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Interplay between past market 
correlation structure changes and 
future volatility outbursts
Nicoló Musmeci1, Tomaso Aste2,3 & T.  Di Matteo1,2

We report significant relations between past changes in the market correlation structure and future 
changes in the market volatility. This relation is made evident by using a measure of “correlation 
structure persistence” on correlation-based information filtering networks that quantifies the rate of 
change of the market dependence structure. We also measured changes in the correlation structure 
by means of a “metacorrelation” that measures a lagged correlation between correlation matrices 
computed over different time windows. Both methods show a deep interplay between past changes 
in correlation structure and future changes in volatility and we demonstrate they can anticipate 
market risk variations and this can be used to better forecast portfolio risk. Notably, these methods 
overcome the curse of dimensionality that limits the applicability of traditional econometric tools to 
portfolios made of a large number of assets. We report on forecasting performances and statistical 
significance of both methods for two different equity datasets. We also identify an optimal region of 
parameters in terms of True Positive and False Positive trade-off, through a ROC curve analysis. We find 
that this forecasting method is robust and it outperforms logistic regression predictors based on past 
volatility only. Moreover the temporal analysis indicates that methods based on correlation structural 
persistence are able to adapt to abrupt changes in the market, such as financial crises, more rapidly than 
methods based on past volatility.

Forecasting changes in volatility is essential for risk management, asset pricing and scenario analysis. Indeed, 
models for describing and forecasting the evolution of volatility and covariance among financial assets are widely 
applied in industry1–4. Among the most popular approaches are worth mentioning the multivariate extensions of 
GARCH5, the stochastic covariance models6 and realized covariance7. However most of these econometrics tools 
are not able to cope with more than few assets, due to the curse of dimensionality and the increase in the number 
of parameters1, limiting their insight into the volatility evolution to baskets of few assets only. This is unfortunate, 
since gathering insights into systemic risk and the unfolding of financial crises require modelling the evolution of 
entire markets which are composed by large numbers of assets1.

We suggest to use network filtering8–14 and metacorrelation as valuable tools to overcome this limitation. 
Correlation-based filtering networks are tools which have been widely applied to filter and reduce the complexity 
of covariance matrices made of large numbers of assets (of the order of hundreds), representative of entire mar-
kets. This strand of research represents an important part of the Econophysics literature and has given important 
insights for risk management, portfolio optimization and systemic risk regulation15–20.

The volatility of a portfolio depends on the covariance matrix of the corresponding assets21. Therefore, the 
latter can provide insights into the former. In this work we elaborate on this connection showing that correla-
tion matrices can be used to predict variations of volatility. The approach we propose exploits network filtering 
to explicitly predict future volatility of markets made of hundreds of stocks. This is quite an innovative use of 
correlation-based networks, which have been so far mostly used for descriptive analyses, with the connections 
with risk forecasting being mostly overlooked. Some works have shown that is possible to use dimensionality 
reduction techniques, such as spectral methods22, as early-warning signals for systemic risk23,24: however these 
approaches, although promising, do not provide proper forecasting tools, as they are affected by high false posi-
tive ratios and are not designed to predict a specific quantity.
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We quantify the rate of change in the structure of the market correlation matrix by using two tools: (1) the 
“correlation structure persistence” 〈 ES〉  which is a measure of similarity between past correlation structures com-
puted from network filtering; (2) the metacorrelation, that is the correlation between correlation matrices at dif-
ferent times; we discuss performances, advantages and disadvantages of the two approaches. We show how such 
measures exhibit significant predicting power on the market volatility, providing a tool to forecast it. We assess the 
reliability of these forecasting through out-of-sample tests on two different equity datasets.

The rest of this paper is structured as follows: we first describe the two datasets we have analysed and we 
introduce the correlation structure persistence and metacorrelation; then we show how our analyses point out 
a strong interdependence between correlation structure persistence and future changes in the market volatility; 
moreover, we describe how this result can be exploited to provide a forecasting tool useful for risk management, 
by presenting out-of-sample tests and false positive analysis; then we investigate how the forecasting performance 
changes in time; finally we discuss our findings and their theoretical implications.

Results
We have analysed two different datasets of equity data. The first set (NYSE dataset) is composed by daily closing 
prices of N =  342 US stocks traded in New York Stock Exchange, covering 15 years from 02/01/1997 to 31/12/2012. 
The second set (LSE dataset) is composed by daily closing prices of N =  214 UK stocks traded in the London Stock 
Exchange, covering 13 years from 05/01/2000 to 21/08/2013. All stocks have been continuously traded through-
out these periods of time. These two sets of stocks have been chosen in order to provide a significant sample of the 
different industrial sectors in the respective markets.

