffer the overlying body is, then more accurate
their model is. Furthermore, we observed that then the Poisson’s ratio of the overlying body is zero
Baldelli and Bourdin’s azimuthal error attains a minimum. This, further, contradicts authors’ asymp-
totic assertion, which states that the Poisson’s ratio of the overlying body must be sufficiently away
from zero for the model to be mostly accurate. Note that we do not find any numerical evidence in

authors’ publications (or Baldelli [15]) to support theirs asymptotic assertions.

On a last note: we remind the reader again that the model we present in this section is not a
model derived by Baldelli and Bourdin [16]. We merely called it the extended Baldelli and Bourdin’s
model for convenience. The main thing we used from the authors is that their approximate for the
displacement field of the foundation, which is w = (1 + H~'23)w where w is the displacement filed
of the overlying body at the contact region. Please see Section[1.10]for a comprehensive review of

authors’ work.

3.7 Error analysis

It is documented in the literature that given a thin overlying body on an elastic foundation, the thin

body must only be approximated by a shell (a plate, a membrane or a film), if the thin overlying body

112



has a significantly higher Young’s modulus relative to Young’s modulus of the foundation[4]. In light
of this information we dedicate this section to see how physically valid our bonded shell model is

with respect to varying elastic and geometrical properties.

To proceed with this investigation we calculate the relative error between the displacement field of
the foundation predicted by our bonded shell model and the displacement field of the foundation

predicted by the bonded two-body elastic model by

Nl

(Z{mz,AIS} ||“éheu(A932a Ax?) — utiwo-body(Ax27 AC103)||2)
(32002, 20y (A7, A29) + iy gy (A2, ) 1)

We retain the same numerical procedure that we introduced in Sections [3.5)and [3.6] and see how

Relative Error(u’) =

[SIE

the relative error behaves for various values of 6E = E/E, v = v/v, §h = h/H, and §b = b/a.
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Figure 43: Relative error for 0F = E/E.

Figureis calculated with the values 6b = 1, 6h = &, 6E € {1,3,2,3,3,1.4,9 5 1L 6,137,128
i.9,49.10,2,11, 2,12, %13, 27,14, 2,15, 3 16} and dv = 1. From figure [43| one can see that
the azimuthal relative error attains a minimum at §E = 13 with a relative error of 0.852%. Now, this
implies that, despite the fact that a higher Young’s modulus of the shell results in more accurate
solutions, increasing Young’s modulus of the shell indefinitely may not result in the most accurate
solutions. We observe a similar effect in Section [3.6] where the model presented assumed to
be valid for membranes with high Young’s moduli, yet we observed that there exists an optimum
Young’s modulus where the error is a minimum. As for the relative radial error, one can see that
as 0F of shell increases, from 1 to 16, the relative error decreases, from 7.59% to 2.74%. Now, to
reduce the radial error, it appears to be a sound choice to increase Young’s modulus of the shell to

extremely high values.

4 5 6 7 8 9 10 11 12 _
Figure [44]is calculated with the values db = 1, 6h € {35, 35, 5. 35> 35+ 35> 25+ 35> 39 55- 321, 0B =8

and v = 1. From figure [44] one can see that the azimuthal relative error attains a minimum at
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Figure 44: Relative error for 6h = h/H.

§h = £ with a relative error of 0.927%. Now, this implies that there exists an optimum shell thickness
where the azimuthal relative error is a minimum. We observe a similar effect in Section where
the model presented assumed to be valid for thin membranes, yet we observed that there exists an
optimum thickness where the error is a minimum. As for the relative radial error, one can see that it

attains a maximum at dh = i with a relative error of 4.67%.
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Figure 45: Relative error for jv = v/D.
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Figureis calculated with the values 6b = 1, 6h =

%f, %, %f, %’}. From figure one can see that the azimuthal relative error attains a minimum at

ov = § with a relative error of 0.905%. Now, this implies that there exists an optimum Poisson’s ratio

1
81

of the shell where the azimuthal relative error is a minimum. As for the relative radial error, one can

see that as v of shell increases, from 0 to %, the relative error also increases, from 2.56% to 4.97%.

; i 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47
Figure[46|and calculated with the values 6b € {32, 33, 2% 35 30 47 38 39 7 41 42 48 40 42 1o, 40,
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Figure 46: Relative error for jb = b/a.

48}, 6h = £, 6E = 8 and v = 1. From figure [46] one can see that the azimuthal relative error at-
tains a minimum at 66 = % with a relative error of 0.920%. Now, this implies that when the mean
curvature of the contact region is almost constant, the azimuthal relative error attains a minimum.
As for the relative radial error, one can see that as b increases, from 3 to 2, the relative error

increases, from 1.72% to 4.96%.

Above analyses show that our bonded shell on an elastic foundation can predict the displacement
field of foundation of the bonded two-body elastic model, with a significant degree of accuracy,
given that Young’'s modulus of the shell is significantly high. Now, this result coincides with what
is documented in the literature [4]. However, we also observe that arbitrary increasing Young’s
modulus of the shell may not result in the most accurate solutions as for the azimuthal relative er-
ror, we observed an optimum Young’s modulus where the error is a minimum. We also observe
that other factors can equally improve the accuracy of our bonded shell model, such as the mag-
nitude of Poisson’s ratio of the shell, the thickness of the shell and the critical parametric-latitude
of the contact region, i.e. all elastic properties and geometric properties affect the accuracy of the
solution. However, one cannot arbitrarily increase or decrease the thickness, Poisson’s ratio or
critical parametric-latitude, as we often observe optimal values for elastic and geometric properties
where the error is @ minimum. To to obtain the exact conditions where our bonded shell model is

asymptotically justifiable require further analysis.

3.8 Conclusions

In this chapter we studied bonded shells on elastic foundations. In Section [3.2 we derived a math-
ematical model for a bonded shell on an elastic foundation, by modifying Koiter’s linear shell equa-
tions presented by Ciarlet [38] and by considering a similar logical process that is used in the
derivation of surface Cauchy-Bourne model [89], to describe the behaviour of a shell if it is bonded

to a three-dimensional elastic body, by treating the shell as a boundary form of the foundation,
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which is analogous to the work of Necas et al. [144]. Then, in Section|3.3} we explicitly derived the
governing equations and the boundary conditions for the general case for bonded shells on elastic
foundations. In Section [3.4 we used a combination of Ciarlet’s [38], and Badiale and Serra’s [13]
work to prove the existence and the uniqueness of the solutions, and thus, proving that what we

derived is a mathematical theory and not a hypothetical model.

In Section [3.5|we presented framework to conduct a set of numerical solutions. As a comparison,
in Section (3.6} we extended Baldelli and Bourdin’s [16] model for bonded films on elastic pseudo-
foundations to curvilinear coordinates and showed how numerical solutions fair against our bonded
shell model. The method of numerical analysis is simple: we numerically model the bonded two-
body problem and compare the solution against our bonded shell model and extended Baldelli and
Bourdin’s model, for a set of variables which extended Baldelli and Bourdin’s model is mostly accu-
rate for, i.e. for ¢, =~ 1. The numerical solutions shows that our bonded shell model is far superior
when it comes to approximating displacement filed at the contact region than extended Baldelli and
Bourdin’s model, as often our azimuthal shell solution only differs from bonded two-body model’'s
solution by 1 — 5%, while extended Baldelli and Bourdin’s azimuthal solution can differ from the from
bonded two-body model’s solution by 50%. For an extreme example, for the case 6h = % we see
that the azimuthal error of the shell solution is 0.998%, while azimuthal error of extended Baldelli and
Bourdin’s solution is 51.5% (see figure . Also, extended Baldelli and Bourdin’s model assumes
that the normal displacement is always zero, while our shell model predicts a normal displacement

closer to the bonded two-body model’s normal displacement, often with 10% difference.

We also saw that the asymptotic scaling ¢, is a great indicator for judging how accurate extended
Baldelli and Bourdin’s model is, as for a given thickness, Young’s modulus, Poisson’s ratio of the
overlying body, the condition ¢, ~ 1 yield the solutions with the minimum error. However, the scaling
¢y failed to predict the validity of the solution with respect to the critical parametric-latitude of the
contact region. In contrast, we observe that the asymptotic scaling ¢ is a good indicator of judging
how invalid our bonded shell model is for a given thickness, as for a given §h, the condition ¢, = 1
yield the solutions with the maximum error. However, even for this case our shell model solution is
still several magnitudes closer to the bonded two-body solution than extended Baldelli and Bour-
din’s solution (see figure[39).

To conclude our numerical analysis, in Section we conducted further error analysis to see how
our bonded shell on an elastic foundation can approximate the displacement field of the foundation
of the two-body elastic model. Our analyses how that our bonded shell model can approximate the
displacement field of foundation with a significant degree of accuracy given that Young’s modulus
of the shell is significantly high. Now, this result coincides with what is documented in the literature
[4]. We further the found that, if the thickness the shell, Poisson’s ratio of the shell and the critical
parametric-latitude of the contact region are very low, then the relative error is very small. However,
one cannot arbitrarily increase Young’s modulus of the shell or decrease the thickness the shell,

Poisson’s ratio of the shell and the critical parametric-latitude of the contact region, as we often
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observe optimal values for elastic and geometric properties where the relative error is a minimum.

With our analyses we shown that our theory for bonded shells on elastic foundations is mathemati-
cally valid via the existence of unique solutions, numerically superior to an existing model that model
the same problem, and under which elastic and geometrical properties can one obtains the most
accurate solutions. These types of models are largely used in the field of flexible and stretchable
electronics. The reader can find a rich literature review regarding this subject matter in Section (1.7
For example, consider a curved flexible display screen. One may model the flexible organic layer
as an elastic foundation and the thin conductive layer as a thin shell. Thus, by using our theory
for bonded shells on elastic foundations, one may derive an accurate depiction of the displacement

field and the stress profiles for the body in question, with respect to an appropriate set of variables.

3.8.1 Remark

Simulation mesh from
MR image

KD

Tangential
Cortical plate

expansion
Subplate

White matter zone |,

GW 24

Figure 47: ‘A simulation starting from a smooth fetal brain shows gyrification as a result
of uniform tangential expansion of the cortical layer. The brain is modelled as a soft elastic
solid and a relative tangential expansion is imposed on the cortical layer as shows at left,

and the system allowed to relax to its elastic equilibrium’ [192].

A further possible area of application for our theory for bonded shells on elastic foundations can be
in modelling gyrification. Gyrification is the formation of folds in the cerebral cortex during the devel-
opment of the brain. Tallinen et al. [191] numerically shows that gyrification is the result of mechan-
ical buckling of the cortical plate due to rapid tangential expansion of gray matter zone constrained
by the white matter zone (see figure [47). The authors model the human brain as a thin elastic
body that is bonded to a thicker elastic body (spherical and ellipsoidal for the three-dimensional
case) with zero-Dirichlet boundary condition imposed on the lowest of its boundary (see figure [48).
The thin elastic body is assumed to be only 10% of the thickness of the elastic foundation. Both
two-dimensional and three-dimensional numerical solutions are constructed with the finite-element
method with an explicit solver for quasistatic equilibration of the system. Two-dimensional solutions
are based on constant strain triangle with 60 layers of elements through its thickness to model the
cortical plate, and three-dimensional solutions are based on irregular tetrahedron or curved cube
mesh (for large brain simulations) with 8 layers of elements through its thickness to model the corti-

cal plate.
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Figure 48: ‘Cross-section views of 3D simulation geometries for small and large brains in
their initial undeformed states. The gray-matter thickness 7', brain radius R, and bound-
ary conditions are indicated. A detailed image of the regular mesh structure of the large
brain domain shows the reflection symmetry between every pair of elementary cubes that

share a face’ [191].

A word of caution: Tallinen et al. [191] referrer to the overlying elastic layer as a shell, but it is not a

shell in the sense of mathematical shells as we investigate here in this thesis.

But what if such a fine mesh is not possible due to computational restraints or what if one wishes to
model brain with a high gyrencephalic index where the gray matter layer is significantly thinner than
white matter zone, i.e. the brains of Cetaceans (whales and dolphins) [198] [133]. For such scenar-
ios we propose that one may use our theory for bonded shells on elastic foundations. This proposal
is further justified, considering that Tallinen et al.’s [191] model (see figure[48) is schematically iden-
tical to the numerical model that we analysed in this chapter (see figure with the exceptions of
that Tallinen et al. [191] did not approximate the thin layer, they are considering quasistatic case and

they are using finite strains. For more on nonlinear elasticity and the dynamic case please consult
chapter 5
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4 Shells Supported by Elastic Foundations: Constraints
to Model the Frictionally Coupled Case

Abstract

In this chapter we derive a theory for frictionally coupled shells on elastic foundations. We
show that, if the diffeomorphism X € C?(Q; E®) describes the unstrained configuration of the
foundation and the injective immersion o € C*(w; E*) describes the unstrained configuration of
the overlying frictionally coupled shell, where Q@ C R? is a connected open bounded domain that
satisfies the segment condition with a uniform-C*(R*; R?) boundary 9Q such that w, Q0 C 99,
@ N OQ = @, meas(9; R?) > 0, and w C R? is a connected open bounded plane that satisfies
the segment condition with a uniform-C* (R?; R) boundary dw, with f € L*(Q), f, € L*(w) and
7o € L*(0w), then there exists a unique field u € V& (w,Q) such that w is the solution to the

minimisation problem

J(u) = in J
(u) veg;l(gm(v),

where

Vi (w,Q) = {v € Vi (w, Q) | [2050° + (vav™) % ]| < Oace},
J(u) = /Q BA”“EU(u)Em(u) - fiui] dQ

1 1 ; ;
+ [ 557 (heostwenst) + 30 pustuwpnsw)) — i o~ [ hius a@w).
w Ow
and where A is the elasticity tensor and E(-) is the stain tensor of the foundation, B is the
elasticity tensor, €(+) is half of the change in first fundamental form tensor, p(-) is the change in
second fundamental form tensor and # is the thickness of the shell, and vr is the coefficient of

friction between the foundation and the shell.

4.1 Introduction

In this chapter we examine the behaviour of shells supported by elastic foundations when subjected
to a friction condition. In Section [4.2] we use Kikuchi and Oden’s [102] model for Coulomb’s law of
static friction to derive a displacement-based static friction condition. Then, we take the overlying
shell theory that we derived in chapter [3] but now, we assert that the shell is no longer bonded to
the foundation and we use the displacement-based friction condition to transform the model into a
constrained type problem. Then, in Section[4.3] we explicitly derive the governing equations and the
boundary condition for the general case. In Section 4.4 we prove the existence and the uniqueness
of solutions of the derived model, and conclusively proving what we derived is a mathematical
theory. In Section we present numerical examples to examine the properties for the given
theory. Then, in Section |4.6] we extend Kikuchi and Oden’s model for Coulomb’s law of static
friction in the curvilinear space that we derived in Section [2.6]to model a two-body contact problem,
i.e. an elastic two-body contact problem subjected to Coulomb’s law of static friction in curvilinear
coordinates. We use this extended Kikuchi and Oden’s model to numerically simulate an overlying
thin, but still three-dimensional, body on an elastic foundation and compare the results with our shell
model with friction to see how the both models predict the displacement field of the foundation, for

a given set of variables.
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4.2 Derivation

Recall Kikuchi and Oden’s model for Coulomb’s law of static friction that we extended to curvilinear
coordinates, i.e. equation (66). By eliminating the regularisation parameter, ¢, from the equations

one may express it in the following form,
T4 (u) + vr (933)% (uauo‘)_%Tg’(u)uﬁ <0.

Now, assume that »# > 0 and contract the above equation with »”. Noting that in this framework

gs3 = 1, and thus, one finds
= 1e - _
L <uaVau3 + 2V3(uaua)) + vp(uau®)? (AVau® + (A +2)V3u?) < 0.

Now, assume that this body is in contact with an elastic foundation, and thus, it permits normal
displacements at the contact region, so assume that only the normal derivatives are of any conse-

quence. Thus, one may approximate the above relation as
,uvg(uaua)% +up(A+2u)Vau? < 0.

To simplify the matters further assume that the above condition is independent of any elastic prop-

erties of the overlying body. This may be achieved by assuming A = 0, and thus, one finds
Vs ((uaua)% + 21/Fu3) <0.
By approximating the above condition even further we arrive at the third hypothesis of our thesis:

Hypothesis 3. A shell supported by an elastic foundation with a rough contact area that is

compliant with assertion[1] satisfies the following displacement-based friction condition

u® < —i(uauo‘)% ,
where vr is the coefficient of friction between the shell and the foundation, and wu is the
displacement field of the shell with respect to the contact region. If 2vpu®+ (uau“)é < 0, then
we say that the shell is bonded to the foundation, and, if 2vru? + (uau"‘)% = 0, then we say

that the shell is at limiting equilibrium.

The justifications for introducing the hypothesis [3]is as follows. Recall equation (42): which asserts
that the variational form of a linear elastic body subjected to Coulomb’s law of static friction is non-
convex and non-differentiable. Thus, the existence of a (unique or otherwise) solution is an open
question that cannot be proven with conventional means. But, we show that the variational form, i.e.
the energy functional of a linear elastic body subjected to the displacement-based friction condition
from hypothesis [3] is convex, coercive and differentiable, and thus, proving the existence of solu-
tions is perfectly possible. Also, unlike Kikuchi and Oden’s [102] model, hypothesis[3]is independent
of the regularisation parameter, ¢, and it is well defined for all finite values of w. Furthermore, we
show that our problem can be numerically modelled without an initial guess of the purely normal
stress, which is something Kikuchi and Oden’s [102] model is incapable of. Note that we can guar-
antee that the condition from hypothesis [3| holds as we already asserted that the lower-surface of

the shell is not hyperbolic and it is a surface of positive mean curvature (see assertion[f). Thus, for
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Figure 49: Two-Dimensional schematic representation of block-A and block-B, before and

after deformation.

sensible boundary conditions we can always expect the normal displacement to be non-positive.

Why does hypothesis [3] make sense? Well, consider two elastic blocks in a zero-gravity scenario:
block-A is at the top and block-B is at the bottom, where the lowest part of the block-B satisfies
zero-Dirichlet boundary condition. Now, assume that the contact region, between the both blocks,
is rough. Now, assume that one is applying forces to both the top and to a side of the block-A
to mimic respectively compression and shear at the contact region. Higher the compression, then
higher the normal displacement is towards the bottom, i.e. u® < 0, and higher the shear, then higher
the tangential displacement is in the direction of the applied tangential force (see figure [49). Just
as for Coulomb’s friction case, where the bodies are in relative equilibrium given that the magni-
tude of the normal stress is above a certain factor of the magnitude of the tangential stress, i.e.
IT3(u)| > vit|Ts (u)T3(u)|7, we assert that the bodies are in relative equilibrium given that the
normal displacement is a below a certain factor of the magnitude of the tangential displacement,
ie. u? < —lupt(uqu®)?, if ud < 0. Note that this factor may or may not be 1v;?, but this is the

most mathematically logical factor we derived. With this knowledge we obtain the following theorem:

Theorem 4. Let Q) C R? be a connected open bounded domain that satisfies the segment
condition with a uniform-C'(R3; R?) boundary 09 such that w, 90, C 0Q withw N Qg = O
and meas(9Q9; R?) > 0, and let w C R? be a connected open bounded plane that satisfies
the segment condition with a uniform-C*(R?;R) boundary dw. Let X € C*(Q; E*) be a dif-
Jeomorphism and o € C?(w; E®) be an injective immersion. Let f € L*(Q), f, € L*(w) and
To € L*(0w). Then there exists a unique field u € Vz(w, ) such that u is the solution to the
minimisation problem

J(u) = in J(v),
(u) v&%,m(”)
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where

Vz(w,Q) = {v € Vo (w,Q) | [2vpv® + (vava)%] lo <0ae},

s = [ |54 B ) Buw) - 1w a2

1 1 . )
+/ [230‘575 (hea/g(u)e,y(;(u) + 3h,3pag(u)p75(u)> — hféuj} dw — hu; d(Ow) ,
w ow
and vr is the coefficient of friction between the foundation and the shell.
Proof. See Section 4.4 O

What does theorem 4] mean? Well, it means that given some well-posed normal and tangential
forcings, and tractions acting on a shell with a thickness & that is frictionally coupled to an elastic
foundation has a unique weak solution. This weak solution is sufficient for finding finite-element
solutions. However, due to the constraint [2vpu? + (uaua)%ﬂw < 0 a.e. the unique minimiser u may
fail be a critical point in (Vz(w, ), J(-)). Thus, to model finite-element solutions competently one

requires the following:

Corollary 4. Let u € Vz(w,)) be the unique solution to the minimisation problem J(u) =

min,ev; (w,0) J (v), then we get the following variational inequity
0< J(u)(v—u), Vve Vz(w).

Proof. As (Vz(w,),J(+)) is a convex space (see Section[4.4), for any u,v € Vz(w, ) we have
(1—tu+tv e Vz(w,Q), Vtel01] (see definition [19). Now, let u be the unique minimiser,
then we have relation J(u) < J((1—-t)u+twv), V¢ € [0,1]. This implies that, as a function of ¢,
J((1—t)u+twv) has a global minimum at ¢ = 0 in the set [0, 1]. As J(-) is a convex functional
in the set Vz(w,Q), we get 9,J((1 —t)u+tv)|;—o > 0, i.e. 0 < J'(u)(v—u), Vv € Vz(w,Q). See
section 8.4.2 of Evans [63] for the original proof. O

For a comprehensive study of finite-element modelling of similar problems, please consult chapter
4 of Kikuchi and Oden [102]. Also, one requires higher regularity results to prove the existence of

classical solutions. This problem is a subject of discussion in Section (5.3

4.3 Equations of Equilibrium

For this section we assume that u € C2(Q; R?), u®|,, € C3(w), u3], € C*(w) and 2vpud+ (uqu®)z <
0 everywhere in w, and we use theorem [4] and corollary [4] to derive a set of governing equations

and boundary conditions to our problem.
4.3.1 Governing Equations of the Elastic Foundation

ViTj(u)+ fj =0,V je€{1,2,3},

where T (u) = AY* Ey,(u) is second Piola-Kirchhoff stress tensor, E;; (u) = 1 (gix V;u" + gjix ViuF)

is linearised Green-St Venant stress tensor, A% = \g¥ gk + f(g™* g7t + g g?*) is the isotropic
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elasticity tensor, A = (1 — v — 20?)~ ' E is first Lamé’s parameter, i = 1(1 + »)~'E is second
Lamé’s parameter, E is Young’s modulus and © is Poisson’s ratio of the elastic foundation and f is

an external force density field acting on the elastic foundation.
4.3.2 Boundary Conditions of the Elastic Foundation

ulpn, =0,
1T} (w)] (o0 (wuaney = 0, Vi € {1,2,3},

where n is the unit outward normal to the boundary 992 in curvilinear coordinates.

4.3.3 Governing Equations of the Overlying Shell

The set Vz(w, ) is not a linear set as it violates the homogeneity property. Thus, to proceed
in finding governing equations of the shell consider the fields w,v € Vz(w, Q). By definition, we
have [, [2vpv® + (vav®) 2] dztdz? < 0 and S 2vpw® + (wew®)2] dztda® < 0,V U € M(w) with
meas(U;w) > 0, and thus, we get fU[2VF(v3+3w3)+(vav°‘)%+|s|(wawa)%] drtdz? < 0,VU € M(w)
with meas(U;w) > 0 and V s € (—¢, 1] for a sufficiently small ¢ > 0. Now, the triangle inequity (see
Section step 1) implies that [, 205 (VP 45w3) +| (Vo +swe ) (V¥ +sw*)|2] datdz? < 0,V U € M(w)

with meas(U;w) > 0, and thus, we get v + sw € Vz(w,Q), V s € (—¢, 1] for a sufficiently small ¢ > 0.

To find the governing equations for the [2vpu® 4 (uqu®)?]|, < 0 case considerer the unique min-
imiser u € {v € Vz(w,Q) | 2vp0® + (1,0%)3]|y < 0 a.e.} where V C w. Now, we get u + sw €
Vz(w,Q), Vs € (—e(w),e(w)) where e(w) < min(l,||w|\221(w)|\u\|L2(w)), Vw € Vz(w, Q). Now,
simply let v = u + sw in corollary [4to obtain 0 < J'(u)(sw), V s € (—e(w),e(w)), V w € Vz(w,Q).
Finally, noticing that 0 < J’'(w)(sign(s)|s|w), V w € Vz(w, ), we get the following governing equa-

tions for the bonded case:

If [2vpu® + (uqu®)?]|. < 0, then
2 5 . 1 . 1
VaTs (u) + §h2F[||]/3V7773(U) + ghz (VY g ) md(w) — ETI"(TE’(U)) +fop=0,VBe{l,2},

F[II]ZTW (u) — §h2va (Vyn® (u)) + §h2F[II]gF[II]'y ns (u) — ETT(TL?(U)) + fo3=0.

To find the governing equations for the [2vxu? 4 (uau®)2]|, = 0 case consider the unique minimiser
u e {ve Va(w Q)| [2vpv® + (va0?)2]|y = 0 a.e.} where V C w. Now, we get u + sw € Vi (w, ),
Vw e Vz(w, Q) and Vs € (0,1]. Now, simply let v = u + sw in corollary 4] to obtain 0 < J'(u)(w),
Y w € Vi (w,). Noticing that w|,, are not independent, but related by w?|,, < —3vp' (waw®)? |,
we get 0 < J'(u)(dw|g + (w, dw?, — Lyt (ugu®) " 3u,dw?)|,), ¥V w € Vz(w, Q). Further noticing
that the above inequality results in 0 < J'(u)(dw|q + (sign(w!)|dw?|, sign(w?)|dw?|, —%V}l(uauo‘)*%
(upsign(w!)|[dw!| + ugsign(w?)|dw?|))|.), V w € Vz(w, ), we get the following governing equations

for the limiting equilibrium case (see section 8.4.2 of Evans [63] for the original proof):
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If [2vpu® + (uqu®)?]|. = 0, then

Ve Vot (@) - ;wj;)ﬂ.uzua(u)
+ gyth}f”]ngg(ﬁ) + éhr“m;’;);vﬂww(u)
+ %VFhQ (Vo) nd(a) — éhQL;fﬂl]ifﬂlﬁng(ﬁ)
(uau®)?
=TT @) + g T @)
+VFf05_;wjja)éfO3_O’ vBe{l2},

where ﬁ|w = (ul,u2, 7%V;1(uaua)%)|w and (83ﬂ1,83ﬂ2,83ﬂ3)|w = (83u1,83u2,83u3)|w.

Note that 7% (u) = B*#7%.5(u) is the stress tensor, n°# (u) = B*¥79p_;(u) negative of the change

in moments density tensor,

(Va(uglw) + Vs (ual,)) — Fijas(u’].)

N |

€ap(u) =

is half of the change in first fundamental form tensor,

pap(w) = VaV(u’|w) = Rinay Figd (4]w) + Fings Va (u"]w) + Hitar Vo (U |w) + (VaHins,) (u”|)
the change in second fundamental form tensor,

2
aBys _ 1% 763 § ¢ B ad 8
B = A+2MF[l(f By + gy By + BBy )

is the isotropic elasticity tensor, A = (1—v —2v?)"'vE is first Lamé’s parameter, p = 3(1+v) " 'Eis
second Lamé’s parameter, F is Young’s modulus and v is Poisson’s ratio of the frictionally coupled
shell, Tr(T7(u)) = T3 (u)|. is the normal stress of the foundation at the contact region, f is an

external force density field action on the overlying shell.

Due to the condition [2vpu3 + (uqu®)z]|, < 0 a.c., the region in which the shell is attains limiting
equilibrium is unknown prior to the problem. In the literature these types of problems are often
referred to as free-boundary type problems. If the reader is more interested in this subject, then a

rich study of such problems can be found in chapter 2 of Kinderlehrer and Stampacchia [107].

4.3.4 Boundary Conditions of the Overlying Shell

(0} 2 [e3%
(a7 (w) + Sh*n, Fygmy(@)]low = 15 . ¥ B € {1,2},
1
— 2% V™ (W) = s

95(u?lo)|ow =0, VB €{1,2},

where n is the unit outward normal vector to the boundary dw in curvilinear coordinates and r is

an external traction field acting on the boundary of the overlying shell.
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4.4 Existence and Uniqueness of Solutions

In this section we prove theorem |4} and thus, finally concluding that the model derived in this chap-
ter it is a mathematical theory. As we already proved the existence and the uniqueness of solutions
for an overlying bonded shell on an elastic foundation, in chapter[3] it is now a relatively straight for-
ward task to prove theorem[4] We treat the displacement-based friction condition from hypothesis 3]
as a constraint and use the mathematical techniques put forward by Kinderlehrer and Stampacchia
[107], and Evans [63] to prove theorem

Step 1: Convex
As (Vz(w,Q),J(-)) C (Vi (w,Q), J(-)) by construction, it is sufficient to show that 2vpu® 4+ (uqu®)z <
0 a.e. in w is a convex functional. To proceed, let ve = o ,v* be a Euclidean vector, i.e. vg € E?,

where v € R2. Thus, for any two vectors v, w € R? we get
1
|(va + wa) (v +w?)[2 = [|ve + wel|
< |[vell + [|wel|
= (av®)? + (wauw)?

where the above inequality follows from the triangle inequality. We can guarantee that the above

condition will hold due to the positive definiteness of Fy, in w.

Now, let I(u;U) = [, [2vpu® + (uqu®) ] dz'dz2. By construction I(u;U) < 0,V U € M(w) with
meas(U;w) > 0. We claim that I(-;U) is a convex functional for all U € M (w) with meas(U;w) > 0.

Thus, Vt € [0,1], ¥V u,v € Vo (w, Q) and with the above triangle inequality we get

Itu+ (1 —t)v;U) :/

[21/F(tu3 (1= )0) + |(fua + (1 — t)va)(tu® + (1 — t)va)ﬂ dztdz?
U

< / {t2ypu3 + (1 —t)2vpv® + t(uau“)% +(1- t)(vav“)%} dz'dx?
U
=tl(uw;U) + (1 =t)I(v;U) ,

VU € M(w) with meas(U;w) > 0. Furthermore I(tu + (1 — t)v;U) < tI(u;U) + (1 — ¢)I(v;U) <0,
VU € M(w) with meas(U;w) > 0, and thus, our convexity result does not violate the definition of
the functional I(-;U), i.e. the condition 2vzu® + (uau“)% < 0 a.e. in w is not violated. By definition

[19] we see that I(-;U) is a convex functional, and thus, (Vz(w,Q), J(-)) is a convex space.

Step 2: Existence
First, we must to show that, if u|,, € L%(w), then 2vpu + (uau®)z < 0 a.e. in w is bounded below by
—||u|| 2. To do so, consider the field u € Vi (w, ©2), and thus, the condition 2vpu® + (uqu®)z < 0

a.e. in w implies that
0 < /U [—2VF’LL3 - (uauo‘)%} da' da?
< Cl/ {—21/Fu3 — (uau“)%} datda?
< Oyl|2vptu® + (uau®)? || L2(w)
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1
S 2VFCQHU3||L2(UJ) =+ C’gHuauaHzl(w)

|

< 20p Collu |2y + Co (Callut ) + Callu'u?ll o) + Csllu?laqe, )

N|=

< 20pCol|u?|| 2 () + Co (CBHU1||%2(M) + Cyllut | 2 )| 1W?] | L2 (w) + C5||u2||2L2(w))
< 2vpCsl[u?]| 2wy + Collu'l|z2w) + C7l|u?|| L2 (w)

< Cs (||| 2wy + [t 2wy + 1162 L20))

Nl=

< VB Cs (Il + e ey + 10012 )

VU € M(w) with meas(U;w) > 0. This implies that, if u € Vz(w, ), then there exists a positive
constant C' that depends on w and o such that 0 < [, [~2vpu® — (uqu®)z] da'da? < Cllul| L2 (w)»
VU € M(w) with meas(U;w) > 0. Note that throughout the derivation of the above result we used

Hélder inequality (lemma[6) and Minkowski inequality (lemmal(7).

Now, we must show that for any sequence {w,,|.}men C L*(w) that converges to u in L?(w),
if 2upud, + (Umau®)? < 0 a.e. in w, then we can expect the limit to satisfy the relation 2vzu3 +
(uau“)% < 0 a.e. in w. To do so, consider a minimising sequence {w,; }men C Va(w, Q). This se-
quence converges weakly to u in the space W (w, Q2), in particular, u € Vi (w, ©2) by theorem[3] By
Rellich-Kondrachov theorem (lemma[13), there exists a subsequence {u,, }m. en that converges

strongly in {v € L*(Q) | v|, € L*(w)}, in particular, w,,, |, — wl|, in L*(w). Thus, for any minimis-

ing sequence {w, }men C Vi (w, Q), the limit satisfies the relation 2vpu? + (ugu®)z < 0 ae. in w
as 0 < [ [-2vpu® — (uqu®)z] da'da® < Cllul|p2(wy, Y U € M(w) with meas(U;w) > 0, and this
implies that u € Vz(w, ). Thus, we confirm that there exists a field u € Vz (w, 2) such that u is the

solution to the minimisation problem J(u) = min,ev; (w,0) /().

Step 3: Uniqueness
We prove the uniqueness of the minimiser by a contradiction. Let the fields u, @ € Vz(w, ) be two
distinct minimisers, i.e. u # @. Letw = 1(u + @). As (Vz(w,Q), J(+)) is a convex space, we have
w € Vz(w,Q). Thus,

/Q [;Aij“Emw)Em(w) - fw] 4o

1 1 . )
+/ [23‘”375 (heag(w)evg(w) + 3h3pa,3(w)p75(w)> — hféwi} dw — /() hryw; d(Ow)
1 1 . ;
= Z/ |:2A”klE7;j (u)Ekl(u) — fl’LLZ:| a2
Q
1 (1 afydé 1 3 ) | 1 i
+t1 iB heqs(uw)eys(u) + gh Pap(w)pys(u) | — hfgu;| dw — i), hyu; d(Ow)
1 .. ; _
+ 1/ iAl]klEij('&)Ekl(ﬁ) - flﬂi] aq
al
1 (1,050 ~ 1.4 _ _ i ] 1 i
+ 1 §B heas()eys(w) + §h Pap(B)pys(@) | — hfyt;| dw — i), htyt; d(Ow)
11, '
+ 5 / §A”ME¢]' (&)Ekl(u) dS)
Q
1 1 apye . 1, .
b3 [ 80 (heas(@essan) + S pus(@)prs(u) ) de
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This implies that for the given two distinct minimises w and @, there exists a field w such that J(w) <
1J(u) + J(u). However, by the very definition of a minimiser, we must have J(u), J(u) < J(w),
and this implies that 1 J(u) + 3.J(@) < J(w). This is a contradiction, i.e. the assertion of the ex-
istence of multiple distinct minimisers is false. Note that the constant C; follows from the positive
definiteness of the elasticity tensor (lemma(5) and the constant C follows from the positive definite-

ness of the elasticity tensor on a general surface (lemmalg).

Thus, we conclude this proof by confirming that there exists a unique field u € Vz(w, Q) such that

w is the solution to the minimisation problem J(u) = min,cv; ,0) J(v).

Please consult section 2.6 of Kinderlehrer and Stampacchia [107] or section of 8.4.2 Evans [63] to

see similar proofs for elliptic problems with obstacles.

4.5 Numerical Example

To conduct numerical experiments we remain with the framework that we introduced in Chapter [3]
(see Section[3.5). Now, assume that the sufficiently smooth field « is a unique minimiser to the prob-

lem that we introduced in theorem[4] Thus, we may express the governing equations of the shell as:

If [2vpu? + o|u?|]|new < 0, then
1
hAdoe3(u) + §h3A(2ffu]§82P§ (w) + 92 Fy3 p3(w)) — Tr(T5 (u) = 0,
1
—hARp3es(u) + §h3A(Aﬂ§(u) — Fup Figa o3 (w)) + Te(T5 (u)) = 05
If [2UFU3 + ¢2|U2|]|wNew = O, then

1 . _
vphAOqes () — 3 hAw251gn(u2)17[||]§e§ (u)

1 _ _
+ gVFh3A(2F[‘||]§82p§(u) + 82F[‘Il]gp§(u))
1 . _ .

+ 6h3A¢QSlgn(u2)(Ap§(u) — K g2 o3 ()

— v TR(TE (@) + 5 sian(u? TR (T3 (@) = 0,
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Where 'l_,L|wNew = (0, ’LL2, _%V;1¢2|U2|)|wNew and (0, 8317,27 agﬂ3)|wNew = (07 83U27 83U3)|wNew. NOte that

Tre(T5 (w) = fi ((¢2)*03u® + 9au®) [ pew

Te(T5(w)) = [A (02u® + T5pu® + Tosu®) + (A + 22)950°] | oew -

To conduct numerical experiment we use the second-order-accurate finite-difference method. Also,

we keep the values 7y = 1,a =2, H = 1, E = 10% and v = 1 fixed for all experiments.

%107 <108
0
1.5 -2
= 1 -4
S =
c
-6
5 05 £
o
7] 0 -
a & -10
= [a)
]
g -0.5 © -12
he]
£ IS
5 -1 x -14
15 -16
-18
'23 |
1 1
1.5 1.5
-1 2 1 2
Radius 2, 1 0 Radius 2, 1 0
0 0

Figure 50: Displacement field of the foundation predicted by the shell model with friction.

Figureis calculated with the values of 7nax = 1,6 =2, h = % FE =8000, v = -, vr = 1 and with a

1
1
grid of 250 x 41 points. Figure [50|shows the azimuthal (i.e u?) and the radial (i.e. u?) displacements.
The maximum azimuthal displacements are observed at % = +1n, with respective azimuthal dis-
placements of u? = +1.79 x 10~*. The maximum radial displacement is observed at 2% = +1in,
with a radial displacement of u® = —1.84 x 10~*. Furthermore, in the intervals z2 € (—1.26, —0.788)

and 22 € (0.788,1.26) we see that the shell is at limiting equilibrium.

To confirm our numerical scheme we must perform a grid dependence analysis for the numerical
solution. As the reader can see from figure [51] as IV increases, the difference between the numer-
ical solution N and N + 1 decreases. For our experiments we found that the azimuthal grid points
and the error share the relation N o Error~ 9%

figureis calculated with the values of 7max =1, b=2, h = £, E = 8000, v = } and vp = 1.

, where Error = |1 — |Juy_1||,2'[Jun]||e=|. Note that

We dedicate the next section for the numerical comparison against another, but a similar model,
extended Kikuchi and Oden’s model for Coulomb’s law of static friction. However, unlike in chapter
[3] there exists no definitive friction model that we can compare our model against. Thus, instead,

we compare how similar our friction model is to extended Kikuchi and Oden’s model.
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Figure 51: Grid dependence of the shell model with friction.