For each asset i (i =  1, ..., N) we have calculated the corresponding daily log-return ri(t) =  log (Pi(t)) −  
log (Pi(t −  1)), where Pi(t) is the asset i price at day t. The market return rM(t) is defined as the average of all stocks 
returns: rM(t) =  1/N∑ iri(t). In order to calculate the correlation between different assets we have then analysed the 
observations by using n moving time windows, Ta with a =  1, ..., n. Each time window contains θ observations 
of log-returns for each asset, totaling to N ×  n observations. The shift between adjacent time windows is fixed to 
dT =  5 trading days: therefore, adjacent time windows share a significant number of observations. We have calcu-
lated the correlation matrix within each time window, {ρij(Ta)}, by using an exponential smoothing method25 that 
allows to assign more weight on recent observations. The smoothing factor of this scheme has been chosen equal 
to θ/3 according to previously established criteria25.

A measure of correlation structure persistence with filtering networks. From each correlation 
matrix {ρij(Ta)} we computed the corresponding Planar Maximally Filtered Graph (PMFG)26 which is one reali-
zation of a broader class of filtering networks associating a sparse graph to a correlation matrix27. Specifically, the 
PMFG is a sparse network representation of the correlation matrix that retains only a subset of most significant 
entries, selected through the topological criterion of being maximally planar9. In general, any correlation matrix 
can be represented as a graph, where each node is an asset and each link between two nodes represents the cor-
relation between them. From this network, which is typically fully connected, several different planar graphs can 
be extracted as subgraphs: a graph is planar if it can be embedded on a plane without link crossing26. The Planar 
Maximally Filtered Graph (PMFG) is the planar graph associated with the original correlation matrix which max-
imizes the sum of weights accordingly with a given greedy algorithm26. The PMFG can be seen as a generalization 
of the Minimum Spanning Tree: the PMFG is able to retain a higher amount of information9, having a less strict 
topology constraint allowing to keep a larger number of links. Moreover, the MST is a subgraph of PMFG. In 
terms of computational complexity the algorithm that builds PMFG is O(N3); recently27 a new algorithm has been 
proposed, able to build a chordal planar graph (called Triangulated Maximally Filtered Graph, TMFG) with an 
execution time O(N2), making possible a much higher scalability and the application to Big Data27. Such networks 
have been shown to provide a deep insight into the dependence structure of financial assets9,10,28.

Once the n PMFGs, G(Ta) with a =  1, ..., n, have been computed we have calculated a measure that monitors the 
correlation structure persistence, based on a measure of PMFG similarity. This measure, that we call ES(Ta, Tb),  
computes the edges in common between a PMFG computed over the time-windows Ta and Tb of length θ. Its 
average over a set of L windows Tb (see Fig. 1 and Eqs 2 and 3 in Methods) is denoted with 〈 ES〉 (Ta). This measure 
uses past data only and indicates how slowly the correlation structure measured at time window Ta is differenti-
ating from structures associated to previous time windows.

In Fig. 2 we show the ES(Ta, Tb) matrices (Eq. 3) for the NYSE and LSE dataset, for θ =  1000. We can observe 
a block structure with periods of high structural persistence and other periods whose correlation structure is 
changing faster. In particular two main blocks of high persistence can be found before and after the 2007–2008 
financial crisis; a similar result was found in a previous work20 with a different measure of similarity. These results 
are confirmed for all values of θ considered.

A measure of correlation structure persistence with metacorrelations. We have considered a more 
direct measure of correlation structure persistence, the metacorrelation z(Ta, Tb), that is the Pearson correlation 
computed between the coefficients of correlation matrices at Ta and Tb (see Methods for more details). Such 
measure does not make use of any filtering network. Let us note that, although conceptually simpler, this meas-
ure requires an equivalent computational complexity (O(N 2)) than 〈 ES〉 (Ta) (when computed with the TMFG 
approach27) but it requires a larger memory usage. Figure 3 displays the similarity matrices obtained with this 
measure for NYSE and LSE datasets: we can observe again block-like structures, that however carry different 
information from the ES(Ta, Tb) in Fig. 2; in particular, blocks show higher intra-similarity and less structure. 
Similarly to the construction of ES(Ta). we have defined 〈 z〉 (Ta) as the weighted average over L past time windows 
(see Methods Eqs 2 and 5).
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Figure 1. Scheme of time windows setting for 〈ES〉(Ta) and q(Ta) calculation. Ta is a window of length θ. The 
correlation structure persistence 〈 ES〉 (Ta) (upper axis) is computed by using data in Ta and in the first L time 
windows before Ta. The volatility ratio q(Ta) is computed by using data in Ta and in the future time window 
Ta

forward. In the upper axis the time windows are actually overlapping, but they are here represented as disjoint 
for the sake of simplicity.

Figure 2. ES(Ta, Tb) matrices for θ = 1000, for NYSE (left) and LSE dataset (right). A block-like structure can 
be observed in both datasets, with periods of high structural persistence and other periods whose correlation 
structure is changing faster. The 2007–2008 financial crisis marks a transition between two main blocks of high 
structural persistence.