4.6 Comparison against the works of Kikuchi and Oden

To extend Kikuchi and Oden [102] model, to model two-body contact problem with friction, one must
modify equation (43) (see section 5.5 (v) of Kikuchi and Oden [102]). Now, assume an elastic body
on a rough rigid surface where the fiction is governed by Coulomb’s law of static friction. Given
that one is using curvilinear coordinates, fix the purely normal stress at the contact boundary as
a constant, i.e. vrT3(v)|, = #, where ¢ is the spring modulus. Then, equation and the
analysis that is conducted in section imply that j.(v)dv = —fw(ggg)%Tg(v)éva dw, where v
is the displacement field of the elastic body. Note that v|, describes the relative displacement
between the elastic body and the boundary w, and thus, if the elastic body is in contact with another
rough elastic body, then the displacement field one must consider is the relative displacement, due
to the fact that friction apposes relative potential motion. Now, consider a two-body contact problem
where the contact area is rough and the friction is governed by Coulomb’s law of static friction.
Now, let the displacement fields of the overlying body be v and the foundation be u. As normal
stress is continuous at the boundary, just as before, fix the purely normal stress as vrT5 (u)|, =
veTs(v)|, = # and make the transformation v# — v# — «” in the functional j.(-) to signify the
relative displacement field. Now, collecting all the tangential terms from the contact boundary (i.e.
u’|,, and v”|,, terms) one finds j.(v — w)(6v — du) = — [ (g33)2 (T3 ()00 |- — T3 (w)du®|u+) dw,
where

/(;m(v— ) — 55) do | if v —w)|y > ¢,

Je(v—u) =
/ —He (v —u)dw, ifP(v—u)|, <e,

and where ®(v — u) = |(va — ta)(V® — u®)|2, W = limgs o+ {w x [0,h)}, w™ = limgs_,o- Q and

e > 0 is the regularisation parameter.

In accordance with our previous work we keep v as the displacement field of the overlying body
and u as the displacement field of the foundation. As the two bodies are in contact, the normal

displacement, of the both bodies, is identical. Thus, one obtain the extended Kikuchi and Oden’s
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model for Coulomb’s law of static friction for a two-body problem in curvilinear coordinates, which is

described by the equations

V3]s — |- =0,

T33(v)|w+ - T;(u”w_ =0 )

3 (08 — b
_vr(gss)2 (V) —u )Tg’('u)|w+ , if@(v—u)|+ >e,
P B O(v—u)
T3 (v)|o+ = 1.8 3
vr(9gs3) E(v — U )Tg(v)|w+ , if@(v — )|+ <e,
LB _ B
Bz Gl Ve TN T YO
3 D(v—u)
T3 (u)],- = 1,3 8
JF(933)2€(“ — )Tg(u)lw— i (v —u)|,- <e,

where
Tf(v) =l (?Bvs + Vg,’U ) s
T3 (v) = AVav™ + (A + 2p) Vv |
T (u) = i (VPus + Vau®)
T3 (u) = AVau® + (A + 22) Vau® |

and where ) and . are respectively first and second Lame’ parameters of the overlying body, A and
i are respectively first and second Lame’ parameters of the foundation, and v is the coefficient of
friction. Note that in this framework one has gs3 = 1. Also, given that T3 (u)|,- is fixed as a positive
constant and one is considering Euclidean coordinates, one can see that the above problem simply

reduces to Kikuchi and Oden’s [102] model for Coulomb’s law of static friction in the limit w — 0.

Despite the fact that we are working in linear elasticity, the above equations make our problem in-
herently nonlinear. Thus, to find numerical solutions we employ the Newton’s method for nonlinear

systems (see chapter 10 of Burden et al. [30]).

To conduct numerical experiments consider the following. In accordance with the framework that is
introduced in section the overlying body is restricted to the region z* € (0, k). Thus, with some

calculations, one finds that the perturbed governing equations of the overlying body are

(A + 1)0* (V;60") + pAdv® =0,
(A +p)0* (V;60") + pAdv® =0,
where
Vobv? = 02002 + T50v% + TH60° |
6251)3 = (92(51}3 — (1/;2)21;22351]2 y
V3002 = 0300° + Tipv?

?3(5’()3 = 83(51}3 s
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and v = (0, 6v%(2?, 23), dv3 (22, 23)) is a small perturbation of the displacement field of the overlying

body. With relative ease, one finds that the perturbed governing equations of the foundation are

A+ m)0* (Vi

<
<,
gﬁ
+
=
>
>,
gl\)
Il

where du = (0,0u? (22, 23), 5u3 (22, 2%)) is the perturbation of the displacement field of the founda-
tion. With some more calculations, one finds the following boundary conditions to the displacement
fields,

[v* — u?]| new = 0 (continuous radial displacement) ,

[T5(v) — T35 (u)]| new = 0 (continuous radial stress) ,
and the boundary conditions for the perturbations

2] o ten =0
5u3|mmew =0,
0V unewsc (0.l ~ . gl nyy = O
0v®|gNonisouten: (0,m)}U{[— . 4mlx {03} = O -

Thus, the equations characterising the frictionally coupling of the overlying body to the foundation

can be expressed as:

If 1ho|v? — u?|| new > €, then

(11 (20302 + (1h2) ' 020) + vpsign(v? — u?)T5 (V)] nev = 0,

[ (2030 + (2) " 0ou®) + vpsign(v? — u?)T5 ()] | new = 0 ;
If ha|v? — u?|| new < €, then

(1 (Y20360%) + vpe Mha(v? — u?) T (6v) + vpe "o (dv? — Su?)T5 (v)
+ 1 (2050 + (P2) 71 020%) 4+ vpe iha (0¥ — uP) TS (V)] hew = 0,
[/1 (1/?283(511 ) +vpe My (v — u?) T3 (5u) + vpe My (6v* — Su?) T3 (u)
+ i (Y205u® + (2) "1 0ou®) + vpe o (v — uP)TE (w)] | ew = 0,
where
T3 (v) = X (020 + ThHv? + T550%) + (A + 2p)050° |
T3 (u) = A (0ou? + Tpu® + T35u’) + (A + 2) 050’ .
To conduct numerical experiments we use the second-order-accurate finite-difference method in
conjunction with Newton’s method for nonlinear systems, as in section Also, we keep the
values 7o = 1,a = 2, H = 1, E = 10® and v = 1 fixed for all experiments. Furthermore, we

choose to terminate our iterating process once the condition |1 — (||tm||ez + ||Um||ez + ||0Um]|e2 +

10vm|e2) " (|wmallez + [|Vmatllez + [[0%mr1]lez + |[0Vm1]le2)| < 10719 is satisfied, where w,,, v,,,
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Figure 52: Displacement field of the foundation of the extended Kikuchi and Oden’s model.
Su,, and dv,, are the m'™" iterative solutions of extended Kikuchi and Oden’s model model.

Figure is calculated with the values of Tmax = 1, b =2, h = £, E = 8000, v = %, & = 10710,
vrp = 1 and with a grid of 250 x 41 points. Figure [50] shows the azimuthal (i.e. u?) and the radial
(i.e. u?) displacements of the foundation. The maximum azimuthal displacements are observed at
2? = i with respective azimuthal displacements of u? = +1.70 x 10~*. The maximum radial
displacement is observed at % = +1 with a radial displacement of u® = —1.85 x 10~%. Also, in the
interval 22 € (—3m, 17), i.e. the entire contact region w, we see that the overlying body is at limiting

equilibrium. For more on bonding and limiting equilibrium please see Section|2.6
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Figure 53: Grid dependence of the extended Kikuchi and Oden’s model.

Another numerical analysis we must perform is the grid dependence analysis for the numerical so-
lution. As the reader can see from figure[53] as N increases, the difference between the numerical

solution N and N + 1 decreases. For our experiments we found that the azimuthal grid points and

132



the error share the relation N « Error—°-8%¢

,where Error = [1—(|Jun_1||e2+|[vn_1]lez) " (|Jun|] =+
llvn|lez)|. Note that figure is calculated with the values of 7max = 1, b = 2, h = £, E = 8000,

v=1e=10""and vy = 1.

But this is still not sufficient analysis, and thus, our goal in this section is to investigate how our shell
model with friction predicts the displacement field of the foundation relative to extended Kikuchi and
Oden’s model for the given variables v, 67 = Tmax/70, 6b = b/a, 6h = h/H, §E = E/E and év =
v/v. To proceed with this investigation we calculate the relative error between the displacement field

of the foundation predicted by shell model with friction and extended Kikuchi and Oden’s model by

1

(X a0z 0 (D22, A0%) = o (B0, A2 ?)

(Zmz,ms |[tghen (A22, Az?) 4 uj oni( A2, Awg)”?)

Relative Error(u") =

Nl
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Figure 54: Relative error for ¢.

Before we proceed any further, we must determine an appropriate value for the regularisation pa-
rameter, c. Figure is calculated with the values 67 = 1, 6b = 1, 0h = % O0F = 8, v = 1,
e € {107%,107%5,1077,1077-5,107%,107%%,107,107°*,1071°} and vy = 1. From figure [54] one
can see that both relative errors remain constant (up to 3 significant figures) for the values 10785 <
e < 10710, implying that as ¢ tends to zero, extended Kikuchi and Oden’s solution converges to a

specific solution. Thus, for all our experiments we continue to use the value e = 10710,

Figure 55| shows the relative error between our shell model with friction and extended Kikuchi and
Oden’s model for varying coefficient of friction between the shell and the foundation. For these ex-
periments we assertthat o7 =1,0b=1,6h = %,6E =8, v =landvp € {3, &, 5 & - & 9
1}. From figure [55| one can see that as the coefficient of friction at the contact surface increases,
the relative error reduces, and this a significant reduction in the error. At vr = 1 we observe respec-
tive azimuthal and radial relative errors of 3.53% and 10.7%. This implies that rougher the contact
surface is, then closer our shell model with friction resembles extended Kikuchi and Oden’s model.

This is an intuitive result as the coefficient of friction increases, both models resemble the bonded
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Figure 55: Relative error for vp.

case, and in Sections [3.6/ and [3.7] we concluded that our overlying shell model is a good approxi-

mation of the two-body problem for the bonded case.
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Figure 56: Relative error for §7 = Tmax/70.

Figure [56] shows the relative error between our shell model with friction and extended Kikuchi and
Oden’s model for varying maximum applied traction at the boundary. For these experiments we
assert that 67 € {1,415, 12,12, 15,12, 18, 11, 8}, 6b = 1, 6h = §, 0E = 8, év = land vp = 1.
From figure [56| one can see that as the maximum applied traction increases, both azimuthal and
radial relative errors too increases. The minimum azimuthal and radial relative errors are 3.53%
and 10.7%, and they are both observed for 67 = 1. Also, we notice that the radial relative error is
significantly higher than azimuthal error, and this is analogous to the results of error analyses from
Sections[3.6]and

Figure [57] shows the relative error between our shell model with friction and extended Kikuchi and
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Figure 57: Relative error for 6h = h/H.

Oden’s model for for varying thicknesses of the shell. For these experiments we asserted that
67 =1,0b=1,6h € {&. 35,55 35 5 35> 397 35+ 39 53- 351, 0E = 8, 6v = L and vy = 1. From
figure [57] one can see that as 6h increases, azimuthal relative error between our shell model with
friction and extended Kikuchi and Oden’s model decreases. At 6h = £ we observe an azimuthal
relative error of 1.50%. As for the radial relative error, one can see that it attains a minimum at
oh = % with a relative error of 2.79%. This implies that there exits an optimum thickness of the shell
where the radial error between or shell model with friction and extended Kikuchi and Oden’s model

is a minimum.
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Figure 58: Relative error for §E = E/E.

Figure [58| shows the relative error between our shell model with friction and extended Kikuchi and
Oden’s model for for varying Young’s modulus of the shell. For these experiments we assert that
6t =1,6b=1,0h= %, 06E € {1,3,2,5,3,2,4,9,5,11,6,13,7,12 8}, v = 1 and vp = 1. From
figure [58| one can see that as Young’s modulus of the shell increases, the relative error decreases.
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At 6E = 8 we observe respective azimuthal and radial relative errors of 3.53% and 10.7%. This
implies that stiffer the shell is, closer the shell model with friction resembles extended Kikuchi and

Oden’s model. Furthermore, this result analogous to our numerical results from Section (3.7
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Figure 59: Relative error for jv = v/v.

Figure [59 shows the relative error between our shell model with friction and extended Kikuchi and
Oden’s model for varying Poisson’s ratio of the shell. For these experiments we assert that 67 = 1,
sb=1,6h=2%,6E=8,6ve {33 43¢ 11,3 0 1L 1213 1415} From figureone can see
that as Poisson’s ratio of the shell increases, the relative error decreases. At v = 1> we observe
respective azimuthal and radial relative errors of 2.79% and 6.92%. This implies that as the shell be-
comes incompressible, closer the shell model with friction resembles extended Kikuchi and Oden’s
model. However, unlike for Young’s modulus case, one cannot indefinitely reduce the relative error

by increasing Poisson’s ratio as Poisson’s ratio cannot neither attain nor exceed the value %
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Figure 60: Relative error for b = b/a.
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Figure [60] shows the relative error between our shell model with friction and extended Kikuchi and
Oden’s model for varying vertical radii of the contact region. For these experiments we asserted
that o7 =1,6b € {32,338 32 33 30 3T 38 B 4. B i o . Bl oh=%,0E=8/v=1
and vp = 1. From figure |60| one can see that as the critical parametric-latitude increases, both
azimuthal and radial relative error also increases. At §b = %, we observe respective azimuthal and
radial relative errors of 0.654% and 1.07%. This implies that lower the critical parametric-latitude of
the contact region is, closer the shell model with friction resembles extended Kikuchi and Oden’s

model.

The above analyses show how the displacement field of an elastic foundation modelled with our
overlying shell, on an elastic foundation subjected to the hypothetical displacement-based friction
condition, model relative to Kikuchi and Oden’s [102] model, extended to model fully two-body
contact problem in curvilinear coordinates. However, unlike in chapter [3] there exists no definitive
two-body friction theorem (or at least a model) that we can compare our results against. Hence, the
reason we investigated the relative errors between the two solutions to see how they fair against a

set of variables.

The disadvantage of extended Kikuchi and Oden’s model is that it is unsuitable for modelling thin
overlying bodies, as the thickness of overlying body becomes infinitesimally small relative to the
thickness of the foundation, it is numerically impractical to model the overlying body as a three-
dimensional object. Thus, in this scenario extended Kikuchi and Oden’s model breaks down. This
justifies the existence of our overlying shell model with friction as this model is numerically valid for

such cases.

We again remind the reader that the physical validity of each model is still an open question as
there exits no definitive friction model that we can compare our results against. We further remind
the reader that the model we presented in this section is not a model that is derived by Kikuchi and
Oden [102]. We taken the model for Coulomb’s law of static friction from Kikuchi and Oden [102]
(see Section[1.71) and extended to curvilinear coordinates (see Section[2.6) which is then extended
to model a full two-body problem in this section. We merely called it extended Kikuchi and Oden’s

model for convenience.

4.7 Conclusions

In this chapter we studied frictionally coupled overlying shells supported by elastic foundations. In
Section 4.2 we used Kikuchi and Oden’s [102] model for Coulomb’s law of static friction to derive
a displacement-based static friction condition. By construction this displacement-based hypotheti-
cal friction condition is more mathematically sound than Coulomb’s law, but its physical validity still
remains an open question. Then, in Section |4.3, we explicitly derived the governing equations and
the boundary conditions for the general case for overlying shells on elastic foundations when sub-

jected to a displacement-based friction condition. In Section [4.4] we used the work of Evans [63]
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and, Kinderlehrer and Stampacchia [107] to prove the existence and the uniqueness of the solu-

tions, and thus, proving that what we derived is a mathematical theory and not a hypothetical model.

In chapter [4.5|we presented framework to conduct a set of numerical solutions. For numerical anal-
ysis, in Section 4.6 we extended Kikuchi and Oden’s [102] model for Coulomb’s law of static friction
to model a full two-body contact problem in curvilinear coordinates and shown how numerical solu-
tions fair against our shell model with friction. The method of numerical analysis is to ascertain how
the displacement field of the foundation behave when the overlying body is modelled by our shell
model with friction relative to extended Kikuchi and Oden’s model. The numerical analysis shows
that, if the shell is thick, the shell is stiff, the shell is close to incompressible, contact region has
a very high coefficient of friction or contact region has a low critical parametric-latitude, then the

displacement field of the foundation predicted by both models be in better agreement.

From our numerical analysis the greatest reduction in the error is observed for higher coefficients
of friction, i.e. as the coefficient of friction increases, the bodies behaves as if they are bonded,
and thus, the greater agreement between the solutions of extended Kikuchi and Oden’s model
and our shell model with friction. This is an expected result as we initially derived our overlying
shell model to approximate bonded thin bodies on elastic foundations, and the efficacy of our initial
model is numerically modelled in Sections [3.6|and The second greatest reduction in the error
is observed for higher Young’s moduli of the shell. This is also an expected result as we observed in
Section[3.7]that the overlying shell models are mostly accurate for shells with relatively high Young’s

moduli.
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5 Open Questions

Abstract

In this chapter we discuss a question regarding the well-posedness of our shell model, higher
regularity that is vital for finding finite-difference solutions, Signorini’s problem and how to extend
it to our problem with friction, how to extend our results to model semi-linear problems and then

fully nonlinear problems, and finally how to extend our results to the dynamic case.

5.1 Introduction

In this section we discuss few interesting areas that still remain open for investigation. We begin, in
Section by discussing a fundamental question concerning the well-posedness of our overlying
shell model. In Section [5.3] we discuss about the higher regularity that is vital for finding finite-
difference solutions. In Section[5.4 we discuss Signorini’s problem and how to extend it to our shell
model with friction. There, we assert that the contact region of the elastic foundation is unknown
and for any proper subset of the boundary of the foundation need not have the same physical form
(same curvature and same shape) as the shell, i.e. the shell can no longer be expressed as a
boundary form of the foundation, and we put forward a model for a shell supported by an elastic
foundation as a full two-body contact problem. In Section[5.5 we describe how to extend our results
to model semi-linear problems and then to model fully nonlinear problems. Finally, in Section

we describe how to extend our results to the dynamic case.

The reader must be aware that everything in this chapter is hypothetical. Due to time constrains
everything we present is this chapter are areas that we do not consider in depth and not prove with
mathematical rigour. But, we meticulously present the necessary publications so that the reader
may consult for constructing possible proofs. We present this chapter as possible future work or at

least as open questions that worthy of some discussion.

5.2 Well-Posedness of the Boundary Conditions

Recall the zero-slope boundary conditions, i.e. d3(u?|,)|ow = 0, V B € {1,2}, from theorem
The proof of theorem [3] (see Section implies that a unique solution can be found even if one
omit the zero-slope conditions, i.e. given that 95(u?|.,)|s. are unknowns. This implies that one can
apply boundary moments to the shell, i.e. nan§(u)low = n0s, V 8 € {1,2}, where n, € L?(0w) is
an external moments density field. However, from our numerical analysis we found that omitting the

zero-slope boundary conditions leads to an ill-posed fourth-order finite-difference problem.

To illustrate this problem in more detail consider a simple example of an infinity long plate with
a zero-Poisson’s ratio that is bonded to an infinitely long foundation with a zero-Poisson’s ratio.
Given that (u', 0, u®)¢ is the displacement filed, one can exploit the invariance in the y direction and

express the energy functional per unit y as

0 xo
J(u) = %E / . / [(axulﬁ +(9:u%)? + %(aﬂﬁ +0.u%)? | dadz
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1 [
+IE

- [h(&wul)Q + %h3(6mu3)2 do

—x

+ W1 vt + 75U (22— (—0.0) — (T U+ U7 |(@,2)=(20,0) » ¥ (01, 07) € Vip(w, Q) ,
where
Vga(w,Q):{(vl,vg) € Hl(Q) | (vl,v?’) I= Hl(w) ><H2(w)|w, (vl,v3)\Z:,H:O, 8mu3|(z’z):(im,0)20} ,

and where E is Young’s modulus and H is the thickness of the foundation, E is Young’s modulus
and h is the thickness of the plate, 7!, € R are constant tractions, Q2 = (—zg, z9) x (—H,0) and
w = (—xo,x0). It can be shown that the above problem has a unique minimiser, which is also a
critical point. Thus, assuming that u! € C%(Q), u* € C%(Q), u'|, € C?*(w), and v?|, € C*(w) one

can express the governing equations of the problems as

1 1
[8mu1 + —0.u' + 78m2u3] la =0,
2 2
1

[iamzul + %axzug) + azzu3] lo=0,

[8mu1 — h%(azul + 3zu3)] lw =0,

E
[a:camxug + 3ﬁ82u3] |w =0,
and the boundary conditions of the problems as
(u', )l (@) (ool x (~H}} = 04 05t (4,2)=(420,0) = 0.,
1
-
Dot (2,2)e {{2ao} x (—H,0} =0, Ot (2,2)=(£20,0) = 2%,
1 3 3 7'03
00" 4 02u”| (2, 2)e{{+a0} x (—H,0)} = 0, Ozaat’|(,2)=(+a0,0) = 625 -

The above problem has a unique numerical solution. However, if one omit the zero-slope bound-
ary conditions, i.e. 9,u®|(; .)=(+x,,0) = 0, then one can impose an arbitrary boundary moment as
8mu3|(z,z):(izo_’0) = 2E 150, where 1y € R is a constant external moments density. However, if one
numerically models this problem with the boundary moments, i.e. without the zero-slope boundary
conditions, then the numerical scheme fails to converge. Hint: consider the change of variables

(w(z),w3(2))g = (Onpu’ (z, 2), Opzu?(x, 2))g|w for the numerical scheme.