Figure 3. z(Ta, Tb) matrices for θ = 1000, for NYSE (left) and LSE dataset (right). A block-like structure can 
be observed in both datasets, with periods of high structural persistence and other periods whose correlation 
structure is changing faster. The blocks of high similarity show higher compactness than in Fig. 2.
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A forward looking measure of volatility: volatility ratio. The volatility ratio q(Ta)29,30 is a 
foward-looking measure that, at each time window Ta, compute the ratio between the estimated volatility in the 
following time-window Ta

foward and the one estimated from Ta. Unlike 〈 ES〉 (Ta) or 〈 z〉 (Ta) the value of q(Ta) is not 
known at the end of Ta as it requires information from the next time-window. Figure 1 shows a graphical rep-
resentation of the time window set-up.

Interplay between correlation structure persistence and volatility ratio. To investigate the rela-
tion between 〈 ES〉 (Ta) and q(Ta) we have calculated the two quantities with different values of θ and L in Eqs 2 
and 6, to assess the robustness against these parameters. Specifically, we have used θ ∈ (250, 500, 750, 1000) trad-
ing days, that correspond to time windows of length 1, 2, 3 and 4 years respectively; L ∈ (10, 25, 50, 100), that 
correspond (given dT =  5 trading days) to an average in Eq. 2 reaching back to 50, 125, 250 and 500 trading days 
respectively. θforward has been chosen equal to 250 trading days (one year) for all the analysis.

In Fig. 4 we show 〈 ES〉 (Ta) and q(Ta) as a function of time, for θ =  1000 and L =  100. As expected, main peaks 
of q(Ta) occur during the months before the most turbulent periods in the stock market, namely the 2002 market 
downturn and the 2007–2008 credit crisis. Interestingly, the corresponding 〈 ES〉 (Ta) seems to follow a specu-
lar trend. This is confirmed by explicit calculation of Pearson correlation between the two signals, reported in 
Tables 1 and 2: as one can see, for all combinations of parameters the correlation is negative.

Figure 4. 〈ES〉(Ta) and q(Ta) signals represented for θ = 1000 and L = 100, for both NYSE (left graph) and 
LSE (right graph) datasets. It is evident the anticorrelation between the two signals. The financial crisis triggers 
a major drop in the structural persistence and a corresponding peak in q(Ta).

L

10 25 50 100

θ

250 −0.2129 − 0.2224 − 0.2997* − 0.3498**

500 − 0.4276** − 0.4683** − 0.4945** − 0.5354**

750 − 0.4994** − 0.5499** − 0.5837** − 0.6018**

1000 − 0.5789** − 0.6152** − 0.6480** − 0.6874**

Table 1.  NYSE dataset: correlation between 〈ES〉(Ta) and q(Ta), for different combinations of parameters 
θ and L. Stars mark those correlation coefficients whose confidence interval excludes zero with a 95% (one star) 
or a 99% confidence (two stars). The confidence intervals are computed from the block-bootstrapped sample. 
**p <  0.001, *p <  0.01.

L

10 25 50 100

θ

250 − 0.2084* − 0.1887* − 0.1872 − 0.2269*

500 − 0.3083** − 0.3343** − 0.3782** − 0.4202**

750 − 0.4050** − 0.4409** − 0.4334** − 0.4374**

1000 − 0.4552** − 0.5285** − 0.5480** − 0.5227**

Table 2.  LSE dataset: correlation between 〈ES〉(Ta) and q(Ta), for different combinations of parameters θ 
and L. Stars mark those correlation coefficients whose confidence interval excludes zero with a 95% (one star) 
or a 99% confidence (two stars). The confidence intervals are computed from the block-bootstrapped sample. 
**p <  0.001, *p <  0.01.
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In order to check the significance of this anticorrelation we cannot rely on standard tests on Pearson coef-
ficient, such as Fisher transform31, as they assume i.i.d. series32. Both 〈 ES〉 (Ta) and q(Ta) are instead strongly 
autocorrelated, due to the significant overlapping between adjacent time windows. In Supplementary Material, 
Fig. S3, the autocorrelation of q(Ta) is analysed at different lags. Therefore we have calculated confidence intervals 
by performing a block bootstrapping test33. This is a variation of the bootstrapping test34, conceived to take into 
account the autocorrelation structure of the bootstrapped series. The only free parameter in this method is the 
block length, that we have chosen applying the optimal selection criterion proposed in literature35: such criterion 
is adaptive on the autocorrelation strength of the series as measured by the correlogram. We have found, depend-
ing on the parameters θ and L, optimal block lengths ranging from 29 to 37, with a mean of 34 (corresponding to 
170 trading days). By performing block bootstrapping tests we have therefore estimated confidence intervals for 
the true correlation between 〈 ES〉 (Ta) and q(Ta); in Tables 1 and 2 correlations whose 95% and 99% confidence 
intervals (CI) do not include zero are marked with one and two stars respectively. As we can see, 14 out of 16 cor-
relation coefficients are significantly different from zero within 95% CI in the NYSE dataset, and 12 out of 16 in 
the LSE dataset. For what concerns the 99% CI, we observe 13 out of 16 for the NYSE and 9 out of 16 for the LSE 
dataset. Non-significant correlations appear only for θ =  250, suggesting that this length is too small to provide 
a reliable measure of structural persistence. Very similar results are obtained by using Minimum Spanning Tree 
(MST)36 instead of PMFG as network filtering.

Given the interpretation of 〈 ES〉 (Ta) and q(Ta) given above, anticorrelation implies that an increase in the 
“speed” of correlation structure evolution (low 〈 ES〉 (Ta)) is likely to correspond to underestimation of future 
market volatility from historical data (high q(Ta)), whereas when the structure evolution “slows down” (high 
〈 ES〉 (Ta)) there is indication that historical data is likely to provide an overestimation of future volatility. This 
means that we can use 〈 ES〉 (Ta) as a valuable predictor of current historical data reliability. This result is to some 
extent surprising as 〈 ES〉 (Ta) is derived from PMFGs topology, which in turns depends only on the ranking of 
correlations and not on their actual value: yet, this information provides meaningful information about the future 
market volatility and therefore about the future covariance.

In Tables 3 and 4 we show the correlation between 〈 z〉 (Ta) and q(Ta). As we can see, although an anticorre-
lation is present for each combination of parameters θ and L, correlation coefficients are systematically closer 
to zero than in Tables 1 and 2, where 〈 ES〉 (Ta) was used. Moreover the number of significant Pearson coef-
ficients, according to the block bootstrapping, decreases to 12 out of 16 in NYSE and to 10 out of 16 in LSE 
dataset. Since 〈z〉 (Ta) does not make use of PMFG, this result suggests that the filtering procedure associated 
to correlation-based networks is enhancing the relation between past correlation structure and future volatility 
changes. We shall however see in the next session that for forecasting purposes network filtering might not be 
always beneficial.

Forecasting volatility with correlation structure persistence. In this section we evaluate how well 
the correlation structure persistence 〈 ES〉 (Ta) can forecast the future through its relation with the forward-looking 
volatility ratio q(Ta). In particular we focus on estimating whether q(Ta) is greater or less than 1: this information, 
although less complete than a precise estimation of q(Ta), gives us an important insight into possible overestima-
tion (q(Ta) <  1) or underestimation (q(Ta) >  1) of future volatility. The equivalent assessment of forecasting power 
of 〈 z〉 (Ta) is reported in Supplementary Material (Tables S1–S4 and Fig. S1).

L

10 25 50 100

θ

250 − 0.0992 − 0.0754 − 0.1055 − 0.1157

500 − 0.2146 − 0.2232 − 0.2309 − 0.2753

750 − 0.2997 − 0.3706* − 0.4030* − 0.4109*

1000 − 0.3933** − 0.4290** − 0.4678** − 0.4574*

Table 3.  NYSE dataset: correlation between 〈z〉(Ta) and q(Ta), for different combinations of parameters θ 
and L. Stars mark those correlation coefficients whose confidence interval excludes zero with a 95% (one star) 
or a 99% confidence (two stars). The confidence intervals are computed from the block-bootstrapped sample. 
**p <  0.001, *p <  0.01.

L

10 25 50 100

θ

250 − 0.1470 − 0.1095 − 0.1326 − 0.1720

500 − 0.2365* − 0.2113 − 0.2936* − 0.3932**

750 − 0.3123** − 0.3379* − 0.3538* − 0.3851*

1000 − 0.2917* − 0.2954 − 0.3163 − 0.4192**

Table 4.  LSE dataset: correlation between 〈z〉(Ta) and q(Ta), for different combinations of parameters θ 
and L. Stars mark those correlation coefficients whose confidence interval excludes zero with a 95% (one star) 
or a 99% confidence (two stars). The confidence intervals are computed from the block-bootstrapped sample. 
**p <  0.001, *p <  0.01.
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We have proceeded as follows. Given a choice of parameters θ and L, we have calculated the corresponding 
set of pairs {〈 ES〉 (Ta), q(Ta)}, with a =  1, ..., n. Then we have defined Y(Ta) as the categorical variable that is 0 if 
q(Ta) <  1 and 1 if q(Ta) >  1. Finally we have performed a logistic regression of Y(Ta) against 〈 ES〉 (Ta): namely, we 
assume that37:

β β+ = = +P Y T ES T x S x{ ( ) 1 ( ) } ( ), (1)a a 0 1

where S(t) is the sigmoid function =
+ −S t( )

e
1

1 t
38; we estimate parameters β0 and β1 from the observations {〈 ES〉 

(Ta), q(Ta)}a=1, ... ,n through Maximum Likelihood39.
Once the model has been calibrated, given a new observation 〈 ES〉 (Tn+1) =  x we have predicted Y(Tn+1) =  1 if 

P{Y(Tn+1) =  1|〈 ES〉 (Tn+1) =  x} >  0.5, and Y(Tn+1) =  0 otherwise. This classification criterion, in a case with only one 
predictor, corresponds to classify Y(Tn+1) according to whether 〈 ES〉 (Tn+1) is greater or less than a threshold r 
which depends on β0 and β1, as shown in Fig. 5 (right graphs) for a particular choice of parameters. Therefore the 
problem of predicting whether market volatility will increase or decrease boils down to a classification problem39 
with 〈 ES〉 (Ta) as predictor and Y(Ta) as target variable.