Itis unclear that if are making a mistake in the proof of theorem[3|or we are not correctly numerically
modelling the problem. If it is the proof, then the problem must lie in the rigid displacement result
from Section (3.4} or, if it is the numerical modelling, then the problem must lie in the boundary up-
dating approach in the finite-difference scheme. Unfortunately, our knowledge in weighted Sobolev
spaces is not sufficient to investigate this problem further. For possible solutions a comprehensive
analytical treatment of boundary conditions for higher-order elliptic equations can be found in chap-
ters 3 and 6 of Necas et al. [144] and an analysis of finite-difference schemes for fourth-order elliptic

differential operators can be found in section 2.7 of Jovanovic and Suli [93].

5.3 Regularity

Regularity is very important when finding numerical solutions. For example, one requires the min-

imiser of the energy functional to have higher regularity in order to construct finite-difference solu-
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tions. But in our framework that we presented in chapters [3]and [4] only finite-element solutions can
be mathematically justified. Yet, we know the existence of finite-difference solutions due to numeri-
cal analysis. Can one prove the existence of higher regularity solutions with sufficient mathematical

rigour?

To investigate this matter further recall theorem The set Vo (w, Q) is a linear set as any finite
linear combination of the elements in the set belongs to the set. Now, let X € C3(Q;E®) and let
99 be a uniform-C?(R?; R) boundary (see section 4.10 of Adams [3]). Then, a possible minimiser
u of J(-), maybe written as u = ug + @ where uo € Hj() and @ € H?(Q) x H>(Q) x H3(Q). Note
that the latter condition follows from the boundary trace embedding theorem (see theorem 5.36
of Adams [3]) and Rellich-Kondrachov theorem (see theorem 6.3 of Adams [3]), i.e. we have the
compact embeddings H?(Q) — H'(w) and H*(Q) — H?(w). Clearly, we still have u € Vi (w, ).
Now, if we let f € H(Q)x HY(Q)x H?(Q), then from theorem 3.9-4 of Ciarlet [39] (for proof see
Agmon et al. [5] and Geymonat [75]) we obtain uy, € H?(Q) x H?(2) x H3(Q). This implies that
u € H?(Q)x H2(Q) x H3(9).

Note that our problem is a displacement-traction problem: it is displacement due to u|sqn, = 0 and
traction due to 7y. Thus, we require much finer analysis on trace spaces and fractional order spaces.
Luckily, comprehensive analysis of fractional order spaces can be found in chapter 7 of Adams [3]
and analysis on the regularity of solutions can be found in chapter 4 of Necas et al. [144]. Thus, it
may be possible for one to construct a proof such that u € C3(Q)xC3(Q)xC*(Q2), which is sufficient

for proving the existence of finite-difference solutions.

But does this mean that the every minimiser of J(-) has the form w = wg + @, where uo € H}(Q)
and @ € H?(Q) x H2(Q) x H3(Q), or that the form u = w, + @ satisfies any minimising solution:
certainly not! Without a firm proof everything we discussed regarding the higher order regularity is

merely speculative. One requires more sophisticated analysis to solve this regularity problem.

5.4 Signorini’s Problem

Signorini’s problem describes the contact of a linearly elastic body with a rigid frictionless foundation
where the solution describes the displacement field of the elastic body at the contact region as well
as the range of the contact region, as the contact region is also considered as a part of the solution.
On a historical note the general problem of the equilibrium of a linearly elastic body in contact with

a rigid frictionless foundation is initially introduced by Signorini [178] [179].

Characterisation of Signorini’s problem is as follows: consider a three-dimensional linearly elastic
body, which is described by the displacement field v, in contact with a rigid foundation. Let T'c € 99
be the candidate contact surface. Note that the actual surface on which the body comes in contact
with the foundation is not known in advance, but it is assumed that it is contained in the candidate

contact surface as a proper subset. Now, let v be the initial relative displacement field between the

141



elastic body and the rigid foundation. This leads the following equations at the candidate contact

surface,

(2T} (v) — 0" T (v)] I, =0,V j € {1,2,3},
Ire =0,
re <0,

;A" T (v)|r, <0,

where n is the unit outward normal to I'c.

To extend Signorini’s problem to a shell supported by an elastic foundation consider the method
for a pseudo-two-body contact problem described in section 6.8 of Kikuchi and Oden [102]. Armed
with this knowledge, let u describe the displacement field of the shell. Now, assume that this
shell is in contact with an elastic foundation with a frictionless boundary. We use the curvilinear
coordinate system of the shell as the coordinate system of the elastic foundation, and given that the
lower-surface of the shell satisfies assertion [1, we asserts that the foundation is located beneath
the lower-surface of the shell. Now, let v be the displacement field of the foundation and let )
be the initial relative displacement field between shell and the foundation, which is a known field in
advance. Thus, the energy functional of a shell with a thickness h on a frictionless elastic foundation

may have the form

1 . .
Tuo) = [ [QA”“EU@)EM@) - f} a0
Q
1 1 ,
# [ |58 (neaptwress(u) + 51 pmatumstu) ) = nfiu|
|

—/ [hﬁfuz + 3h377{)’Vau3} d(0w) , ¥V (u,v) € Vsignorini(w, ) ,

Ow\Owo

where

Vsignorini(w, €2) = {t € Vgne(w),v € Vroundation () | 72 (v* — u’ — 4|, < 0},
Vishell(w) = {u € H (W) x H' (w) x H*(w) | w|ow, = 0, n%0qt>|5u, = 0},

VFoundation(Q) = {'U € Hl(Q) ‘ 'v|8$20 = O} )

7 is the unit outward normal to the boundary 9092 and n is the unit outward normal to the boundary
Ow in curvilinear coordinates. Note that Q c R? is a connected open bounded domain with a suffi-
ciently smooth boundary 952 such that T', 99y C 992, where T'c N9y = @ with meas(9Q; R?) > 0.
Also, w C R? is a connected open bounded plane with a sufficiently smooth boundary dw such
that dwy C dw with meas(dwo; R) > 0. Furthermore, f € L*(Q), f, € L*(w), 7o € L*(dw) and

n, € L*(dw) where 7, is a external moments density field.

For Signorini’s case we fix the displacement field of the shell in a proper subset of its boundary,
i.e. ulp,, = 0 and n®d,u3|s,, = 0. With our previous analysis, we do not consider this condi-
tion as we treated the shell as a boundary form. But, now the shell is a separate body, and thus,

we must assert the current condition to keep the problem static and to avoid a pure-traction problem.
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Thus far we only considered smooth contact surfaces. But, what if the contact surface is no longer
smooth? To extend to above problem to include friction consider Signorini’s problem with Coulomb’s
law of static friction that is described in section 10.2 of Kikuchi and Oden [102]. Using Kikuchi and
Oden’s model as inspiration, we extend hypothesis [3| by considering the relative displacements
between the shell and the elastic foundation. Thus, the energy functional of a shell with a thickness

h on a elastic foundation with a displacement-based friction condition may have the form

1 ... .
Hew) = [ |54y 0)Euto) - o] an
Q
1 afyd 1 3 7
+/ |38 heag(u)eys(w) + gh”pag(w)pys(u) | — hfous | dw
7/8 “ |:h7blui + 3h3778‘Vau3} d(Ow) , V (u,v) € Vgiction(w, Q) ,
where

Vkriction (w, Q) = {(u,v) € VSignorini(WaQ) | [QVFﬁ'(v*u*@b) +(v—u—1) - ﬁ’(vfufdj)” Ire <0}

and vy is the coefficient of friction between the elastic foundation and the shell. Note that u-v = u;v’

and |v| = (v;v")2 for any vectors w, v in the curvilinear space.

Can we guarantee that the above problems even have solutions? Certainly not. Even Kikuchi and
Oden’s [102] (frictionless) two-body problem is not necessarily a two-body problem. It is a much
simpler problem where a single elastic body folded in on itself so one only needs to deal with a
single displacement field (see section 6.8 of [102]). However, even the single body case is given
as a hypothetical model as the existence and the uniqueness of solutions are not proven by the
authors. The problems that we present may have solutions, but without proving the existence of

solutions with rigorous mathematics this remains a merely an interesting hypothetical model.

For further information on the subject we direct the reader to chapter 6 of Kikuchi and Oden [102]
for rigorous analysis of Signorini’s problem, where the authors meticulously present the mathemat-
ical framework for a variational statement of Signorini’s problem, and prove the existence and the
uniqueness of solutions. Just let ¢ = n;9’ to be consistent with Kikuchi and Oden’s [102] termi-
nology. Among other finer analyses the authors also present a finite-element approximation that
is developed for the exterior penalty formulation of Signorini’s problem using 9-node isoparametric
quadrilateral elements, and give many solved examples with the use of the finite-element penalty
method. Furthermore, extensions to Signorini’s problem, such as the elastic pseudo-two-body con-
tact problem, can be found in section 6.8 of the publication and Signorini’s problem with Coulomb’s

law with static friction can be found in section 10.2 of the publication.

5.5 Nonlinear Elasticity

Nonlinear elastic problems are an immensely important branch in the field of mathematical elasticity.
For example, large deformation of elastic bodies cannot accurately be modelled by linear elasticity

as the latter method is only valid for infinitesimal deformations. Nonlinear elasticity models require
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finite deformation modelling, also it is sometimes the case in mathematical elasticity that certain
results in linear elasticity cannot be mathematically justified as it can be with hyperelasticity (see
section 2 subsection 7.7 of Morassi and Paroni [139] for the examples of convexity and policonvex-
ity). Furthermore, certain forcings of the elastic body may depend on the displacement field, and
thus, making the force density a function of the displacement field (for examples of such problems,
please see chapter 2 section 4 Lions [123]). For such problems analysis in linear elasticity is insuf-

ficient, and thus, one must extend the work to nonlinear mathematical elasticity.

Now, recall theorem [3| or [4] and consider the field f for an example. Thus far we only considered
the case f = f(x!,22,23), but not f = f(u). But, what if the latter is the problem in question?
If this the case, then we are dealing with a semi-linear problem. For example, assume that there
exists a constant C' that depends on © and X such that [, [f(u)| dQ < C||u||r>q). Given that C
is sufficiently small, one may show the existence of solutions with slight modification of the proof for
theorem [3| However, it is unclear how this new term will affect Korn’s inequality, and thus, we do
not assert any strong claims regarding existence of minimisers with any certainty. Instead, we refer
the reader to the publication by Badiale and Serra [13] for an in-depth study of existence results for

semi-linear elliptic equations using the variational approach.

To study finite deformations, or even to study Signorini’s problem that we present in Section |5.4
accurately, one must move to the realm of fully nonlinear problems. To examine this further consider

the map

where v = v(z!, 22, 2°) is the displacement field of the foundation. Thus, nonlinear Green-St Venant

strain tensor components can be expressed as

El('v) = (6ﬁk(v)8jfk(v) - 87Xkank) .

N | =

Armed with this knowledge, one can express the stored energy density as
1 ijkl
W(v) = §A E;j(v)Eg(v) .

As the stored energy density W (-) is a scalar, any change of coordinates to the Euclidean coordinate
system will not affect the energy density. Thus, if one make this transformation, then one can easily

show that the stored energy density is policonvex, i.e. there exists a convex functional
Z:M>? xM>** xR —-R,
such that
W (v) = Z(Vgvg, cof (Vevg), det(Vevg)) ,

where Vg is the differential operator in the Euclidean space, ve = v°0; X is a Euclidean displace-
ment field, and cof (M) = (det M)M~T, ¥ M < M>3, is the cofactor of a matrix and M>? is the

space of 3 x 3 matrices. For more on policonvexity please consult section 2 of Morassi and Paroni
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[139].

Existence of a minimiser can be shown using the techniques from the study of hyperelasticity. The
first ever successful proof is derived by Ball [17], where the author also proves the existence of min-
imisers for displacement-traction problems and pure-traction problems. If the reader wishes to see
the proof of the existence of minimisers for a unilateral boundary condition of place problem, prob-
lems of self-contact without friction and of non-interpenetration matter, then please consult chapter
7 of Ciarlet [36].

Now, consider the map

3 61R(w) X 82R(w)

r(w) = R(w) + = |01 R(w) x O R(w)||’

where R(w) = o + w*d,0 + w3 N and w = w(z!, 2?) is the displacement field with respect to the
mid-surface of the shell. Thus, the nonzero nonlinear strain tensor components can be expressed

as

eap(w) = = (Oari(w)dsr' (w) — Oalo;+2°N;)0(c' +2° N*)) .

N =

With some further calculations, one can show that

where

1 . )
cap(w) = = (8aRi(w)85RZ(w) — aaaiaga’) ,

2
- oy (L R(w) x 93 R(w))’
pap(w) = (WR* )||61R(w) x D2 R(w)]|

- Niaozﬁo—i> )

(see chapter 4 of Ciarlet [39]). Armed with this knowledge, one can express the stored energy
density of a nonlinear shell with a thickness 2h as
mid 1 h 1 afyd 3 3 3
wan (W) = 5 . 3B (cap(w) = 2%pap(w)) (e35(w) — 27 pss(w)) da” .
Thus, for an overlying nonlinear shell with a thickness & (see hypothesis[2) the stored energy density
is

) = 557 (cap(ulers(u) + 3Hpnalwis(a)) |

i.e. wi™(u) = wi(w), where u = u(z!,2?) is the displacement field with respect to the lower-
surface. It can be proven by I'-convergence that the three-dimensional hyperelastic body tends
to the nonlinear shell problem as the thickness approaches zero. As the existence of a minimiser
can be proven for three-dimensional hyperelastic bodies, I'-convergence automatically provides the
existence of a minimiser for nonlinear shells. For the proof please consult section 2.5 of Ciarlet and
Mardare [40]. Note that the first rigorous proof of this approach is presented by Dret ans Raoult
[114], and Friesecke et al. [66]. For more on I'-convergence please consult section 3 of Morassi
and Paroni [139].
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Separately we can prove the existence of weak solutions for nonlinear shells and three-dimensional
hyperelastic bodies. But the question is: can we prove the existence of a weak solution for a non-
linear shell supported by a hyperelastic foundation, either as a two-body problem as in Signorini’'s
problem case (see Section or as the nonlinear shell as a boundary form of the hyperelastic
foundation case (analogous to chapters[3/and[4)? The answer is no. This problem requires more

sophisticated analysis, and thus, we leave it as future work.

5.6 Dynamic Case

In this section we discuss the evolution equations of shells supported by elastic foundations. Con-
sider a real-life scenario where one applies an unbalanced force and or a moment to an overlying

shell on an elastic foundation. How will it behave?

For our framework we assumed that our shell and the elastic body in question are isotropic and
homogeneous, and thus, there exist two positive constants ¢ and g such that they are the mass
densities of the respective bodies. Now, assume that our problem in question evolves within the
time interval [0, T], where T > 0. Now, let Q7 = Q% (0,7T), wr = wx(0,T) and dwr = dw x (0,T).
Given that we are considering Signorini’s problem (so no boundary forms), let v = w(z!, 2%, t)
be the displacement of the shell and v = v(z!, 2% 22,t) be the displacement of the elastic foun-
dation. For convenience, assume that the initial and the final first-order partial derivatives of the
displacement field with respect to time of both bodies are zero, i.e. (9;v',9;v?, 9,v*)|;cfo,ry = O
and (9;u', dyu?, 9;u?)|ier0ry = 0. Thus, one can express the action functional of a shell with a

thickness h on an elastic foundation as

1 ) 1 .
S(u,v) :/Q [QA”klEij(v)Ekl(v) — flv; — 2Q8tvi8tv’] dQr

v
wr

1
3

! e (heamu)ew(uw h%amu)pwa(u)) = hfiu

2

= [, [t = 590 oo (5 g e )| 40

— 1g <h8tui8tui — ;hgpg(atu)atu?’) ]dwT

with the displacement fields satisfying the conditions

v|sn, = 0 (Zero displacement condition) ,
v]oxgoy = 0 (Initial condition of the foundation) ,
Ul (0} = 0 (Initial condition of the shell) ,
n-(v—u—1v)|r, <0 (Signorini’s condition) ,

[2vpn-(v—u—1) + |(v-—u—1)) — n-(v—u—1p)|||r. <0 (Displacement-based friction condition) ,

where 9, is the partial derivative with respect to time. Note that 9,7 (v) - ;7 (v) = d;v;0,v" and

(91 R(u) X 62R(u)
o (||01R<u> < 62R<u>||)

1
= O, Oru® + DpusOpu’® — gthg(ﬁtu)&gu?’ .

1 h 1 2
or | Or(u) - () da® = 19 (u°0a0 + uN) |2 + 52
—h
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As we are dealing with curvilinear coordinates, integrating by parts with respect to the time variable
leads the appearance of Christoffel symbols, despite that both the diffeomorphism and the injective
immersion are independent of time, i.e. X (2!, 22, 23) # X (21,22, 23,¢) and o (z!,2?%) # o (2!, 2%, 1)
(see section 7.6 of Kay [101]). Armed with this knowledge, and the fact that we are assuming that
the initial and the final first-order partial derivatives of the displacement fields with respect to time
of both bodies are zero, we get the following relation in the foundation,

Oyv; 000" dQp = — A0’ + T 0,0 0,0Y) v dQr |
kl

Qr Qr

and the following relation in the shell,

/ [&ua@tua + 3tu?,3tu3} dwp = 7/ { (attu“ + F%@m”@tu‘s — 2F[||]fy‘0tu78tu3) Ug,

wr

+ (attus + -F[‘“](X’yatuaatuv) UB} dwr .

As one can see that to accurately model this problem, one needs to consider the nonlinear case.
Also, notice that for the dynamic case one do not assert zero-Dirichlet and the zero-slope of the
displacement field of the shell in a proper subset of its boundary, as now one may allow the shell to

move freely without any mathematical restrictions due its dynamic nature.

The crucial question is that can we prove the existence of solutions to the dynamic problem? The an-
swer is no. Fortunately, a comprehensive analysis on vibration of shells can be found in Leissa [115]
and Soedel [181]. For shell-membranes, an asymptotic justification for the equations of dynamic
shell-membranes can be found in Xiao [212]. Furthermore, there is a vast number of publications
in the study of dynamic elastic problems in Euclidean coordinates, particularly in plate theory. For
example, a thorough numerical analysis of the dynamical rectangular plates can be found in section
9 of Reddy [163]. Note that, if we consider the linear case, then the dynamic problem we present
in this section is a hyperbolic problem. For elementary analysis on hyperbolic equations can be
found in section 7.2 and section 11.1.2 of Evans [63]. But, for a more in-depth analysis of evolution

problems please consult Lions [123].