We have made use of a logistic regression because it is more suitable than a polynomial model for dealing with 
classification problems37. Other classification algorithms are available; we have chosen the logistic regression due 
to its simplicity. We have also implemented the KNN algorithm39 and we have found that it provides similar out-
comes but worse results in terms of the forecasting performance metrics that we discuss in this section.

We have then evaluated the goodness of the logistic regression at estimating Y(Tn+1) given a new observation 
〈 ES〉 (Tn+1). To this end, we have computed three standard metrics for assessing the performance of a classifica-
tion method: the probability of successful forecasting P+, the True Positive Rate TPR and the False Positive Rate 
FPR. P+ represents the expected fraction of correct predictions, TPR is the method goodness at identifying true 
positives (in this case, actual increases in volatility) and FPR quantifies the method tendency to false positives 
(predictions of volatility increase when the volatility will actually decrease): see Methods for more details. Overall 
these metrics provide a complete summary of the model goodness at predicting changes in the market volatility37.

In order to avoid overfitting we have estimated the metrics above by means of an out-of-sample procedure37,39. 
We have divided our dataset into two periods, a training set and a test set. In the training set we have calibrated 
the logistic equation in Eq. 1, estimating the parameters β0 and β1; in the test set we have used the calibrated 

Figure 5. Partition of data into training (left graphs) and test (right graphs) set. Training sets are used 
to regress Y(Ta) against 〈 ES〉 (Ta), in order to estimate the coefficents in the logistic regression and therefore 
identify the regression threshold, shown as a vertical continuous line. The test sets are used to test the 
forecasting performance of such regression on a subset of data that has not been used for regression; the model 
predicts Y(Ta) =  1 (q(Ta) >  1, blue squares in the figure) if 〈 ES〉 (Ta) is less than the regression threshold, and 
Y(Ta) =  0 (q(Ta) <  1, red stars in the figure) otherwise.
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model to measure the goodness of the model predictions by computing the measures of performance in Eqs 9–11. 
In Fig. 5 this division is shown for a particular choice of θ and L, for both NYSE and LSE dataset. In this example 
the percentage of data included in the test set (let us call it ftest) is 30%.

Probabilities of successful forecasting P+ are reported in Tables 5 and 6, for ftest =  30%. As we can see P+ is 
higher than 50% for all combinations of parameters in NYSE dataset, and in almost all combinations for LSE 
dataset. Stars mark those values of P+ that are significantly higher than the same probability obtained by using the 
most recent value of q instead of 〈 ES〉 (Ta) as a predictor for q(Ta) in the logistic regression (let us call +Pq  such 
probability, reported in Tables S5 and 6 in Supplementary Material ). Specifically, we have defined a null model 
where variations from such probability +Pq  are due to random fluctuations only; given n observations, such fluc-
tuations follow a Binomial distribution +B P n( , )q , with mean +nPq  and variance −+ +nP P(1 )q q . Then p-values have 
been calculated by using this null distribution for each combination of parameters. This null hypothesis accounts 
for the predictability of q(Ta) that is due to the autocorrelation of q(Ta) only; therefore P+ significantly higher than 
the value expected under this hypothesis implies a forecasting power of 〈 ES〉 (Ta) that is not explained by the 
autocorrelation of q(Ta). From the table we can see that P+ is significant in 12 out of 16 combinations of parame-
ters for NYSE dataset, and in 13 out of 16 for LSE dataset. This means that correlation persistence is a valuable 
predictor for future average correlation, able to outperform forecasting method based on past average correlation 
trends. These results are robust against changes of ftest, as long as the training set is large enough to allow an accu-
rate calibration of the logistic regression. We have found this condition is satisfied for ftest <  40%. In Supplementary 
Material, Fig. S3 reports the autocorrelation of q(Ta). We also investigated a null model that uses the weighted 
average version of q(Ta): results are very similar and reported in Supplementary Material (Tables S9 and 10).

It must be noted that P+ does not give any information on the method ability to distinguish between true and 
false positives. To investigate this aspect we need TPR and FPR. A traditional way of representing both measures 
from a binary classifier is the so-called “Receiver operating characteristic” (ROC) curve40. In a ROC plot, TPR 
is plotted against FPR as the discriminant threshold is varied. The discriminant threshold pmax is the value of the 
probability in Eq. 1 over which we classify Y(Ta) =  1: the higher pmax is, the less likely the method is to classify 
Y(Ta) =  1 (in the analysis on P+ we chose pmax =  0.5). Ideally, a perfect classifier would yield TPR =  1 for all pmax >  0, 
whereas a random classifier is expected to lie on the line TPR =  FPR. Therefore a ROC curve which lies above the 
line TPR =  FPR indicates a classifier that is better than chance at distinguishing true from false positives37.

As one can see from Fig. 6, the ROC curve's position depends on the choice of parameters θ and L. In this 
respect our classifier performs better for low values of L and θ. This can be quantified by measuring the area under 
the ROC curve; such measure, often denoted by AUC37, is shown in Tables 7 and 8. For both datasets the optimal 
choice of parameters is θ =  500 and L =  10. In Supplementary Material, Tables S7 and 8 and Fig. S4, the ROC curve 
and AUC values are reported for the case when q(Ta) is used as predictor, showing that q(Ta) underperforms 〈 ES〉 
(Ta) in terms of ROC analysis as well.

We also tested the predictive power of metacorrelations z(Ta, Tb) (see Supplementary Material). By comparing 
with the results for ES(Ta, Tb) we observed that 〈 z〉 (Ta) has almost always a slightly higher P+ than 〈 ES〉 (Ta) in the 
NYSE dataset, whereas on average it has lower values than 〈 ES〉 (Ta) in the LSE dataset (with 9 out of 16 values 
of P+ less than the corresponding 〈 ES〉 (Ta) probabilities). On the other hand, the ROC analysis shows that the 
predictor 〈 ES〉 (Ta) performs better than 〈 z〉 (Ta) in the NYSE dataset and worse in the LSE dataset. Results for 
forecasting with z(Ta, Tb) are reported in Section S.1 of Supplementary Material (Tables S1 and S4 and Fig. S1). 
We therefore conclude that the advantage of network filtering in measuring the correlation structure persistence 
is clear only when it comes to the correlation analysis with q(Ta), whereas for the forecasting model it might be 

L

10 25 50 100

θ

250 0.546 0.560* 0.599** 0.539**

500 0.704** 0.695** 0.658** 0.605**

750 0.634* 0.585 0.539 0.708*

1000 0.704* 0.7638** 0.839** 0.860

Table 5.  NYSE dataset: Probability of successful forecasting P+, for different combinations of parameters θ 
and L. Out-of-sample analysis. **p <  0.001, *p <  0.01.

L

10 25 50 100

θ

250 0.616** 0.645** 0.612** 0.568**

500 0.652** 0.635** 0.598** 0.393

750 0.651** 0.560** 0.453** 0.412

1000 0.544** 0.573** 0.706** 0.689

Table 6.  LSE dataset: Probability of successful forecasting P+, for different combinations of parameters θ 
and L. Out-of-sample analysis. **p <  0.001, *p <  0.01.
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convenient to use one measure or the other depending on whether one wants to maxmise the probability of fore-
casting (P+) or minimise the impact of false positive (ROC analysis).

Temporal evolution of forecasting performance. In this section we look at how the forecasting per-
formance changes at different time periods. In order to explore this aspect we have counted at each time window 
Ta the number N+(Ta) of Y(Ta) predictions (out of the 16 predictions corresponding to as many combinations of 
θ and L) that have turned out to be correct; we have then calculated the fraction of successful predictions n+(Ta) 
as n+(Ta) =  N+(Ta)/16. In this way n+(Ta) is a proxy for the goodness of our method at each time window. Logistic 
regression parameters β0 and β1 have been calibrated by using the entire time period as training set, therefore this 
is an in-sample analysis.

In Fig. 7 we show the fraction of successful predictions for both NYSE and LSE datasets (upper graphs, blue 
circles). For comparison we also show the same measure obtained by using the most recent value of q(Ta) as pre-
dictor (bottom graphs); as in the previous section, it represents a null model that makes prediction by using only 
the past evolution of q(Ta). As we can see, both predictions based on 〈 ES〉 (Ta) and on past values of q(Ta) display 
performances changing in time. In particular n+(Ta) drops just ahead of the main financial crises (the market 

Figure 6. Receiver operating characteristic (ROC) curve. Left graph: True positive rate (TPR) against 
False positive rate (FPR) as the discriminant threshold pmax of the classifier is varied, for each combination of 
parameters θ and L in the NYSE dataset. The closer the curve is to the upper left corner of each graph, the better 
is the classifier compared to chance. Right graph: True positive rate (TPR) against False positive rate (FPR) as 
the discriminant threshold pmax of the classifier is varied, for each combination of parameters θ and L in the LSE 
dataset.

L

10 25 50 100

θ

250 0.669 0.652 0.655 0.616

500 0.775 0.753 0.710 0.625

750 0.663 0.6220 0.574 0.520

1000 0.467 0.470 0.462 0.314

Table 7.  NYSE dataset: Area under the curve (AUC), measured from the ROC curve in Fig. 6. Values 
greater than 0.5 indicate that the classifier performs better than chance.