5.7 Conclusions

In this chapter we presented possible future research topics as open questions. These open ques-
tions are areas that we did not study with mathematical rigour due to time constraints and lack
of pre-existing research material. Above, we described a fundamental issue concerning the well-
posedness of our overlying shell model. We also explored: (i) means to extend the regularity of
the weak solutions of the theorem 3| to higher regularity, (ii) means to extend Signorini’s problem
to overlying shells on elastic foundations with friction, (iii) means to extend the problem to either
semi-linear case or nonlinear case or both, and (iv) means to extend the problem to the dynamic
case. Although, we did not prove the existence of solutions for any of the cases that we presented
or, at least, give any numerical solutions, we did meticulously document the necessary literature to

consult so that the reader may prove or disprove the given formulations.
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6 Modelling Skin Abrasion

Abstract

In this chapter we derive a belt-friction model for a membrane over a rigid obstacle of positive
mean-curvature. Also, we derive a static friction model for a shell-membrane supported by an
elastic foundation. Then, we use the models to process experimental data that we gathered from
human subjects to see which mechanical, elastic and geometrical factors can affect the coefficient
of friction between skin and fabrics, and the deformation field and the stress profile at the contact

area.

6.1 Introduction

In this chapter we attempt to mathematically model and experimentally investigate skin abrasion.

We begin, in Sections [6.1.1] [6.1.2) and [6.1.3] by describing various types of skin abrasion docu-

mented in the current literature. Then, we begin our mathematical modelling in Section |6.2| where
we take Kikuchi and Oden’s [102] model for Coulomb’s law of static friction for the slip case and ap-
ply it to a membrane supported by a rigid foundation to derive a belt-friction model. Then, in Section
we use this mathematical model to examine which mechanical, elastic and geometrical factors
lead to a smaller coefficient of friction in a belt-friction setting. In Section [6.4] we examine the data
that we gathered from experiments conducted on human subjects and use regression analysis to
determine the implication of using belt-friction models to calculate the coefficient of friction between
in-vivo skin and fabrics. We conclude our analysis of the experimental results by highlighting which

physical factors can significantly affect the experimental results.

In Section [6.5|we use theorem [4| and Ciarlet’s [38] theory of linear shell-membranes (see chapter
4 and 5 of Ciarlet [38]) to derive a theory for frictionally coupled static shell-membranes on elastic
foundations. Then, in Section we use this theory to conduct numerical simulations to identify
which elastic and geometrical factors can lead to a lower shear generation at the contact area of
the overlying shell-membrane model. In Section [6.7| we examine the data that we gathered from
further experiments conducted on human subjects and compare the data against the numerical
solutions of the overlying shell-membrane model to investigate the stress profile between the fabric
and each subject’s skin. We conclude our analysis of the shell-membrane model by documenting
which elastic and geometric factors can lead to a lower shear between human skin and fabrics. The
ultimate goal is to identify which elastic and geometric factors can minimise mechanical abrasion
due to repetitive movement of fabrics over human skin, so that we may present our findings to
healthcare providers to encourage and facilitate the development of products and practices that are

less damaging to human skin.

6.1.1 Pressure Ulcers

Pressure ulcers are an area of localised cutaneous damage that is typically associated with pres-
sure from bony protuberances on aged skin. Pressure ulcers can develop when a large amount of

pressure is applied to an area of skin over a short period of time or when less pressure is applied
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over a prolong period of time. When pressure is applied to soft tissue, it results in completely or
partially obstructed blood flow to the soft tissue, starving the tissue of oxygen and nutrients, which
eventually leads to necrosis in the affected area, and thus, an ulcer. Shear (i.e. constant and pro-
longed static friction) is also a cause, as it can pull on blood vessels that feed the skin, and thus,
restricting the blood flow. Pressure ulcers often occur in very sedentary individuals such as those
with impaired mobility, bedridden and wheelchair bound [132]. If the reader is interested in this

subject, then please consult publication by Maklebust and Sieggreen [132].

It is given that friction contributes to skin damage by stripping of the epidermal layer of the skin:
creating an environment conducive to further skin damage due to friction. An alteration in the co-
efficient of friction increases skin’s adherence to the outside surface, which can eventually leads
to wounds and infections. Note that this does not result in pressure ulcers, but it is observed in
the same settings. Also, note that the language used by authors who specialised in the study of
pressure ulcers is different to mathematicians’ language. What they referrer to as shear appears to
be a force related to static friction, and friction appears to be a force related to dynamic friction. By

the definitions of shear and friction given by Bergstrom [25], this is the only logical conclusion.

Murray et al. [142] give many preventive measures for pressure ulcers. For example, to elimi-
nate shear and friction, the authors states that to protect the exposed skin by protective dressings,
padding or sheepskin, and for those who are bedridden elevating the foot of bed to 20 degrees
when sitting to prevent sliding and maintaining the head of the bed at the lowest possible elevation,

consistent with individual’s medical condition and comfort.

It is estimated that over 400, 000 individuals will develop a new pressure ulcer annually in the UK
(mainly the elderly) and approximately 51,000 of them will be admitted to a hospital [64]. A study
conducted in 1993 [197] shows that the cost to the NHS of treating pressure ulcers is around £180
- £321 million, which is approximately 0.4% - 0.8% of the total health spending. This figure is con-

sidered to be substantial underestimate, even allowing for inflation [22].

In 2003 Bennett et al. [22] find the cost of treating pressure ulcers in UK (excluding MRSA, surgical
interventions and litigation costs) ranges between £1.4 to £2.1 billion annually, which is over 4% of
gross NHS expenditure. The cost is deduced by estimating the daily cost of the resources required
to deliver protocols of care reflecting good clinical practice. It is estimated that each episode cost
from £1,064 for a grade-1 ulcer (i.e. non-blanchable erythema of intact skin, include discolouration
of the skin, warmth, oedema, indurations or hardness may also be used as indicators, particularly
on individuals with darker skin) to £10,551 for a grade-4 ulcer (i.e. extensive destruction, tissue
necrosis, damage to muscle, bone, supporting structures with or without full thickness skin loss, with
expected cost of treating critical colonisation, cellulitis and osteomyelitis). In a severe case, such as
in the case of osteomyelitis, treatment can cost on average of £16,500 per episode per individual
patient. In cases of MRSA the costs maybe significantly higher. Due to the lack of literature it is

difficult to estimate litigation costs to the NHS related to pressure ulcer care, but one must assume
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it be a substantial amount. For example, in the USA, The Omnibus Budget Reconciliation Act in
1987 made it easier for claimants to prove that a provider is negligent following the development of
pressure damage. Thus, between 1992 and 1996 the median settlement value following successful
litigation for negligence regarding a pressure ulcer is $279, 000 [193]. Again, this evidence strongly
indicates the fact that preventive measures are immensely important. Lowering the probability of
causing pressure ulcers leads to fewer resources are spent on treating pressure ulcers, and thus,

reducing spending in the NHS.

6.1.2 Sport Related Trauma to the Skin Due to Friction

Due to excessive movement athletes are subject to repeated mechanical trauma to the skin, which
in turn often leads to observable, documented, often painful (but never fatal) skin trauma [24]. The
following conditions are documented sports related conditions and trauma to the skin caused by

friction.

Fissure of the nipple, often referred as jogger’s nipple, is a result from repeated irritation and friction
of the nipples against a top (garment) during a prolonged period of exercise or a sporting activ-
ity. It is often experienced by runners and bicycle riders as they are exposed to the friction on the
nipple for the greatest periods of time. Once affected bleeding is common, often associated with
pain. Coating the nipples with petrolatum before running is said to be helpful. Also, it is advisable
to use talcum powder, wearing a swim suit to reduce friction or, best of all, wearing a sports-bra
[116]. Note that Powell [158] states that bicyclist’s nipple is viewed more as a thermal injury in cold

weather rather than an injury from friction.

Friction blisters are a skin condition that may occur at sites of combined pressure and friction, and
maybe enhanced by heat, moisture, or cotton socks [79]. It is often observed on weight-bearing
surfaces, and affects the feet when partaking running sports such as track, basketball and football.
It is caused by shearing frictional forces, primarily horizontal, and increased heat due to physical
exertion and humidity due to perspiration can further promotes blisters [44]. Common affected ar-
eas are joints, the tips of fingers and toes, and the heel of the foot. Preventive measures include
hardening of the skin with 10% tannic acid soaks, wearing two pairs of powdered socks, use of
protective hand and foot gear, and, above all, the use of correctly fitting sport-shoes. The use of
padding with various types of polymeric materials is discussed by Muller [141]. One of the treat-
ments presented by Scher [173] consists of draining the blister with a sterile needle and covering it
with an occlusive pressure dressing such as adhesive tape. Topical antimicrobials are advisable to

assist in preventing any secondary infection.

Traction alopecia (hair loss due to abrasion) is caused primarily by pulling force being applied to the
hair or the scalp area. Copperman [43] observes traction alopecia in a women who jogged daily
with a tight-banded wide-stripped heavy headphones. Switching to a lighter headpiece reportedly
stopped the hair loss. The author also describes alopecia in two young male break-dancers, where

constant spinning on top of the head eroded the hair shafts down to the scalp. Ely [61] observes
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traction alopecia in a young female gymnast. The gymnast lost her hair from frontal scalp to the
occiput (the back of the head) due to constant head stands and rollovers performed on the balance

beam.

Calcaneal Petechiae, often referred as the black heal, are trauma-induced darkening lesions (acral)
of the posterior or posterolateral aspect of the heel that occurs primarily in young adult athletes
[196€]. It is often observed on the feet of athletes engaged in sports such as tennis, basketball and
other sporting activities that require repetitive and rapid acceleration and deceleration [171]. It is
caused by blood being deposited in the thick stratum corneum of the edge of the heel, just above
the thick plantar skin at places where blood vessels are minimally protected by fatty tissue, due to
repeated lateral shearing forces on the epidermis (the upper most part of the skin) sliding over the
rete pegs (epithelial extensions that project into the underlying connective tissue in both skin and
mucous membranes) of the papillary dermis (uppermost layer of the dermis) [88]. These types of
lesions are also observed on the edges of the palms of weight lifters and on the balls of the thumb of
golfers. Black heel is first documented by Crissey and Peachy [51] on a group of basketball players
in 1961. Rufli [171] found black heal (referred as hyperkeratosis hemorrhagica in the publication) in
2.85% of 596 nineteen-year-old Swiss military recruits who were subjected to military drills. Duprey
[20] found an 18% prevalence in young people at a regional athletic training facility (25% males,
6% females). Black heel is often is asymptomatic (harmless); however, the diagnosis is clinically
significant as it may easily be confused with nevus (mole) or malignant melanoma, where the latter

condition can be life threatening [94].

Callus is a toughened area of skin which has become relatively thick and hard in response to re-
peated friction and or pressure. It is often occurs near bony prominences (where bones are close to
the surface) [76),[85]. Formation of calluses represents a protective response of the skin to protect
itself against further damage due to friction. However, exposure to more aggressive frictional forces
to the skin cause blisters rather than allow calluses to form. Calluses are often observed in the
hands of a gymnasts, archers, tennis players, golfers and bowlers, and on the feet of a dancers,

runners and basketball players [168].

If the reader is more interested the subject please consult Bergfeld [24]. In fact, all the conditions
described above are from Bergfeld’s [24] publication. Other conditions that Bergfeld [24] present
are tennis toe, subungual hematomas, abrasions, dermal nodules, subcutaneous nodules, striae
distensae, contact dermatitis, cutaneous infections, and dermatitis due to physical and climatic

factors.

6.1.3 Other Types Trauma to the Skin Due to Friction

It is documented that friction plays a role in the development of dermatitis in other settings. In many
cases, it is observed that friction damages the stratum corneum and the stratum basale to varying
degrees [209].
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It is believed that friction plays a significant role in incontinence associated dermatitis as many
authors publish literature on the coefficient of friction (measuring techniques and actual measure-
ments) between human skin and fabrics in incontinence related publications [23] 48, 145! 46]. Incon-
tinence is caused by involuntary leakage of urine or loss of voluntary control of the bowels. Causes
include Polyuria (excessive urine production), muscle or nerve damage and pelvic floor dysfunction.
The NHS estimates that between 3 and 6 million adults in the UK have some degree of urinary in-
continence [200], and the prevalence is set to increase due to an aging population. It is documented
that wearing of incontinence pads over prolong periods are the very cause of the problems in incon-
tinence associated dermatitis. Despite the fact that pads absorb moisture, in many cases, the pads
acts as a barrier that prevents water from escaping. This leads to an over hydration of the stratum
corneum in the epidermis. Scheuplein and Blank [174] find an increase in skin hydration leads to in-
crease in the thickness of the stratum corneum, and thus, the weakening of the cell structure. Tests
conducted on adults and on infants show that over-hydration of the stratum corneum is responsible
for a threefold increase in the coefficient of friction. Berg [23] states that prolong wearing of pads
leads to weakening of the cell structure and an increase in the coefficient of friction that may cause
mechanical abrasion, and thus, eventually leading to dermatitis. The author shows that an increase
in skin hydration (due to pads) with the presence of urine and faecal enzymes lead to an increase
in skin permeability, skin pH (from acidity to neutral) and increase in microbial count, and this can
lead to higher aberration damage. Furthermore, Wilkinson [209] states that ill-fitting diapers cause

chafing in actively kicking infants.

Frictionally-induced fissured lesions are observed below the ears or at the side of the nose in wear-
ers of ill-fitting spectacle frames [62]. Epstein [62] documents cases of two patients diagnosed with
clinically basal-cell epithelioma-like lesions (epithelial tumour) on the ear, which was later revealed,

upon further examination, as a fissured lesion caused by rubbing ear-piece from the eyeglasses.

Contact dermatitis from clothing and attire, especially from synthetics fibber shirt collars and polo
neck jumpers, is observed, and the neck area is considered to be specifically susceptible [209]. An-
gelini [8] studies the contact allergy in a series of 165 patients with eczematous dermatitis of the feet

correlated clinically with shoe contact and found that friction is a contributor of contact dermatitis.

Dermatitis due to friction is also observed in individuals who do manual labour. White [208] states
that in those who are handling turpentine it is necessary to have friction to develop and bring out
blebs and pustules. The author also documents dermatitis intertriginous areas (areas where two
skins may touch) affecting colliers (workers on ships that are design to carry coal) and fraying of
the skin of the forearms and thighs of coal miners due to coal and stone dust. The author further
documents that cotton workers developing excoriated dermatitis (wounds), even infections of the
webs of the palms from moisture and friction. Similar lesions are observed in farmers as a result of

constant irritation from the hairs on cow udders: due to milking.

In skin already affected by medical conditions friction may worsen the problem and may lead to new
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lesions. For example, juvenile plantar dermatitis, which is a condition with the symptoms of glazed,
shiny, and broken lamellar like scales on the skin, is often found on the frictional areas of the sides
and under surfaces of the toes and forefeet of children between 3 and 14 years of age. There is a
higher prevalence in the summer months and for those who wears synthetic socks or shoes [176].
Cowen [49] reports a case in which the lesions improved when the individual began to wear cotton

socks, which may have contributed to lowering the frictional forces experienced on the skin.

6.2 Belt-Friction model

In this section we derive a pure-traction belt-friction model to describe the behaviour of dynamic

true-membranes supported by static rigid foundations.

Let w ¢ R? be a simply connected open bounded domain with the sufficiently smooth boundary
dw and let & € C%(w; E®) be an injective immersion. Now, assume that an isotropic elastic true-
membrane is in contact with a rigid non-hyperbolic surface of positive mean-curvature such that in
the stress-free configuration of the true-membrane the contact area can be parameterised by the
immersion o. Now, assert that the true-membrane is dynamic, but the contact area remains static
and constant as w. Now, invoke the governing equations that is derived in chapter[2] the terminology
from Section[1.5]and the time-dependence from Section [5.6]to find

Vo (w) + 2 (w) + gf = 0 (Ouw”® + T dw*0uw”) | (76)
Kijary ™7 (w) + [ (w) + ¢} = 0Fijar rw®dpw? (77)

with the boundary conditions
nat(w)low =15 , ¥ B €{1,2}, (78)

where w € C%(w;R?) is the displacement field and o is the mass density of the true-membrane,
g € C°(w;R?) is an external force density field, f2(w) are the shear force densities, f3(w) is the nor-
mal reaction density, n € C°(w;RR?) is the unit outward normal to the boundary and 7o € C°(w;R?)

is a traction field.

Note that this pure-traction problem, and thus, the boundary traction field 7, cannot be arbitrary cho-
sen. To proceed, assume that the velocity, the acceleration and the force density fields are known
and fixed prior to the problem, and invoke the compatibility condition for pure-traction problems (see
section 1.3.4 of Necas et al. [144] or section 1.8 of Ciarlet [38]) to find

/ oug d(@w)—i—/ (f5(w) + g2 — 0 (Opw” + Ffwatwaatm)) ug dw =0,
ow w
Vuc{ve H (w) | e(v) =0},

where €(-) is the strain tensor of the true-membrane. Note that the compatibility condition implies

that the internal forces are balanced by all the applied external forces.
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Now, assert that the contact area is rough and the friction law governing this region is governed by
Kikuchi and Oden’s [102] model for Coulomb’s law of static friction for the slip case. Adapting this

friction law to model membranes, with the techniques introduced in Section one finds
17(w) + v (waw®) 2w f (w) =0, (79)

where vp is the coefficient of friction with respect to Coulomb’s law of friction. Now, one may
rearrange the compatibility condition and use the modified Coulomb’s law of friction to find a

relationship between the coefficient of friction and the external loadings as

VF/(w w’)” f3( Jwug dw :/ To Ue, d(Ow)

w ow
+ / (92 = 0 (Ouw™ + L5007 0w’)) uq dw (80)
Vuc {ve H (w) | e(v) =0} .

Given that the fields (0;w', d;w?) and (9w, d;;w?) are known quantities prior to the problem, w”
and f7(w) give one five unknowns and equations (76), and provide one with five equations.
Thus, the system is fully determined with respect to the boundary conditions (78). Furthermore,
condition provides one with a stronger system as, if the coefficient of friction is an unknown,
then a known traction can close the system and vice versa. But does it mean that this model is valid?
The answer is no. This belt-friction model is derived from a friction law that is design to model
static bodies. We asserted that velocity and acceleration fields, (d;w?, 9;w?) and (dyw?, Oypw?)
respectively, are known quantities prior to the problem, but speed and the acceleration may change
during a given time interval. Finally, with our limited knowledge we cannot prove the existence of
solution for this model. The problem of proving the existence of solutions arises from the function
f2(w), as itis a function of both w and Vw. If f?(w) is a purely a function of w, then the existence
of solutions maybe proved by variational methods for semi-linear elliptic equations (see Badiale and
Serra [13]), but with the Vw dependence, our model is not even a variational problem. Closed
system it maybe, but this model is flawed, and thus, any result that maybe generated from this

model is merely speculative.

6.3 Numerical Analysis

To conduct numerical experiments assume a surface of revolution case, where the both contact
surface and the unstressed true-membrane parameterised by the same immersion (i.e. an aximem-
brane case). Let this immersion be o (2!, z2) = (2*, p(z') sin(z?), p(z') cos(z?))g, where z* € (0,1)
and 2% € (—3m,0). To keep the contact area as a surface of positive mean-curvature, assert that
p(z') =ro — 16c(I7 'zt — $)*, where ¢ < ro. Note that [, ¢ and o are some positive constants that
one can specify later. With some calculations, one finds that the first fundamental form tensor is
Fpy = diag((¢1)2, (12)?), where ¢, = (1+(¢/(z"))?)= and ¢ = (). With a few more calculations,

one finds

Iy = (1) 0ren R = (@) " (ah) (1 + (</9/(J71))2)_1 ;

_1
2

L3 = (¢2) 0142, Rig = — () (14 (' (=1)?)
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where T, are Christoffel symbols of the second kind and Fyy is the second fundamental form
tensor. Now, given that w = (w!(2!,2?),w?(x!, 2?)) is the displacement field, one finds that the

covariant derivatives are

Viw! = dpw' + THw'
Viw? = dw? + F221w2 ,
Vow' = dyw' — (1h1) 7> (1h2)*T5w*

Vow? = dyw? + I‘222w2 .