L

10 25 50 100

θ

250 0.673 0.658 0.618 0.524

500 0.727 0.700 0.602 0.431

750 0.324 0.274 0.234 0.148

1000 0.233 0.168 0.0918 0.0160

Table 8.  LSE dataset: Area under the curve (AUC), measured from the ROC curve in Fig. 6. Values greater 
than 0.5 indicate that the classifier performs better than chance.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:36320 | DOI: 10.1038/srep36320

downturn in March 2002, 2007–2008 financial crisis, Euro zone crisis in 2011); this is probably due to the abrupt 
increase in volatility that occurred during these events and that the models took time to detect. After these drops 
though performances based on 〈 ES〉 (Ta) recover much more rapidly than those based on past value of q(Ta). For 
instance in the first months of 2007 our method shows quite high n+(Ta) (more than 60% of successful predic-
tions), being able to predict the sharp increase in volatility to come in 2008 while predictions based on q(Ta) fail 
systematically until 2009. Overall, predictions based on correlation structure persistence appear to be more relia-
ble (as shown by the average n+(Ta) over all time windows, the horizontal lines in the plot) and faster at detecting 
changes in market volatility. Similar performances to 〈 ES〉 (Ta) can be observed when n+(Ta) is calculated using  
〈 z〉 (Ta) as measure of correlation structure persistence (see Supplementary Material, Fig. S2).

Discussion
In this paper we have proposed a new tool for forecasting market volatility based on correlation-based infor-
mation filtering networks, metacorrelation and logistic regression, useful for risk and portfolio management. 
The advantage of our approach over traditional econometrics tools, such as multivariate GARCH and stochastic 
covariance models, is the “top-down” methodology that treats correlation matrices as the fundamental objects, 
allowing to deal with many assets simultaneously; in this way the curse of dimensionality, that prevents e.g. multi-
variate GARCH to deal with more than few assets, is overcome. We have proven the forecasting power of this tool 
by means of out-of-sample analyses on two different stock markets; the forecasting performance has been proven 
to be statistically significant against a null model, outperforming predictions based on past market correlation 
trends. Moreover we have measured the ROC curve and identified an optimal region of the parameters in terms 
of True Positive and False Positive trade-off. The temporal analysis indicates that our approach, based on corre-
lation structure persitance, is able to adapt to abrupt changes in the market, such as financial crises, more rapidly 
than methods based on past volatility.

This forecasting tool relies on an empirical fact that we have reported in this paper for the first time. 
Specifically, we have shown that there is a deep interplay between future changes in market volatility and the rate 
of change of the past correlation structure. The statistical significance of this relation has been assessed by means 
of a block-bootstrapping technique. An analysis based on metacorrelation has revealed that this interplay is better 
highlighted when filtering based on correlation filtering graphs (Planar Maximally Filtered Graphs) is used to 
estimate the correlation structure persistence. However, when it comes to forecasting performances, metacorre-
lation might be preferable to network filtering On the other hand, the use of planar graphs allows a better visual-
isation of the system, making possible a clearer interpretation of correlation structure changes. We must note that 
correlation filtering networks retain a much smaller amount of information than the whole correlation matrix 
and nonetheless reveal larger relations with future volatility changes and comparable forecasting performances. 
This could be crucial for a possible use of this tools in the context of big-data analytic where several thousands of 
indicators are simultaneously considered.

This finding sheds new light into the dynamic of correlation. Both metacorrelation and the topology of corre-
lation filtering networks depend on the ranking of the N(N −  1)/2 pairs of cross-correlations; therefore a decrease 
in the correlation structure persistence points out a faster change of this ranking. Our result indicates that such 
increase is typically followed by a rise in the market volatility, whereas decreases are followed by drops. A possible 
interpretation of this is related to the dynamics of risk factors in the market. Indeed higher volatility in the market 
is associated to the emergence of a (possibly new) risk factor that makes the whole system unstable; such transi-
tion could be anticipated by a quicker change of the correlation ranking, triggered by the still emerging factor and 
revealed by the correlation structure persistence. Such persistence can therefore be a powerful tool for monitoring 
the emergence of new risks, valuable for a wide range of applications, from portfolio management to systemic risk 
regulation. Moreover this interpretation would open interesting connections with those approaches to systemic 

Figure 7. Fraction of successful predictions as a function of time. NYSE (left graph) and LSE dataset (right 
graph). Forecasting is based on logistic regression with predictor 〈 ES(Ta)〉  (top graphs) and most recent value of 
q(Ta) (bottom graphs). Horizontal lines represent the average over the entire period.
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risk that make use of Principal Component Analysis, monitoring the emergence of new risk factors by means of 
spectral methods23,24. We plan to investigate all these aspects in a future work.

Methods
Correlation structure persistence with filtering networks 〈ES〉(Ta). We define the correlation struc-
ture persistence at time Ta as:

∑ ω=
= −

−
ES T T ES T T( ) ( ) ( , ),

(2)a
b a L

a

b a b

1

where ω ω= − −( )T( ) expb
b a

L0
1

/3
 is an exponential smoothing factor, L is a parameter and ES(Ta, Tb) is the frac-

tion of edges in common between the two PMFGs G(Ta) and G(Tb), called “edge survival ratio”15. In formula, 
ES(Ta,Tb) reads:

∩=ES T T
N

E E( , ) 1 ,
(3)

a b
edges

T Ta b

where Nedges is the number of edges (links) in the two PMFGs (constant and equal to 3N −  6 for a PMFG26), and 
ETa (ETb) represents the edge-sets of PMFG at Ta (Tb). The correlation structure persistence 〈 ES〉 (Ta) is therefore 
a weighted average of the similarity (as measured by the edge survival ratio) between G(Ta) and the first L previ-
ous PMFGs, with an exponential smoothing scheme that gives more weight to those PMFGs that are closer to Ta. 
The parameter ω0 in Eq. 2 can be calculated by imposing ω∑ == −

− T( ) 1b a L
a

b
1 . Intuitively, 〈 ES〉 (Ta) measures how 

slowly the change of correlation structure is occurring in the near past of Ta.

Correlation structure persistence with metacorrelation 〈z〉(Ta). Given two correlation matrices 
{ρij(Ta)} and {ρij(Tb)} at two different time windows Ta and Tb, their metacorrelation z(Ta,Tb) is defined as follows:
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where 〈...〉 ij is the average over all couples of stocks i, j. Similarly to Eq. 2 we have then defined z(Ta) as the 
weighted average over L past time windows:

∑ ω= .
= −
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Volatility ratio q(Ta). In order to quantify the agreement between the estimated and the realized risk we 
here make use of the volatility ratio, a measure which has been previously used29,41 for this purpose and defined 
as follows:

σ
σ

=q T T
T

( ) ( )
( )

,
(6)a

a
forward

a

where σ T( )a
forward  is the realized volatility of the average market return rM(t) computed on the time window 

Ta
forward; σ(Ta) is the estimated volatility of rM(t) computed on time window Ta, by using the same exponential 

smoothing scheme25 described for the correlation {ρij(Ta)}. Specifically, Ta
forward is the time window of length  

θforward that follows immediately Ta: if tθ is the last observation in Ta, Ta
forward covers observations from tθ+1 to 

θ θ+ +t 1 forward
 (Fig. 1). Therefore the ratio in Eq. 6 estimates the agreement between the market volatility estimated 

with observations in Ta and the actual market volatility observed over an investment in the N assets over Ta
forward. 

If q(Ta) >  1, then the historical data gathered at Ta has underestimated the (future) realized volatilty, whereas 
q(Ta) <  1 indicates overestimation. Let us stress that q(Ta) provides an information on the reliability of the covar-
iance estimation too, given the relation between market return volatility and covariance21:
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where Covij(Ta) and Cov T( )ij a
forward  are respectively the estimated and realized covariances.

Measures of classification performance. With reference to Fig. 5b,d, let us define the number of obser-
vations in each quadrant Qi (i =  1, 2, 3, 4) as |Qi|. In the terminology of classification techniques39, |Q1| is the 
number of True Positive (observations for which the model correctly predicted Y(Ta) =  1), |Q3| is the number of 
True Negative (observations for which the model correctly predicted Y(Ta) =  0), |Q2| the number of False Negative 



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:36320 | DOI: 10.1038/srep36320

(observations for which the model incorrectly predicted Y(Ta) =  0) and |Q4| the number of False Positive (obser-
vations for which the model incorrectly predicted Y(Ta) =  1). We have then computed the following measures of 
quality of classification, that are the standard metrics for assessing the performances of a classification method39:

•	 Probability of successful forecasting (P+)39: represents the method probability of a correct prediction, 
expressed as fraction of observed 〈 ES〉 (Ta) values through which the method has successfully identified the 
correspondent value of Y(Ta). In classification problems, sometimes, the error rate I is used37, which is simply 
I =  1 −  P+. P+ is computed as follows:

=
+

+ + +
.+P

Q Q
Q Q Q Q (9)

1 3

1 2 3 4

•	 True Positive Rate (TPR)39: it is the probability of predicting Y(Ta) =  1, conditional to the fact that the real 
Y(Ta) is indeed 1 (that is, to predict an increase in volatility when the volatility will indeed increase); it repre-
sents the method sensitivity to increase in volatility. It is also called “recall”37. In formula:

=
+

.TPR
Q

Q Q (10)
1

1 2

•	 False Positive Rate (FPR)39: it is the probability of predicting Y(Ta) =  1, conditional to the fact that the real 
Y(Ta) is instead 0 (that is, to predict an increase in volatility when the volatility will actually decrease). It is 
also called “1-specificity”37. In formula:

=
+

.FPR
Q

Q Q (11)
4

3 4
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