Now, assume that the membrane is subjected to the acceleration of gravity. i.e. subject to the
field (0,0, —g). With a coordinate transform, from Euclidean to curvilinear, one may re-expresses

acceleration due to gravity in curvilinear coordinates as gJ, where
J = (= (@) (1) 2 cos(a?), (p(z!)) " sin(a?), —(¢1) " cos(z?))
and z? is the acute angle that the vector (0,0, 1) makes with the vector (0, 15, 0).

Now, given that o is the mass density, (0,0,0) is the acceleration field and (0, (12)~1V,0) is the

velocity field of the membrane, one can express the governing equations of the membrane as

(A — p)0" (Vaw®) + pAw' + 0gJ" + fH(w) = —o(¢1) T3V,

(A — )& (Vaw®) + pAw’ + 0gJ* + f2(w) =0,
and
(A (B1w' +Thw') + (A —2p) (8w® + T3 w')) Ryt
+ (A =2p) (Orw' + T w') + A (Bw® + T3 w')) }Tu]g +09J° + [ w) = QF[H]%V2 )
where A = 4(A +2u)~tu(\ + 1) and X and p are first and second Lamé’s parameters respectively.

Assume that the contact area is rough, and thus, one obtains a final governing equation to solve

the problem, which is
FE(w) + v (waw®) 2w’ f2(w) =0,

where the coefficient of friction, v, is considered to be an unknown. Now, divide the boundary into

sub-boundaries as
Qg = {{0} x (—5m, 0} U {1} x (37,0}
Qur, = {10, x {~5m} |
6(")Tmax = {{[07” X {O}} I
and assert that the boundary conditions are

[(A = 2p) (Orw' + T w') + A (9w + T3 w') J]awy, = 7o (traction) ,

[(A —2p) (O1w' +THw') + A (82w* + T3 w") J|ows,,, = Tmax (traction) ,
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A (01w + T w') + (A = 2u) (Oew? +THw') ]|aw, = 0 (zero-Robin) ,
f

[(1)2 00w + (2)?01w?] o = 0 (zero-Robin) ,

where tmax > 79 are positive constants.

Now, take condition , where u € {v € H'(w) | e(v) = 0}, and modify it slightly to make it easier

to numerically model by assuming u = (1, v¢-2) and (wvw"f)_%w“ua = (uvu’y)_%uaua to obtain

!
V2 VF/ 3 (w)Y19s dotde® = (Tmax — To)/ Y1y dot
w 0

+ g/ (97%%a + (1) ' THV?) 11y da'da® . (81)

Now, we are ready to conduct some numerical experiments. Our goal in this section is to investi-
gate how variables such as the Gaussian curvature, Young’s modulus, Poisson’s ratio, speed and
the mass density of the membrane, and tractions may affect the value coefficient of friction. Note

that for our experiments we keep the values 1o = 1,1 =1, ro = 1 and g = 9.81 fixed.

To conduct numerical experiments we employ the second-order-accurate finite-difference method in
conjunction with Newton’s method for nonlinear systems as in Section Another issue we must
tackle is the discretisation of the domain. As we are dealing with curvilinear coordinates, there is a
inherit grid dependence. To be precise, it is approximately Ax? < oAxt, V by € {(v2) " t1by | 2t €
[0,1]}, where Az” is a small increment in z# direction. For our purposes we use Az? = -~ and
o = (wg)—lwl\xlzél, where N = 250. Finally, we must define a terminating condition. For this, we
choose to terminate our iterating process once the condition |1 — (vr,,) " vrm 1| < 1078 is satisfied,
where v, is the m!" iterative solution for the coefficient of friction. Note that to numerically model
equation (81), we use the prismoidal formula [136]. Also, as this is a pure-traction problem, the
solution is highly unstable. By construction we have wQIaWTO < 0, and thus, whenever this condition

is violated we enforce the condition w2|awT0 = 0 to keep the solution from diverging out of control.

Now, recall the capstan equation with gravity from Section and the dynamic case from Section
When adapted for our particular problem for the ¢ = 0 and zero-Poisson’s ratio case, the

modified capstan equation has the form

1 V2 1 1— 2 2 1
Tmax = To €XP <27WF> + QE (1 — exp (27TMF>> + 09 (1 n 55 + 1 fzz exp (27TMF)> . (82)
F F

We use this modified capstan equation to calculate the capstan coefficient of friction to compare

our data against. The reader must understand that the extended capstan equation from theorem
is only valid for when both Poisson’s ratio and the Gaussian curvature are both zero, yet we use this
value as a base line to compare Coulomb’s coefficient of friction that we obtain from our belt-friction
model.

Figure is calculated with the values of Tmax = 3, ¢ =0, E = 10%, v = 1, V = 0.01, o = 0.01
and with a grid of 160 x 250 points. Figureshows the axial (i.e. w') and the azimuthal (i.e. w?)

displacements, where width is [ (i.e. the magnitude of ') and ¢ is the contact angle (i.e. 2). The
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Figure 61: Displacement field of the membrane predicted by the belt-friction model.

maximum axial displacement is observed at 22 = 0 with an axial displacement of w' = 1.86 x 1073,
The maximum azimuthal displacement is observed at 2 = 0 with an azimuthal displacement of
w? = 1.96 x 10~%. Coulomb’s coefficient of friction calculated in this case is vr = 0.195. If one
approximate this problem with the modified capstan equation, by assuming ¢ = 0 and v = 0, then

one gets the value ur = 0.195 for the capstan coefficient of friction.
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Figure 62: Grid dependence of the belt-friction model.

Another necessary numerical analysis we must perform is the grid dependence analysis for our
numerical solution. As the reader can see from figure 62, as NN increases, the difference between
the numerical solution V- and N + 1 decreases. For our experiments we found that the azimuthal

grid points and the error share the relation N « Error~ -8

, where Error = |1 —||wn_1][2"|[wn]|e2]-
Note that figureis calculated with the values of Tmax = 2, ¢ =0, E = 10%, v = 1, V' = 0.01 and

47
o = 0.01.

157



03r

0251

0.2r

0.15

Coefficient of Friction

0.1r

= = : Capstan
Coulombs

0.05 . . . . . I
1.2 1.3 1.4 15 1.6 1.7 1.8

or
Figure 63: Coefficient of friction relative to 7 = max/70-

Figureis calculated with the values 67 € {0, 5. =, 5. 55> 55+ o> 350 25> 35 1> ¢ = 0, B = 103,
v =1,V =0.01and ¢ = 0.01. It shows that as the tension ratio increases, the coefficient of friction
also increases. This is intuitive as the maximum applied-tension increases, the coefficient of friction
must increases to maintain a constant speed, and thus, a strong correlation between the tension

ratio, and both capstan and Coulomb’s coefficient of friction.
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Figure 64: Coefficient of friction relative to c.

Now, let us examine what effect varying Gaussian curvature, K = Fy;; K53, has on the coefficient
of friction. Note that K is a function of =, and thus, it varies across the contact surface. Let 2! ~ 0
or z! ~ 1, then, if c ~ 0, then K ~ 0 and, if c ~ 1, then K ~ (1 — ¢)~!. This implies that there exists
a positive correlation between ¢ and K, i.e. as c increases so does K. Thus, we investigate how ¢
related to vp. Figureis calculated with the values 67 = 3, c € {0, &, 2, 3, &, 5 & L & 93,
E=10%v= %, V =0.01 and o = 0.01. Figuresshows that as c increases (i.e. Gaussian cur-
vature increases) coefficient of friction decreases and there exists an optimum value of ¢ where the
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coefficient of friction is a minimum. For our experiments this value is observed at ¢ = %. The former
part of the previous statement is intuitive. To illustrate this consider a membrane being pulled over
a surface with high a Gaussian curvature. The higher curvature leads to a higher normal reaction
force, which in turn results in a higher frictional force and finally a higher maximum applied-tension.
Also, inclusion of a nonzero lateral curvature (note that we are considering a case with two pos-
itive principal curvatures) means that higher maximum applied-tension is required to support the
strains in the lateral planer direction. Thus, for even a relatively small coefficient of friction a higher
maximum applied-tension can be observed. Thus, one expects to see a low coefficient of friction
for a high Gaussian curvature. However, the latter part of the former statement is a surprising
outcome i.e. the existence of an optimum Gaussian curvature where the coefficient of friction a
minimum. Furthermore, we observe that the capstan coefficient of friction is a gross over estimate
of Coulomb’s coefficient of friction and tends to contradicts the correlation for the values ¢ < 1. This

overestimate is a result of Poisson’s ratio, which we observe later.

Another set of numerical experiments that we conduct for is to examine the behaviour of the coeffi-
cient of friction relative to Young’s modulus. For this, we use the values é7 = % c=0,1<E <10,
V= i, V' =0.01 and ¢ = 0.01. From our numerical experiments we find that the coefficient of friction
is constant with the value v = 0.195. This result is intuitive as whatever the value of Young’s mod-
ulus is (given that is not zero or infinite), one rescale the displacement field, w, without affecting
coefficient of friction. This result is also analogous to the capstan equation case as the capstan

equation is also independent of Young’s modulus of the membrane.
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Figure 65: Coefficient of friction relative to v.

Figureis calculated with the values 7 = 2, ¢ =0, E = 10%, v € {0, 55, 2, 5, 56+ 55+ 55> 55> 29+
=}, V. =0.01 and ¢ = 0.01. It shows that as Poisson’s ratio decreases, the coefficient of friction
also decreases. This is intuitive as tension in one direction leads to a tension in the lateral planer
direction due to nonzero Poisson’s ratio, and thus, one requires a larger maximum applied-tension

to overcome friction relative to zero-Poisson’s ratio case, which is a documented phenomenon in
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the literature [96]. Thus, one expects to see coefficient of friction to decrease as Poisson’s ratio
increases. Furthermore, the figure also shows that when Poisson’s ratio is zero, the capstan coeffi-

cient of friction it is an underestimate of Coulomb’s coefficient of friction.
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Figure 66: Coefficient of friction relative to V.

Figure[66]is calculated with the values o7 = 2, ¢ =0, E=10% v =1,V € {0, k5. 25, 5. 15+ o

7 8 9
10° 10 10°

increases, the coefficient of friction also increases. This may seems counter intuitive, but consider

1} and ¢ = 0.01. It shows that as the speed in which the membrane is being pulled

following fact: a centripetal force is required to keep a body on a curved path, and higher the
speed of the body is then higher ( higher in magnitude) the centripetal force is required to keep the
body in the given curved orbit. Thus, for our case a higher speed implies a lower normal reaction
force, which in turn implies a lower frictional force. This means that one requires a lower maximum
applied-tension, and this is also a result implied by the modified capstan equation. Thus, as the

speed in which the membrane is being pulled increases, the coefficient of friction also increases.
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Figure 67: Coefficient of friction relative to p.
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Figureis calculated with the values of 67 = 2, c =0, E=10%, v =1,V =0.01and o € {0, 5 2,
3L 5 S 5 8, 5,1} This shows as the mass density (with respect to the volume) of the
membrane increases, both capstan and Coulomb’s coefficient of friction decreases significantly.
Out of all the numerical experiments this has is the most significant result as for a relatively small
decrease in mass density leads to such an enormous increase in the coefficient of friction, for
both capstan and Coulomb’s. Thus, for a given membrane mass density appears to be the most

significant variable that affects the value of the coefficient of friction.

6.4 Experimental Data: June 2015 Trial

In this section we analyse the data obtained from experiments that we conducted on human sub-
jects based on Cottenden et al. [45], Cottenden et al. [46] and Cottenden et al.’s [48] experimental
methodology. We recruit 10 subjects, 5 males and 5 females, all between the ages of 18 to 60, and
we obtained the approval to do so from the UCL Research Ethics Committee: UCL Ethics Project
ID number 5876/001. Experimentee data is found in table 2]if the reader wishes to reproduce any
results, where BMI is the body mass index, Radius is the radius of the mid upper arm and 4! is a
measure of how flaccid subject’s tissue is. For more comprehensive set of raw data please consult

Dr N. Ovenden of UCL at n.ovenden@ucl.ac.uk.

Subject || Gender | Age (Years) | BMI | Radius (cm) ol
F19 Female 19 21.0 3.98 0.994
F34 Female 34 22.0 4.22 0.991
F40 Female 40 234 3.82 1.01
F53 Female 53 27.3 4.54 1.02
F60 Female 60 22.5 4.46 1.02
M18 Male 18 17.5 3.50 0.98
M23 Male 23 24.7 4.77 1.04
M25 Male 25 22.6 4.22 1.01
M26 Male 26 22.8 4.50 0.988
M54 Male 54 26.2 5.09 1.00

Table 2: Experimentee data 2015.

Our experimental configuration is as follows. We first record subject’s gender, age, height, weight
and the dimension of their upper arm. Then, we place their upper arm horizontally, bicep facing
upwards, on an armrest that is designed for subject’s comfortability during the experiments. The
armrest acts also as a restraint to limit subject’'s movement, and thus, to reduce the chance of
skewed data. Then, we place a fabric (a nonwoven fabric) over their bicep and attach one end to
the tensometer (Dia-Stron MTT170 provided by Dr S. Falloon of UCL). The dimensions of the fab-
ric is 4cmx50cm, and from our measurements, the fabric has an approximate thickness of 0.5mm

and an approximate mass of 0.6g. It is given to us that the fabric is 95% polypropylene and 5%
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cotton, but no further information (Young’s modulus, Poisson’s ratio, manufacturer’s details) is given
to us. Finally, we mark the skin with a 3cmx5cm grid with Icmx1cm grid spacing, 0.5cm away from
either side of the fabric and starting from the highest part (of the horizontal axis) of the arm, then

placing semi-hemispherical markers with a radius of 2mm. See figure [68]for a visual representation.

Figure 68: Experimental configuration on subject F53 (.stl file).

Our experimental methodology is as follows. We attach the free end of the fabric to various masses
that are included in the set {40g, 60g, 80g, 100g, 120g, 140g} and we pull the fabric with a constant
speed of tcms™!. We use the tensometer to record the tension needed to pull the fabric, we use
a static-3D scanner (3dMD Photogrammetric Systen@ provided by Mr C. Ruff of UCLH) to record
the before and after deformation of the upper arm, and we use a video camera to record everything
in real time as well as to record any other phenomena. We repeat experiment for each applied
mass at least twice and take 3D scanning data at least six times per each experiment, recording
two undeformed scans and four deformed scans. Thus, in sum, we obtain a minimum of 120 ten-
someter readings and a minimum of 720 3D scans. Each of the 21, 600 grid-point marker-locations
are located manually by calculating each marker position on the .stl files that is generated by the
3D scanner. Note that most experiments are repeated, in the cases of obvious undesirable events,
to get the most consistent results. Also, a new fabric (same type and dimensions) is used per each
subject for health and safety reasons, and a very specific side of the fabric is chosen to face sub-
jects’ skin as the coefficient of friction between different sides fabric and subjects’ skin may skew

the experimental results.

The justification for why we chosen to conduct the experiments on the upper arm in the vicinity of
the bicep is that the surface has two degrees of approximate symmetry. Also, as the bicep is a
single muscle, one may argue that this area is locally homogeneous and approximately isotropic.

Thus, from a modelling perspective this is a very convenient body part to numerically model.

13http://3dmd.com
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One of the biggest problems we faced with these experiments is the difficulty in obtaining accurate
data. The contributing factors that reduce the reliability of data are: (i) The markers that we use must
to be large enough so that there are visible in the .stl files, which are generated by the 3D scanner,
but this inherently introduces a very large error in the region of 2mmx4mmx4mm, as every time
we select a marker, we cannot guarantee on the exact location on the marker that we are selecting.
This margin of error is relatively high as most marker displacements from the unstrained position is
less than 4mm; (ii) Due to the obscure angle of the 3D scanner some of the markers cannot be iden-
tified on the .stl files. Very often the unidentifiable markers are A1 to A3; (iii) The tensometer uses
Windows 98 operating system to function, and thus, it is often prone to crashes, leading to much
data loss; (iv) Subjects’ inability remain stationary during the course of the experiment have skewed
the data significantly. Note that duration of each experimental run is approximately 3 minutes. Even
with constant breaks no subject is capable of staying perfectly stationary for 3 minutes at a time for
at least 12 times; (v) Stick and slip behaviour. The error introduced by selecting marker positions
can be minimised if we use much larger masses, but with larger masses we often observe stick and
slip behaviour (see section 13.2 of Kikuchi and Oden [102] for more on stick and slip behaviour)
with an approximate frequency of 1Hz. This is huge problem and it is mostly observed in younger
subjects, especially in F19, M18 and M23. In fact, for F19 this phenomenon is observed for the
lowest of masses. The reason why stick and slip phenomenon is a problem is that the 3D scanner
takes an instant scan, i.e. a snapshot like an ordinary camera, and thus, if the snapshot is taken
in the stick period, then the scanner can record the true deformation, but, if the snap shot is taken
during the slip period, then the scanner cannot record the true deformation as the skin of the subject
is relaxed and it is now in between a state of full and zero deformation; (vi) The perspiration of the
subject during the experiment. In the literature, hydration of the skin shown to significantly increase
the coefficient of friction between skin and fabrics [55} [170]. During the course of the experiment
the level of a subject’s perspiration may change and this may significantly skew the data. In our
experiments heavy perspiration is observed in the subjects M23 and M26; (vii) We cannot measure
the physical and elastic properties (Young’s modulus, Poisson’s ratio, internal biological structure
and dimensions) of subject’ upper arm. Thus, we are deprived of vital data that are required for a

three-dimensional numerical model.

Tableshows the tension ratio, 7 = Tmax/7v, for each subject with respect to each applied mass,
where Thax are the tensometer readings, 7, = Mass x g are the weight of the applied mass and
g = 9.81 is the acceleration due to gravity. Note that the tensometer data of F34 for 60g, M25 for
140g and M54 for 40g are corrupted.

Cottenden et al. [45], Cottenden et al. [46] and Cottenden et al.’s [48] experimental methodology
implies that belt-friction modes, capstan equation in particular, can be used to accurately calculate
the coefficient of friction between in-vivo skin and fabrics. However, belt-friction models assume that
the foundation is rigid, and thus, it is now unsuitable to apply a belt-friction model to calculate the
coefficient friction as now the foundation is not rigid, i.e. as subjects’ tissue is elastic. If belt-friction

models are applicable to model coefficient of friction as the authors assert, then we expect to see a
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0T
40g | 60g | 80g | 100g | 120g | 140g

Subject

F19 219 | 1.70 | 1.52 | 1.92 | 1.88 | 1.86
F34 208 | --- | 193] 1.89 | 1.83 | 1.83
F40 199 | 1.96 | 1.92 | 1.89 | 1.88 | 1.79
F53 213|231 | 223 | 215 | 1.84 | 1.70
F60 229 1220|206 | 1.99 | 1.96 | 1.95
M18 199 | 1.90 | 1.88 | 1.84 | 1.68 | 1.76
M23 246 | 2.28 | 224 | 2.19 | 2.33 | 1.99
M25 214 | 1.98 | 1.81 | 1.80 | 1.98
M26 241 | 2.31 | 2.26 | 2.18 | 2.31 | 1.99
M54 cee 1212203 | 1.77 | 1.91 | 1.96

Table 3: Experimental data 2015.
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Figure 69: Tension ratio against applied mass (in grams).

constant relationship between tension ratios and the applied masses. But, if one consult figure [69]
one can see the how the tension ratio vary with the applied mass. In fact, if one calculates the mean
coefficients friction between the fabric and subjects’ skin, a non-constant relationship between the
coefficients of friction and the applied mass is evident (see figure [70). This offers clear evidence
that belt-friction models are not suitable for measuring the coefficient of friction when the foundation
is no longer rigid. Note that the mean values of Coulomb’s coefficient of friction is calculated with
the belt-friction model for £ = 103, v = i and a terminating error of 10~8. Also, mean values cap-
stan coefficient of friction is calculated with the extended capstan equation with Matlab fsolve

function.

Cottenden et al. [45], Cottenden et al. [47] and Karavokyros [100] do acknowledge this problem

and assert that the there exists a ¢y such that Tmax = co + Tpexp(urby), Where ¢q is the inter-
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Figure 71: 67 — (co/To) against Tp.

cept of the linear regression line of Thax on Ty, which the authors define as the offset. Thus, the
authors imply that 67 — (¢o/Tp) is a constant for all Ty as exp(urbfy) is a constant, where 6, is
a fixed contact angle. Now, assuming a linear relationship between Tnax and Ty is possible (lin-
ear in a sense of regression); if one calculates this offset of each subject F19, F34, F40, F53,
F60, M18, M23, M25, M26 and M54 with linear regression, then one respectively gets the val-
ues —0.0290, 0.149, 0.130, 0.432, 0.214, 0.168, 0.219, 0.187, 0.0589, and 0.109 for ¢,. Now, if one plots
ot — (co/Tp) against Ty, then one gets figure As the reader can see that 67 — (¢o/Tp) is not
constant with respect to T, as the authors asserted, i.e. we get 7 — (¢o/Tp) = —0.0174T, + 1.79
with R? = 0.0237, where R? is the coefficient of determination. In fact, logarithmic regression im-
plies that the mean maximum applied-tension is related to the mean minimum applied-tension by
0.396Tmax + 1 = 2.3410g(0.396Tp + 1) + 0.997 with a residual sum of squares of rss = 1.00 x 1073
and a coefficient of determination of R? = 0.997, while authors’ data analysis methodology implies
that Thax = 0.196 + 1.74T; with a higher residual sum of squares of rss = 9.85 x 1073 and a lower

coefficient of determination of R* = 0.995. Furthermore, calculating the coefficient of friction with
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authors’ linear regression method leads to a positive correlation between the coefficient of friction
and the radius of subjects’ upper arm, which is not a desirable result and we explain why this is
so in later analysis. Now, this is direct evidence that one must not use linear regression models to
model friction between fabrics and in-vivo skin. Note that all regression results are calculated with

Regression Tools at Xuru’s Website [214].

The above numerical and regression analysis motivates one to make the following hypothesis:

Hypothesis 4. Consider a rectangular membrane over a rough elastic prism whose un-
strained contact region parameterised by the map (z, f(6),9(0))g. where f(-) and ¢(-) are

C1([00, Omax]) 27-periodic_functions,

z| < oo, and the contact interval [0y, Omax] is chosen such
that g’ f" — f'g"” > 0,V 2% € [0o, Omax]- If Timax is the maximum applied-tension at 0,mq, and Ty
is the minimum applied-tension at 6, then there exists a regression curve Y (-) of the form

elmax + & =Y (eTo + &), such that Y'(€) is positive and invariant with respect to the quantity

ro = <arctan (ff((gzg) _ arctan (%))1 / j’w ((F)? + (g))* do.,

where the normalising constant ¢ is chosen such that ¢ < 1/max(Tna) and the translating

constant £ is chosen such that Y'(£) is not singular. Furthermore, given such a regression
curve Y (-), the coefficient of friction ur has the following relation,
g’(ﬁo)) <9’(9max))>_1 /
= | arctan —arctan | ————+ log (Y ,
pur = (aretan (450 o)) e

and, in particular, i is independent of r.

Given a rectangular membrane with a zero-Poisson’s ratio over a rigid cylinder, in our experimental
configuration the solution for the tension across the membrane takes the form described by equation
(82) (see Section [6.3|for more detail). Thus, the regression curve of Tax 0N Tj can be expressed

as Tmax = Cp + ClTO, Where
V2 1 1— p? 2up 1
= olh— (1 — - Ih r -
Co =0 o ( exp<27T/iF>> +o0 9(1+M% + 1+M% exp 27WF ,

1
C1 = eXp <27T,UF) ,

and where [ is the width and & is the thickness of the membrane, and thus, pr = 27~ !log(cy).

However, if one consider a membrane of nonzero Poisson’s ratio or an elastic prism, then this lin-
ear regression line of Tnax on Ty will no longer hold. Thus, hypothesis 4] is a simple extension of
this observation with the use of theorem |1} Note that Doonmez and Marmarali [59] used multiple
regression analysis to study the coefficient of friction, and thus, further justifying the necessity for
hypothesis [4]

Due to the finite deformation of both the membrane and the foundation under stress we predict that
the regression curve has the form Y (eTo + 1) = a + b(¢Tp + 1) + clog(eTp + 1), where a, b and ¢ are
constants to be determined by a given experiment and the log(-) term is implied by the true strain
(for more on true strain please consult Rees [167]). Thus, in our experimental configuration we

have ur = 271 log(b + ¢). Unfortunately, our experimental data is not comprehensive enough and
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our understanding in regression analysis is not extensive enough to test this hypothesis or more

generally to test hypothesis[4]

As we cannot calculate the coefficient of friction with a good degree of accuracy, let us use the
tension ratio, ¢, to find some useful information regarding the frictional interaction between in-vivo
skin and fabrics. Note that figure [63]from our numerical analysis implies that there exists a strong
positive correlation between the tension ratio and the coefficient of friction. Thus, the tension ratio
from our experiments maybe used to infer the nature of the coefficient of friction between subjects’

skin and the fabric.
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Figure 72: Coefficient of fiction against the age (in years).

Figure [72| shows the tension ratio against subjects’ age, where the linear regression line is 67 =
0.00117 x Age + 1.96 and the age is in years (R® = 0.0512). As the reader can see there is no ob-
vious relationship between the age of the subject and the tension ratio. In fact, the highest tension
ratios are observed in M23 and M26 (two of the youngest subjects) who were excessively perspiring

during the course of the experiments.

Figure |73| shows the tension ratio against the body mass index (BMI), where the linear regression
line is 67 = 0.0169 x BMI + 1.61 (R® = 0.0961). Note that the BMI is calculated with the use of the
NHS BMI calculator [199]. As the reader can see that there is a vague positive correlation between
the BMI and the tension ratio. However, this does neither imply nor does not imply that those who
are with a higher BMI have a greater risk of skin abrasion, i.e correlation does not imply causation
[6]. The reason we observe this correlation is because that those who have a higher BMI tend to
have a greater fat content, i.e. higher volume of flaccid tissue. Thus, during the experiments a
higher tension needs to be applied to the fabric as the as a portion of the tension is expended on
deforming the flaccid tissue of the subject. If this higher tension is fed in to a belt-friction model, then
what one gets in return is a higher coefficient of friction. This is a perfect example of garbage in,

garbage out [177], where a logical numerical model outputting nonsensical gibberish due to flawed
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Figure 73: Coefficient of fiction against the BMI.
input data.

To see if this is indeed the case let us examine how flaccid subjects’ tissue are and what effect the
flaccidity has on the tension ratio, and thus, on the coefficient of friction. Recall figure From
experiments we found that the marker that is most prone to displacement is A4 and the least prone
to displacement is E6. Thus, if we define relative distance ratio 4! to be the Euclidean distance
between the point A4 and E6 after deformation divided by the distance between the point A4 and
E6 before deformation, i.e.

51— 2109,...,1409 ||deformed(A4 — EB)||
Y 10g.....140g |lundeformed(A4 — E6)|| ’

(see table[2), then this be a good quantity to measure how flaccid subject’s tissue is (inspired by the

spring modules).

The reasoning for defining 4/ as above is as follows: (i) it utilises the marker that is most prone
to displacement, and thus, reducing the error introduced by selecting position of the marker as we
discussed previously, (ii) the subjects tend to move during the experiments, and thus, the results
can be significantly skewed with respect to a fixed point, yet the relative distance between the points
A4 and E6 due to rigid transformations should remain fairly constant, (iii) the 3D scanner chooses
a reference point arbitrarily after each calibration, but the relative distance between two points in
space always remain constant, and (iv) 4/ is a ratio, and thus, it is not dependent on subjects’ phys-

ical dimensions.

Figure[74]shows the tension ratio against 4, where the linear regression line is 67 = 4.39 x 6/ — 2.41
(R* = 0.282). As the reader can see that there is a positive correlation between 6! and the tension
ratio. This further supports our hypothesis that more flaccid tissue leads to the appearance of a
higher coefficient of friction as a portion of the maximum applied-tension is expended on deforming

subject’s tissue.
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Figure 75: Coefficient of fiction against the radius of the upper arm (in cm).

Figure [75] shows the tension ratio against the radius of the mid part of the upper arm, where the
linear regression line is 67 = 0.205 x Radius + 1.12 and the radius is in centimetres (R* = 0.412).
Note that the Radius is calculated by measuring the girth around the bicep when the arm is held
horizontally, but relaxed, while the palm is facing up, and then then dividing to measurement by
2m. As the reader can see that see there is a strong positive correlation between the radius and
the tension ratio. However, this does neither imply nor does not imply that those who have larger
biceps have a greater risk of skin abrasion. The reason why we observe this correlation is exactly
same as the cases before. The larger the radius is, the larger the volume of tissue that needs to be
deformed, and thus, a larger maximum applied-tension. This, in turn, leads to a larger coefficient of

friction predicted by belt-friction models.

From figures and [74} one can clearly see that the very presence of an elastic foundation
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leads to a nonlinear relationship between T, and Thax, Which in turn can significantly skew ones

experimental results if one uses a belt-friction model to calculate the coefficient of friction.

6.4.1 Remark

A possible technique that maybe used to measure the coefficient of friction of human skin is by a
method proposed by Asserin et al. [9]. The authors construct a device that is capable of mea-
suring the coefficient of friction between a reference material and in-vivo human skin. They state
that the device is accurate enough to discern the arithmetic mean of roughness between the values
0.4pm=50pum, where pm is the units for micrometers. The in-vivo experiments are conducted on
three human subjects. They is all female with each having the ages 20, 42 and 50. The authors
calculate the coefficient of friction of the 42 year old female’s lower arm which is 0.7, but the coeffi-
cient of friction with respect to what reference material is not specified. With their device the authors

hope to investigate the change in texture of the skin due to the application of cosmetic products.

6.5 Shell-Membranes Supported by Elastic Foundations with Static

Friction

In this section we derive a shell-membrane model to describe the behaviour of overlying membranes
on elastic foundations subjected to static friction. Recall our shell model with friction from chapter4]
but now assume that the thickness of the shell is so thin and the bending moments are so small

that the overlying body can further be approximated by a shell-membrane. Thus, we obtain:

Corollary 5. Let 2 C R? be a connected open bounded domain that satisfies the segment
condition with a uniform-C'(R3;R?) boundary 99 such that w,dQq C 0f, where w N Iy = @
with meas(0Q0; R?) > 0, and let w C R? be a connected open bounded plane that satisfies
the segment condition with a uniform-C*(R?;R) boundary dw. Let X € C*(Q; E*) be a diffeo-
morphism and be o € C?(w; E®) be injective an immersion. Let f € L*(Q), f, € L*(w) and
7o € L?(dw). Then there exists a unique field u € V4 (w,Q) such that u is the solution to the
minimisation problem
J(u) = min J(v),

where

Vi(w,Q) ={ve H(Q) | v|, € H (w)x H (w)x L*(w),v|s0, = 0, [2vp0® + (vav"‘)%]|w <0ae.},

s = [ [GAM BBt - 1] a0

1 .
w 16]

w
h is the thickness of the shell-membrane and vg is the coefficient of friction between the

Jfoundation and the shell-membrane.

Proof. Follows from theorem [4| for the h?p] (u)pS(u) < €1 (u)e(u) case and the results on

shell-membranes from chapters 4 and 5 of Ciarlet [38]. O
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6.6 Numerical Analysis

To conduct numerical experiments assume a shell-membrane with a thickness h, supported by
an elastic foundation, where the unstrained configuration of the foundation is an annular cylin-
drical which is characterised by the diffeomorphism X(z,6,r) = (z,7sin(6), rcos(f))g, where
(21, 2%, 23%) = (2,0,r), v € (—L,L), € (—m,m] and r € (ap,a), and assume that the contact
region is defined by = € (—¢,¢), 6 € (—ix,0), where 0 < ¢ < L. Let the sufficiently smooth
field uw = (u*(z,0,r),u*(z,0,r),u3(z,0,r)) be the displacement field of the foundation. With some

calculations one finds that the metric tensor is g = diag(1,r2, 1) and the covariant derivatives are

Vlul = 81u1 5 V1U2 == (91U2 ; V1u3 = (91u3 5
Voul = doul Vou? = dou? +r~tu? | Vou? = dou® — ru? |
Vsul = dsul | Vsu? = 0gu® 4+ r~1u? | Vsu? = 9gu .

With further calculations, one can express the governing equations of the foundation as

The boundary of the foundation can be decomposed into sub-boundaries as

00 = U8 U,
w={a} x (—5m0) x (~£,0)

90 = {{ao} x (=m, 7| x [-L, L]} U{(ao, a] x (==, 7] x {{-L} U{L}}},
00 = {{a} x (—m, 7w x (=L, L)} \w .

Thus, one can express the boundary conditions of the foundation as

u|sq, = 0 (zero-Dirichlet) ,
[05u" + 01u*]|aq, = 0 (zero-Robin) ,
[r?05u® + 02u®]|9q, = 0 (zero-Robin)
AO1u' + 0ou® + r~'u?) + (A + 212)95u®] o, = 0 (zero-Robin) .
Let ul, = (ul(z,0,a),u*(z,0,a),u®(x,0,a)) be the displacement field of the shell-membrane. With

some calculations, one finds that the first fundamental form tensor is K = diag(1,q?) and the

covariant derivatives are

1 1 2 2
Vlu :8111, 5 Vlu :61u 5

Vgul = 82u1 y V2U2 = 82u2 .

With further calculations (see Section and considering the case h?p (u)p% (u) < €], (u)ed (u)),

one can express the governing equations of the shell-membrane as:
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If [2vpud + (ulul + r2u?u?)?]|, < 0, then

1 1
(A= w)d' (Vau®) + pAu’ + —(A = 2)0"w? = = Ta(Ty (w)) = 0,
1 1
(A= w)0*(Vau®) + pAu? + —A0*u’ — - Te(T5 (u)) = 0,
1
(A —2u)01u’ + A (82u2 + a”3> + %Tr(T;;”’(u)) =0,

where A = 2 \p(\ + 2p)

If [2vpud + (ulu! + r2uu?)z]|, = 0, then

A—2
(A — 1) (Vau®) + pAu' — (A =2p)
2avp

1

Te(T2 (w)) — (A_M)u1 _ A+p)

O (ulul - a2u2u?) s —
(W' +a%u) 4av 4hv?,

1
h
1 U

2vp (ulul 4 a2uu?)z

((A —2p)onut + Adou® + — (A(Orut + dou®) + (A + 2ﬁ)83u3)> =0,

a
h

A 1 A—p) 5 (A+p)
A — )02 (Vyu® 2 _ 201,01, 22 2\3 1 2 _ 2 _ 2
(A — )0 (Vou®) + pAu 2a1/Fa (v u +a“u“u®) hTr(T3(u)) T2 u T

1 u?

2vr (ulul +a2u?u?)z

((A —2)dut + Adyu? + % (MNOru! + du2) + (A + 2ﬂ)53u3)) =0.
The boundary of the shell-membrane can be decomposed into sub-boundaries as

Ow = dwr, U Owry,, U 0wy
Bum, = [~4,0] x {37}
Ot = [~£,6) x {0}
Qg = {{~HU 1} U (~3m,0)

Thus, one can express the boundary conditions of the shell-membranes as

[(A = 2p)01u' + A(D2u® + a™'u?)]|owy, = 70 (traction)
[(A = 2p)01u! + A(O2u® + a™ ' u?)]|ows,,, = Tmax (traction) ,
[Ad1u" + (A = 20)(02u® + a~'u?)]|ow, = 0 (zero-Robin) ,

[O2u" + a®81u?] |, = 0 (zero-Robin) .

To conduct numerical experiments we employ the second-order-accurate finite-difference method in
conjunction with Newton’s method for nonlinear systems as in Section Another issue we must
tackle is the discretisation of the domain. As we are dealing with curvilinear coordinates, there is
a inherit grid dependence. To be precise, it is approximately rAz? < Az! and rAz? < Az?, for all
ap < r < a, where Az’ is a small increment in 27 direction. For our purposes we use Az? = A~
and r = a, where N = 250. Finally, we must define a terminating condition. For this we choose to

terminate our iterating process given that the condition |1 — ||t || 2| |tm-1]|e2| < 10710 is satisfied.

We model a stiff shell-membrane on a relatively flaccid foundation with a large coefficient of friction.

To do so, we keep the values vp =1, h =0.001,a=1,¢= 7, L = ,v=0,1=1

1
4!
and max = 2 fixed for all experiments.
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Figure 76: Displacement field in the outer surface of the foundation.

Figure is calculated with the values of ag = 1, E = 10 and with a grid of 44 x 252 points. Figure
shows the azimuthal (i.e. «?) and the radial (i.e. u3) displacements. The maximum azimuthal dis-
placement is observed at (£ 1,0, 1) with an azimuthal displacement of u* = 8.53 x 10~°. The max-
imum radial displacement is observed at (0,0, 1) with a radial displacement of u* = —2.68 x 107°.
Also, (not displayed) the maximum axial displacements are observed at ( + 1,0, 1) with respective
axial displacements of u! = 43.69 x 10~5. This maximum in the displacement field is observed on

the boundary with the highest traction, i.e. on the boundary with 72« acting on it.
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Figure 77: Grid dependence of the shell-membrane model.

Another numerical analysis we must perform is the grid dependence analysis for the numerical so-
lution. As the reader can see from figure[77} as N increases, the difference between the numerical
solution N and N + 1 initially decreases, but after N = 150 the error between the solutions inexpli-
cably increases, where Error = |1 — [[un_1||,2'[|un/||¢z]. Itis unclear why this is the case. Perhaps

it is due to the nonlinear nature of the problem. But for all of our experiments we use N = 250. Note
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that figureis calculated with the values of ag = 1 and E = 10.

Now, to investigate the displacement and the shear at the contact region we calculate the following:

=

Displacement = (Z{Arl’Am2}’LLiUi|w) ;

(NI

Shear = (E{Axlez}Ta?’ (u)T5 (u)]w)

4
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Figure 78: Displacement and the shear at the contact region for 1/6h = (a — ag)/h.

Figure [78] shows the total displacement and the total shear of the outer boundary of the founda-
tion for ag. For these experiments we assert that ag € {5, 55, o5, o5+ o5 39+ 50 32+ 50, 33, 52} and
E = 10. From figure one can see that as the thickness of the foundation increases, both the
total displacement of the body and the shearing stress on the body increases. The increase in dis-
placement as the thickness of the foundation increases is a logical result as the thickness increases,
more matter is available to be displaced. Also, the increase in shear stress as the thickness of the
foundation increases is a logical result as the thickness increases, more force is expended on the

foundation to deform the ever increasing volume.

Figure |79 shows the total displacement and the total shear of the outer boundary of the foundation
for E. For these experiments we assert that ag = i and E = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
From figure [/9) one can see that as Young’s modulus of the foundation increases, the shear stress
experienced on the body increases, but the total displacement of the body decreases. Only the
decrease in displacement as Young’s modulus of the foundation increases is logical, as Young’s
modulus increases, one needs to increase the amount of force applied to achieve the same amount
of displacement. Thus, higher Young’s modulus results in a lower displacement. However, the

change in shear profile eludes a valid physical interpretation.

From our experimental results, we make the following predictions. Given a shell-membrane sup-
ported by an elastic foundation subjected to static friction, then: A-(i) as the thickness of the elastic

body increases, the displacement of the body increases, A-(ii) as the thickness of the elastic body
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Figure 79: Displacement and the shear at the contact region for 1/0F = E/E.

increases, the shear stress acting on the body increases, A-(iii) as Young’s modulus of the elastic
body increases, the displacement of the body decreases, and A-(iv) as Young’s modulus of the

elastic body increases, the shear stress acting on the body increases.

6.7 Experimental Data: February 2016 Trial

In this section we analyse the data obtained from further experiments conducted on human sub-
jects. We keep the same experimental setup as in Section but with minor modifications, and
with the help from the numerical analysis from Section [6.6] we attempt to investigate the behaviour

of human tissue due to movement of fabrics.

Subject o S| a | PoPEme
40g 80g | 120g | 160g | 200g
F34 1.10 | 1.11 1.02 | 0.969 | 0.765 4.22 0.269 0.679
F35 0.975 | 1.03 e 1.75 1.28 4.30 0.268 0.664
F53 1.28 | 1.56 | 1.38 | 1.04 | 1.66 4.38 0.275 1.02
F59 0.975 | 1.25 1.10 | 1.30 | 1.13 4.14 0.269 0.797
F60 1.73 | 1.29 | 0.858 | 1.18 1.50 4.34 0.281 1.04
M18 0.650 | --- 1.31 | 0.819 | 0.940 3.58 0.269 0.652
M23 1.20 | 0975 | 1.22 | 0.963 | 1.14 4.46 0.269 0.641
M26 2.15 | 0.775 | 2.08 | 1.29 | 1.29 4.50 0.266 0.731

Table 4: Experimentee and experimental data 2016.

For this trial we recruit 8 participants, 3 males and 5 females, all are between the ages of 18 to
60. Experimental data is found in the table [4] if the reader wishes to reproduce ant results. Note

that 67 = Thax/T0 is the tension ratio, where T, = mass x g and g = 9.81 is the acceleration due
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to gravity, and Radius is the radius of the mid part of the upper arm. Unfortunately F35-120g and

M18-80g data are unavailable due to corrupt files.

As we are attempting to investigate the deformation of tissue, we use greater masses than the 2015

trial. Also, now with the software 3dMDvultus we can select points directly on a .tsb file instead of

using .stl files. Thus, unlike in Section [6.4] we omitted the use of 3D markers that is responsible for

producing significant errors in the displacements.

Figure 80: Experimental configuration on subject F53 (.tsb file).

Figure [80 shows a .tsb figure of the subject F53 unstrained. It appears that often two markers are

occupying the same space. This is a result of two .png files inadequately overlapping, which is the

case for every scan. This problem is inherited by 3dMDvultus and we remedy this by taking the

mean value, of what appears to be two different markers, as the true marker location.

z-axis (mm)
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100 80 60 20
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Figure 81: Marker displacement on F53 for 200g.
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Figure [81] shows graphical representation of the displacement of the markers of F53 for the 200g
case. The circles show the unstrained configuration markers prior to the tensometer run and the tips
of the arrows show the stained configuration of the markers during the tensometer run. Clearly, we
omit the markers A05,...,A08, ..., G08 as they are hidden beneath the fabric. Unfortunately, due
to the movement of subjects during the experiments it is unclear to conclusively say that the final
configuration of the markers is a result of the experiments or as a result of subject's movements,
and this is the case with all the subjects. Also, we are unable to replicate the deformation in Section
[6.6] as our models assume linear elasticity, and thus, to model finite deformation we must consider
nonlinear elasticity. However, even if we did numerically model finite strains, we are still unable
to model the experimental deformations due to the fact that our numerical models assume static
friction, but our experiments are conducted for the dynamic friction case. Despite these difficulties,

some interesting results can be expected from the data, which are discussed below.

As heavier hanging masses lead to larger deformations, and thus, we mainly consider the case 200g
for the following numerical analysis. During our experiments we saw that the only legible markers
that experience the largest displacements are the markers A04, A09, ..., G09. Thus, we restrict
our attention to these markers, with using the markers A03, A10, ..., G10 as reference points. Note
that in rare occasions the markers A04, ... G04 become hidden due to shifting of the fabric. For
these cases we restrict our attention to the markers A03, A08, ..., G08 and A02, A09, ..., G09.

As described in Section relative displacements are assumed to be independent to the move-

ment of the subject. Thus, we calculate the relative displacements by following equation

Displacement = im |deformed(A04 — A03)||? — ||undeformed(A04 — A03)||?)

1
2

+ (||deformed(G10 — G09)||* — ||undeformed(G10 — G09)||*)|

As we require some elastic property of subjects’ tissue, we calculate 4! by

5 (_|ideformed(A04 — A03)|> + .- + ||deformed(G10 — GO)||? 3
~ \|/lundeformed(A04 — A03)||2 + - - - + ||lundeformed(G10 — G09) |2 ’

to measure how flaccidity of subject’s tissue. We further assume that 61 ~ §E. See table 4] for all

the calculated values of relative displacements and dl.

Figure [82] shows the relative displacement and the tension ratio, §7, for 200g with respect to varying
radius of the mid part of the upper arm. It clearly shows that as the radius increases, so is the
maximum applied-tension. We encountered and investigated this phenomenon in Section and
predicted it in Section Furthermore, this correlation holds for all masses, i.e. for all 7, and
thus, further validating our prediction from Section i.e. A-(ii). A vague correlation can be visible
for the relative displacement and the radius, and thus, our prediction regarding radius of the body

and the displacement from Section[6.6] i.e. A-(i), maybe justified.
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Figure 83: Displacement and tension ratio for varying 4l.

Figure [83| shows the relative displacement and the tension ratio, 47, for 200g with respect to varying
1/41. It clearly shows that as subject’s tissue become less flaccid, the magnitude of the tissue defor-
mation becomes less pronounced, i.e. as subject’s tissue becomes stiffer, it gets harder to deform.
We encountered and investigated this phenomenon in Section and predicted it in Section
Furthermore, this is the strongest correlation (i.e. with the highest correlation coefficient) that we
observed, and thus, further validating our prediction from Section i.e. A-(iii). We also observe
a weak positive correlation between the stiffness of subject’s tissue (i.e. 1/6l) and the tension ra-
tio. This correlation is logical as stiffer the foundation gets, we expect less force to get transfered
from the membrane in to the foundation (visualise the difference between membrane on an elastic
foundation and membrane on a rigid foundation). Furthermore, this effect is previously observed
in Section [6.4] (see figure [74). Unfortunately, this correlation contradicts what is predicted by our
numerical modelling from Section i.e. figure [79right, and thus, our prediction regarding the

foundation stiffness and the shear, i.e. A-(iv), cannot be corroborated.
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6.7.1 Remark

A possible technique that maybe used to measure the elastic properties of subject’s tissue, to be
use in our numerical models, is the shearwave dispersion ultrasound vibrometry (SDUV). This is
an ultrasound based method that is used in measuring the shear elasticity and viscosity in various
types of soft tissues with the use of dispersion of shear wave velocities, which arise from the inherent
viscoelastic nature of soft tissue. Urban et al. [202] use SDUV in both ex-vivo (exorcised muscle
samples of porcine and bovine) and in-vivo (a liver and a heart of a porcine) tissues. The authors
state that SDUV gave high temporal and spatial resolution material property measurements of soft
tissue that can be integrated with B-mode imaging (medical ultrasound that displays the acoustic
impedance of a two-dimensional cross-section of tissue) to provide a new tool for clinicians to use

for diagnosis and monitoring of therapies.

6.8 Conclusions

In this chapter we investigated aspects of mathematically modelling skin damage due to friction. In
Section[6.2 we derived a belt-friction model, for a true-membrane over a non-hyperbolic rigid obsta-
cle with a positive mean-curvature, with the use of Kikuchi and Oden’s [102] model for Coulombs
law of static friction for the slip case. This belt-friction model is derived with a very hypothetical
approach. Thus, we are unable to conduct finer analysis, including the existence of solutions, due
to the fact that it is not possible to express the governing equations in a variational form. Therefore,
we remind the reader that what we derived is not a mathematical theory. By conducting numerical
experiments, in Section 6.3, we found that (given that we keep all other variables fixed): (i) there
exists a strong positive correlation between the maximum applied-tension and the coefficient of
friction, (ii) there exists an initial negative correlation between the Gaussian curvature of the rigid
foundation and the coefficient of friction, and there exists an optimum Gaussian curvature where the
coefficient of friction is a minimum, (iii) there exists a negative correlation between Poisson’s ratio
of the membrane and the coefficient of friction, (iv) there exists a negative correlation between the
speed in which the membrane is being pulled and the coefficient of friction, (v) there exists a posi-
tive correlation between the mass density of the membrane and the coefficient of friction, where the
mass density of the membrane is responsible for significantly increasing the coefficient of friction
relative to other variables, and (vi) the coefficient of friction is not affected by Young’s modulus of the
membrane, which coincide with the capstan equation as it is also independent of Young’s modulus
of the membrane, given that Young’s modulus is neither zero nor infinite. All the results we found
are intuitive, but the existence of an optimum Gaussian curvature where the coefficient of friction is

a minimum is a surprising result.

In Section [6.4] with experiments conducted on human subjects and with elementary regression
analysis, we show that it is unwise to use belt-friction models to calculate the friction between
in-vivo skin and fabrics as the existence of an elastic foundation can significantly influence one’s
experimental results. We found that, if one uses a belt-friction model to calculate the coefficient of

friction between in-vivo skin and fabrics, then there exists a weak, but a positive correlation between
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the tension ratio and the following: body mass index and flaccidity of subject’s tissue. Also, there
exists a very strong positive correlation between the tension ratio and radius of the mid part of the
upper arm. Thus, if one uses a belt-fiction model to calculate the coefficient of friction, then one
gets a positive correlations between the coefficient of friction and: the body mass index, flaccidity of
subject’s tissue and the radius of subject’s upper arm. These results may or may not mean that of
those with a higher body mass index or very flaccid tissue or larger biceps are more susceptible to
skin abrasion. This correlation is simply due to the fact that belt-friction models (capstan equation
or otherwise) assume that the foundation is rigid, and thus, a greater proportionality between the
magnitude of the coefficient of friction and the magnitude of the tension ratio. In our experiments
some of the tension is expended on deforming subjects’ tissue, and thus, making the magnitude of

the tension ratio much greater, which in turn leads to the illusion of a higher coefficient of friction.

In Section [6.5] we derived a model for an overlying shell-membrane supported by an elastic foun-
dation subjected to static friction. By conducting numerical experiments, in Section we found
that: (i) as the thickness of the elastic body increases, the displacement of the body increases, (ii)
as the thickness of the elastic body increases, the shear stress acting on the body increases, (iii) as
Young’s modulus of the elastic body increases, the displacement of the body decreases, and (iv) as
Young’s modulus of the elastic body increases, the shear stress acting on the body increases (which
defies a realistic physical interpretation). These results imply that for thick rigid shell-membranes
we can expect to see a lower shear generation on the contact region between the shell and the

foundation.

In Section|6.7|we attempted to use our shell-membrane model to process experimental data that we
obtained from human subjects in an attempt to investigate the deformation of the human tissue due
to movement of fabrics. We discovered that there exists a positive correlation between: B-(i) the
displacement of subject’s tissue and the radius of subject’s arm, B-(ii) the tension ratio and radius
of subject’s arm, B-(iii) the displacement of the subject’s tissue and the flaccidity of subject’s tissue,
and B-(iv) the tension ratio and the flaccidity of subject’s tissue. Observations B-(i), B-(ii) and B-(iii)
are all predicted in Section[6.5]and previously observed in Section Note that the result B-(iv) is
also previously observed in the experiments from Section[6.4] it is also very intuitive. However, this

effect could not be predicted by our numerical modellings from Section[6.5

Unfortunately, in Section we failed to accurately model the problem as our numerical models
assume static friction and infinitesimal deformations, while the experiments are conducted for dy-
namic friction and finite deformation settings. Fortunately, we laid the groundwork for modelling the
above problem with some mathematical rigour and for further discussions on Signorini’s problem,

nonlinear elasticity and dynamic pure-traction cases please consult chapter 5
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7 Conclusions

In this thesis we presented a general theory for static linearly elastic isotropic shells supported by
static linearly elastic isotropic foundations, for both the bonded and frictionally coupled cases in

curvilinear coordinates.

We began in chapter [T where we introduced the critical definitions, the fundamental theorems and
the most notable applications relating to the study of shell and membrane theory, and contact con-
ditions governing elastic bodies, in particular, friction. There, we critically analysed the existing liter-
ature on the study of thin objects such as films, plates, membranes and shells, and we highlighted
their limitations, flaws and given correct formulations when possible. In particular, we meticulously
documented the erroneous mathematical work of Howell et al. [84] (see Section[1.4), Cottenden
et al. [48] (see Section [1.8), Efrati et al. [60] (see Section and Baldelli and Bourdin [16] (see
Section[1.10). The flaws of the given authors’ work are revealed by a combination of correct mathe-
matical proofs and or counterexamples. Furthermore, we offered corrections to their work whenever

possible, again with meticulous detail.

In chapter[2lwe examined the behaviour of membranes of zero-Poisson’s ratio (or strings) supported
by rigid foundations of positive mean-curvature and zero-Gaussian curvature, where the contact re-
gion is governed by the common friction-law. To be more precise, we extended the capstan equation

to general geometries and gave closed-form solutions for all the cases.

Then, in Section we extended Kikuchi and Oden’s [102] model for Coulomb’s law of static
friction to curvilinear coordinates. There, we conducted numerical experiments to see how close
the modified Kikuchi and Oden’s model resembles the modified capstan equation. Our numerical
results imply that the capstan coefficient of friction is an underestimate of Coulomb’s coefficient of
friction, i.e. ur < vp. Also, for a fixed coefficient of friction, as the critical parametric-latitude of the
contact region increases, as the thickness of the body decreases or as Poisson’s ratio of the body
increases, one requires a larger force to debond the body. In addition, Young’s modulus of the body

does not affect the governing equation at the contact region.

The work presented in chapter [2] has real life applications in cable drive devices, particularly in the

field of robotics. Please consult Section [1.6] for more detail.

In chapter [3| we begin the study of shells that are supported by elastic foundations. To begin, we
considered the case where the shell is bonded to the foundation. We derived the equations for the
overlying shell with the mathematical techniques for Koiter’s linear shell theory and linear elasticity
theory in curvilinear coordinates put forward by Ciarlet [38], and a technique that is used in the
derivation of surface Cauchy-Bourne model [89]. Then, we treated the overlying bonded shell as
a boundary form of the elastic foundation, which is analogous to the work of Necas et al. [144],

and we used the mathematical techniques put forward by Ciarlet [38], and Badiale and Serra [13]
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to mathematically, and thus, conclusively, prove the existence and the uniqueness of solutions for

the proposed model. Thus, concluding that what we derived is a mathematical theory.

To check the physical validity of our work we extended Baldelli and Bourdin’s [16] model for stiff
films on elastic foundations to curvilinear coordinates via asymptotic analysis. Then, in Section
we numerically modelled the displacement field at the contact region with a bonded two-body
elastic problem and compared the solution against our bonded shell model and extend Baldelli and
Bourdin’s model, for a set of variable which Baldelli and Bourdin’s [16] model is mostly accurate for.
Numerical results show that the error between the bonded two-body solution and extend Baldelli
and Bourdin’s model is always several magnitudes greater than the error between the bonded two-
body solution and our bonded shell solution, and this is the case for all the input variables. This
implies that our shell model is far superior model in comparison when approximating contact region

of thin bodies that are bonded to elastic foundations.

To conclude our numerical analysis for the bonded case, in Section we modelled the displace-
ment field of the foundation of the bonded two-body elastic problem and compared the solutions
against our bonded shell solutions. Our analysis showed that our bonded shell on an elastic foun-
dation model can approximate two-body elastic model’s foundation with a significant degree of
accuracy given that Young’s modulus of the shell is significantly higher than Young’s modulus of the
foundation. Now, this result coincides with what is documented in the literature [4]. We also observe
other factors can equally affect the accuracy of our bonded shell model, such as Poisson’s ratio and
the thickness of the shell, and the critical parametric-latitude of the contact region. However, one
cannot arbitrarily increase or decrease elastic and geometrical properties (e.g. cannot arbitrarily in-
crease Young’s modulus of the shell in the hope of gaining accuracy), as we often observe optimal

values for elastic and geometric properties where the error is a minimum.

Chapter [3| is the strongest chapter of the thesis as we have a definitive model (classical three-
dimensional elasticity equations) and a relatively pre-existing model (extended Baldelli and Bour-
din’'s model) to compare our bonded shell model against to determined the validity of our work.
Also, these types of models have a wide range of applications, particularly in the field of flexible and

stretchable electronics (see Section [1.7), and they may possibly be applied to model gyrification
(see Section[3.8.1).

In chapter [4] we concluded our study on shells that are supported by elastic foundations by assert-
ing that the contact region is governed by a displacement-based friction condition that is analogous
to Coulomb’s law of static friction. We treated this displacement-based frictional condition as a
constraint, which is analogous to the work of Kinderlehrer and Stampacchia [107], and with the
mathematical techniques put forward by Evans [63], and Kinderlehrer and Stampacchia [107], we
mathematically proved the existence and the uniqueness of solutions, and thus, concluding that

what we derived a mathematical theory.
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Then, in Section we extended Kikuchi and Oden’s model for Coulomb’s law of static friction in
the curvilinear space that we originally derived in Section [2.6]to model a two-body contact problem,
i.e. an overlying elastic body on an elastic foundation subjected to Coulomb’s law of static friction
in curvilinear coordinates. We used extended Kikuchi and Oden’s model to numerically simulate
an overlying thin, but still three-dimensional body on an elastic foundation, i.e. two-body elastic
problem with friction, and compared it to our shell model with friction to see how close the solutions
are. The numerical analysis shows that, if the shell is thick (within reasons), shell is very stiff, shell
is close to incompressible, the contact region has a very high coefficient of friction or the contact
region has a low critical parametric-latitude, then the displacement of the foundation predicted by

both models are in better agreement.

Unlike in Chapter [3] in Chapter [4|we do not have a definitive model to compare our model against,
i.e. there exists no definitive mathematical theory that describes the behaviour between two bodies
that are in contact with friction. Thus, all we do to further this section is analysing how the solutions
obtained by each modelling approach vary over the parameter space. As a result of this we cannot
make an assertion on how physically valid each model is. For example, in Section |2.6|we saw that
first modified Kikuchi and Oden’s model for Coulomb’s law of static friction behave slightly differently
to the capstan equation under certain conditions, and, yet these are two models that supposedly
model the same physical phenomena with common roots stretching back to Amontons’ laws of fric-

tion.

In chapter [5| we presented few interesting areas where the question of the existence of solutions
and the physical validity are still remaining unsolved. There, we described a fundamental issue con-
cerning the well-posedness of our overlying shell model. Then, we meticulously presented a way
of extending the regularity of the weak solutions of our work, a way to include Signorini’s problem,
a way to extend the problem to either the semi-linear case or to the nonlinear case or both, and an
approach to extend the problem to model the dynamic case. The work in this section may seems
speculative, but the reader must understand that we gone to great lengths to present the most math-

ematically logical formulations and to compile all the necessary publications to justify our assertions.

In chapter [6] we studied several methods to mathematically model skin abrasion. With our belt-
friction model, shell-membranes on elastic foundations with friction model and experiments con-
ducted on human subjects, we found that the stress that is expended on deforming the elastic
foundation is positively correlated with the thickness and the flaccidity of the elastic foundation.
With numerical and regression analysis, we show that the effects due mechanical and geometrical
properties, most notably the thickness of the elastic foundation and the mass density of the overly-
ing membrane, can significantly affect the results of experiments that are conducted on in-vivo skin,

in particular, if one’s goal is to measure the coefficient of friction.

Thus, we conclude our mathematical study of overlying shells on elastic foundations.
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